SN65LVDS302ZXH [TI]

SN65LVDS302 Programmable 27-Bit Serial-to-Parallel Receiver;
SN65LVDS302ZXH
型号: SN65LVDS302ZXH
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SN65LVDS302 Programmable 27-Bit Serial-to-Parallel Receiver

文件: 总49页 (文件大小:2695K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
SN65LVDS302 Programmable 27-Bit Serial-to-Parallel Receiver  
1 Features  
3 Description  
Serial interface technology  
Compatible with FlatLink3G such as  
SN65LVDS301  
The  
SN65LVDS302  
receiver  
de-serializes  
FlatLink™3G compliant serial input data to 27 parallel  
data outputs. The SN65LVDS302 receiver contains  
one shift register to load 30 bits from 1, 2 or 3 serial  
inputs and latches the 24 pixel bits and 3 control bits  
out to the parallel CMOS outputs after checking the  
parity bit. If the parity check confirms correct parity,  
the Channel Parity Error (CPE) output remains low. If  
a parity error is detected, the CPE output generates a  
high pulse while the data output bus disregards the  
newly-received pixel. Instead, the last data word is  
held on the output bus for another clock cycle.  
Supports video interfaces up to 24-bit RGB data  
and 3 control bits received over 1, 2 or 3 SubLVDS  
differential lines  
SubLVDS differential voltage levels  
Up to 1.755-Gbps Data Throughput  
Three operating modes to conserve power  
– Active mode QVGA: 17 mW  
– Typical shutdown: 0.7 μW  
– Typical standby mode: 27 μW Typical  
Bus-swap function for PCB-layout flexibility  
ESD rating > 4 kV (HBM)  
Pixel clock range of 4 MHz to 65 MHz  
Failsafe on all CMOS inputs  
Device Information (1)  
PART NUMBER  
PACKAGE  
BODY SIZE (NOM)  
SN65LVDS302  
nFBGA (80)  
5.00 mm × 5.00 mm  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Packaged in 5-mm × 5-mm nFBGA with 0.5-mm  
ball pitch  
Very low EMI meets SAE J1752/3 'Kh'-spec  
2 Applications  
Wearables (non-medical)  
Tablets  
Mobile phones  
Portable electronics  
Gaming  
Retail automation & payment  
Building automation  
LCD  
VDS314  
L
or  
VDS302  
L
Application  
Processor  
with CMOS  
Video Interface  
LVDS301  
or  
LVDS311  
Implementation Example  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information....................................................7  
6.5 Electrical Characteristics.............................................8  
6.6 Input Electrical Characteristics....................................9  
6.7 Output Electrical Characteristics.................................9  
6.8 Timing Requirements................................................10  
6.9 Switching Characteristics..........................................10  
6.10 Device Power Dissipation....................................... 11  
7 Parameter Measurement Information..........................16  
7.1 Power Consumption Tests........................................ 20  
7.2 Typical IC Power Consumption Test Pattern.............20  
7.3 Maximum Power Consumption Test Pattern.............21  
7.4 Output Skew Pulse Position and Jitter  
Performance................................................................22  
8 Detailed Description......................................................25  
8.1 Overview...................................................................25  
8.2 Functional Block Diagram.........................................26  
8.3 Feature Description...................................................27  
8.4 Device Functional Modes..........................................28  
9 Application and Implementation..................................32  
9.1 Application Information............................................. 32  
9.2 Typical Applications.................................................. 36  
10 Power Supply Recommendations..............................39  
11 Layout...........................................................................40  
11.1 Layout Guidelines................................................... 40  
12 Device and Documentation Support..........................41  
12.1 Community Resource............................................. 41  
12.2 Trademarks.............................................................41  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 42  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision D (May 2016) to Revision E (October 2020)  
Page  
NOTE: The device in the MicroStar Jr. BGA packaging were redesigned using a laminate nFBGA package.  
This nFBGA package offers datasheet-equivalent electrical performance. It is also footprint equivalent to the  
MicroStar Jr. BGA. The new package designator in place of the discontinued package designator will be  
updated throughout the datasheet......................................................................................................................1  
Changed u*jr ZQE to nFBGA ZXH..................................................................................................................... 1  
Changed u*jr ZQE to nFBGA ZXH..................................................................................................................... 3  
Changed u*jr ZQE to nFBGA ZXH, updated thermal information.......................................................................7  
Correct SN65LVDS822 to SN65LVDS302........................................................................................................39  
Changes from Revision C (August 2012) to Revision D (May 2016)  
Page  
Added ESD Ratings table, Feature Description section, Device Functional Modes section, Application and  
Implementation section, Power Supply Recommendations section, Layout section, Device and  
Documentation Support section, and Mechanical, Packaging, and Orderable Information section .................. 1  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: SN65LVDS302  
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
5 Pin Configuration and Functions  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
GND  
R6/B1  
R4/B3  
R2/B5  
R0/B7  
G6/G1  
G4/G3  
G2/G5  
GND  
R7/B0  
LS0  
R5/B2  
R3/B4  
R1/B6  
G7/G0  
GND  
GND  
GND  
GND  
GND  
G5/G2  
G3/G4  
GND  
G1/G6  
B7/R0  
B5/R2  
B3/R4  
B1/R6  
F/S  
G0/G7  
B6/R1  
B4/R3  
B2/R5  
B0/R7  
PCLK  
HS  
V
V
V
DD  
DD  
DD  
D2+  
LS1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
V
V
V
V
DD  
DD  
DD  
DD  
D2–  
GND  
PLLD  
D1+  
V
DDPLLD  
G
H
J
D1–  
GND  
LVDS  
CPOL  
V
V
GND  
V
GND  
LVDS  
GND  
VS  
DDLVDS  
SWAP  
DDPLLA  
CLK+  
PLLA  
DDLVDS  
D0+  
GND  
CLK–  
D0–  
RXEN  
DE  
CPE  
LVDS  
Figure 5-1. ZXH Package 80-Pin nFBGA Top View  
Table 5-1. Pin Functions  
PIN  
NO.  
DESCRIPTION  
NAME  
CMOS  
I/O  
B0 to B7  
G0 to G7  
R0 to R7  
See (1)  
See (1)  
See (1)  
CMOS Out Blue pixel data  
CMOS Out Green pixel data  
CMOS Out Red pixel data  
Channel parity error  
This output indicates the detection of a parity error by generating an  
output high-pulse for half of a PCLK clock cycle; this allows counting  
parity errors with a simple counter.  
CPE  
J9  
CMOS Out  
0: no error  
high-pulse: bit error detected  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN65LVDS302  
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
Table 5-1. Pin Functions (continued)  
PIN  
DESCRIPTION  
NAME  
NO.  
H1  
J8  
I/O  
Output clock polarity selection:  
0: rising edge clocking  
CPOL  
CMOS In  
1: falling edge clocking  
DE  
CMOS Out Data Enable  
CMOS bus rise time select:  
F/S  
G8  
CMOS In  
1: fast output rise time  
0: slow output rise time  
HS  
H9  
C1  
D2  
G9  
CMOS Out Horizontal sync  
CMOS In Link select: determines active SubLVDS Data Links and PLL Range) (see Table 8-1)  
LS0  
LS1  
PCLK  
CMOS Out Output Pixel Clock; rising or falling clock polarity is selected by control input CPOL  
Disables the CMOS Drivers and turns off the PLL, putting device in  
shutdown mode.(2)  
RXEN  
J7  
CMOS In  
1: Receiver enabled  
0: Receiver disabled (shutdown)  
Bus swap: swaps the bus pins to allow device placement on top or  
bottom of PCB. See pinout drawing and Table 5-2 for pin  
assignments.  
SWAP  
J2  
CMOS In  
0: data output from R7 to B0  
1: data output from B0 to R7  
CMOS Out Vertical sync  
VS  
H8  
SUBLVDS  
CLK+,  
CLK–  
J3, J4  
J5, J6  
SubLVDS In SubLVDS input pixel clock (polarity is fixed)  
D0+, D0–  
SubLVDS In SubLVDS data link (active during normal operation)  
SubLVDS data link (active during normal operation when LS0 = high and LS1 = low, or  
SubLVDS In LS0 = low and LS1 = high; high impedance if LS0 = LS1 = low); input can be left open  
if unused.  
D1+, D1–  
F1, G1  
D1, E1  
SubLVDS data link (active during normal operation when LS0 = low and LS1 = high,  
SubLVDS In  
D2+, D2–  
POWER SUPPLY  
VDD  
high-impedance when LS1 = low); input can be left open if unused.  
C2, C4, C6,  
D7 to G7  
Power Supply Supply voltage  
VDDLVDS  
VDDPLLA  
VDDPLLD  
H2, H5  
H3  
Power Supply SubLVDS I/O supply voltage  
Power Supply PLL analog supply voltage  
Power Supply PLL digital supply voltage  
F2  
A1, A9, C5, C7,  
D3 to D6, E3 to E6,  
F3 to F6,  
GND  
Ground  
Supply ground  
G3 to G6, H7  
GNDLVDS  
GNDPLLA  
G2, H6, J1  
H4  
Ground  
Ground  
SubLVDS ground  
PLL analog ground  
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: SN65LVDS302  
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
Table 5-1. Pin Functions (continued)  
PIN  
NO.  
E2  
DESCRIPTION  
NAME  
I/O  
GNDPLLD  
Ground  
PLL digital ground  
(1) Pin assignment depends on SWAP pin setting. Swappable pins are detailed in Table 5-2.  
(2) RXEN input incorporates glitch suppression logic to avoid unwanted switching. The input must be pulled low for longer than 10 µs  
continuously to force the receiver to enter Shutdown. The input must be pulled high for at least 10 μs continuously to activate the  
receiver. An input pulse shorter than 5 µs is interpreted as glitch and becomes ignored. At power up, the receiver is enabled  
immediately if RXEN = H and disabled if RXEN = L.  
Table 5-2. Swappable Pins  
SIGNAL SWAP(1)  
SIGNAL SWAP(1)  
PIN  
F9  
B1  
F8  
A2  
E9  
B2  
E8  
A3  
D9  
B3  
D8  
A4  
C9  
B4  
C8  
A5  
PIN  
B9  
B5  
B8  
A6  
A8  
B6  
B7  
A7  
A7  
B7  
B6  
A8  
A6  
B8  
B5  
B9  
SIGNAL SWAP(1)  
PIN  
A5  
C8  
B4  
C9  
A4  
D8  
B3  
D9  
A3  
E8  
B2  
E9  
A2  
F8  
B1  
F9  
L
L
L
B0  
G0  
R0  
H
H
H
L
L
L
B1  
G1  
R1  
H
H
H
L
L
L
B2  
G2  
R2  
H
H
H
L
L
L
B3  
G3  
R3  
H
H
H
L
L
L
B4  
G4  
R4  
H
H
H
L
L
L
B5  
G5  
R5  
H
H
H
L
L
L
B6  
G6  
R6  
H
H
H
L
L
L
B7  
G7  
R7  
H
H
H
(1) The SWAP pin is either set to GND (L) or VDD (H).  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN65LVDS302  
 
 
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
–0.5  
–0.5  
±5  
MAX  
2.175  
UNIT  
Supply voltage range  
VDD (2), VDDPLLA, VDDPLLD, VDDLVDS  
V
When VDDx > 0 V  
When VDDx ≤ 0 V  
2.175  
Voltage range at any input or output terminal  
V
VDD + 2.175  
Ouput current, IO  
mA  
°C  
Storage temperature, Tstg  
–55  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values are with respect to the GND terminals  
6.2 ESD Ratings  
VALUE  
±4000  
±1500  
±200  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Machine model  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
see (1)  
MIN NOM  
MAX UNIT  
VDD  
VDDPLLA  
Supply voltages  
1.65  
1.8  
1.95  
V
VDDPLLD  
VDDLVDS  
Test set-up see Figure 7-1  
fCLK ≤ 50 MHz; f(noise) = 1 Hz to 2 GHz  
fCLK > 50 MHz; f(noise) = 1 Hz to 1 MHz  
fCLK > 50 MHz; f(noise) > 1 MHz  
100  
100  
40  
Supply voltage noise magnitude  
50 MHz (all supplies)  
VDDn(PP)  
mV  
°C  
TA  
Operating free-air temperature  
–40  
85  
CLK+ and CLK–  
1-Channel receive mode, see Figure 8-4  
2-Channel receive mode, see Figure 8-5  
3-Channel receive mode, see Figure 8-6  
Standby mode(2), see Figure 7-10  
4
8
15  
30 MHz  
65  
fCLK±  
Input Pixel clock frequency  
20  
500 kHz  
65%  
tDUTCLK  
CLK Input Duty Cycle  
35%  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN65LVDS302  
 
 
 
 
 
 
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
see (1)  
MIN NOM  
MAX UNIT  
D0+, D0–, D1+, D1–, D2+, D2–, CLK+, and CLK–  
|VD0+ – VD0–|, |VD1+ – VD1–|, |VD2+ – VD2–|,  
|VCLK+ – VCLK–| during normal operation  
|VID|  
VICM  
Magnitude of differential input voltage  
Input voltage common mode range  
70  
200 mV  
Receive or Acquire mode  
Stand-by mode  
0.6  
1.2  
V
0.9 × VDDLVDS  
VICM(n) – VICM(m) with  
n = {D0, D1, D2, or CLK} and  
m = {D0, D1, D2, or CLK}  
Input voltage common mode variation  
between all SubLVDS inputs  
ΔVICM  
–100  
100 mV  
10%  
VID(n) – VID(m) with  
n = {D0, D1, D2, or CLK} and  
m = {D0, D1, D2, or CLK}  
Differential input voltage amplitude  
variation between all SubLVDS inputs  
ΔVID  
tR/F  
–10%  
Input rise and fall time  
RXEN at VDD; see figure 10  
800  
100  
ps  
ps  
tR(n) – tR(m) and tF(n) – tF(m) with  
n = {D0, D1, D2, or CLK} and  
m = {D0, D1, D2, or CLK}  
Input rise or fall time mismatch  
between all SubLVDS inputs  
ΔtR/F  
–100  
LS0, LS1, CPOL, SWAP, RXEN, F/S  
VICMOSH High-level input voltage  
VICMOSL Low-level input voltage  
0.7 × VDD  
VDD  
V
V
0
0.3 × VDD  
tinRXEN  
R[7:0], G[7:0], B[7:0], VS, HS, PCLK, CPE  
CL Output load capacitance  
RXEN input pulse duration  
10  
μs  
10  
pF  
(1) Unused single-ended inputs must be held high or low to prevent them from floating.  
(2) PCLK input frequencies lower than 500 kHz forces the SN65LVDS302 into standby mode. Input frequencies from 500 kHz to 3 MHz  
may or may not activate the SN65LVDS302. Input frequencies beyond 3 MHz activate the SN65LVDS302. TI recommends against  
input frequencies from 500 kHz to 4 MHz, which can cause PLL malfunction.  
6.4 Thermal Information  
SN65LVDS302  
ZXH  
THERMAL METRIC(1)  
UNIT  
(nFBGA)  
80 PINS  
41.5  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
29.4  
23.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.5  
ψJB  
23.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN65LVDS302  
 
 
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
6.5 Electrical Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
9.8  
MAX UNIT  
fPCLK = 4 MHz  
fPCLK = 6 MHz  
fPCLK = 15 MHz  
fPCLK = 4 MHz  
fPCLK = 6 MHz  
fPCLK = 15 MHz  
fPCLK = 8 MHz  
fPCLK = 22 MHz  
fPCLK = 30 MHz  
fPCLK = 8 MHz  
fPCLK = 22 MHz  
fPCLK = 30 MHz  
fPCLK = 20 MHz  
14  
Alternating 1010 Test pattern (see Table 7-5). All CMOS outputs  
terminated with 10 pF, F/S and RXEN at VDD. VIH = VDD, VIL = 0 V,  
VDD = VDDPLLA = VDDPLLD = VDDLVDS  
11.7  
19.3  
4.7  
15.9  
25  
mA  
mA  
mA  
mA  
1ChM  
Typical power test pattern (see Table 7-2). VID = 70 mV. All CMOS  
outputs terminated with 10 pF, F/S at GND, and RXEN at VDD  
VIH = VDD, VIL = 0 V, VDD = VDDPLLA = VDDPLLD = VDDLVDS  
.
6
13.2  
14.3  
25  
19.4  
33  
Alternating 1010 Test pattern (see Table 7-5). All CMOS outputs  
terminated with 10 pF, F/S and RXEN at VDD. VIH = VDD, VIL = 0 V,  
VDD = VDDPLLA = VDDPLLD = VDDLVDS  
26.8  
6.4  
37  
2ChM  
3ChM  
RMS supply  
current  
Typical power test pattern (see Table 7-3). VID = 70 mV. All CMOS  
outputs terminated with 10 pF, F/S at GND, and RXEN at VDD  
VIH = VDD, VIL = 0 V, VDD = VDDPLLA = VDDPLLD = VDDLVDS  
IDD  
.
13.7  
18.3  
17.1  
Alternating 1010 Test pattern (see Table 7-5). All CMOS outputs  
terminated with 10 pF, F/S and RXEN at VDD. VIH = VDD, VIL = 0 V,  
VDD = VDDPLLA = VDDPLLD = VDDLVDS  
27  
68  
mA  
mA  
fPCLK = 65 MHz  
fPCLK = 20 MHz  
fPCLK = 65 MHz  
60.8  
8.6  
Typical power test pattern (see Table 7-4). VID = 70 mV. All CMOS  
outputs terminated with 10 pF, F/S at GND, and RXEN at VDD  
VIH = VDD, VIL = 0 V, VDD = VDDPLLA = VDDPLLD = VDDLVDS  
.
22.2  
Standby mode;  
RXEN = VIH  
15  
100  
10  
μA  
μA  
CLK and D[0:2] inputs are left open. All control inputs held static high or low.  
All CMOS outputs terminated with 10 pF. VIH = VDD, VIL = 0 V,  
VDD = VDDPLLA = VDDPLLD = VDDLVDS  
Shutdown mode;  
RXEN = VIL  
0.4  
(1) All typical values are at 25°C and with 1.8-V supply unless otherwise noted.  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: SN65LVDS302  
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
6.6 Input Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
D0+, D0–, D1+, D1–, D2+, D2–, CLK+, and CLK–  
Input voltage common mode threshold to switch  
Vthstby between receive and acquire mode and standby  
mode  
RXEN at VDD  
1.3  
0.9 × VDDLVDS  
V
VD0+ – VD0–, VD1+ – VD1–  
VD2+ – VD2–, VCLK+ – VCLK–  
,
VTHL  
VTHH  
Low-level differential input voltage threshold  
High-level differential input voltage threshold  
–40  
mV  
VD0+ – VD0–, VD1+ – VD1–  
,
40 mV  
VD2+ – VD2–, VCLK+ – VCLK–  
VDD = 1.95 V, VI+ = VI–,  
VI = 0.4 V and VI = 1.5 V  
II+, II– Input leakage current  
75  
μA  
IIOFF  
RID  
Power-off input current  
VDD = GND; VI = 1.5 V  
–75  
122  
μA  
Differential input termination resistor value  
78  
21  
100  
1
Measured between input  
terminal and GND  
CIN  
Input capacitance  
pF  
Within one signal pair  
Between all signals  
0.2  
1
ΔCIN  
Input capacitance variation  
pF  
kΩ  
RBBDC Pull-up resistor for standby detection  
30  
39  
LS0, LS1, CPOL, SWAP, RXEN, F/S  
VIK  
Input clamp voltage  
II = –18 mA, VDD = VDD(min)  
–1.2  
100  
V
0 V ≤ VDD ≤ 1.95 V;  
VI = {GND, 1.95 V}  
IICMOS Input current(2)  
nA  
CIN  
IIH  
Input capacitance  
2
pF  
nA  
nA  
V
High-level input current  
Low-level input current  
High-level input voltage  
Low-level input voltage  
VIN = 0.7 × VDD  
VIN = 0.3 × VDD  
–200  
–200  
200  
200  
IIL  
VIH  
VIL  
0.7 × VDD  
0
VDD  
0.3 × VDD  
V
(1) All typical values are at 25°C and with 1.8-V supply unless otherwise noted.  
(2) Do not leave any CMOS Input unconnected or floating to minimize leakage currents. Every input must be connected to a valid logic  
level VIH or VOL while power is supplied to VDD  
.
6.7 Output Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
R[0:7], G[0:7], B[0:7], VS, HS, PCLK, CPE  
1-ChM, F/S = L, IOH = –250 μA  
2- or 3-ChM, F/S = L, IOH = –500 μA  
1-ChM, F/S = H, IOH = –500 μA  
2- or 3-ChM, F/S = H, IOH = –2 mA  
1-ChM, F/S = L, IOL = 250 μA  
2- or 3-ChM, F/S = L, IOL = 500 μA  
1-ChM, F/S = H, IOL = 500 μA  
2- or 3-ChM, F/S = H, IOL = 2 mA  
1-ChM, F/S = L  
VOH  
High-level output current  
0.8 × VDD  
VDD  
V
VOL  
Low-level output current  
High-level output current  
0
0.2 × VDD  
V
–250  
–500  
IOH  
2- or 3-ChM, F/S = L; 1-ChM, F/S = H  
2- or 3-ChM, F/S = H  
μA  
–2000  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN65LVDS302  
 
 
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
250  
UNIT  
1-ChM, F/S = L  
IOL  
Low-level output current  
2- or 3-ChM, F/S = L; 1-ChM, F/S = H  
2- or 3-ChM, F/S = H  
500  
μA  
2000  
6.8 Timing Requirements  
PARAMETER  
TEST CONDITIONS  
MIN UNIT  
1ChM: x = 0.29, fPCLK = 15 MHz,  
RXEN at VDD, VIH = VDD, VIL = GND,  
RL = 100 Ω, test setup as in Figure 7-2,  
test pattern as in Table 7-7  
fCLK = 15 MHz(4)  
630  
fCLK = 4 MHz to 15 MHz(5)  
fCLK = 30 MHz(4)  
1 / (60 × fCLK) – 480  
2ChM: x = 0.14, fPCLK = 30 MHz,  
RXEN at VDD, VIH = VDD, VIL = GND,  
RL = 100 Ω, test setup as in Figure 7-2,  
test pattern as in Table 7-8  
630  
Receiver input skew margin(1)  
(see Figure 9-2)  
(2) (3)  
tRSKMx  
ps  
fCLK = 8 MHz to 30 MHz(5)  
fCLK = 65 MHz(4)  
1 / (30 × fCLK) – 480  
3ChM: RXEN at VDD, VIH = VDD, VIL = GND,  
test setup as in Figure 7-2,  
test pattern as in Table 7-9  
360  
fCLK = 20 MHz to 65 MHz(5)  
1 / (20 × fCLK) – 410  
(1) This includes the receiver internal set-up and hold time uncertainty, all PLL related high-frequency random and deterministic jitter  
components that impact the jitter budget, ISI and duty cycle distortion from the front end receiver, and the skew from CLK to data D0,  
D1, and D2; The pulse position minimum and maximum variation is given with a bit error rate target of 10–12; Measurements of the total  
jitter are taken over a sample amount of > 10–12 samples.  
(2) Receiver Input Skew Margin (tRSKM) is the timing margin available for transmitter output pulse position (tPPOS), interconnect skew, and  
interconnect inter-symbol interference. tRSKM represents the reminder of the serial bit time not taken up by the receiver strobe  
uncertainty;. The tRSKM assumes a bit error rate better than 10-12  
.
(3) tRSKM is indirectly proportional to the internal set-up and hold time uncertainty, ISI and duty cycle distortion from the front end receiver,  
the skew mismatch from CLK to data D0, D1, and D2, as well as the PLL cycle-to-cycle jitter.  
(4) The Minimum and Maximum Limits are based on statistical analysis of the device performance over process, voltage, and temp  
ranges.  
(5) These Minimum and Maximum Limits are simulated only.  
6.9 Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX UNIT  
D0+, D0–, D1+, D1–, D2+, D2–, CLK+, and CLK–  
tR/F  
Input rise and fall time  
RXEN at VDD; see Figure 7-4  
800  
100  
ps  
ps  
Input rise or fall time  
mismatch between all  
SubLVDS inputs  
tR(n) – tR(m) and tF(n) – tF(m) with  
n = {D0, D1, D2, or CLK} and  
m = {D0, D1, D2, or CLK}  
ΔtR/F  
–100  
R[7:0], G[7:0], B[7:0], VS, HS, PCLK, CPE  
1-channel mode, F/S = L  
2-channel mode, F/S = L  
3-channel mode, F/S = L  
1-channel mode, F/S = H  
2-channel mode, F/S = H  
3-channel mode, F/S = H  
8
4
16  
8
Rise and fall time  
20% to 80% of VDD  
CL = 10 pF(3)  
(see Figure 7-3)  
4
8
tR/F  
ns  
(2)  
4
8
1
2
1
2
1-channel and 3-channel mode  
CPOL = VIL, 2-channel mode  
CPOL = VIH, 2-channel mode  
45%  
48%  
41%  
50%  
53%  
47%  
55%  
59%  
52%  
tOUTP  
PCLK output duty cycle  
Output skew from PCLK to  
tOSK  
R[0:7], G[0:7], B0:7], HS, see Figure 7-3  
VS, and DE  
–500  
500  
ps  
INPUT TO OUTPUT RESPONSE TIME  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: SN65LVDS302  
 
 
 
 
 
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX UNIT  
Propagation delay time  
from CLK+ input to PCLK  
output  
RXEN at VDD, VIH = VDD, VIL = GND, CL = 10 pF,  
see Figure 7-8  
tPD(L)  
1.4 / fPCLK 1.9 / fPCLK 2.5 / fPCLK  
s
RXEN glitch suppression VIH = VDD, VIL = GND, RXEN toggles from  
tGS  
3.8  
2
μs  
pulse width(4)  
VIL to VIH; see Figure 7-9 and Figure 7-10  
Enable time from power  
down (↑RXEN)  
Time from RXEN pulled high to data outputs  
enabled and outputs valid data; see Figure 7-10  
tpwrup  
ms  
RXEN is pulled low during receive mode;  
time measurement until all outputs held static:  
R[0:7] = G[0:7] = B[0:7] = VS = HS = high,  
DE = PCLK = low and PLL is Shutdown;  
see Figure 7-10  
Disable time from active  
mode (↓RXEN)  
tpwrdn  
11  
2
μs  
RXEN at VDD; device is in standby; time  
Enable time from Standby measurement from CLK input starts switching to  
twakeup  
ms  
(↑↓CLK)  
PCLK and data outputs enabled and outputting  
valid data; see Figure 7-11  
RXEN at VDD; device is receiving data; time  
measurement from CLK input signal stops (input  
open or input common mode VICM exceeds  
Disable time from active  
tsleep  
mode (CLK transitions to threshold voltage Vthstby) until all outputs held  
3
μs  
high-impedance)  
static: R[0:7] = G[0:7] = B[0:7] = VS = HS = high,  
DE = PCLK = low and PLL is Shutdown;  
see Figure 7-11  
2-ChM; fPCLK = 22 MHz  
3-ChM; fPCLK = 65 MHz  
0.087 × fPCLK  
0.075 × fPCLK  
Tested from CLK  
input to PCLK output  
fBW  
PLL bandwidth(5)  
MHz  
(1) All typical values are at 25°C and with 1.8-V supply unless otherwise noted.  
(2) tR/F depends on the F/S setting and the capacitive load connected to each output. Some application information of how to calculate tR/F  
based on the output load and how to estimate the timing budget to interconnect to an LCD driver are provided in the application section  
near the end of this data sheet.  
(3) The output rise and fall time is optimized for an output load of 10 pF. The rise and fall time can be adjusted by changing the output load  
capacitance.  
(4) The RXEN input incorporates a glitch-suppression logic to disregard short input pulses. tGS is the duration of either a high-to-low or  
low-to-high transition that is suppressed.  
(5) When using the SN65LVDS302 receiver in conjunction with the SN65LVDS301 transmitter in one link, the PLL bandwidth of the  
SN65LVDS302 receiver always exceed the bandwidth of the SN65LVDS301 transmit PLL. This ensures stable PLL tracking under all  
operating conditions and maximizes the receiver skew margin.  
6.10 Device Power Dissipation  
PARAMETER  
TEST CONDITIONS  
TYP  
16.8  
64.7  
MAX  
UNIT  
fCLK = 4 MHz  
fCLK = 65 MHz  
fCLK = 4 MHz  
fCLK = 65 MHz  
VDDx = 1.8 V, TA = 25°C,  
mW  
all outputs terminated with 10 pF  
Device Power  
Dissipation  
PD  
27.4  
VDDx = 1.95 V, TA = –40°C,  
all outputs terminated with 10 pF  
mW  
128.8  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN65LVDS302  
 
 
 
 
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
Typical Characteristics  
Some of the plots in this section show more than one curve representing various device pin relationships. Taken  
together, they represent a working range for the tested parameter.  
100.0  
30  
2-Channel Mode, 22 MHz (VGA), F/S = 1  
25  
STANDBY  
2-Channel Mode, 11 MHz (HVGA), F/S = 1  
10.0  
20  
2-Channel Mode, 22 MHz (VGA), F/S = 0  
15  
2-Channel Mode, 11 MHz (HVGA), F/S = 0  
1.0  
10  
POWERDOWN  
5
0.1  
0
-50  
-30  
-10  
10  
30  
50  
70  
90  
-50  
-30  
-10  
10  
30  
50  
70  
90  
Temperature - °C  
Temperature - °C  
Figure 6-2. Quiescent Supply Current vs  
Temperature  
Figure 6-1. Supply Current vs Temperature  
40  
40  
35  
35  
2 - ChM, F/S = 1, typ pwr  
30  
30  
2 - ChM, F/S = 1, jitter test  
25  
25  
1 - ChM, F/S = 1, jitter test  
20  
15  
20  
1 - ChM,  
F/S = 1,  
typ pwr  
1 - ChM F/S = 0, jitter test  
15  
10  
10  
2 - ChM F/S = 0, jitter test  
5
5
0
1 - ChM, F/S = 0, typ pwr  
2 - ChM, F/S = 0, typ pwr  
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
f - Frequency - MHz  
f - Frequency - MHz  
Figure 6-3. Supply Current vs Frequency, 1-  
Channel Mode  
Figure 6-4. Supply Current vs Frequency, 2-  
Channel Mode  
450  
40  
3 - ChM, F/S = 1, jitter test  
Limit with RSKM=130 ps  
400  
35  
3 - ChM, F/S = 1, typ pwr  
350  
30  
25  
20  
FL3G Limit  
300  
3-ChM 56 MHz (XGA)  
2-ChM 22 MHz (VVGA)  
250  
200  
3 - ChM F/S = 0, jitter test  
15  
3-ChM 65 MHz  
150  
10  
1-ChM 11 MHz (HVGA)  
100  
3 - ChM, F/S = 0, typ pwr  
5
0
50  
0
30  
40  
15  
20  
25  
35  
45  
50  
55  
60  
-40  
-20  
0
20  
40  
60  
80  
f - Frequency - MHz  
Temperature - °C  
Figure 6-5. Supply Current vs Frequency, 3-  
Channel Mode  
Figure 6-6. Receiver Strobe Position vs  
Temperature  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: SN65LVDS302  
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
12.0  
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
3-ChM  
3-ChM  
Spec Limit 2ChM  
MHz: 9%  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
3-ChM  
8
2-ChM  
Spec Limits  
3-Ch Mode  
2-ChM  
1-ChM  
3-ChM  
Spec Limit 3ChM  
Spec Limits  
1-Ch Mode  
Spec Limits  
2-Ch Mode  
3-ChM  
2-ChM  
0.0  
10.0  
20.0  
30.0  
40.0  
50.0  
60.0  
70.0  
0
10  
20  
30  
40  
50  
60  
70  
Frequency - MHz  
Frequency - MHz  
Figure 6-7. PLL Bandwidth  
Figure 6-8. PCLK Cycle-to-Cycle Output Jitter  
2000  
1500  
1000  
Receiver Strobe  
Position uncertainty  
T(PPOS )  
Additional interconnect margin  
500  
225  
Minimum desired interconnect budget  
0
-225-  
-500  
-1000  
-1500  
-2000  
120  
170  
220  
270  
dR - Mbps  
320  
370  
420  
Bit width  
Trskm  
1ChM  
Trskm - Tppos  
225ps  
Figure 6-9. RSKM, 1-Channel Mode vs Bit Rate  
2000  
1500  
1000  
2000  
1500  
Bit width  
Trskm  
Bit width  
Trskm - Tppos  
1000  
Trskm  
Trskm - Tppos  
500  
0
500  
225 ps  
225 ps  
0
225 ps  
225 ps  
-500  
Trskm - Tppos  
-500  
-1000  
-1500  
-2000  
Trskm - Tppos  
Trskm  
-1000  
Trskm  
Bit width  
Bit width  
-1500  
-2000  
120  
170  
220  
270  
320  
370  
420  
200 250 300 350 400 450 500 550 600 650  
dR - Mbps  
dR - Mbps  
Figure 6-10. RSKM, 2-Channel Mode vs Bit Rate  
Figure 6-11. RSKM, 3-Channel Mode vs Bit Rate  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN65LVDS302  
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
249  
190  
0
3-Channel Mode,  
f(PCLK) = 56 MHz  
–190  
3-Channel Mode,  
f(PCLK) = 56 MHz  
–251  
300 ps/div  
3.5 ns/div  
Response Over 80-inch FR-4 + 1m Coax Cable  
Response With 10-pF Load  
Figure 6-12. XGA 3-Channel Output Waveform  
Figure 6-13. XGA 3-Channel Output Waveform  
0.0  
0.0  
-2.0  
-10.0  
-20.0  
-30.0  
-40.0  
-50.0  
-60.0  
-4.0  
-6.0  
-8.0  
-10.0  
-12.0  
-14.0  
-16.0  
-18.0  
-20.0  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
Frequency - MHz  
Frequency - MHz  
Figure 6-14. Input Common-Mode Noise Rejection  
vs Frequency  
Figure 6-15. Input Return Loss  
-50  
-60  
0.0  
-10.0  
-20.0  
-30.0  
-40.0  
-50.0  
-60.0  
-70.0  
-80.0  
-70  
-80  
-90  
f(PCLK) = 65 MHz  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
-170  
-180  
0
200 400 600 800 1000 1200 1400 1600 1800 2000  
1
10  
100  
1k  
10k  
FREQUENCY - Hz  
100k  
1M  
10M  
Frequency - MHz  
Figure 6-17. Phase Noise  
Figure 6-16. Input Differential Crosstalk vs  
Frequency  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: SN65LVDS302  
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
9.0  
8.5  
12  
11  
10  
8 MHz  
9 %  
20 MHz  
8.7 %  
4 MHz  
9 %  
Spec Limit  
1 ChM  
Spec Limit  
2 ChM  
Spec Limit  
3 ChM  
8.0  
7.5  
7.0  
15 MHz  
8.1 %  
9
8
7
6
5
30 MHz  
8.1 %  
65 MHz  
7.5 %  
6.5  
6.0  
4
0
100  
200  
300  
400  
500  
600  
700  
70  
50  
60  
30  
40  
20  
0
10  
PLL - Frequency - MHz  
PCLK - Frequency - MHz  
Figure 6-18. SN65LVDS302 PLL Bandwidth  
Figure 6-19. SN65LVDS301 PLL Bandwidth  
30  
f(PCLK)=62 MHz  
25  
20  
15  
10  
5
0
0
200  
400  
600  
800  
1000  
1200  
1400  
1600  
1800  
2000  
FREQUENCY - MHz  
Figure 6-20. GTEM SAE J1752/3 EMI Test  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: SN65LVDS302  
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
7 Parameter Measurement Information  
SN65LVDS302  
V
2
1
DDPLLD  
V
DDPLLA  
Noise  
V
1 W  
DD  
10µF  
Generator  
100 mV  
V
DDLVDS  
GND  
1.8V  
Supply  
Note: The generator regulates the  
1
1.6 H  
noise amplitude at point to the  
target amplitude given under the table  
Recommended Operating Conditions  
Figure 7-1. Power Supply Noise Test Set-Up  
To measure tRSKM, CLK is advanced or delayed with respect to data until errors are observed at the receiver outputs. The advance  
or delay is then reduced until there are no data errors observed over 10-12 serial bit times. The magnitude of the advance or delay  
is tRSKM  
Programmable delay  
CLK  
D1  
CLK and Data  
Pattern  
Generator  
DUT:  
SN65LVDS302  
Bit error  
Detector  
D2  
D3  
Ideal receiver strobe position  
tPG_ERROR  
TRSKM(p)  
C
TRSKM(n)  
tbit  
tRSKM  
tPG_ERROR  
tbit  
- is the smaller of the two measured values tRSKM(p) and tRSKM(n)  
- Test equipment (pattern generator) intrinsic output pulse position timing uncertainty  
- serial bit time  
C - LVDS302 set-up and hold-time uncertainty  
Note: C can be derived by subtracting the receiver skew margin tRSKM(p) + tRSKM(p) from one serial bit time  
Copyright © 2016, Texas Instruments Incorporated  
Figure 7-2. Jitter Budget  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: SN65LVDS302  
 
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
t
F
t
setup  
80% (VOH-VOL  
20% (VOH-VOL  
)
)
R[7:0], G[7:0],  
B[7:0], HS, VS, DE  
t
hold  
t
OSK  
t
R
V
OH  
80% (VOH-VOL  
)
PCLK  
(CPOL=0)  
50% (V - –V  
)
OH OL  
20% (VOH-VOL  
)
V
OL  
t
R
t
F
Note:  
The Set-up and Hold-time of CMOS outputs R[7:0], G[7:0],  
B[7:0], HS, VS, and DE in relation to PCLK can be  
calulated by:  
1
t
=
-t  
- t  
- Dt  
DUTP  
S&H  
REF OSK  
2 -r  
PCLK  
Figure 7-3. Output Rise and Fall, Setup and Hold Time  
V
– V  
Dx–  
, V  
– V  
CLK–  
Dx+  
CLK+  
100%(V  
)
IC  
t
f
t
r
80%(V  
)
ID  
0V  
20%(V  
0%(V  
)
ID  
)
ID  
Figure 7-4. SubLVDS Differential Input Rise and Fall Time Defintion  
CLK+, Dx+  
VDDLVDS  
RID /2  
RBBDC  
Gain  
Stage  
RID/2  
CLK–, Dx–  
Standby  
detection  
line end  
termination  
ESD  
Figure 7-5. Equivalent Input Circuit Design  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: SN65LVDS302  
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
SWAP,  
CPOL, LSx,  
RXEN, F/S  
I
ICMOS  
CMOS Input  
CLK+, Dx+  
(V +V )/2  
I+ I-  
I
I+  
V
ICMOS  
I
O
RGB, VS, HS,  
CPE PCLK  
V
I
ID  
I-  
CLK-, Dx-  
V
I+  
V
V
ICM  
O
V
I-  
SubLVDS Input  
CMOS Output  
Figure 7-6. I/O Voltage and Current Definition  
RGB, VS, HS,  
CPE, PCLK  
V
O
SN65LVDS302  
CL=10 pF  
Figure 7-7. CMOS Output Test Circuit, Signal and Timing Definition  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: SN65LVDS302  
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
Pixel(n)  
Pixel(n–1)  
Pixel(n+1)  
R7(n+1)  
R7(n–1)  
R7(n)  
CP R7  
R7(n–2)  
D0+  
R7 R6 R5 R4  
CP R7  
CLK–  
CLK+  
tPD(L)  
VDD/2  
PCLK  
(CPOL = 0)  
Pixel(n–1)  
CMOS Data Out  
R7(n–3)  
R7(n–1)  
R7  
R6  
R6(n–3)  
R6(n–1)  
Figure 7-8. Propagation Delay Input to Output (LS0 = LS1 = 0)  
/2  
V
DD  
RXEN  
t
GS  
CLK  
t
PLL  
PLL Approaches Lock  
VCO Internal Signal  
t
pwrup  
PCLK  
R[7:0], G[7:0], B[7:0], VS, HS  
DE  
Figure 7-9. Receiver Phase Lock Loop Set Time and Receiver Enable Time  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: SN65LVDS302  
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
20 ns  
<
3 ms  
2 ms  
Glitch shorter  
than t will be  
GS  
ignored  
less than 20ns  
Spike will be  
rejected  
Glitch shorter  
than t will be  
GS  
ignored  
RXEN  
t
pwrup  
t
pwrdn  
PCLK  
t
I
GS  
CC  
t
GS  
CLK  
RX  
RX disabled  
turns  
OFF  
Receiver disabled  
(OFF)  
Receiver enabled  
(ON)  
Receiver aquires lock  
(OFF)  
Figure 7-10. Receiver Enable and Disable Glitch Suppression Time  
CLK  
t
t
wakeup  
sleep  
PCLK  
R[7:0], G[7:0], B[7:0], VS, HS,  
RX enabled;  
output data  
invalid  
RX  
disabled  
(OFF)  
RX enabled  
output data valid  
Receiver aquires lock,  
outputs still disabled  
Receiver disabled  
(OFF)  
Figure 7-11. Standby Detection  
7.1 Power Consumption Tests  
Table 7-1 shows an example test pattern word.  
Table 7-1. Example Test Pattern Word  
WORD  
R[7:4], R[3:0], G[7:4], G[3:0], B[7–4], B[3–0], 0, VS, HS, DE  
1
0x7C3E1E7  
7
C
3
E
1
E
7
R7 R6 R5 R4 R3 R2 R1 R0 G7 G6 G5 G4 G3 G2 G1 G0 B7 B6 B5 B4 B3 B2 B1 B0  
0
0
VS HS DE  
0
1
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
1
7.2 Typical IC Power Consumption Test Pattern  
Typical power-consumption test patterns consist of sixteen 30-bit receive words in 1-channel mode, eight 30-bit  
receive words in 2-channel mode and five 30-bit receive words in 3-channel mode. The pattern repeats itself  
throughout the entire measurement. It is assumed that every possible code on the RGB outputs has the same  
probability to occur during typical device operation.  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: SN65LVDS302  
 
 
 
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
Table 7-2. Typical IC Power Consumption Test Pattern, 1-Channel Mode  
TEST PATTERN:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7–4], B[3–0], 0, VS, HS, DE  
WORD  
1
2
0x0000007  
0xFFF0007  
0x01FFF47  
0xF0E07F7  
0x7C3E1E7  
0xE707C37  
0xE1CE6C7  
0xF1B9237  
0x91BB347  
0xD4CCC67  
0xAD53377  
0xACB2207  
0xAAB2697  
0x5556957  
0xAAAAAB3  
0xAAAAAA5  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
Table 7-3. Typical IC Power Consumption Test Pattern, 2-Channel Mode  
TEST PATTERN:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7–4], B[3–0], 0, VS, HS, DE  
WORD  
1
2
3
4
5
6
7
8
0x0000001  
0x03F03F1  
0xBFFBFF1  
0x1D71D71  
0x4C74C71  
0xC45C451  
0xA3aA3A5  
0x5555553  
Table 7-4. Typical IC Power Consumption Test Pattern, 3-Channel Mode  
Test Pattern:  
WORD  
R[7:4], R[3:0], G[7:4], G[3:0], B[7–4], B[3–0], 0, VS, HS, DE  
1
2
3
4
5
0xFFFFFF1  
0x0000001  
0xF0F0F01  
0xCCCCCC1  
0xAAAAAA7  
7.3 Maximum Power Consumption Test Pattern  
The maximum (or worst-case) power consumption of the SN65LVDS302 is tested using the two different test  
pattern shown in table. Test patterns consist of sixteen 30-bit receive words in 1-channel mode, eight 30-bit  
receive words in 2-channel mode, and five 30-bit receive words in 3-channel mode. The pattern repeats itself  
throughout the entire measurement. It is assumed that every possible code on RGB outputs has the same  
probability to occur during typical device operation.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: SN65LVDS302  
 
 
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
Table 7-5. Worst-Case Power Consumption Test Pattern  
TEST PATTERN:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7–4], B[3–0], 0, VS, HS, DE  
WORD  
1
2
0xAAAAAA5  
0x5555555  
Table 7-6. Worst-Case Power Consumption Test Pattern  
TEST PATTERN:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7–4], B[3–0], 0, VS, HS, DE  
WORD  
1
2
0x0000000  
0xFFFFFF7  
7.4 Output Skew Pulse Position and Jitter Performance  
The following test patterns are used to measure the output skew pulse position and the jitter performance of the  
SN65LVDS302. The jitter test pattern stresses the interconnect, particularly to test for ISI, using very long run-  
lengths of consecutive bits, and incorporating very high and low data rates, maximizing switching noise. Each  
pattern is self-repeating for the duration of the test.  
Table 7-7. Receive Jitter Test Pattern, 1-Channel Mode  
TEST PATTERN:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7–4], B[3–0], 0, VS, HS, DE  
WORD  
1
0x0000001  
0x0000031  
0x00000F1  
0x00003F1  
0x0000FF1  
0x0003FF1  
0x000FFF1  
0x0F0F0F1  
0x0C30C31  
0x0842111  
0x1C71C71  
0x18C6311  
0x1111111  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
0x3333331  
0x2452413  
0x22A2A25  
0x5555553  
0xDB6DB65  
0xCCCCCC1  
0xEEEEEE1  
0xE739CE1  
0xE38E381  
0xF7BDEE1  
0xF3CF3C1  
0xF0F0F01  
0xFFF0001  
0xFFFC001  
0xFFFF001  
0xFFFFC01  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: SN65LVDS302  
 
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
Table 7-7. Receive Jitter Test Pattern, 1-Channel Mode (continued)  
TEST PATTERN:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7–4], B[3–0], 0, VS, HS, DE  
WORD  
30  
31  
32  
0xFFFFF01  
0xFFFFFC1  
0xFFFFFF1  
Table 7-8. Receive Jitter Test Pattern, 2-Channel Mode  
TEST PATTERN:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7–4], B[3–0], 0, VS, HS, DE  
WORD  
1
0x0000001  
0x000FFF3  
0x8008001  
0x0030037  
0xE00E001  
0x00FF001  
0x007E001  
0x003C001  
0x0018001  
0x1C7E381  
0x3333331  
0x555AAA5  
0x6DBDB61  
0x7777771  
0x555AAA3  
0xAAAAAA5  
0x5555553  
0xAAA5555  
0x8888881  
0x9242491  
0xAAA5571  
0xCCCCCC1  
0xE3E1C71  
0xFFE7FF1  
0xFFC3FF1  
0xFF81FF1  
0xFE00FF1  
0x1FF1FF1  
0xFFCFFC3  
0x7FF7FF1  
0xFFF0007  
0xFFFFFF1  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Table 7-9. Receive Jitter Test Pattern, 3-Channel Mode  
TEST PATTERN:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7–4], B[3–0], 0, VS, HS, DE  
WORD  
1
2
3
0x0000001  
0x0000001  
0x0000003  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: SN65LVDS302  
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
Table 7-9. Receive Jitter Test Pattern, 3-Channel Mode (continued)  
TEST PATTERN:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7–4], B[3–0], 0, VS, HS, DE  
WORD  
4
0x0101013  
0x0303033  
0x0707073  
0x1818183  
0xE7E7E71  
0x3535351  
0x0202021  
0x5454543  
0xA5A5A51  
0xADADAD1  
0x5555551  
0xA6A2AA3  
0xA6A2AA5  
0x5555553  
0x5555555  
0xAAAAAA1  
0x5252521  
0x5A5A5A1  
0xABABAB1  
0xFDFCFD1  
0xCAAACA1  
0x1818181  
0xE7E7E71  
0xF8F8F81  
0xFCFCFC1  
0xFEFEFE1  
0xFFFFFF1  
0xFFFFFF5  
0xFFFFFF5  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Copyright © 2020 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: SN65LVDS302  
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The SN65LVDS302 is a de-serialising device where the input serial data and clock are received through Sub  
Low-Voltage Differential Signaling (SubLVDS) lines. The SN65LVDS302 supports three operating power modes  
(Shutdown, Standby, and Active) to conserve power.  
Two Link Select lines LS0 and LS1 select whether 1, 2, or 3 serial links are used. The RXEN input may be used  
to put the SN65LVDS302 in a Shutdown mode. The SN65LVDS302 enters an active Standby mode if the  
common mode voltage of the CLK input becomes shifted to VDDLVDS, as when the transmitter releases the CLK  
output into high-impedance. This minimizes power consumption without the need of switching an external control  
pin. The SN65LVDS302 is characterized for operation over ambient air temperatures of –40°C to 85°C. All  
CMOS and SubLVDS signals are 2-V tolerant with VDD = 0 V. This feature allows signal power-up before VCC is  
stabilized.  
When receiving, the PLL locks to the incoming clock (CLK) and generates an internal high-speed clock at the  
line rate of the data lines. The data is serially loaded into a shift register using the internal high-speed clock. The  
de-serialized data is presented on the parallel output bus with a recreation of the Pixel clock (PCLK) generated  
from the internal high-speed clock. If no input CLK signal is present, the output bus is held static with the PCLK  
and DE held low, while all other parallel outputs are pulled high.  
The parallel (CMOS) output bus offers a bus-swap feature. The SWAP control pin controls the output pin order of  
the output pixel data to be either R[7:0]. G[7:0], B[7:0], VS, HS, DE or B[0:7], G[0:7], R[0:7], VS, HS, DE. This  
gives a PCB designer the flexibility to better match the bus to the LCD driver pinout or to put the receiver device  
on the top side or the bottom side of the PCB. The F/S control input selects between a slow CMOS bus output  
rise time for best EMI and power consumption and a fast CMOS output for increased speed or higher load  
designs.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: SN65LVDS302  
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
8.2 Functional Block Diagram  
VDDLVDS  
RBBDC  
CPE  
iPCLK  
D0+  
SWAP  
F/S  
50  
Parity  
Check  
SubLVDS  
AND  
50  
D0-  
1
0
8
VDDLVDS  
R[0:7]  
RBBDC  
D1+  
50  
8
8
SubLVDS  
G[0:7]  
B[0:7]  
0
1
50  
D1-  
VDDLVDS  
RBBDC  
D2+  
HS  
VS  
50  
SubLVDS  
RGB=1  
HS=VS=1  
DE=0  
50  
D2-  
VDDLVDS  
standby or  
pwr down  
DE  
RBBDC  
x10, x15, or x30  
CLK+  
50  
PLL  
multiplier  
SubLVDS  
50  
iPCLK  
CLK-  
x1  
0
1
PCLK  
CPOL  
standby  
Vthstby  
Glitch  
Suppression  
RXEN  
LS0  
Control  
LS1  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2020 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: SN65LVDS302  
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
8.3 Feature Description  
8.3.1 Swap Pin Functionality  
The SWAP pin allows the pcb designer to reverse the RGB bus, minimizing potential signal crossovers due to  
signal routing. The two drawings beneath show the RGB signal pin assignment based on the SWAP pin setting.  
9
9
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
A
B
C
D
E
F
A
B
C
D
E
F
R6  
R5  
R4  
R2  
R1  
R0  
G7  
G6  
G5  
G4  
G3  
G2  
G1  
B7  
B5  
B3  
B1  
B1  
B2  
B3  
B5  
B6  
B7  
G0  
G1  
G2  
G3  
G4  
G5  
G6  
R0  
R2  
R4  
R6  
R7  
R3  
G0  
B6  
B0  
B4  
G7  
R1  
B4  
R3  
SN65LVDS302  
Top View  
SN65LVDS302  
Top View  
B2  
R5  
B0  
R7  
G
H
J
G
H
J
PCLK  
HS  
PCLK  
HS  
VS  
DE  
VS  
DE  
Figure 8-1. Pinout With SWAP PIN = GND  
8.3.2 Parity Error Detection and Handling  
Figure 8-2. Pinout With SWAP PIN = VDD  
The SN65LVDS302 receiver performs error checking on the basis of a parity bit that is transmitted across the  
subLVDS interface from the transmitting device. Once the SN65LVDS302 detects the presence of the clock and  
the PLL has locked onto PCLK, then the parity is checked. Parity-error detection ensures detection of all single  
bit errors in one pixel and 50% of all multi-bit errors.  
The parity bit covers the 27 bit data payload consisting of 24 bits of pixel data plus VS, HS, and DE. Odd Parity  
bit signalling is used. The parity error is output on the CPE pin. If the sum of the 27 data bits and the parity bit  
result in an odd number, the receive data are assumed to be valid. The CPE output is held low. If the sum equals  
an even number, parity error is declared. The CPE output indicates high for half a PCLK period. The CPE output  
is set with the data bit transition and cleared after 1/2 the data bit time. This allows counting every detected  
parity error with a simple counter connected to CPE.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: SN65LVDS302  
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
A Parity error is indicated by a  
high pulse on CPE; the width of  
the pulse is 1/2 the length of a  
PCLK cycle  
Also if there is a parity error detected then the  
CPE  
data on that PCLK cycle is not output. Instead,  
the last valid data from a previous PCLK cycle  
is repeated on the output bus. This is to prevent  
any bit error that may occur on the LVDS link  
from causing perturbations in VS, HS, or DE that  
may be visually disruptive to a display.  
R[0:7], G[0:7],  
B[0:7], HS, VS, DE  
PCLK  
The reserved bits are not covered in the parity  
calculations.  
(CPOL=0)  
When a parity error is  
detected, the receiver outputs  
the previous pixel on the bus  
Hence no data transitions  
occur.  
Figure 8-3. Parity Error Detection and Handling  
8.4 Device Functional Modes  
8.4.1 Deserialization Modes  
The SN65LVDS302 receiver has three modes of operation controlled by link-select pins LS0 and LS1. Table 8-1  
shows the deserializer modes of operation.  
Table 8-1. Logic Table: Link Select Operating Modes  
LS1  
LS0  
MODE OF OPERATION  
DATA LINKS STATUS  
D0 active;  
D1, D2 disabled  
0
0
1ChM  
1-channel mode (30-bit serialization rate)  
D0, D1 active;  
D2 disabled  
0
1
2ChM  
3ChM  
2-channel mode (15-bit serialization rate)  
1
1
0
1
3-channel mode (10-bit serialization rate)  
Reserved  
D0, D1, D2 active  
Reserved  
8.4.1.1 1-Channel Mode  
While LS0 and LS1 are held low, the SN65LVDS302 receives payload data over a single SubLVDS data pair,  
D0. The PLL locks to the SubLVDS clock input and internally multiplies the clock by a factor of 30. The internal  
high speed clock is used to shift in the data payload on D0 and to deserialize 30 bits of data. Figure 8-4  
illustrates the timing and the mapping of the data payload into the 30-bit frame. The internal high speed clock is  
divided by a factor of 30 to recreate the pixel clock and the data payload with the pixel clock is presented on the  
output bus. The reserved bits and parity bit are not output. While in this mode, the PLL can lock to a clock that is  
in the range of 4 MHz through 15 MHz. This mode is intended for smaller video display formats that do not need  
the full bandwidth capabilities of the SN65LVDS302.  
CLK -  
CLK +  
res res CP R7 R6 R5 R4 R3 R2 R1 R0 G7 G6 G5 G4 G3 G2 G1 G0 B7 B6 B5 B4 B3 B2 B1 B0 VS HS DE res res CP R7 R6  
D0 +/- CHANNEL  
Figure 8-4. Data and Clock Input in 1-ChM (LS0 and LS1 = low)  
Copyright © 2020 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: SN65LVDS302  
 
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
8.4.1.2 2-Channel Mode  
While LS0 is held high and LS1 is held low, the SN65LVDS302 receives payload data over two SubLVDS data  
pairs, D0 and D1. The PLL locks to the SubLVDS clock input and internally multiplies the clock by a factor of 15.  
The internal high speed clock is used to shift in the data payload on D0 and D1 and to deserialize 15 bits of data  
from each pair. Figure 8-5 illustrates the timing and the mapping of the data payload into the 30-bit frame. The  
internal high speed clock is divided by a factor of 15 to recreate the pixel clock, and the data payload with pixel  
clock is presented on the output bus. The reserved bits and parity bit are not output. While in this mode the PLL  
can lock to a clock that is in the range of 8 MHz through 30 MHz.  
CLK -  
CLK +  
CP R7 R6 R5 R4 R3 R2 R1 R0 G7 G6 G5 G4 VS res CP R7 R6  
res G3 G2 G1 G0 B7 B6 B5 B4 B3 B2 B1 B0 HS DE res G3 G2  
D0 +/- CHANNEL  
D1 +/- CHANNEL  
Figure 8-5. Data and Clock Input in 2-ChM (LS0 = high; LS1 = low)  
8.4.1.3 3-Channel Mode  
While LS0 is held low and LS1 is held high the SN65LVDS302 receives payload data over three SubLVDS data  
pairs: D0, D1, and D2. The PLL locks to the SubLVDS clock input and internally multiplies the clock by a factor of  
10. The internal high speed clock is used to shift in the data payload on D0, D1, and D2, and to deserialize 10  
bits of data from each pair. Figure 8-6 illustrates the timing and the mapping of the data payload into the 30-bit  
frame. While in this mode the PLL can lock to a clock that is in the range of 20 MHz through 65 MHz.  
CLK -  
CLK +  
D0 +/- CHANNEL CP R7 R6 R5 R4 R3 R2 R1 R0 VS CP R7 R6  
D1 +/- CHANNEL res G7 G6 G5 G4 G3 G2 G1 G0 HS res G7 G6  
D2 +/- CHANNEL res B7 B6 B5 B4 B3 B2 B1 B0 DE res B7 B6  
Figure 8-6. Data and Clock Input in 3-ChM (LS0 = low; LS1 = high)  
8.4.2 Powerdown Modes  
The SN65LVDS302 Receiver has two powerdown modes to facilitate efficient power management.  
8.4.2.1 Shutdown Mode  
A low input signal on the RXEN pin puts the SN65LVDS302 into Shutdown mode. This turns off most of the  
receiver circuitry including the SubLVDS receivers, PLL, and deserializers. The subLVDS differential-input  
resistance remains 100 Ω, while any input signal is ignored. All outputs hold a static output pattern:  
R[0:7] = G[0:7] = B[0:7] = VS = HS = high; DE = PCLK = low.  
The current draw in Shutdown mode is nearly zero if the SubLVDS inputs are left open or pulled high.  
8.4.2.2 Standby Mode  
The SN65LVDS302 enters the Standby mode when the SN65LVDS302 is not in Shutdown mode but the  
SubLVDS clock-input common-mode voltage is above 0.9 × V DDLVDS. The CLK input incorporates a pull-up  
circuit to shift the SubLVDS clock-input common-mode voltage to VDDLVDS in the absence of an input signal. All  
circuitry except the SubLVDS clock-input Standby monitor is shut down. The SN65LVDS302 also enters Standby  
mode when the input clock frequency on the CLK input is less than 500 kHz. The SubLVDS input resistance  
remains 100 Ω while any input signal on the data inputs D0, D1, and D2 becomes ignored. All outputs holds a  
static output pattern:  
R[0:7] = G[0:7] = B[0:7] = VS = HS = high; DE = PCLK = low.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: SN65LVDS302  
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
The current drawn in Standby mode is very low.  
8.4.3 Active Modes  
A high input signal on RXEN combined with a CLK input signal switching faster than 3 MHz and VICM smaller  
than 1.3 V forces the SN65LVDS302 into Active mode. Current consumption in active mode depends on  
operating frequency and the number of data transitions in the data payload. CLK-input frequencies from 3 MHz  
to 4 MHz activates the device but proper PLL functionality is not secured. The SN65LVDS302 must not be  
operated in active mode at CLK frequencies below 4 MHz.  
8.4.3.1 Acquire Mode (PLL Approaches Lock)  
When the SN65LVDS302 is enabled and a SubLVDS clock input present, the PLL pursues lock to the input  
clock. While the PLL pursues lock the output data bus holds a static output pattern:  
R[0:7] = G[0:7] = B[0:7] = VS = HS = high; DE = PCLK = low.  
For proper device operation, the pixel clock frequency must fall within the valid f PCLK range specified under  
recommended operating conditions. If the pixel clock frequency is larger than 3 MHz but smaller than fPCLK(min)  
,
the SN65LVDS302 PLL is enabled. Under such conditions, it is possible for the PLL to lock temporarily to the  
pixel clock, causing the PLL monitor to release the device into active receive mode. If this happens, the PLL may  
or may not be properly locked to the pixel clock input, potentially causing data errors, frequency oscillation, and  
PLL deadlock (loss of VCO oscillation).  
8.4.3.2 Receive Mode  
After the PLL achieves lock the device enters the normal receive mode. The output data bus presents the de-  
serialized data. The PCLK output pin outputs the recovered pixel clock.  
8.4.4 Status Detect and Operating Modes Flow  
The SN65LVDS302 switches between the power saving and active modes in the following way:  
Power Up  
RXEN = 1  
CLK Input Inactive  
RXEN Low  
for > 10 ms  
Power Up  
RXEN = 0  
Standby  
Mode  
ShutDown  
Mode  
RXEN High  
for > 10 ms  
VICM(CLK) > 0.9 VDDLVDS  
RXEN Low  
for > 10 ms  
VICM(CLK) > 0.9 VDDLVDS  
or fCLK < 500 kHz  
CLK Input Active  
Power Up  
RXEN = 1  
CLK Active  
Receive  
Mode  
Acquire  
Mode  
PLL Achieved Lock  
RXEN Low  
for > 10 ms  
Figure 8-7. Operating Modes and State Machine Diagram  
Copyright © 2020 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: SN65LVDS302  
SN65LVDS302  
www.ti.com  
MODE  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
Table 8-2. Status Detect and Operating Modes Descriptions  
CHARACTERISTICS  
CONDITIONS  
Least amount of power consumption (most circuitry turned off);  
All outputs held static:  
R[0:7] = G[0:7] = B[0:7] = VS = HS = high DE = PCLK = low;  
Shutdown  
Mode  
RXEN is set low for longer than 10 μs(1) (2)  
Low power consumption (Standby monitor circuit active;  
PLL is shutdown to conserve power); All outputs held static:  
R[0:7] = G[0:7] = B[0:7] = VS = HS = high DE = PCLK = low;  
RXEN is high for longer than 10 μs, and both CLK input  
common-mode VICM(CLK) above 0.9 × VDDLVDS, or CLK  
input floating(2)  
Standby  
Mode  
RXEN is high; CLK input monitor detected clock input  
common mode and woke up receiver out of Standby  
mode  
Acquire  
Mode  
PLL pursues lock; All outputs held static:  
R[0:7] = G[0:7] = B[0:7] = VS = HS = high DE = PCLK = low;  
Receive  
Mode  
Data transfer (normal operation);  
receiver deserializes data and provides data on parallel output  
RXEN is high and PLL is locked to incoming clock  
(1) In Shutdown Mode, all SN65LVDS302 internal switching circuits (for example: PLL, serializer, etc.) are turned off to minimize power  
consumption. The input stage of any input pin remains active.  
(2) Leaving CMOS control inputs unconnected can cause random noise to toggle the input stage and potentially harm the device. All  
CMOS inputs must be tied to a valid logic level VIL or VIH during Shutdown or Standby Mode. Exceptions are the subLVDS inputs CLK  
and Dx, which can be left unconnected while not in use.  
Table 8-3. Operating Mode Transitions  
MODE TRANSITION  
USE CASE  
TRANSITION SPECIFICS  
1. RXEN high > 10 μs  
2. Receiver enters standby mode  
Shutdown → Standby Drive RXEN high to enable receiver  
a. R[0:7] = G[0:7] = B[0:7] = VS = HS remain high and DE = PCLK low  
b. Receiver activates clock input monitor  
1. CLK input monitor detects clock input activity  
2. Outputs remain static  
Standby → Acquire  
Acquire → Receive  
Transmitter activity detected  
Link is ready to receive data  
3. PLL circuit is enabled  
1. PLL is active and approaches lock  
2. PLL achieves lock within twakeup  
3. D1, D2, or D3 become active depending on LS0 and LS1 selection  
4. First Data word was recovered  
Parallel output bus turns on switching from static output pattern to  
output first valid data word  
5.  
1. Receiver disables outputs within tsleep  
Transmitter requested to enter Standby  
mode by input common mode voltage V  
ICM > 0.9 VDDLVDS as when transmitter  
output clock stops or enters high-  
impedance state.  
2. RX Input monitor detects VICM > 0.9 VDDLVDS within tsleep  
Receive → Standby  
R[0:7] = G[0:7] = B[0:7] = VS = HS transition to high and DE = PCLK to  
low on next falling PLL clock edge  
3.  
4. PLL shuts down. Clock activity input monitor remains active  
1. RXEN pulled low for > tpwrdn  
Receive and Standby  
→ Shutdown  
R[0:7] = G[0:7] = B[0:7] = VS = HS remain static high or transition to  
static high and DE = PCLK remain or transition to static low  
Turn off Receiver  
2.  
3. Most IC circuitry is shut down for least power consumption  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: SN65LVDS302  
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
9.1.1 Application Information  
General application guidelines and hints for LVDS drivers and receivers may be found in the LVDS application  
notes and design guides.  
9.1.2 Preventing Increased Leakage Currents in Control Inputs  
A floating (left open) CMOS input allows leakage currents to flow from VDD to GND. Do not leave any CMOS  
input unconnected or floating. Every input must be connected to a valid logic level VIH or VOL while power is  
supplied to VDD. This also minimizes the power consumption of standby and power down mode.  
9.1.3 Calculation Example: HVGA Display  
The following calculation shows an example for a Half-VGA display with the following parameters:  
Display Resolution:  
Frame Refresh Rate:  
480 × 320  
58.4 Hz  
Hsync =5  
HFP=20  
Visible area = 480 Columns  
Horizontal Visible Pixel:  
Horizontal Front Porch:  
Horizontal Sync:  
480 columns  
20 columns  
5 columns  
3 columns  
Vsync =5  
VBP=3  
Horizontal Back Porch:  
Visible area  
=320 lines  
Vertical Visible Pixel:  
Vertical Front Porch:  
Vertical Sync:  
320 lines  
10 lines  
5 lines  
Visible area  
Vertical Back Porch:  
3 lines  
Entire Display  
VFP=10  
Figure 9-1. HVGA Display  
Calculation of the total number of pixel and blanking overhead:  
Visible Area Pixel Count:  
Total Frame Pixel Count:  
Blanking Overhead:  
480 × 320 = 153600 pixel  
( 480 + 20 + 5 + 3 ) × ( 320 + 10 + 5 + 3 ) = 171704 pixel  
( 171704 – 153600 ) ÷ 153600 = 11.8%  
The application requires the following serial-link parameters:  
Pixel Clk Frequency:  
171704 × 58.4 Hz = 10 MHz  
1-channel mode: 10 MHz × 30 bit/channel = 300 Mbps  
2-channel mode: 10 MHz × 15 bit/channel = 150 Mbps  
Serial Data Rate:  
Copyright © 2020 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: SN65LVDS302  
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
9.1.4 How to Determine Interconnect Skew and Jitter Budget  
Designing a reliable data link requires examining the interconnect skew and jitter budget. The sum of all  
transmitter, PCB, connector, FPC, and receiver uncertainties must be smaller than the available serial bit time.  
The highest pixel clock frequency defines the available serial bit time. The transmitter timing uncertainty is  
defined by tPPOS in the transmitter data sheet. For a bit-error-rate target of ≤ 10–12, the measurement duration for  
tPPOS is ≥ 1012. The SN65LVDS302 receiver can tolerate a maximum timing uncertainty defined by tRSKM. The  
interconnect budget is calculated by Equation 1.  
tint erconnect = tRSKM - tPPOS  
(1)  
Example:  
fPCLK(max)  
23 MHz (VGA display resolution, 60 Hz)  
Transmission mode: 2-ChM; tPPOS(SN65LVDS301)  
Target bit error rate  
330 ps  
10–12  
tRSKM(SN65LVDS302)  
1 / (2 × 15 × fPCLK) – 480 ps = 969 ps  
The interconnect budget for cable skew and ISI must be smaller than the output of Equation 2.  
tint erconnect = tRSKM - tPPOS = 639ps  
(2)  
data transition  
Ideal T  
PPosn  
Data Period /2  
D0, D1, D2  
Ideal receiver strobe position  
TPPosn(max)  
TPPosn(min)  
RSKM  
RSKM  
RX internal sampling clock  
(max)  
R
R
(min)  
SPosn  
SPosn  
Tppos: Transmitter output pulse position (min and max)  
TPPosx(max) -TPPosx(min) = TJTXPLL(non-trackable) + tTXskew + tTXDJ  
RSKM: Receiver Skew Margin  
RSPosn: Receiver input strobe position (min and max)  
RSKM = SKEWPCB + XTALKPCB + ISIPCB  
R
SPosn(max) - RSPosn(min) = SkewRX + S&HRX + TJ(RXPLL(non-trackable)  
:
non-trackable TX PLL jitter; this jitter is the integration  
f
TJ  
SKEW  
XTALK  
ISI  
: PCB induced Skew (trace + connector);  
PCB  
TXPLL(non-trackable)  
of total jitter above the receiver PLL bandwidth  
>
TXPLL  
TJ  
(BWRX);  
;
:
PCB induced cross-talk;  
PCB  
TJ=RJ[ps-rms]*14 DJ[ps]  
transmitter output skew (skew between CLK and data)  
+
:
Inter-symbol interference of PCB; is  
Skew  
S&H  
TJ  
: Receiver input skew (skew between CLK and Dx input)  
RX  
PCB  
t
:
TXskew  
dependent on interconnect frequency loss; may be  
:
Receiver input latch Sample  
&
Hold uncertainty  
RX  
zero for short interconnects.  
:
Intrinsic RX PLL jitter above RX PLL bandwidth; PLL  
>
TJ  
(RXPLL(non-trackable)  
); TJ=RJ[ps-rms]*14  
t
Transmitter Deterministic JItter of TX output stage (includes TX  
TXIDJ  
Intersymbol Interference ISI)  
f(BW  
+ DJ[ps]  
RX  
Figure 9-2. Jitter Budget  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: SN65LVDS302  
 
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
9.1.5 F/S Pin Setting and Connecting the SN65LVDS302 to an LCD Driver  
Note  
Receiver PLL tracking: To maximize the design margin for the interconnect, good RX PLL tracking of  
the TX PLL is important. FlatLink3G requires the RX PLL to have a bandwidth higher than the  
bandwidth of the TX PLL. The SN65LVDS302 PLL design is optimized to track the SN65LVDS0301  
PLL particularly well, thus providing a very large receiver skew margin. A FlatLink3G-compliant link  
must provide at least ±225 ppm of receiver skew margin for the interconnect.  
It is important to understand the tradeoff between power consumption, EMI, and maximum speed when selecting  
the F/S signal. It is beneficial to choose the slowest rise time possible to minimize EMI and power consumption.  
Unfortunately a slower rise time also reduces the timing margin left for the LCD driver. Hence it is necessary to  
calculate the timing margin to select the correct F/S pin setting.  
The output rise time depends on the output driver strength and the output load. An LCD driver typical capacitive  
load is assumed with approximately 10 pF. As the capacitive load increases, the rise time also increases. Rise  
time of the SN65LVDS302 is measured as the time duration it takes the output voltage to rise from 20% of VDD  
and 80% of VDD and fall time is defined as the time for the output voltage to transition from 80% of VDD down to  
20%.  
Within one mode of operation and one F/S pin setting, the rise time of the output stage is fixed and does not  
adjust to the pixel frequency. Due to the short bit time at very fast pixel clock speeds and the real capacitive load  
of the display driver, the output amplitude might not reach VDD and GND saturation fully. To ensure sufficient  
signal swing and verify the design margin, it becomes necessary to determine that the output amplitude under  
any circumstance reaches the display driver’s input stage logic threshold (usually 30% and 70% of VDD).  
Figure 9-3 shows a worst-case rise time simulation assuming a LCD driver load of 16 pF at VGA display  
resolution. PCLK is the fastest switching output. With F/S set to GND (Figure 9-4), the PCLK output voltage  
amplitude is significantly reduced. The voltage amplitude of the output data RGB[7:0], VS, HS, and DE shows  
less amplitude attenuation because these outputs carry random data pattern and toggle equal or less than half  
of the PCLK frequency. It is necessary to determine the timing margin between the LVDS302 output and LCD  
driver input.  
Application: VGA (2-channel mode)  
Application: VGA (2-channel mode)  
2
1.8  
1.6  
1.4  
1.2  
1
2
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
0.8  
0.6  
0.4  
0.2  
0
100  
150  
200  
250  
300  
350  
400  
450  
500  
550  
600  
100  
150  
200  
250  
300  
350  
400  
450  
500  
550  
600  
RX Rise/Fall Time (ns)  
RX Rise/Fall Time (ns)  
data 22 Mbps  
data 22 Mbps  
CLK 22 MHz  
CLK 22 MHz  
F/S = VDD  
CL = 16 pF  
F/S = 0  
CL = 16 pF  
The data signal has a slower maximum switching frequency, and  
therefore drives a larger amplitude than the clock signal.  
Figure 9-3. Output Amplitude vs Toggling  
Frequency (F/S = 1)  
Figure 9-4. Output Amplitude vs Toggling  
Frequency (F/S = 0)  
Copyright © 2020 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: SN65LVDS302  
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
9.1.6 How to Determine the LCD Driver Timing Margin  
To determine the timing margin, it is necessary to specify the frequency of operation, identify the set-up and hold  
time of the LCD driver, and specify the output load of the SN65LVDS302 as a combination of the LCD driver  
input parasitics plus any capacitance caused by the connecting PCB trace. Furthermore, the setting of pin F/S  
and the SN65LVDS302 output skew impact the margin. The total remaining design margin calculates as  
following:  
trise max ´ CLOAD  
1
(
)
tDM  
=
- tDUTP max_ error  
-
- tOSK  
(
)
2´ ƒPCLK  
10 pF  
(3)  
where  
tDM is the design margin  
fPCLK is the pixel clock frequency  
tDUTP(max_error) is the maximum duty cycle error  
trise(max) is the maximum rise or fall time; see tR/F under switching characteristics  
CL is the parasitic capacitance (sum of LCD driver input parasitics + connecting PCB trace)  
tskew is the clock to data output skew SN65LVDS302  
Example:  
At a pixel clock frequeny of 5.5 MHz (QVGA), and an assumed LCD driver load of 15 pF, the remaining timing  
margin is:  
tDUTP max - 50  
)
(
100%  
5%  
1
tDUTP max_ error  
=
´ tPCLK  
=
´
100% 5.5 MHz  
= 9.1ns  
(
)
(4)  
16 ns  
´15 pF  
F/S=GND  
1
(
)
tDM  
=
- 9 ns -  
- 500 ps = 57.3 ns  
2´ 5.5 MHz  
10 pF  
(5)  
As long as the set-up and hold time of the LCD driver are each less than 57 ns, the timing budget is met  
sufficiently.  
9.1.7 Typical Application Frequencies  
The SN65LVDS302 supports pixel clock frequencies from 4 MHz to 65 MHz over 1, 2, or 3 data lanes. Table 9-1  
provides a few typical display resolution examples and shows the number of data lanes necessary to connect  
the SN65LVDS302 with the display. The blanking overhead is assumed to be 20%. Often, blanking overhead is  
smaller, resulting in a lower data rate. Furthermore, the examples in the table assumes a display frame refresh  
rate of 60 Hz. The actual refresh rate may differ depending on the application-processor clock implementation.  
Table 9-1. Typical Application Data Rates and Serial Lane Usage  
SERIAL DATA RATE PER LANE  
DISPLAY SCREEN  
RESOLUTION  
VISIBLE PIXEL  
COUNT  
BLANKING  
OVERHEAD  
DISPLAY REFRESH  
RATE  
PIXEL CLOCK  
FREQUENCY [MHz]  
1-ChM  
2-ChM  
3-ChM  
176x220 (QCIF+)  
240x320 (QVGA)  
640x200  
38,720  
76,800  
20%  
20%  
20%  
20%  
20%  
20%  
20%  
20%  
20%  
20%  
20%  
90 Hz  
60 Hz  
60 Hz  
60 Hz  
60 Hz  
60 Hz  
60 Hz  
60 Hz  
60 Hz  
60 Hz  
60 Hz  
4.2 MHz  
5.5 MHz  
125 Mbps  
166 Mbps  
276 Mbps  
316 Mbps  
335 Mbps  
332 Mbps  
432 Mbps  
442 Mbps  
128,000  
146,432  
154,880  
153,600  
200,000  
204,800  
307,200  
327,680  
409,920  
9.2 MHz  
138 Mbps  
158 Mbps  
167 Mbps  
166 Mbps  
216 Mbps  
221 Mbps  
332 Mbps  
354 Mbps  
443 Mbps  
352x416 (CIF+)  
352x440  
10.5 MHz  
11.2 MHz  
11.1 MHz  
14.4 MHz  
14.7 MHz  
22.1 MHz  
23.6 MHz  
29.5 MHz  
320x480 (HVGA)  
800x250  
640x320  
640x480 (VGA)  
1024x320  
221 Mbps  
236 Mbps  
295 Mbps  
854x480 (WVGA)  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: SN65LVDS302  
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
Table 9-1. Typical Application Data Rates and Serial Lane Usage (continued)  
SERIAL DATA RATE PER LANE  
DISPLAY SCREEN  
RESOLUTION  
VISIBLE PIXEL  
COUNT  
BLANKING  
OVERHEAD  
DISPLAY REFRESH  
RATE  
PIXEL CLOCK  
FREQUENCY [MHz]  
1-ChM  
2-ChM  
3-ChM  
800x600 (SVGA)  
1024x768 (XGA)  
480,000  
786,432  
20%  
20%  
60 Hz  
60 Hz  
34.6 MHz  
56.6 MHz  
346 Mbps  
566 Mbps  
9.2 Typical Applications  
9.2.1 VGA Application  
Figure 9-5 shows a possible implementation of a standard 640x480 VGA display. The LVDS301 interfaces to the  
SN65LVDS302, which is the corresponding receiver device to deserialize the data and drive the display driver.  
The pixel clock rate of 22 MHz assumes approximately 10% blanking overhead and 60 Hz display refresh rate.  
The application assumes 24-bit color resolution. Also shown is how the application processor provides a  
powerdown (reset) signal for both serializer and the display driver. The signal count over the Flexible Printed  
Circuit board (FPC) could be further decreased by using the standby option on the SN65LVDS302 and pulling  
RXEN high with a 30 kΩ resistor to VDD  
.
2x0.1uF  
2x0.1uF  
FPC  
GND  
2.7V  
1.8V  
GND  
GND  
2.7V  
1.8V  
GND  
2x0.01uF  
2x0.01uF  
Application  
Processor  
(e.g. OMAP)  
Video Mode Display  
Driver  
CLK+  
CLK–  
CLK+  
CLK–  
22MHz  
D0+  
D0–  
D0+  
D0–  
330Mbps  
330Mbps  
PCLK  
Pixel CLK  
PCLK  
22MHz  
27  
22MHz  
27  
D1+  
D1–  
D1+  
D1–  
D[7:0]  
D[15:8]  
D[23:16]  
R[7:0]  
G[7:0]  
B[7:0]  
R[7:0]  
G[7:0]  
B[7:0]  
HS, VS, DE  
HS, VS, DE  
HS, VS, DE  
SN65LVDS301  
SN65LVDS 302  
18. V  
1.8V  
If FPC wire count is critical, replace this  
connection with a pull-up resistor at RXEN  
Serial port interface  
(3-wire IF)  
3
Copyright © 2016, Texas Instruments Incorporated  
Figure 9-5. Typical VGA Display Application  
9.2.1.1 Design Requirements  
For this design example, use the parameters listed in Table 9-2 as the input parameters.  
Table 9-2. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
–40°C to 85°C  
1.65 V to 1.95 V  
70 mV to 200 mV  
0.6 V to 1.2 V  
< 630 ps  
Operating free-air temperature range  
Supply voltages, VDD, VDDLVDS, VDDPLLA, VDDPLLD  
Magnitude of differential input voltage, VID  
Input voltage common mode range, VICM  
Receiver input skew, 2-channel mode  
Copyright © 2020 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: SN65LVDS302  
 
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
9.2.1.2 Detailed Design Procedure  
Configuration and Connection:  
Include a power supply capable of providing the power requirements of the whole system.  
Configure the Application Processor to transmit the RGB data at 22 MHz.  
Configure the transmitter and the SN65LVDS302 to work using two channels.  
Connect the SN65LVDS302 to the LCD display following the same color mapping. See Section 8.3.1 for more  
information.  
9.2.1.2.1 Power-Up and Power-Down Sequences  
The SN65LVDS302 does not require a specific power up sequence for the voltage lines. However, TI  
recommends using the power-up and power-down sequences detailed below.  
Power-up sequence (SN65LVDS301 RXEN input initially low):  
1. Ramp up LCD power and SN65LVDS302 (approximately 0.5 ms to 10 ms) but keep the backlight turned off.  
2. Wait for an additional 0 ms to 200 ms to ensure display noise does not occur.  
3. Enable video source output; start sending black video data.  
4. Toggle SN65LVDS301 TXEN = VIH.  
5. Toggle SN65LVDS302 RXEN = VIH.  
6. Send at least 1 ms of black video data. This allows the SN65LVDS301 to be phase locked, and the display to  
show black data first.  
7. Start sending true image data.  
8. Enable backlight.  
Power-down sequence (SN65LVDS301 RXEN input initially high):  
1. Disable LCD backlight and wait for the minimum time specified in the LCD datasheet for the backlight to go  
low.  
2. Switch the video source output from active video data to black image data (all visible pixels turn black) for at  
least 2 frame times.  
3. Set SN65LVDS301 TXEN = GND and wait for 250 ns.  
4. Set SN65LVDS302 RXEN = GND and wait for 250 ns.  
5. Disable the video output of the video source.  
6. Remove power from the LCD panel for lowest system power.  
9.2.1.3 Application Curves  
250  
190  
249  
190  
2-Channel Mode,  
f(PCLK) = 22 MHz  
2-Channel Mode,  
f(PCLK) = 22 MHz  
0
0
–190  
–250  
–190  
–251  
500 ps/div  
500 ps/div  
Response Over 8-inch FR-4 + 1m Coax Cable  
Response Over 80-inch FR-4 + 1m Coax Cable  
Figure 9-6. VGA 2-Channel Output Waveform  
Figure 9-7. VGA 2-Channel Output Waveform  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: SN65LVDS302  
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
249  
190  
3-Channel Mode,  
f(PCLK) = 22 MHz  
0
–190  
–251  
1 ns/div  
Response Over 80-inch FR-4 + 1m Coax Cable  
Figure 9-8. VGA3-Channel Output Waveform  
9.2.2 Dual LCD-Display Application  
The example in Figure 9-9 shows a possible application setup driving two video-mode displays from one  
application processor. The data rate of 330 Mbps at a pixel clock rate of 5.5 MHz corresponds to a 320x240  
QVGA resolution at 60 Hz refresh rate and 10% blanking overhead.  
2x0.1uF  
2x0.1uF  
FPC  
GND  
2. 7V  
1. 8V  
GND  
GND  
2. 7V  
1. 8V  
GND  
2x0.01uF  
2x0.01uF  
Display Driver  
1
Application  
Processor  
21  
(e.g. OMAP )  
CLK+  
CLK-  
CLK+  
CLK-  
5.5MHz  
330Mbps  
PCLK  
PCLK  
Pixel CLK  
PCLK  
5.5MHz  
18+3  
D0+  
D0-  
R[ 5: 0]  
G[ 5: 0]  
B[ 5: 0]  
D0+  
D0-  
EN  
SIN  
SOUT  
SCLK  
D[ 5: 0]  
D[ 11 : 6]  
D[ 17: 12]  
HS, VS, DE  
R[ 5: 0]  
G[ 5: 0]  
B[ 5: 0]  
HS, VS, DE  
HS, VS, DE  
SN65LVDS 301  
SN65LVDS 302  
Display Driver  
2
PCLK  
EN  
SIN  
1.8V  
1.8V  
SOUT  
SCLK  
Copyright © 2016, Texas Instruments Incorporated  
Figure 9-9. Example Dual-QVGA Display Application  
9.2.2.1 Design Requirements  
For this design example, use the parameters listed in Table 9-3 as the input parameters.  
Table 9-3. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
–40°C to 85°C  
1.65 V to 1.95 V  
70 mV to 200 mV  
0.6 V to 1.2 V  
< 630 ps  
Operating free-air temperature range  
Supply voltages, VDD, VDDLVDS, VDDPLLA, VDDPLLD  
Magnitude of differential input voltage, VID  
Input voltage common mode range, VICM  
Receiver input skew, 1-channel mode  
Copyright © 2020 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: SN65LVDS302  
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
9.2.2.2 Application Curve  
249  
190  
1-Channel Mode,  
f(PCLK) = 5.5 MHz  
0
–190  
–251  
1 ns/div  
Response Over 80-inch of FR-4 + 1m Coax Cable  
Figure 9-10. QVGA Output Waveform  
10 Power Supply Recommendations  
To minimize the power supply noise floor, provide good decoupling near the SN65LVDS302 power pins. TI  
recommends placing one 0.01-μF ceramic capacitor at each power pin, and two 0.1-μF ceramic capacitors on  
each power node. The distance between the SN65LVDS302 and capacitors must be minimized to reduce loop  
inductance and provide optimal noise filtering. Placing the capacitor underneath the SN65LVDS302 on the  
bottom of the PCB is often a good choice. A 100-pF ceramic capacitor can be put at each power pin to optimize  
the EMI performance.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: SN65LVDS302  
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
11 Layout  
11.1 Layout Guidelines  
Use chamfered corners (45° bends) instead of right-angle (90°) bends. Right-angle bends increase the effective  
trace width, which changes the differential trace impedance creating large discontinuities. A 45° bend is seen as  
a smaller discontinuity.  
When routing traces next to a via or between an array of vias, make sure that the via clearance section does not  
interrupt the path of the return current on the ground plane below.  
Avoid metal layers and traces underneath or between the pads of the LVDS connectors for better impedance  
matching. Otherwise they cause the differential impedance to drop below 75 Ω and fail the board during TDR  
testing.  
Use solid power and ground planes for 100 Ω impedance control and minimum power noise.  
For a multilayer PCB, TI recommends keeping one common GND layer underneath the device and connect all  
ground terminals directly to this plane. For 100 Ω differential impedance, use the smallest trace spacing  
possible, which is usually specified by the PCB vendor.  
Keep the trace length as short as possible to minimize attenuation.  
Place bulk capacitors (10 μF) close to power sources, such as voltage regulators or where the power is supplied  
to the PCB.  
Copyright © 2020 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: SN65LVDS302  
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
12 Device and Documentation Support  
12.1 Community Resource  
12.2 Trademarks  
FlatLinkis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: SN65LVDS302  
 
 
 
SN65LVDS302  
SLLS733E – JUNE 2006 – REVISED OCTOBER 2020  
www.ti.com  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: SN65LVDS302  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Nov-2020  
PACKAGING INFORMATION  
Orderable Device  
SN65LVDS302ZQE  
SN65LVDS302ZQER  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
-40 to 85  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
ACTIVE  
BGA  
MICROSTAR  
JUNIOR  
ZQE  
80  
80  
360  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
LVDS302  
ACTIVE  
BGA  
ZQE  
2500  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
-40 to 85  
LVDS302  
MICROSTAR  
JUNIOR  
SN65LVDS302ZXH  
SN65LVDS302ZXHR  
ACTIVE  
ACTIVE  
NFBGA  
ZXH  
ZXH  
80  
80  
360  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
-40 to 85  
-40 to 85  
LVDS302  
LVDS302  
NFBGA  
2500  
Green (RoHS  
& no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
11-Nov-2020  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
ZXH0080A  
NFBGA - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
BALL GRID ARRAY  
5.1  
4.9  
A
B
BALL A1 CORNER  
INDEX AREA  
5.1  
4.9  
0.7  
0.6  
C
1 MAX  
SEATING PLANE  
0.08 C  
BALL TYP  
0.25  
TYP  
0.15  
4 TYP  
SYMM  
J
H
G
F
SYMM  
80X  
4
E
D
C
B
A
TYP  
0.35  
0.25  
0.15  
0.05  
C B  
C
A
0.5 TYP  
1
2
3
4
5
6
7
8
9
0.5 TYP  
4221325/A 01/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis is for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This is a Pb-free solder ball design.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
ZXH0080A  
NFBGA - 1 mm max height  
BALL GRID ARRAY  
(0.5) TYP  
0.265  
0.235  
80X  
6
7
9
2
3
4
5
8
1
A
B
C
(0.5) TYP  
D
E
F
G
H
J
SYMM  
SYMM  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.05 MAX  
0.05 MIN  
METAL  
UNDER  
MASK  
(
0.25)  
METAL  
(
0.25)  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221325/A 01/2014  
NOTES: (continued)  
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints.  
See Texas Instruments Literature No. SBVA017 (www.ti.com/lit/sbva017).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
ZXH0080A  
NFBGA - 1 mm max height  
BALL GRID ARRAY  
(0.5) TYP  
80X ( 0.25)  
(R0.05) TYP  
5
4
3
6
7
9
2
8
1
A
(0.5)  
TYP  
B
C
METAL  
TYP  
D
E
F
G
H
J
SYMM  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
SCALE:20X  
4221325/A 01/2014  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

SN65LVDS302ZXHR

SN65LVDS302 Programmable 27-Bit Serial-to-Parallel Receiver
TI

SN65LVDS302_07

PROGRAMMABLE 27-BIT SERIAL-TO-PARALLEL RECEIVER
TI

SN65LVDS302_V01

SN65LVDS302 Programmable 27-Bit Serial-to-Parallel Receiver
TI

SN65LVDS303

PROGRAMMABLE 27-BIT DISPLAY SERIAL-INTERFACE TRANSMITTER
TI

SN65LVDS303ZQE

LINE DRIVER, PBGA80, 5 X 5 MM, PLASTIC, MICRO, BGA-80
TI

SN65LVDS303ZQER

PROGRAMMABLE 27-BIT DISPLAY SERIAL-INTERFACE TRANSMITTER
TI

SN65LVDS304

PROGRAMMABLE 27-BIT PARALLEL-TO-SERIAL RECEIVER
TI

SN65LVDS304ZQER

PROGRAMMABLE 27-BIT PARALLEL-TO-SERIAL RECEIVER
TI

SN65LVDS305

PROGRAMMABLE 27-BIT DISPLAY SERIAL INTERFACE TRANSMITTER
TI

SN65LVDS305ZQE

PROGRAMMABLE 27-BIT DISPLAY SERIAL INTERFACE TRANSMITTER
TI

SN65LVDS305ZQER

PROGRAMMABLE 27-BIT DISPLAY SERIAL INTERFACE TRANSMITTER
TI

SN65LVDS306

PROGRAMMABLE 27-BIT SERIAL-TO-PARALLEL RECEIVER
TI