SN65LVDS314RSKR [TI]

可编程 27 位串行至并行接收器 | RSK | 64 | -40 to 85;
SN65LVDS314RSKR
型号: SN65LVDS314RSKR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

可编程 27 位串行至并行接收器 | RSK | 64 | -40 to 85

驱动 接口集成电路 驱动器
文件: 总43页 (文件大小:1952K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65LVDS314  
www.ti.com.cn  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
可编程 27 位串行至并行接收器  
查询样品: SN65LVDS314  
1
特性  
2
串行接口技术  
串行数据和时钟通过超低压差分信令 (subLVDS) 线路  
Flatlink™3G 兼容,例如 SN65LVDS301 和  
SN65LVDS311  
接收。 为了节能,SN65LVDS314 支持三个运行模  
式(关断、待机和激活)。  
支持在 12 3 条超低压 (subLVDS) 差分线路  
上接收高达 24 RGB 数据和 3 个控制位的视频  
接口  
当接收时,锁相环 (PLL) 锁定至下一个时钟 CLK 并且  
在数据线路的线路速率上生成一个内部高速时钟。 使  
用此内部高速时钟将数据串行载入到一个的移位寄存器  
内。 在从内部高速时钟中重新创建像素时钟 PCLK  
时,被并行化的数据出现在并行输出总线上。 如果没  
有出现输入 CLK 信号,在 PCLK DE 被保持在低电  
平时,输出总线被保持在静止状态,而所有其它并行输  
出被拉至高电平。  
subLVDS 差分电压电平  
1.8V 3.3V 灵活的 RGB 信令电平  
高达 1.755Gbps 数据吞吐量  
三个运行模式以达到节能的目的  
有源模式四分之一 VGA (QVGA)-17mW  
典型关断模式 - 0.6μW  
典型待机模式-典型值 54μW  
并行 (CMOS) 输出总线提供一个总线交换特性。  
SAWP(交换)控制位将输出像素数据的输出引脚顺序  
控制为 R[7:0] G[7:0]B[7:0]VSHSDE 或  
B[0:7]G[0:7]R[0:7]VSHSDE。 这为 PCB  
设计人员提供了适当的灵活性来更好将总线与 LCD 驱  
动器输出引脚相匹配或者将接收器器件放置在 PCB 的  
顶部或者底部。 F/S 控制输入在一个针对最佳 EMI 的  
慢速 CMOS 总线输出上升时间与功耗和针对增速或者  
更高负载设计的快速 CMOS 输出间进行选择。  
用于实现印刷电路板 (PCB) 布局布线灵活性的总线  
交换  
静电放电 (ESD) 额定值 > 4kV(人体模型  
(HBM))  
4MHz-65MHz 的像素时钟范围  
全部 CMOS 输入上的故障安全特性  
采用 8mm x 8mm 四方扁平无引线 (QFN) 封装,  
焊球间距 0.4mm  
极低的电磁干扰 (EMI),符合 SAE J1752/3 'Kh' 技  
术规范  
应用范围  
图形控制器和 LCD 显示间的小型低辐射接口  
相机、摄像机、嵌入式计算机  
便携式多媒体播放器  
说明  
SN65LVDS314 接收器将与 FlatLink™3G 兼容的串行  
输入数据解串行并成为 27 个并行数据输出。  
SN65LVDS314 接收器包含一个移位寄存器,在检查  
奇偶校验位之后,此寄存器从 12 3 个串行输入载  
30 个位,并且锁存 24 个像素位和 3 个控制位输出  
至并行 CMOS 输出。 如果奇偶校验确认奇偶校验正  
确,通道奇偶校验错误 (CPE) 输出保持低电平。 如果  
检测到奇偶校验错误,CPE 输出生成一个高脉冲,而  
数据输出总线忽略刚刚接收到的像素。 或者,最后一  
LCD  
VDS314  
L
or  
VDS302  
L
Application  
Processor  
with CMOS  
Video Interface  
LVDS301  
or  
LVDS311  
个数据字在下一个时钟周期内被保持在输出总线上。  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Flatlink is a trademark of Texas Instruments.  
2
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
版权 © 2012, Texas Instruments Incorporated  
English Data Sheet: SLLSE98  
SN65LVDS314  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
www.ti.com.cn  
这些装置包含有限的内置 ESD 保护。  
存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损伤。  
说明(继续)  
两个链路选择线路 LS0 LS1 选择使用的 12 3 条串行链路。 RXEN 输入可被用于将 SN65LVDS314 置于一  
个关断模式中。 如果 CLK 输入的共模电压被移位至 VDDLVDS(例如,发送器将 CLK 输出释放为高阻抗状  
态),那么 SN65LVDS314 进入一个有源待机模式。 这在无需切换一个外部控制引脚的前提下可大大减少功耗。  
SN65LVDS314 额定运行环境温度范围为 -40°C 85°C。 所有 CMOS subLVDS 信号在 VDD=0V 时的耐压为  
2V。这一特性可实现 VDD稳定前的信号加电。  
FUNCTIONAL BLOCK DIAGRAM  
VDDLVDS  
RBBDC  
Level Shifter  
CPE  
SWAP  
F/S  
iPCLK  
D0+  
50  
50  
Parity  
Check  
SubLVDS  
AND  
D0-  
1
0
8
VDDLVDS  
R[0:7]  
RBBDC  
D1+  
50  
50  
8
8
SubLVDS  
G[0:7]  
B[0:7]  
0
1
D1-  
D2+  
D2-  
VDDLVDS  
RBBDC  
HS  
VS  
50  
50  
SubLVDS  
RGB=1  
HS=VS=1  
DE=0  
VDDLVDS  
standby or  
pwr down  
DE  
RBBDC  
x10, x15, or x30  
CLK+  
CLK-  
50  
50  
PLL  
multiplier  
SubLVDS  
iPCLK  
x1  
0
1
PCLK  
CPOL  
standby  
Vthstby  
Glitch  
Suppression  
RXEN  
LS0  
Control  
LS1  
2
Copyright © 2012, Texas Instruments Incorporated  
SN65LVDS314  
www.ti.com.cn  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
PINOUT – TOP VIEW  
RSK PACKAGE  
(TOP VIEW)  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
G0/G7 49  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
HS  
VDD  
G1/G6 50  
G2/G5 51  
G3/G4 52  
G4/G3 53  
G5/G2 54  
G6/G1 55  
G7/G0 56  
CPE  
VS  
RXEN  
VDD_PLLA  
GND_PLLA  
SWAP  
GND  
VDD_LVDS  
VDD_LVDS  
GND_LVDS  
D0-  
57  
58  
59  
GND  
VDD_IO  
VDD  
R0/B7 60  
R1/B6 61  
R2/B5 62  
R3/B4 63  
R4/B3 64  
D0+  
GND_LVDS  
CLK-  
CLK+  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
RGB output pin assignment based on SWAP pin setting:  
SWAP = 0 / SWAP = 1  
Copyright © 2012, Texas Instruments Incorporated  
3
SN65LVDS314  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
www.ti.com.cn  
SWAP PIN FUNCTIONALITY  
The SWAP pin allows the pcb designer to reverse the RGB bus, minimizing potential signal crossovers due to  
signal routing. The two drawings beneath show the RGB signal pin assignment based on the SWAP-pin setting.  
RSK PACKAGE  
(TOP VIEW)  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
G0  
G1  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
HS  
VDD  
G2  
CPE  
G3  
VS  
G4  
RXEN  
G5  
VDD_PLLA  
GND_PLLA  
SWAP  
G6  
G7  
GND  
VDD_LVDS  
VDD_LVDS  
GND_LVDS  
D0-  
GND  
VDD_IO  
VDD  
R0  
R1  
R2  
R3  
R4  
D0+  
GND_LVDS  
CLK-  
CLK+  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
Figure 1. Pinout With SWAP PIN = GND  
4
Copyright © 2012, Texas Instruments Incorporated  
SN65LVDS314  
www.ti.com.cn  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
RSK PACKAGE  
(TOP VIEW)  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
G7  
G6  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
HS  
VDD  
G5  
CPE  
G4  
VS  
G3  
RXEN  
G2  
VDD_PLLA  
GND_PLLA  
SWAP  
G6  
G0  
GND  
VDD_LVDS  
VDD_LVDS  
GND_LVDS  
D0-  
GND  
VDD_IO  
VDD  
B7  
B6  
B5  
B4  
B3  
D0+  
GND_LVDS  
CLK-  
CLK+  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
Figure 2. Pinout With SWAP PIN = VDD  
Copyright © 2012, Texas Instruments Incorporated  
5
SN65LVDS314  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
www.ti.com.cn  
Table 1. Pin Description  
PIN  
SWAP  
SIGNAL  
R5  
PIN  
SWAP  
.
SIGNAL  
PIN  
SWAP  
SIGNAL  
B5  
L
H
L
H
L
H
-
L
H
L
H
L
H
-
1
22  
-
GND_LVDS  
43  
B2  
R2  
R6  
B6  
2
3
23  
24  
-
-
VDD_LVDS  
VDD_LVDS  
44  
45  
B1  
R1  
R7  
B7  
B0  
R0  
4
5
6
LS0  
VDD  
LS1  
25  
26  
27  
-
-
-
SWAP  
46  
47  
48  
GND  
VDD_IO  
CPOL  
G0  
-
GND_PLLA  
VDD_PLLA  
-
-
-
L
H
L
H
L
H
L
H
L
H
L
H
L
H
L
H
-
7
-
-
-
-
-
-
-
-
VDD_PLLD  
GND_PLLD  
VDD_LVDS  
GND_LVDS  
D2+  
28  
29  
30  
31  
32  
33  
34  
35  
-
-
-
-
-
-
-
-
RXEN  
VS  
49  
50  
51  
52  
53  
54  
55  
56  
G7  
G1  
8
G6  
G2  
9
CPE  
VDD  
HS  
G5  
G3  
10  
11  
12  
13  
14  
G4  
G4  
G3  
G5  
D2-  
DE  
G2  
G6  
GND_LVDS  
D1+  
VDD_IO  
F/S  
G1  
G7  
G0  
15  
16  
-
-
D1-  
36  
37  
-
PCLK  
GND  
B0  
57  
58  
GND  
VDD_IO  
GND_LVDS  
-
-
L
H
L
H
L
H
L
H
L
H
17  
18  
19  
20  
21  
-
-
-
-
-
CLK+  
CLK-  
38  
39  
40  
41  
42  
59  
60  
61  
62  
63  
64  
-
VDD  
R7  
B1  
L
H
L
R0  
B7  
R1  
B6  
R2  
B5  
R3  
B4  
R4  
B3  
R6  
B2  
GND_LVDS  
D0+  
R5  
H
L
B3  
R4  
H
L
B4  
D0-  
R3  
H
L
H
6
Copyright © 2012, Texas Instruments Incorporated  
SN65LVDS314  
www.ti.com.cn  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
TERMINAL FUNCTIONS  
NAME  
I/O  
DESCRIPTION  
D0+, D0–  
SubLVDS Data Link (active during normal operation)  
SubLVDS Data Link (active during normal operation when LS0 = high and LS1 = low, or LS0 = low and  
LS1=high; high impedance if LS0 = LS1 = low); input can be left open if unused  
D1+, D1–  
D2+, D2–  
SubLVDS in  
SubLVDS Data Link (active during normal operation when LS0 = low and LS1 = high, high-impedance  
when LS1 = low); input can be left open if unused  
CLK+, CLK–  
R0–R7  
G0–G7  
B0–B7  
HS  
SubLVDS Input Pixel Clock; Polarity is fixed.  
Red Pixel Data (8); pin assignment depends on SWAP pin setting  
Green Pixel Data (8); pin assignment depends on SWAP pin setting  
Blue Pixel Data (8); pin assignment depends on SWAP pin setting  
Horizontal Sync  
CMOS out  
VS  
Vertical Sync  
DE  
Data Enable  
PCLK  
LS0, LS1  
Output Pixel Clock; rising or falling clock polarity is selected by control input CPOL  
Link Select (Determines active SubLVDS Data Links and PLL Range) See Table 2  
Disables the CMOS Drivers and Turns Off the PLL, putting device in shutdown mode  
1 – Reciver enabled  
0 – Receiver disabled (Shutdown)  
Note: RXEN input incorporates glitch suppression logic to avoid unwanted switching. The input must be  
pulled low for longer than 10µs continuously to force the receiver to enter Shutdown. The input must be  
pulled high for at least 10μs continuously to activate the receiver. An input pulse shorter than 5us will be  
interpreted as glitch and becomes ignored. At power up, the receiver is enabled immediately if RXEN=H  
and disabled if RXEN=L  
RXEN  
Output Clock Polarity Selection  
CMOS in  
CPOL  
SWAP  
F/S  
0 – rising edge clocking  
1 – falling edge clocking  
Bus Swap swaps the bus pins to allow device placement on top or bottom of PCB. See pinout drawing  
for pin assignments.  
0 – data output from R7...B0  
1 – data output from B0...R7  
CMOS bus rise time select  
1 – fast output rise time  
0 – slow output rise time  
Channel Parity Error  
This output indicates the detection of a parity error by generating an output high-pulse for half of a PCLK  
clock cycle; this allows counting parity errors with a simple counter.  
CPE  
CMOS out  
0 – no error  
high-pulse – bit error detected  
VDD  
Supply Voltage  
VDD_IO  
RGB interface supply voltage  
Supply Ground  
GND  
VDDLVDS  
GNDLVDS  
VDDPLLA  
GNDPLLA  
VDDPLLD  
GNDPLLD  
SubLVDS I/O supply Voltage  
SubLVDS Ground  
Power Supply  
PLL analog supply Voltage  
PLL analog GND  
PLL digital supply Voltage  
PLL digital GND  
Copyright © 2012, Texas Instruments Incorporated  
7
SN65LVDS314  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
www.ti.com.cn  
FUNCTIONAL DESCRIPTION  
Deserialization Modes  
The SN65LVDS314 receiver has three modes of operation controlled by link-select pins LS0 and LS1. Table 2  
shows the deserializer modes of operation.  
Table 2. Logic Table: Link Select Operating Modes  
LS1  
LS0  
Mode of Operation  
Data Links Status  
0
0
1ChM  
2ChM  
3ChM  
1-channel mode (30-bit serialization rate)  
D0 active;  
D1, D2 disabled  
0
1
2-channel mode (15-bit serialization rate)  
D0, D1 active;  
D2 disabled  
1
1
0
1
3-channel mode (10-bit serialization rate)  
Reserved  
D0, D1, D2 active  
Reserved  
1-Channel Mode  
While LS0 and LS1 are held low, the SN65LVDS314 receives payload data over a single SubLVDS data pair,  
D0. The PLL locks to the SubLVDS clock input and internally multiplies the clock by a factor of 30. The internal  
high speed clock is used to shift in the data payload on D0 and to deserialize 30 bits of data. Figure 3 illustrates  
the timing and the mapping of the data payload into the 30-bit frame. The internal high speed clock is divided by  
a factor of 30 to recreate the pixel clock and the data payload with the pixel clock is presented on the output bus.  
The reserved bits and parity bit are not output. While in this mode, the PLL can lock to a clock that is in the range  
of 4 MHz through 15 MHz. This mode is intended for smaller video display formats that do not need the full  
bandwidth capabilities of the SN65LVDS314.  
CLK -  
CLK +  
res res CP R7 R6 R5 R4 R3 R2 R1 R0 G7 G6 G5 G4 G3 G2 G1 G0 B7 B6 B5 B4 B3 B2 B1 B0 VS HS DE res res CP R7 R6  
D0 +/- CHANNEL  
Figure 3. Data and Clock Input in 1-ChM (LS0 and LS1 = low)  
2-Channel Mode  
While LS0 is held high and LS1 is held low, the SN65LVDS314 receives payload data over two SubLVDS data  
pairs, D0 and D1. The PLL locks to the SubLVDS clock input and internally multiplies the clock by a factor of 15.  
The internal high speed clock is used to shift in the data payload on D0 and D1 and to deserialize 15 bits of data  
from each pair. Figure 4 illustrates the timing and the mapping of the data payload into the 30-bit frame. The  
internal high speed clock is divided by a factor of 15 to recreate the pixel clock, and the data payload with pixel  
clock is presented on the output bus. The reserved bits and parity bit are not output. While in this mode the PLL  
can lock to a clock that is in the range of 8 MHz through 30 MHz.  
CLK -  
CLK +  
CP R7 R6 R5 R4 R3 R2 R1 R0 G7 G6 G5 G4 VS res CP R7 R6  
res G3 G2 G1 G0 B7 B6 B5 B4 B3 B2 B1 B0 HS DE res G3 G2  
D0 +/- CHANNEL  
D1 +/- CHANNEL  
Figure 4. Data and Clock Input in 2-ChM (LS0 = high; LS1 = low)  
8
Copyright © 2012, Texas Instruments Incorporated  
 
 
 
SN65LVDS314  
www.ti.com.cn  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
3-Channel Mode  
While LS0 is held low and LS1 is held high the SN65LVDS314 receives payload data over three SubLVDS data  
pairs: D0, D1, and D2. The PLL locks to the SubLVDS clock input and internally multiplies the clock by a factor of  
10. The internal high speed clock is used to shift in the data payload on D0, D1, and D2, and to deserialize 10  
bits of data from each pair. Figure 5 illustrates the timing and the mapping of the data payload into the 30-bit  
frame. While in this mode the PLL can lock to a clock that is in the range of 20 MHz through 65 MHz.  
CLK -  
CLK +  
D0 +/- CHANNEL CP R7 R6 R5 R4 R3 R2 R1 R0 VS CP R7 R6  
D1 +/- CHANNEL res G7 G6 G5 G4 G3 G2 G1 G0 HS res G7 G6  
D2 +/- CHANNEL res B7 B6 B5 B4 B3 B2 B1 B0 DE res B7 B6  
Figure 5. Data and Clock Input in 3-ChM (LS0 = low; LS1 = high)  
POWERDOWN MODES  
The SN65LVDS314 Receiver has two powerdown modes to facilitate efficient power management.  
SHUTDOWN MODE  
A low input signal on the RXEN pin puts the SN65LVDS314 into Shutdown mode. This turns off most of the  
receiver circuitry including the SubLVDS receivers, PLL, and deserializers. The subLVDS differential-input  
resistance remains 100 , while any input signal is ignored. All outputs will hold a static output pattern:  
R[0:7]=G[0:7]=B[0:7]=VS=HS=high; DE=PCLK=low.  
The current draw in Shutdown mode will be nearly zero if the subLVDS inputs are left open or pulled high.  
STANDBY MODE  
The SN65LVDS314 will enter the Standby mode when the SN65LVDS314 is not in Shutdown mode but the  
SubLVDS clock-input common-mode voltage is above 0.9 × VDDLVDS. The CLK input incorporates a pull-up circuit  
to shift the SubLVDS clock-input common-mode voltage to VDDLVDS in the absence of an input signal. All circuitry  
except the SubLVDS clock-input Standby monitor is shut down. The SN65LVDS314 will also enter Standby  
mode when the input clock frequency on the CLK input is less than 500 kHz. The SubLVDS input resistance  
remains 100 while any input signal on the data inputs D0, D1, and D2 becomes ignored. All outputs will hold a  
static output pattern:  
R[0:7]=G[0:7]=B[0:7]=VS=HS=high; DE=PCLK=low.  
The current drawn in Standby mode will be very low.  
ACTIVE MODES  
A high input signal on RXEN combined with a CLK input signal switching faster than 3 MHz and VICM smaller  
than 1.3 V force the SN65LVDS314 into Active mode. Current consumption in active mode depends on operating  
frequency and the number of data transitions in the data payload. CLK-input frequencies between 3 MHz and 4  
MHz activate the device but proper PLL functionality is not secured. It is not recommended to operate the  
SN65LVDS314 in active mode at CLK frequencies below 4 MHz.  
ACQUIRE MODE (PLL Approaches Lock)  
When the SN65LVDS314 is enabled and a SubLVDS clock input present, the PLL will pursue lock to the input  
clock. While the PLL pursues lock the output data bus will hold a static output pattern:  
R[0:7]=G[0:7]=B[0:7]=VS=HS=high; DE=PCLK=low.  
Copyright © 2012, Texas Instruments Incorporated  
9
 
SN65LVDS314  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
www.ti.com.cn  
For proper device operation, the pixel clock frequency must fall within the valid fPCLK range specified under  
recommended operating conditions. If the pixel clock frequency is larger than 3 MHz but smaller than fPCLK(min)  
,
the SN65LVDS314 PLL is enabled. Under such conditions, it is possible for the PLL to lock temporarily to the  
pixel clock, causing the PLL monitor to release the device into active receive mode. If this happens, the PLL may  
or may not be properly locked to the pixel clock input, potentially causing data errors, frequency oscillation, and  
PLL deadlock (loss of VCO oscillation).  
RECEIVE MODE  
After the PLL achieves lock the device enters the normal receive mode. The output data bus presents the de-  
serialized data. The PCLK output pin outputs the recovered pixel clock.  
PARITY ERROR DETECTION AND HANDLING  
The SN65LVDS314 receiver performs error checking on the basis of a parity bit that is transmitted across the  
subLVDS interface from the transmitting device. Once the SN65LVDS314 detects the presence of the clock and  
the PLL has locked onto PCLK, then the parity is checked. Parity-error detection ensures detection of all single  
bit errors in one pixel and 50% of all multi-bit errors.  
The parity bit covers the 27 bit data payload consisting of 24 bits of pixel data plus VS, HS, and DE. Odd Parity  
bit signalling is used. The parity error is output on the CPE pin. If the sum of the 27 data bits and the parity bit  
result in an odd number, the receive data are assumed to be valid. The CPE output will be held low. If the sum  
equals an even number, parity error is declared. The CPE output will indicate high for half a PCLK period. The  
CPE output will be set with the data bit transition and cleared after 1/2 the data bit time. This allows counting  
every detected parity error with a simple counter connected to CPE.  
A Parity error is indicated by a  
high pulse on CPE; the width of  
the pulse is 1/2 the length of a  
PCLK cycle  
Also if there is a parity error detected then the  
data on that PCLK cycle is not output. Instead,  
CPE  
the last valid data from a previous PCLK cycle  
is repeated on the output bus. This is to prevent  
R[0:7], G[0:7],  
any bit error that may occur on the LVDS link  
B[0:7], HS, VS, DE  
from causing perturbations in VS, HS, or DE that  
may be visually disruptive to a display.  
PCLK  
The reserved bits are not covered in the parity  
calculations.  
(CPOL=0)  
When a parity error is  
detected, the receiver outputs  
the previous pixel on the bus  
Hence no data transitions  
occur.  
10  
Copyright © 2012, Texas Instruments Incorporated  
SN65LVDS314  
www.ti.com.cn  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
STATUS DETECT AND OPERATING MODES FLOW DIAGRAM  
The SN65LVDS314 switches between the power saving and active modes in the following way:  
Power Up  
RXEN = 1  
CLK Input Inactive  
RXEN Low  
for > 10 ms  
Power Up  
RXEN = 0  
Standby  
Mode  
ShutDown  
Mode  
RXEN High  
for > 10 ms  
VICM(CLK) > 0.9 VDDLVDS  
RXEN Low  
for > 10 ms  
VICM(CLK) > 0.9 VDDLVDS  
or fCLK < 500 kHz  
CLK Input Active  
Power Up  
RXEN = 1  
CLK Active  
Receive  
Mode  
Acquire  
Mode  
PLL Achieved Lock  
RXEN Low  
for > 10 ms  
Table 3. Status Detect and Operating Modes Descriptions  
Mode  
Characteristics  
Conditions  
(1) (2)  
Shutdown Mode  
Least amount of power consumption (most circuitry turned  
off); All outputs held static:  
RXEN is set low for longer than 10μs  
R[0:7]=G[0:7]=B[0:7]=VS=HS=high DE=PCLK=low;  
Standby Mode  
Low power consumption (Standby monitor circuit active; PLL RXEN is high for longer than 10 μs, and both CLK input  
is shutdown to conserve power);  
All outputs held static:  
common-mode VICM(CLK) above 0.9×VDDLVDS, or CLK  
input floating  
(2)  
R[0:7]=G[0:7]=B[0:7]=VS=HS=high DE=PCLK=low;  
Acquire Mode  
Receive Mode  
PLL pursues lock; All outputs held static:  
R[0:7]=G[0:7]=B[0:7]=VS=HS=high DE=PCLK=low;  
RXEN is high; CLK input monitor detected clock input  
common mode and woke up receiver out of Standby  
mode  
Data transfer (normal operation);  
receiver deserializes data and provides data on parallel  
output  
RXEN is high and PLL is locked to incoming clock  
(1) In Shutdown Mode, all SN65LVDS314 internal switching circuits (e.g., PLL, serializer, etc.) are turned off to minimize power  
consumption. The input stage of any input pin remains active.  
(2) Leaving CMOS control inputs unconnected can cause random noise to toggle the input stage and potentially harm the device. All CMOS  
inputs must be tied to a valid logic level VIL or VIH during Shutdown or Standby Mode. Exceptions are the subLVDS inputs CLK and Dx,  
which can be left unconnected while not in use.  
Copyright © 2012, Texas Instruments Incorporated  
11  
SN65LVDS314  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
www.ti.com.cn  
Table 4. Operating Mode Transitions  
MODE TRANSITION  
USE CASE  
TRANSITION SPECIFICS  
Shutdown Standby Drive RXEN high to enable  
1. RXEN high > 10 μs  
receiver  
2. Receiver enters standby mode  
a. R[0:7]=G[0:7]=B[0:7]=VS=HS remain high and DE=PCLK low  
b. Receiver activates clock input monitor  
1. CLK input monitor detects clock input activity  
2. Outputs remain static  
Standby Acquire  
Acquire Receive  
Transmitter activity  
detected  
3. PLL circuit is enabled  
Link is ready to receive  
data  
1. PLL is active and approaches lock  
2. PLL achieves lock within twakeup  
3. D1, D2, and/or D3 become active depending on LS0 and LS1 selection  
4. First Data word was recovered  
5. Parallel output bus turns on switching from static output pattern to output first  
valid data word  
Receive Standby  
Transmitter requested to  
enter Standby mode by  
input common mode  
1. Receiver disables outputs within tstandby  
2. RX Input monitor detects VICM > 0.9 VDDLVDS within tstandby  
3. R[0:7]=G[0:7]=B[0:7]=VS=HS transition to high and DE=PCLK to low on next  
falling PLL clock edge  
voltage VICM > 0.9 VDDLVDS  
(e.g. transmitter output  
clock stops or enters high-  
impedance state)  
4. PLL shuts down. Clock activity input monitor remains active  
Receive/Standby →  
Turn off Receiver  
1. RXEN pulled low for > tpwrdn  
Shutdown  
2. R[0:7]=G[0:7]=B[0:7]=VS=HS remain static high or transition to static high and  
DE=PCLK remain or transition to static low  
3. Most IC circuitry is shut down for least power consumption  
RGB Signaling Level  
The signaling level of the R[0:7], G[0:7], B[0:7], HS, VS, DE, and PCLK outputs of the SN65LVDS314 can be  
configured to be between 1.8 V and 3.3 V (nominal), depending on the voltage applied to the VDD_IO terminals.  
This provides compatibility with LCD drivers with interface voltages between 1.8 V and 3.3 V without the need for  
external level shifters.  
12  
Copyright © 2012, Texas Instruments Incorporated  
SN65LVDS314  
www.ti.com.cn  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
ABSOLUTE MAXIMUM RATINGS(1)  
VALUE  
–0.3 to 2.175  
–0.3 to 3.6  
–0.5 to 2.175  
–0.5 to VDD + 2.175  
±4  
UNIT  
V
Supply voltage range, VDD (2), VDDPLLA, VDDPLLD, VDDLVDS  
Supply voltage range, VDD_IO  
V
Voltage range at any input When VDDx > 0 V  
V
kV  
V
or output terminal  
When VDDx 0 V  
Human Body Model(3) (all Pins)  
Electrostatic discharge  
Charged-Device Mode(4) (all Pins)  
Machine Model(5) (all pins)  
±1000  
±200  
Continuous power dissipation  
Ouput current, IO  
See Dissipation Rating Table  
±5  
–65 to 150  
125  
mA  
°C  
Storage temperature, TSTG  
Maximum junction temperature, TJ  
°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the GND terminals  
(3) In accordance with JEDEC Standard 22, Test Method A114-B  
(4) In accordance with JEDEC Standard 22, Test Method C101  
(5) In accordance with JEDEC Standard 22, Test Method A115-A  
THERMAL INFORMATION  
SN65LVDS314  
THERMAL METRIC(1)  
RSK  
64 PINS  
31.7  
20  
UNITS  
θJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance(3)  
Junction-to-board thermal resistance(4)  
Junction-to-top characterization parameter(5)  
Junction-to-board characterization parameter(6)  
Junction-to-case (bottom) thermal resistance(7)  
θJCtop  
θJB  
9.9  
°C/W  
ψJT  
0.3  
ψJB  
9.9  
θJCbot  
2.4  
xxx  
(1) 有关传统和新的热 度量的更多信息,请参阅IC 封装热度量应用报告, SPRA953。  
(2) JESD51-2a 描述的环境中,按照 JESD51-7 的指定,在一个 JEDEC 标准高 K 电路板上进行仿真,从而获得自然 对流条件下的结至环  
境热阻。  
(3) 通过在封装顶部模拟一个冷板测试来获得结至芯片外壳(顶部)的热阻。 不存在特定的 JEDEC 标准测试,但 可在 ANSI SEMI 标准 G30-  
88 中能找到内容接近的说明。  
(4) 按照 JESD51-8 中的说明,通过 在配有用于控制 PCB 温度的环形冷板夹具的环境中进行仿真,以获得结板热阻。  
(5) 结至顶部特征参数, ψJT,估算真实系统中器件的结温,并使用 JESD51-2a(第 6 章和第 7 章)中 描述的程序从仿真数据中 提取出该参  
数以便获得 θJA  
(6) 结至电路板特征参数, ψJB,估算真实系统中器件的结温,并使用 JESD51-2a(第 6 章和第 7 章)中 描述的程序从仿真数据中 提取出该  
参数以便获得 θJA  
(7) 通过在外露(电源)焊盘上进行冷板测试仿真来获得 结至芯片外壳(底部)热阻。 不存在特定的 JEDEC 标准 测试,但可在 ANSI SEMI  
标准 G30-88 中能找到内容接近的说明。  
空白  
DEVICE POWER DISSIPATION  
PARAMETER  
TEST CONDITIONS  
TYP  
12.8  
59.2  
MAX  
UNIT  
fCLK at 4 MHz  
fCLK at 65 MHz  
fCLK at 4 MHz  
fCLK at 65 MHz  
VDDx = 1.8 V, TA = 25°C, all outputs terminated with 10 pF  
mW  
Device Power  
Dissipation  
PD  
41  
VDD = VDDPLLA = VDDPLLD = VDDLVDS = 1.95 V, VDD_IO = 3.6 V,  
all outputs terminated with 10 pF  
mW  
261.9  
Copyright © 2012, Texas Instruments Incorporated  
13  
SN65LVDS314  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
www.ti.com.cn  
MAX UNIT  
RECOMMENDED OPERATING CONDITIONS(1)  
MIN  
1.65  
1.65  
TYP  
VDD  
VDDPLLA  
Supply voltages  
VDDPLLD  
1.8  
1.95  
3.6  
V
V
VDDLVDS  
VDD_IO  
Supply voltage for CMOS outputs  
Test set-up see Figure 7  
CLK 50MHz; f(noise) = 1Hz to 2 GHz  
f
100  
100  
40  
Supply voltage noise magnitude  
50MHz (all supplies)  
VDDn(PP)  
mV  
fCLK > 50MHz; f(noise) = 1Hz to 1MHz  
fCLK > 50 MHz; f(noise) > 1MHz  
TA  
TC  
Operating free-air temperature  
Case temperature  
–40  
85  
°C  
°C  
93.1  
CLK+ and CLK–  
1-Channel receive mode, see Figure 3  
2-Channel receive mode, see Figure 4  
3-Channel receive mode, see Figure 5  
Standby mode(2), See Figure 16  
4
8
15  
30  
MHz  
fCLK±  
Input Pixel clock frequency  
20  
65  
500  
65  
kHz  
%
tDUTCLK  
CLK Input Duty Cycle  
35  
70  
D0+, D0–, D1+, D1–, D2+, D2-, CLK+, and CLK–  
|VID  
|
Magnitude of differential input voltage |VD0+-VD0-|, |VD1+-VD1-|, |VD2+-VD2-|,  
|VCLK+-VCLK-| during normal operation  
200  
1.2  
mV  
V
VICM  
Input Voltage Common Mode Range Receive or Acquire mode  
Stand-by mode  
0.6  
0.9 × VDDLVDS  
–100  
ΔVICM  
Input Voltage Common Mode  
Variation between all SubLVDS  
inputs  
VICM(n) – VICM(m) with n=D0, D1, D2, or CLK  
and m=D0, D1, D2, or CLK  
100  
10  
mV  
%
ΔVID  
Differential Input Voltage Amplitude  
Variation between all SubLVDS  
inputs  
VID(n) – VID(m) with n=D0, D1, D2, or CLK  
and m=D0, D1, D2, or CLK  
–10  
tR/F  
Input Rise and Fall Time  
RXEN at VDD; see figure 10  
800  
100  
ps  
ps  
Δ tR/F  
Input Rise or Fall Time mismatch  
between all SubLVDS inputs  
tR(n) – tR(m) and tF(n) – tF(m) with n=D0, D1,  
D2, or CLK and m=D0, D1, D2, or CLK  
–100  
LS0, LS1, CPOL, SWAP, RXEN, F/S  
VICMOSH  
VICMOSL  
tinRXEN  
High-level input voltage  
Low-level input voltage  
RXEN input pulse duration  
0.7×VDD  
VDD  
V
V
0
0.3×VDD  
10  
μs  
R[7:0], G[7:0], B[7:0], VS, HS, DE, PCLK, CPE  
CL Output load capacitance  
(1) Unused single-ended inputs must be held high or low to prevent them from floating.  
(2) PCLK input frequencies lower than 500 kHz force the SN65LVDS314 into standby mode. Input frequencies between 500 kHz and  
10  
pF  
3 MHz may or may not activate the SN65LVDS314. Input frequencies beyond 3 MHz activate the SN65LVDS314. Input frequencies  
between 500 kHz and 4 MHz are not recommended, and can cause PLL malfunction.  
14  
Copyright © 2012, Texas Instruments Incorporated  
SN65LVDS314  
www.ti.com.cn  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
DEVICE ELECTRICAL CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1) MAX(2) UNIT  
VDD_IO = 1.8 V  
VDD_IO = 2.5 V  
VDD_IO = 3.3 V  
VDD_IO = 1.8 V  
VDD_IO = 2.5 V  
VDD_IO = 3.3 V  
VDD_IO = 1.8 V  
VDD_IO = 2.5 V  
VDD_IO = 3.3 V  
VDD_IO = 1.8 V  
VDD_IO = 2.5 V  
VDD_IO = 3.3 V  
VDD_IO = 1.8 V  
VDD_IO = 2.5 V  
VDD_IO = 3.3 V  
VDD_IO = 1.8 V  
VDD_IO = 2.5 V  
VDD_IO = 3.3 V  
VDD_IO = 1.8 V  
VDD_IO = 2.5 V  
VDD_IO = 3.3 V  
VDD_IO = 1.8 V  
VDD_IO = 2.5 V  
VDD_IO = 3.3 V  
VDD_IO = 1.8 V  
VDD_IO = 2.5 V  
VDD_IO = 3.3 V  
VDD_IO = 1.8 V  
VDD_IO = 2.5 V  
VDD_IO = 3.3 V  
VDD_IO = 1.8 V  
VDD_IO = 2.5 V  
VDD_IO = 3.3 V  
VDD_IO = 1.8 V  
VDD_IO = 2.5 V  
VDD_IO = 3.3 V  
7.1  
Typical power test pattern (see Table 6);  
VID = 70 mV,  
All CMOS outputs terminated with 10 pF;  
fPCLK = 4 MHz  
fPCLK = 15 MHz  
fPCLK = 4 MHz  
fPCLK = 15 MHz  
fPCLK = 8 MHz  
fPCLK = 30 MHz  
fPCLK = 8 MHz  
fPCLK = 30 MHz  
fPCLK = 20 MHz  
fPCLK = 65 MHz  
fPCLK = 20 MHz  
fPCLK = 65 MHz  
8.2  
10.3  
15.3  
17.4  
21  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
F/S at GND and RXEN at VDD  
;
VIH = VDD, VIL = 0 V;  
VDD = VDDPLLA = VDDPLLD = VDDLVDS  
1ChM  
2ChM  
3ChM  
8.9  
12.3  
12.8  
16  
10.7  
13.5  
19.3  
23.3  
28.4  
9.7  
Alternating 1010 Test pattern (see Table 9);  
All CMOS outputs terminated with 10 pF;  
F/S and RXEN at VDD; VIH = VDD, VIL = 0 V;  
VDD = VDDPLLA = VDDPLLD = VDDLVDS  
25  
28.6  
35.2  
Typical power test pattern (see Table 7);  
VID = 70 mV,  
All CMOS outputs terminated with 10 pF;  
11.3  
14  
F/S at GND and RXEN at VDD  
;
20.4  
24.3  
29.1  
12.9  
15.6  
20.3  
30.4  
37.2  
45.9  
15.5  
19  
VIH = VDD, VIL = 0 V;  
VDD = VDDPLLA = VDDPLLD = VDDLVDS  
Total  
Average  
Supply  
Current  
IDD  
17.3  
19.3  
26.9  
40.4  
48.3  
61.7  
Alternating 1010 Test pattern (see Table 9);  
All CMOS outputs terminated with 10 pF;  
F/S and RXEN at VDD; VIH = VDD, VIL = 0 V;  
VDD = VDDPLLA = VDDPLLD = VDDLVDS  
Typical power test pattern (see Table 8);  
VID = 70 mV,  
All CMOS outputs terminated with 10 pF;  
23.5  
32.9  
39.9  
48.7  
21.4  
26.4  
33.1  
49.9  
62.5  
77.9  
30  
F/S at GND and RXEN at VDD  
;
VIH =VDD, VIL = 0 V;  
VDD = VDDPLLA = VDDPLLD = VDDLVDS  
29.7  
33.7  
41.3  
66.9  
80.3  
102.3  
80  
Alternating 1010 Test pattern (see Table 9);  
All CMOS outputs terminated with 10 pF;  
F/S and RXEN at VDD; VIH = VDD, VIL = 0 V;  
VDD = VDDPLLA = VDDPLLD = VDDLVDS  
CLK and D[0:2] inputs are left open;  
Standby mode; RXEN = VIH  
μA  
μA  
All control inputs held static high or low;  
All CMOS outputs terminated with 10 pF;  
VIH = VDD, VIL = 0V; VDD = VDDPLLA = VDDPLLD = VDDLVDS  
Shutdown mode; RXEN = VIL  
0.3  
6
(1) All typical values are at 25°C with VDD = VDDPLLA = VDDPLLD = VDDLVDS = 1.8 V.  
(2) All max values are at the worst-case process corner, voltage, and temperature. The VDD_IO voltage is the described voltage + 10%.  
Copyright © 2012, Texas Instruments Incorporated  
15  
SN65LVDS314  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
www.ti.com.cn  
MAX UNIT  
INPUT ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
D0+, D0–, D1+, D1–, D2+, D2–, CLK+, and CLK–  
Vthstby Input voltage common mode threshold to  
switch between receive/acquire mode and  
standby mode  
RXEN at VDD  
1.3  
0.9×VDDLVDS  
V
VTHL  
Low-level differential input voltage  
threshold  
VD0+–VD0–, VD1+–VD1–, VD2+–VD2–  
VCLK+–VCLK-  
,
–40  
mV  
mV  
μA  
VTHH High-level differential input voltage  
threshold  
40  
75  
II+, II– Input leakage current  
VDD=1.95 V; VI+ = VI–;  
VI = 0.4 V and VI = 1.5 V  
IIOFF  
RID  
Power-off input current  
VDD=GND; VI = 1.5V  
–75  
122  
μA  
Differential input termination resistor value  
Input capacitance  
78  
21  
100  
1
CIN  
Measured between input terminal  
and GND  
pF  
ΔCIN  
Input capacitance variation  
Within one signal pair  
Between all signals  
0.2  
1
pF  
RBBDC Pull-up resistor for standby detection  
30  
39  
kΩ  
LS0, LS1, CPOL, SWAP, RXEN, F/S  
VIK  
Input clamp voltage  
II= –18 mA, VDD=VDD(min)  
-1.2  
100  
V
IICMOS Input current(2)  
0 V VDD1.95 V; VI=GND or  
nA  
VI=1.95 V  
CIN  
IIH  
Input capacitance  
2
pF  
nA  
High-level input current  
Low-level input current  
High-level input voltage  
Low-level input voltage  
VIN = 0.7 × VDD  
VIN = 0.3 × VDD  
-200  
–200  
200  
200  
IIL  
VIH  
VIL  
0.7×VDD  
0
VDD  
V
0.3×VDD  
(1) All typical values are at 25°C and with 1.8 V supply unless otherwise noted.  
(2) Do not leave any CMOS Input unconnected or floating to minimize leakage currents. Every input must be connected to a valid logic level  
VIH or VOL while power is supplied to VDD  
.
16  
Copyright © 2012, Texas Instruments Incorporated  
SN65LVDS314  
www.ti.com.cn  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
OUTPUT ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
R[0:7], G[0:7], B[0:7], VS, HS, DE, PCLK, CPE  
1-ChM, F/S=L, IOH= –250 μA  
2-or 3-ChM, F/S=L, IOH= –500 μA  
1-ChM, F/S=H, IOH= –500 μA  
2- or 3-ChM, F/S=H, IOH= –1.33 mA  
1-ChM, F/S=L, IOL= 250 μA  
2- or 3-ChM, F/S=L, IOL= 500 μA  
1-ChM, F/S=H, IOL= 500 μA  
2- or 3-ChM, F/S=H, IOL= 1.33 mA  
1-ChM, F/S=L  
VOH High-level output voltage  
VOL Low-level output voltage  
0.8×VDD_IO  
VDD_IO  
V
V
0
0.5  
–250  
–500  
IOH  
High-level output current  
Low-level output current  
2- or 3-ChM, F/S=L; 1-ChM, F/S=H  
2- or 3-ChM, F/S=H  
–1333  
μA  
1-ChM, F/S=L  
250  
500  
IOL  
2- or 3-ChM, F/S=L; 1-ChM, F/S=H  
2- or 3-ChM, F/S=H  
1333  
Copyright © 2012, Texas Instruments Incorporated  
17  
SN65LVDS314  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
www.ti.com.cn  
MAX UNIT  
SWITCHING CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
D0+, D0–, D1+, D1–, D2+, D2–, CLK+, and CLK–  
tR/F  
Input rise and fall time  
RXEN at VDD; see figure 6-2  
800  
100  
ps  
ps  
Input rise or fall time  
mismatch between all  
SubLVDS inputs  
tR(n)– tR(m) and tF(n)- tF(m) with n=D0, D1, D2, or CLK  
and m=D0, D1, D2, or CLK  
ΔtR/F  
–100  
R[7:0], G[7:0], B[7:0], VS, HS, DE, PCLK, CPE  
1-channel mode, F/S=L  
2-channel mode, F/S=L  
3-channel mode, F/S=L  
1-channel mode, F/S=H  
2-channel mode, F/S=H  
3-channel mode, F/S=H  
8
4
16  
8
Rise and fall time 20%–  
80% of VDD_IO  
CL = 10 pF(3)  
see Figure 9  
4
8
tR/F  
ns  
(2)  
4
8
1.3  
1.3  
45%  
48%  
41%  
–2  
3
3
1-channel and 3-channel mode  
CPOL=VIL, 2-channel mode  
CPOL=VIH, 2-channel mode  
50%  
53%  
47%  
55%  
59%  
52%  
2
tOUTP  
PCLK output duty cycle  
1-channel mode, F/S=L  
1-channel mode, F/S=H or  
2-channel mode, F/S=L or  
3-channel mode, F/S=L  
Output skew between PCLK  
and R[0:7], G[0:7], B0:7],  
HS, VS, and DE  
–1  
1
tOSK  
see Figure 9  
ns  
2-channel mode, F/S=H or  
3-channel mode, F/S=H  
–0.5  
0.5  
INPUT TO OUTPUT RESPONSE TIME  
Propagation delay time from RXEN at VDD, VIH=VDD, VIL=GND, CL=10 pF,  
tPD(L)  
1.4/fPCLK  
1.9/fPCLK  
2.5/fPCLK  
s
CLK+ input to PCLK output  
See Figure 14  
RXEN glitch to suppress  
pulse width(4)  
VIH=VDD, VIL=GND, RXEN toggles between VIL and VIH  
See Figure 15 and Figure 16  
;
tGS  
3.8  
2
μs  
ms  
Enable time from power  
down (RXEN)  
Time from RXEN pulled high to data outputs enabled and  
outputs valid data; See Figure 16  
tpwrup  
RXEN is pulled low during receive mode; time  
measurement until all outputs held static:  
R[0:7]=G[0:7]=B[0:7]=VS=HS=high, DE=PCLK=low and  
PLL is Shutdown; See Figure 16  
Disable time from active  
mode (RXEN)  
tpwrdn  
11  
2
μs  
RXEN at VDD; device is in standby; time measurement  
from CLK input starts switching to PCLK and data outputs  
enabled and outputting valid data; See Figure 17  
Enable time from Standby  
(↑↓CLK)  
twakeup  
ms  
RXEN at VDD; device is receiving data; time  
measurement from CLK input signal stops (input open or  
input common mode VICM exceeds threshold voltage  
Vthstby) until all outputs held static:  
Disable time from active  
mode (CLK transitions to  
high-impedance)  
tstandby  
3
μs  
R[0:7]=G[0:7]=B[0:7]=VS=HS=high,  
DE=PCLK=low and PLL is Shutdown;  
See Figure 17  
2-ChM; fPCLK=22MHz  
0.087×fPCLK  
0.075×fPCLK  
Tested from CLK input to  
PCLK output  
fBW  
PLL bandwidth(5)  
MHz  
3-ChM; fPCLK=65MHz  
(1) All typical values are at 25°C and with 1.8 V supply unless otherwise noted.  
(2) tR/F depends on the F/S setting and the capacitive load connected to each output. Some application information of how to calculate tR/F  
based on the output load and how to estimate the timing budget to interconnect to an LCD driver are provided in the application section  
near the end of this data sheet.  
(3) The output rise and fall time is optimized for an output load of 10 pF. This model does not take into account trace or connector loading,  
so the actual rise and fall times in different systems will vary.  
(4) The RXEN input incorporates a glitch-suppression logic to disregard short input pulses. tGS is the duration of either a high-to-low or low-  
to-high transition that is suppressed.  
(5) When using the SN65LVDS314 receiver in conjunction with the SN65LVDS301 transmitter in one link, the PLL bandwidth of the  
SN65LVDS314 receiver always exceed the bandwidth of the SN65LVDS301 transmit PLL. This ensures stable PLL tracking under all  
operating conditions and maximizes the receiver skew margin.  
18  
Copyright © 2012, Texas Instruments Incorporated  
SN65LVDS314  
www.ti.com.cn  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
9.0  
8.5  
12  
11  
10  
8 MHz  
9 %  
20 MHz  
8.7 %  
4 MHz  
9 %  
Spec Limit  
1 ChM  
Spec Limit  
2 ChM  
Spec Limit  
3 ChM  
8.0  
7.5  
7.0  
15 MHz  
8.1 %  
9
8
7
6
5
30 MHz  
8.1 %  
65 MHz  
7.5 %  
6.5  
6.0  
4
0
70  
50  
60  
30  
40  
20  
0
10  
100  
200  
300  
400  
500  
600  
700  
PCLK - Frequency - MHz  
PLL - Frequency - MHz  
Figure 6. SN65LVDS314 PLL Bandwidth (also showing the SN65LVDS301 PLL bandwidth)  
TIMING CHARACTERISTICS  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
1ChM: x=0..29, fPCLK=15 MHz;  
fCLK=15 MHz(4)  
630  
RXEN at VDD, VIH=VDD  
,
fCLK=4 MHz to 15 MHz(5)  
VIL=GND, RL=100 , test setup  
as in Figure 8, test pattern as in  
Table 11  
1
- 480 ps  
- 480ps  
- 410ps  
2 · 30 · fCLK  
2ChM: x = 0..14,  
fPCLK =30 MHz  
RXEN at VDD, VIH=VDD,  
VIL=GND, RL=100 , test setup  
as in Figure 8, test pattern as in  
Table 12  
fCLK=30 MHz(4)  
fCLK=8 MHz to 30 MHz(5)  
630  
Receiver input skew  
margin; see (3) and  
Figure 21  
tRSKMx  
1
ps  
(1) (2)  
2 ·15 · fCLK  
3ChM:  
fCLK= 65 MHz(4)  
360  
RXEN at VDD, VIH=VDD  
,
fCLK = 20 MHz to 65  
MHz(5)  
VIL=GND, test setup as in  
Figure 8, test pattern as in  
Table 13  
1
2 ·10 · fCLK  
(1) Receiver Input Skew Margin (tRSKM) is the timing margin available for transmitter output pulse position (tPPOS), interconnect skew, and  
interconnect inter-symbol interference. tRSKM represents the reminder of the serial bit time not taken up by the receiver strobe  
uncertainty;. The tRSKM assumes a bit error rate better than 10-12  
.
(2) tRSKM is indirectly proportional to the internal set-up and hold time uncertainty, ISI and duty cycle distortion from the front end receiver,  
the skew missmatch between CLK and data D0, D1, and D2, as well as the PLL cycle-to-cycle jitter.  
(3) This includes the receiver internal set-up and hold time uncertainty, all PLL related high-frequency random and deterministic jitter  
components that impact the jitter budget, ISI and duty cycle distortion from the front end receiver, and the skew between CLK and data  
D0, D1, and D2; The pulse position min/max variation is given with a bit error rate target of 10–12; Measurements of the total jitter are  
taken over a sample amount of > 10–12 samples.  
(4) The Minimum and Maximum Limits are based on statistical analysis of the device performance over process, voltage, and temp ranges.  
(5) These Minimum and Maximum Limits are simulated only.  
Copyright © 2012, Texas Instruments Incorporated  
19  
SN65LVDS314  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
www.ti.com.cn  
PARAMETER MEASUREMENT INFORMATION  
SN65LVDS314  
V
DDPLLD  
2
1
V
DDPLLA  
V
DD  
Noise  
Generator  
100 mV  
1 W  
10µF  
V
DDLVDS  
V
DD_IO  
GND  
1.8V  
Supply  
Note: The generator regulates the  
1
1.6 H  
noise amplitude at point to the  
target amplitude given under the table  
Recommended Operating Conditions  
Figure 7. Power Supply Noise Test Set-Up  
To measure tRSKM, CLK is advanced or delayed with respect to data until errors are observed at the receiver outputs. The advance  
or delay is then reduced until there are no data errors observed over 10-12 serial bit times. The magnitude of the advance or delay  
is tRSKM  
Programmable delay  
CLK  
D1  
CLK and Data  
Pattern  
Generator  
DUT:  
SN65LVDS314  
Bit error  
Detector  
D2  
D3  
Ideal receiver strobe position  
tPG_ERROR  
TRSKM(p)  
C
TRSKM(n)  
tbit  
tRSKM  
tPG_ERROR  
- is the smaller of the two measured values tRSKM(p) and tRSKM(n)  
- Test equipment (pattern generator) intrinsic output pulse position timing uncertainty  
- serial bit time  
tbit  
C
- LVDS314 set-up and hold-time uncertainty  
Note: C can be derived by subtracting the receiver skew margin tRSKM(p) + tRSKM(p) from one serial bit time  
Figure 8. Jitter Budget  
20  
Copyright © 2012, Texas Instruments Incorporated  
SN65LVDS314  
www.ti.com.cn  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
PARAMETER MEASUREMENT INFORMATION (continued)  
t
F
t
setup  
80% (VOH-VOL  
20% (VOH-VOL  
)
)
R[7:0], G[7:0],  
B[7:0], HS, VS, DE  
t
hold  
t
OSK  
t
R
V
OH  
80% (VOH-VOL  
)
PCLK  
(CPOL=0)  
50% (V - –V  
)
OH OL  
20% (VOH-VOL  
)
V
OL  
t
R
t
F
Note:  
The Set-up and Hold-time of CMOS outputs R[7:0], G[7:0],  
B[7:0], HS, VS, and DE in relation to PCLK can be  
calulated by:  
1
t
=
-t  
- t  
- Dt  
DUTP  
S&H  
REF OSK  
2 -r  
PCLK  
Figure 9. Output Rise/Fall, Setup/Hold Time  
V
– V  
, V  
– V  
CLK–  
Dx+  
Dx–  
CLK+  
100%(V  
)
IC  
t
f
t
r
80%(V  
)
ID  
0V  
20%(V  
0%(V  
)
ID  
)
ID  
Figure 10. SubLVDS Differential Input Rise and Fall Time Defintion  
CLK+, Dx+  
VDDLVDS  
RID /2  
RBBDC  
Gain  
Stage  
RID/2  
CLK–, Dx–  
Standby  
detection  
line end  
termination  
ESD  
Figure 11. Equivalent Input Circuit Design  
Copyright © 2012, Texas Instruments Incorporated  
21  
SN65LVDS314  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
www.ti.com.cn  
PARAMETER MEASUREMENT INFORMATION (continued)  
SWAP,  
CPOL, LSx,  
RXEN, F/S  
I
ICMOS  
CMOS Input  
CLK+, Dx+  
(V +V )/2  
I+ I-  
I
I+  
RGB, VS,  
HS, DE,  
CPE, PCLK  
V
ICMOS  
I
O
V
I
ID  
I-  
CLK-, Dx-  
V
I+  
V
V
ICM  
O
V
I-  
SubLVDS Input  
CMOS Output  
Figure 12. I/O Voltage and Current Definition  
RGB, VS,  
HS, DE,  
CPE, PCLK  
V
O
SN65LVDS314  
CL=10 pF  
Figure 13. CMOS Output Test Circuit, Signal and Timing Definition  
22  
Copyright © 2012, Texas Instruments Incorporated  
SN65LVDS314  
www.ti.com.cn  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
PARAMETER MEASUREMENT INFORMATION (continued)  
Pixel(n)  
Pixel(n–1)  
Pixel(n+1)  
R7(n+1)  
R7(n–1)  
R7(n)  
CP R7  
R7(n–2)  
D0+  
R7 R6 R5 R4  
CP R7  
CLK–  
CLK+  
tPD(L)  
VDD/2  
PCLK  
(CPOL = 0)  
Pixel(n–1)  
CMOS Data Out  
R7(n–3)  
R7(n–1)  
R7  
R6  
R6(n–3)  
R6(n–1)  
Figure 14. Propagation Delay Input to Output (LS0=LS1=0)  
/2  
V
DD  
RXEN  
t
GS  
CLK  
t
PLL  
PLL Approaches Lock  
VCO Internal Signal  
t
pwrup  
PCLK  
R[7:0], G[7:0], B[7:0], VS, HS  
DE  
Figure 15. Receiver Phase Lock Loop Set TIme and Receiver Enable Time  
Copyright © 2012, Texas Instruments Incorporated  
23  
SN65LVDS314  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
www.ti.com.cn  
PARAMETER MEASUREMENT INFORMATION (continued)  
20 ns  
<
3 ms  
2 ms  
Glitch shorter  
than t will be  
GS  
ignored  
less than 20ns  
Spike will be  
rejected  
Glitch shorter  
than t will be  
GS  
ignored  
RXEN  
t
pwrup  
t
pwrdn  
PCLK  
t
I
GS  
CC  
t
GS  
CLK  
RX  
RX disabled  
turns  
OFF  
Receiver disabled  
(OFF)  
Receiver enabled  
(ON)  
Receiver aquires lock  
(OFF)  
Figure 16. Receiver Enable/Disable Glitch Suppression Time  
CLK  
t
t
standby  
wakeup  
PCLK  
R[7:0], G[7:0], B[7:0], VS, HS,  
RX enabled;  
output data  
invalid  
RX  
disabled  
(OFF)  
RX enabled  
output data valid  
Receiver aquires lock,  
outputs still disabled  
Receiver disabled  
(OFF)  
Figure 17. Standby Detection  
POWER CONSUMPTION TESTS  
Table 5 shows an example test pattern word.  
Table 5. Example Test Pattern Word  
Word R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
0x7C3E1E7  
7
C
3
E
1
E
7
R7 R6 R5 R4 R3 R2 R1 R0 G7 G6 G5 G4 G3 G2 G1 G0 B7 B6 B5 B4 B3 B2 B1 B0  
0
0
VS HS DE  
0
1
1
1
1
1
0
0
0
0
1
1
1
1
1
0
0
0
0
1
1
1
1
0
1
1
1
24  
Copyright © 2012, Texas Instruments Incorporated  
 
SN65LVDS314  
www.ti.com.cn  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
TYPICAL IC POWER CONSUMPTION TEST PATTERN  
Typical power-consumption test patterns consist of sixteen 30-bit receive words in 1-channel mode, eight 30-bit  
receive words in 2-channel mode and five 30-bit receive words in 3-channel mode. The pattern repeats itself  
throughout the entire measurement. It is assumed that every possible code on the RGB outputs has the same  
probability to occur during typical device operation.  
Table 6. Typical IC Power Consumption Test Pattern,  
1-Channel Mode  
Word Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
2
0x0000007  
0xFFF0007  
0x01FFF47  
0xF0E07F7  
0x7C3E1E7  
0xE707C37  
0xE1CE6C7  
0xF1B9237  
0x91BB347  
0xD4CCC67  
0xAD53377  
0xACB2207  
0xAAB2697  
0x5556957  
0xAAAAAB3  
0xAAAAAA5  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
Table 7. Typical IC Power Consumption Test Pattern,  
2-Channel Mode  
Word  
Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
2
3
4
5
6
7
8
0x0000001  
0x03F03F1  
0xBFFBFF1  
0x1D71D71  
0x4C74C71  
0xC45C451  
0xA3aA3A5  
0x5555553  
Table 8. Typical IC Power Consumption Test Pattern,  
3-Channel Mode  
Word  
Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
2
3
4
5
0xFFFFFF1  
0x0000001  
0xF0F0F01  
0xCCCCCC1  
0xAAAAAA7  
Copyright © 2012, Texas Instruments Incorporated  
25  
SN65LVDS314  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
www.ti.com.cn  
MAXIMUM POWER CONSUMPTION TEST PATTERN  
The maximum (or worst-case) power consumption of the SN65LVDS314 is tested using the two different test  
pattern shown in table. Test patterns consist of sixteen 30-bit receive words in 1-channel mode, eight 30-bit  
receive words in 2-channel mode, and five 30-bit receive words in 3-channel mode. The pattern repeats itself  
throughout the entire measurement. It is assumed that every possible code on RGB outputs has the same  
probability to occur during typical device operation.  
Table 9. Worst-Case Power Consumption Test Pattern  
Word  
Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
2
0xAAAAAA5  
0x5555555  
Table 10. Worst-Case Power Consumption Test Pattern  
Word  
Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
2
0x0000000  
0xFFFFFF7  
OUTPUT SKEW PULSE POSITION and JITTER PERFORMANCE  
The following test patterns are used to measure the output skew pulse position and the jitter performance of the  
SN65LVDS314. The jitter test pattern stresses the interconnect, particularly to test for ISI, using very long run-  
lengths of consecutive bits, and incorporating very high and low data rates, maximizing switching noise. Each  
pattern is self-repeating for the duration of the test.  
Table 11. Receive Jitter Test Pattern, 1-Channel Mode  
Word  
Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
2
0x0000001  
0x0000031  
0x00000F1  
0x00003F1  
0x0000FF1  
0x0003FF1  
0x000FFF1  
0x0F0F0F1  
0x0C30C31  
0x0842111  
0x1C71C71  
0x18C6311  
0x1111111  
0x3333331  
0x2452413  
0x22A2A25  
0x5555553  
0xDB6DB65  
0xCCCCCC1  
0xEEEEEE1  
0xE739CE1  
0xE38E381  
0xF7BDEE1  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
26  
Copyright © 2012, Texas Instruments Incorporated  
SN65LVDS314  
www.ti.com.cn  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
Table 11. Receive Jitter Test Pattern, 1-Channel  
Mode (continued)  
Word  
Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
24  
25  
26  
27  
28  
29  
30  
31  
32  
0xF3CF3C1  
0xF0F0F01  
0xFFF0001  
0xFFFC001  
0xFFFF001  
0xFFFFC01  
0xFFFFF01  
0xFFFFFC1  
0xFFFFFF1  
Copyright © 2012, Texas Instruments Incorporated  
27  
SN65LVDS314  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
www.ti.com.cn  
Table 12. Receive Jitter Test Pattern, 2-Channel Mode  
Word  
Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
0x0000001  
0x000FFF3  
0x8008001  
0x0030037  
0xE00E001  
0x00FF001  
0x007E001  
0x003C001  
0x0018001  
0x1C7E381  
0x3333331  
0x555AAA5  
0x6DBDB61  
0x7777771  
0x555AAA3  
0xAAAAAA5  
0x5555553  
0xAAA5555  
0x8888881  
0x9242491  
0xAAA5571  
0xCCCCCC1  
0xE3E1C71  
0xFFE7FF1  
0xFFC3FF1  
0xFF81FF1  
0xFE00FF1  
0x1FF1FF1  
0xFFCFFC3  
0x7FF7FF1  
0xFFF0007  
0xFFFFFF1  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
28  
Copyright © 2012, Texas Instruments Incorporated  
SN65LVDS314  
www.ti.com.cn  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
Table 13. Receive Jitter Test Pattern, 3-Channel Mode  
Word  
Test Pattern:  
R[7:4], R[3:0], G[7:4], G[3:0], B[7-4], B[3-0], 0,VS,HS,DE  
1
0x0000001  
2
0x0000001  
3
0x0000003  
4
0x0101013  
5
0x0303033  
6
0x0707073  
7
0x1818183  
8
0xE7E7E71  
9
0x3535351  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
0x0202021  
0x5454543  
0xA5A5A51  
0xADADAD1  
0x5555551  
0xA6A2AA3  
0xA6A2AA5  
0x5555553  
0x5555555  
0xAAAAAA1  
0x5252521  
0x5A5A5A1  
0xABABAB1  
0xFDFCFD1  
0xCAAACA1  
0x1818181  
0xE7E7E71  
0xF8F8F81  
0xFCFCFC1  
0xFEFEFE1  
0xFFFFFF1  
0xFFFFFF5  
0xFFFFFF5  
Copyright © 2012, Texas Instruments Incorporated  
29  
SN65LVDS314  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
www.ti.com.cn  
TYPICAL CHARACTERISTIC CURVES  
The SN65LVDS314 device has very similar parametric curves as the SN65LVDS302. Please refer to this section  
in the SN65LVDS302 datasheet (SLLS733) for a general understanding of SN65LVDS314 characteristics.  
30  
Copyright © 2012, Texas Instruments Incorporated  
SN65LVDS314  
www.ti.com.cn  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
APPLICATION INFORMATION  
Preventing Increased Leakage Currents in Control Inputs  
A floating (left open) CMOS input allows leakage currents to flow from VDD to GND. Do not leave any CMOS  
input unconnected or floating. Every input must be connected to a valid logic level VIH or VOL while power is  
supplied to VDD. This also minimizes the power consumption of standby and power down mode.  
Power Supply Design Recommendation  
For a multilayer PCB, it is recommended to keep one common GND layer underneath the device and connect all  
ground terminals directly to this plane.  
SN65LVDS314 DECOUPLING RECOMMENDATION  
The SN65LVDS314 was designed to operate reliably in a constricted environment with other digital switching  
ICs. In many designs, the SN65LVDS314 often shares a power supply with various other ICs. The  
SN65LVDS314 can operate with power supply noise as specified in Recommend Device Operating Conditions.  
To minimize the power supply noise floor, provide good decoupling near the SN65LVDS314 power pins. The use  
of four ceramic capacitors (two 0.01 μF and two 0.1 μF) provides good performance. At the very least, it is  
recommended to install one 0.1 μF and one 0.01 μF capacitor near the SN65LVDS314. To avoid large current  
loops and trace inductance, the trace length between decoupling capacitor and IC power inputs pins must be  
minimized. Placing the capacitor underneath the SN65LVDS314 on the bottom of the PCB is often a good  
choice.  
VGA APPLICATION  
Figure 18 shows a possible implementation of a standard 640x480 VGA display. The LVDS301 interfaces to the  
SN65LVDS314, which is the corresponding receiver device to deserialize the data and drive the display driver.  
The pixel clock rate of 22 MHz assumes ~10% blanking overhead and 60 Hz display refresh rate. The application  
assumes 24-bit color resolution. Also shown is how the application processor provides a powerdown (reset)  
signal for both serializer and the display driver. The signal count over the Flexible Printed Circuit board (FPC)  
could be further decreased by using the standby option on the SN65LVDS314 and pulling RXEN high with a 30  
kresistor to VDD  
.
2x0.1uF  
2x0.1uF  
FPC  
GND  
2.7V  
1.8V  
GND  
GND  
2.7V  
1.8V  
GND  
2x0.01uF  
2x0.01uF  
Application  
Processor  
(e.g. OMAP)  
Video Mode Display  
Driver  
CLK+  
CLK–  
CLK+  
CLK–  
22MHz  
D0+  
D0–  
D0+  
D0–  
330Mbps  
330Mbps  
PCLK  
Pixel CLK  
PCLK  
22MHz  
27  
22MHz  
27  
D1+  
D1–  
D1+  
D1–  
D[7:0]  
D[15:8]  
D[23:16]  
R[7:0]  
G[7:0]  
B[7:0]  
R[7:0]  
G[7:0]  
B[7:0]  
HS, VS, DE  
HS, VS, DE  
HS, VS, DE  
SN65LVDS301  
SN65LVDS314  
1.8 V  
1.8 V  
If FPC wire count is critical, replace this  
connection with a pull-up resistor at RXEN  
Serial port interface  
(3-wire IF)  
3
Figure 18. Typical VGA Display Application  
Copyright © 2012, Texas Instruments Incorporated  
31  
 
SN65LVDS314  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
www.ti.com.cn  
DUAL LCD-DISPLAY APPLICATION  
The example in Figure 19 shows a possible application setup driving two video-mode displays from one  
application processor. The data rate of 330 Mbps at a pixel clock rate of 5.5 MHz corresponds to a 320x240  
QVGA resolution at 60 Hz refresh rate and 10% blanking overhead.  
2x0.1uF  
2x0.1uF  
FPC  
GND  
2. 7V  
1. 8V  
GND  
GND  
2. 7V  
1. 8V  
GND  
2x0.01uF  
2x0.01uF  
Display Driver  
1
Application  
Processor  
21  
(e.g. OMAP )  
CLK+  
CLK-  
CLK+  
CLK-  
5.5MHz  
330Mbps  
PCLK  
PCLK  
Pixel CLK  
PCLK  
5.5MHz  
18+3  
D0+  
D0-  
R[ 5: 0]  
G[ 5: 0]  
B[ 5: 0]  
D0+  
D0-  
EN  
SIN  
SOUT  
SCLK  
D[ 5: 0]  
D[ 11 : 6]  
D[ 17: 12]  
HS, VS, DE  
R[ 5: 0]  
G[ 5: 0]  
B[ 5: 0]  
HS, VS, DE  
HS, VS, DE  
SN65LVDS 301  
SN65LVDS314  
Display Driver  
2
PCLK  
EN  
SIN  
1.8V  
1.8V  
SOUT  
SCLK  
Figure 19. Example Dual-QVGA Display Application  
TYPICAL APPLICATION FREQUENCIES  
The SN65LVDS314 supports pixel clock frequencies from 4 MHz to 65 MHz over 1, 2, or 3 data lanes. Table 14  
provides a few typical display resolution examples and shows the number of data lanes necessary to connect the  
SN65LVDS314 with the display. The blanking overhead is assumed to be 20%. Often, blanking overhead is  
smaller, resulting in a lower data rate. Furthermore, the examples in the table assumes a display frame refresh  
rate of 60-Hz. The actual refresh rate may differ depending on the application-processor clock implementation.  
Table 14. Typical Application Data Rates and Serial Lane Usage  
Display Screen  
Resolution  
Visible  
Pixel Count Overhead  
Blanking  
Display  
Refresh  
Rate  
Pixel Clock Frequency  
[MHz]  
Serial Data Rate Per Lane  
1-ChM  
2-ChM  
3-ChM  
176x220 (QCIF+)  
240x320 (QVGA)  
640x200  
38,720  
76,800  
20%  
20%  
20%  
20%  
20%  
20%  
20%  
20%  
20%  
20%  
20%  
20%  
20%  
90 Hz  
60 Hz  
60 Hz  
60 Hz  
60 Hz  
60 Hz  
60 Hz  
60 Hz  
60 Hz  
60 Hz  
60 Hz  
60 Hz  
60 Hz  
4.2 MHz  
5.5 MHz  
125 Mbps  
166 Mbps  
276 Mbps  
316 Mbps  
335 Mbps  
332 Mbps  
432 Mbps  
442 Mbps  
128,000  
146,432  
154,880  
153,600  
200,000  
204,800  
307,200  
327,680  
409,920  
480,000  
786,432  
9.2 MHz  
138 Mbps  
158 Mbps  
167 Mbps  
166 Mbps  
216 Mbps  
221 Mbps  
332 Mbps  
354 Mbps  
443 Mbps  
352x416 (CIF+)  
352x440  
10.5 MHz  
11.2 MHz  
11.1 MHz  
14.4 MHz  
14.7 MHz  
22.1 MHz  
23.6 MHz  
29.5 MHz  
34.6 MHz  
56.6 MHz  
320x480 (HVGA)  
800x250  
640x320  
640x480 (VGA)  
1024x320  
221 Mbps  
236 Mbps  
295 Mbps  
346 Mbps  
566 Mbps  
854x480 (WVGA)  
800x600 (SVGA)  
1024x768 (XGA)  
32  
Copyright © 2012, Texas Instruments Incorporated  
 
 
SN65LVDS314  
www.ti.com.cn  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
CALCULATION EXAMPLE: HVGA DISPLAY  
The following calculation shows an example for a Half-VGA display with the following parameters:  
Display Resolution:  
Frame Refresh Rate:  
480 x 320  
58.4 Hz  
Hsync =5  
HFP=20  
Visible area = 480 Columns  
Horizontal Visible Pixel:  
Horizontal Front Porch:  
Horizontal Sync:  
480 columns  
20 columns  
5 columns  
3 columns  
Vsync =5  
VBP=3  
Horizontal Back Porch:  
Visible area  
=320 lines  
Visible area  
Vertical Visible Pixel:  
Vertical Front Porch:  
Vertical Sync:  
320 lines  
10 lines  
5 lines  
Entire Display  
VFP=10  
Vertical Back Porch:  
3 lines  
Figure 20. HVGA Display  
Calculation of the total number of pixel and blanking overhead:  
Visible Area Pixel Count: 480 × 320 = 153600 pixel  
Total Frame Pixel Count: (480+20+5+3) × (320+10+5+3) = 171704 pixel  
Blanking Overhead: (171704-153600) ÷ 153600 = 11.8 %  
The application requires the following serial-link parameters:  
Pixel Clk Frequency:  
Serial Data Rate:  
171704 × 58.4 Hz = 10.0 MHz  
1-channel mode: 10.0 MHz × 30 bit/channel = 300 Mbps  
2-channel mode: 10.0 MHz × 15 bit/channel = 150 Mbps  
Copyright © 2012, Texas Instruments Incorporated  
33  
SN65LVDS314  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
www.ti.com.cn  
How To Determine Interconnect Skew and Jitter Budget  
Designing a reliable data link requires examining the interconnect skew and jitter budget. The sum of all  
transmitter, PCB, connector, FPC, and receiver uncertainties must be smaller than the available serial bit time.  
The highest pixel clock frequency defines the available serial bit time. The transmitter timing uncertainty is  
defined by tPPOS in the transmitter data sheet. For a bit-error-rate target of 10-12, the measurement duration for  
tPPOS is 1012. The SN65LVDS314 receiver can tolerate a maximum timing uncertainty defined by tRSKM. The  
interconnect budget is calculated by:  
tint erconnect = tRSKM - tPPOS  
(1)  
Example:  
fPCLK(max) = 23 MHz (VGA display resolution, 60 Hz)  
Transmission mode: 2-ChM; tPPOS(SN65LVDS301) = 330 ps  
Target bit error rate: 10-12  
tRSKM(SN65LVDS314) = 1/(2*15*fPCLK) – 480 ps = 969 ps  
The interconnect budget for cable skew and ISI needs to be smaller than:  
tint erconnect = tRSKM - tPPOS = 639ps  
(2)  
data transition  
Ideal T  
PPosn  
Data Period /2  
D0, D1, D2  
Ideal receiver strobe position  
TPPosn(max)  
TPPosn(min)  
RSKM  
RSKM  
RX internal sampling clock  
(max)  
R
R
(min)  
SPosn  
SPosn  
Tppos: Transmitter output pulse position (min and max)  
TPPosx(max) -TPPosx(min) = TJTXPLL(non-trackable) + tTXskew + tTXDJ  
RSKM: Receiver Skew Margin  
RSPosn: Receiver input strobe position (min and max)  
RSKM = SKEWPCB + XTALKPCB + ISIPCB  
R
SPosn(max) - RSPosn(min) = SkewRX + S&HRX + TJ(RXPLL(non-trackable)  
:
non-trackable TX PLL jitter; this jitter is the integration  
f
TJ  
SKEW  
XTALK  
ISI  
: PCB induced Skew (trace + connector);  
PCB  
TXPLL(non-trackable)  
of total jitter above the receiver PLL bandwidth  
>
TXPLL  
TJ  
(BWRX);  
;
:
PCB induced cross-talk;  
PCB  
TJ=RJ[ps-rms]*14 DJ[ps]  
transmitter output skew (skew between CLK and data)  
+
:
Inter-symbol interference of PCB; is  
Skew  
S&H  
TJ  
: Receiver input skew (skew between CLK and Dx input)  
RX  
PCB  
t
:
TXskew  
dependent on interconnect frequency loss; may be  
:
Receiver input latch Sample  
&
Hold uncertainty  
RX  
zero for short interconnects.  
:
Intrinsic RX PLL jitter above RX PLL bandwidth; PLL  
>
TJ  
(RXPLL(non-trackable)  
); TJ=RJ[ps-rms]*14  
t
Transmitter Deterministic JItter of TX output stage (includes TX  
TXIDJ  
Intersymbol Interference ISI)  
f(BW  
+ DJ[ps]  
RX  
Figure 21. Jitter Budget  
34  
Copyright © 2012, Texas Instruments Incorporated  
SN65LVDS314  
www.ti.com.cn  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
F/S-PIN SETTING AND CONNECTING THE SN65LVDS314 TO AN LCD DRIVER  
NOTE  
Receiver PLL tracking: To maximize the design margin for the interconnect, good RX  
PLL tracking of the TX PLL is important. FlatLink3G requires the RX PLL to have a  
bandwidth higher than the bandwidth of the TX PLL. The SN65LVDS314 PLL design is  
optimized to track the SN65LVDS0301 PLL particularly well, thus providing a very large  
receiver skew margin. A FlatLink3G-compliant link must provide at least ±225 ppm of  
receiver skew margin for the interconnect.  
It is important to understand the tradeoff between power consumption, EMI, and maximum speed when selecting  
the F/S signal. It is beneficial to choose the slowest rise time possible to minimize EMI and power consumption.  
Unfortunately a slower rise time also reduces the timing margin left for the LCD driver. Hence it is necessary to  
calculate the timing margin to select the correct F/S pin setting.  
The output rise time depends on the output driver strength and the output load. An LCD driver typical capacitive  
load is assumed with ~10pF. The higher the capacitive load, the slower will be the rise time. Rise time of the  
SN65LVDS314 is measured as the time duration it takes the output voltage to rise from 20% of VDD and 80% of  
VDD and fall time is defined as the time for the output voltage to transition from 80% of VDD down to 20%.  
Within one mode of operation and one F/S pin setting, the rise time of the output stage is fixed and does not  
adjust to the pixel frequency. Due to the short bit time at very fast pixel clock speeds and the real capacitive load  
of the display driver, the output amplitude might not reach VDD and GND saturation fully. To ensure sufficient  
signal swing and verify the design margin, it becomes necessary to determine that the output amplitude under  
any circumstance reaches the display driver’s input stage logic threshold (usually 30% and 70% of VDD).  
Figure 22 shows a worst-case rise time simulation assuming a LCD driver load of 16pF at VGA display resolution  
and a VDD_IO of 1.8 V. PCLK is the fastest switching output. With F/S set to GND (Figure 22-a), the PCLK output  
voltage amplitude is significantly reduced. The voltage amplitude of the output data RGB[7:0], VS, HS, and DE  
shows less amplitude attenuation because these outputs carry random data pattern and toggle equal or less than  
half of the PCLK frequency. It is necessary to determine the timing margin between the LVDS314 output and  
LCD driver input.  
Application: VGA (2-channel mode);F/S set to GND; Display driver load ~16 pF  
Application: VGA (2-channel mode);F/S set to VDD; Display driver load ~16 pF  
2.0V  
1.8V  
1.6V  
1.4V  
1.2V  
1.0V  
0.8V  
0.6V  
0.4V  
0.2V  
0.0V  
2.0V  
1.8V  
1.6V  
1.4V  
1.2V  
1.0V  
0.8V  
0.6V  
0.4V  
0.2V  
0.0V  
The data signal has a slower maximum switching  
frequency, and therefore drives a larger amplitude  
than the clock signal  
(
100ns  
150ns  
200ns  
250ns  
300ns  
350ns  
400ns  
450ns  
500ns  
550ns  
600ns  
100ns  
150ns  
200ns  
250ns  
300ns  
350ns  
400ns  
450ns  
500ns  
550ns  
600ns  
clk 22 MHz, F/S=0, CL=16 pF  
data 22 Mbps, F/S=0, CL=16 pF  
clk 22 MHz, F/S=1, CL=16 pF  
data 22 Mbps, F/S=1, CL=16 pF  
(b)  
(a)  
Figure 22. Output Amplitude as a Function of Output Toggling Frequency,  
Capacitive Load and F/S Setting  
Copyright © 2012, Texas Instruments Incorporated  
35  
 
SN65LVDS314  
ZHCS415A AUGUST 2012REVISED SEPTEMBER 2012  
www.ti.com.cn  
HOW TO DETERMINE THE LCD DRIVER TIMING MARGIN  
To determine the timing margin, it is necessary to specify the frequency of operation, identify the set-up and hold  
time of the LCD driver, and specify the output load of the SN65LVDS314 as a combination of the LCD driver  
input parasitics plus any capacitance caused by the connecting PCB trace. Furthermore, the setting of pin F/S  
and the SN65LVDS314 output skew impact the margin. The total remaining design margin calculates as  
following:  
t
  C  
rise(max)  
LOAD  
1
* Ťt Ť  
t
+
* t  
*
DM  
DUTP(max_error)  
OSK  
2   ƒ  
10 pF  
PCLK  
(3)  
where:  
tDM – Design margin  
fPCLK – Pixel clock frequency  
tDUTP(max_error) – maximum duty cycle error  
trise(max) – maximum rise or fall time; see tR/F under switching characteristics  
CL – parasitic capacitance (sum of LCD driver input parasitics + connecting PCB trace)  
tskew – clock to data output skew SN65LVDS314  
Example:  
At a pixel clock frequeny of 5.5MHz (QVGA), and an assumed LCD driver load of 15 pF, the remaining timing  
margin is:  
Ťt  
(max) * 50Ť  
DUTP  
5%  
100%  
1
t
+
  t  
+
 
+ 9.1ns  
DUTP(max_error)  
1
PCLK  
100%  
5.5MHz  
16ns  
  15pF  
(FńS+GND)  
t
+
* 9ns *  
* 500ps + 57.3ns  
DM  
2   5.5MHz  
10pF  
As long as the set-up and hold time of the LCD driver are each less than 57 ns, the timing budget is met  
sufficiently.  
36  
Copyright © 2012, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN65LVDS314RSKR  
ACTIVE  
VQFN  
RSK  
64  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 85  
LVDS314  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jun-2017  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN65LVDS314RSKR  
VQFN  
RSK  
64  
2000  
330.0  
16.4  
8.3  
8.3  
1.1  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jun-2017  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RSK 64  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 38.0  
SN65LVDS314RSKR  
2000  
Pack Materials-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

SN65LVDS315

CAMERA PARALLEL RGB TO MIPI CSI-1 SERIAL CONVERTER
TI

SN65LVDS315RGER

CAMERA PARALLEL RGB TO MIPI CSI-1 SERIAL CONVERTER
TI

SN65LVDS315RGERG4

CAMERA PARALLEL RGB TO MIPI CSI-1 SERIAL CONVERTER
TI

SN65LVDS315RGET

CAMERA PARALLEL RGB TO MIPI CSI-1 SERIAL CONVERTER
TI

SN65LVDS315RGETG4

CAMERA PARALLEL RGB TO MIPI CSI-1 SERIAL CONVERTER
TI

SN65LVDS31D

HIGH-SPEED DIFFERENTIAL LINE DRIVERS
TI

SN65LVDS31DG4

HIGH-SPEED DIFFERENTIAL LINE DRIVERS
TI

SN65LVDS31DR

HIGH SPEED DIFFERENTIAL LINE DRIVERS
TI

SN65LVDS31DRG4

HIGH SPEED DIFFERENTIAL LINE DRIVERS
TI

SN65LVDS31MDREP

HIGH-SPEED DIFFERENTIAL LINE DRIVER
TI

SN65LVDS31NSR

HIGH SPEED DIFFERENTIAL LINE DRIVERS
TI

SN65LVDS31NSRG4

HIGH-SPEED DIFFERENTIAL LINE DRIVERS
TI