SN65LVDS386DGGRG4 [TI]

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS; 高速差动线路接收器
SN65LVDS386DGGRG4
型号: SN65LVDS386DGGRG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
高速差动线路接收器

线路驱动器或接收器 驱动程序和接口 接口集成电路 光电二极管
文件: 总21页 (文件大小:416K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65LVDS386/388A/390, SN65LVDT386/388A/390  
SN75LVDS386/388A/390, SN75LVDT386/388A/390  
www.ti.com  
SLLS394GSEPTEMBER 1999REVISED NOVEMBER 2004  
HIGH-SPEED DIFFERENTIAL LINE RECEIVERS  
FEATURES  
’LVDS388A, ’LVDT388A  
’LVDS386, ’LVDT386  
DGG PACKAGE  
(TOP VIEW)  
Four- ('390), Eight- ('388A), or Sixteen- ('386)  
DBT PACKAGE  
(TOP VIEW)  
Line Receivers Meet or Exceed the  
Requirements of ANSI TIA/EIA-644 Standard  
1
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
A1A  
A1B  
A2A  
A2B  
AGND  
B1A  
B1B  
B2A  
B2B  
AGND  
C1A  
C1B  
C2A  
C2B  
AGND  
D1A  
D1B  
D2A  
D2B  
GND  
Integrated 110-Line Termination Resistors  
on LVDT Products  
Designed for Signaling Rates (1) Up To  
630 Mbps  
1
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
A1A  
A1B  
A2A  
A2B  
A3A  
A3B  
A4A  
A4B  
B1A  
B1B  
B2A  
B2B  
B3A  
B3B  
B4A  
B4B  
C1A  
C1B  
C2A  
C2B  
C3A  
C3B  
C4A  
C4B  
D1A  
D1B  
D2A  
D2B  
D3A  
D3B  
D4A  
D4B  
GND  
2
V
CC  
2
V
CC  
3
ENA  
A1Y  
A2Y  
ENB  
B1Y  
B2Y  
3
V
CC  
4
4
GND  
ENA  
A1Y  
A2Y  
A3Y  
A4Y  
ENB  
B1Y  
B2Y  
B3Y  
B4Y  
GND  
5
5
SN65 Version's Bus-Terminal ESD Exceeds  
15 kV  
6
6
7
7
Operates From a Single 3.3-V Supply  
8
8
Typical Propagation Delay Time of 2.6 ns  
9
DGND  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
Output Skew 100 ps (Typ) Part-To-Part Skew  
Is Less Than 1 ns  
DV  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
CC  
DGND  
C1Y  
C2Y  
ENC  
D1Y  
D2Y  
END  
LVTTL Levels Are 5-V Tolerant  
Open-Circuit Fail Safe  
Flow-Through Pinout  
Packaged in Thin Shrink Small-Outline  
Package With 20-mil Terminal Pitch  
V
V
CC  
CC  
V
CC  
GND  
C1Y  
C2Y  
C3Y  
C4Y  
ENC  
D1Y  
D2Y  
D3Y  
D4Y  
END  
GND  
DESCRIPTION  
GND  
This family of four-, eight-, or sixteen-, differential line  
receivers (with optional integrated termination) im-  
plements the electrical characteristics of low-voltage  
differential signaling (LVDS). This signaling technique  
lowers the output voltage levels of 5-V differential  
standard levels (such as EIA/TIA-422B) to reduce the  
power, increase the switching speeds, and allow  
operation with a 3-V supply rail. Any of the eight or  
sixteen differential receivers provides a valid logical  
output state with a ±100-mV differential input voltage  
within the input common-mode voltage range. The  
input common-mode voltage range allows 1 V of  
ground potential difference between two LVDS  
nodes. Additionally, the high-speed switching of  
LVDS signals almost always requires the use of a line  
impedance matching resistor at the receiving end of  
the cable or transmission media. The LVDT products  
eliminate this external resistor by integrating it with  
the receiver.  
See application section for V  
and GND description.  
CC  
’LVDS390, ’LVDT390  
D OR PW PACKAGE  
(TOP VIEW)  
1A  
1B  
2A  
2B  
3A  
3B  
4A  
4B  
EN1,2  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
1Y  
2Y  
V
CC  
V
CC  
GND  
3Y  
V
CC  
GND  
10 4Y  
EN3,4  
9
(1) Signaling Rate, 1/t, where t is the minimum unit interval and is  
expressed in the units bits/s (bits per second)  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 1999–2004, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
SN65LVDS386/388A/390, SN65LVDT386/388A/390  
SN75LVDS386/388A/390, SN75LVDT386/388A/390  
www.ti.com  
SLLS394GSEPTEMBER 1999REVISED NOVEMBER 2004  
These devices have limited built-in ESD protection. The leads should be shorted together or the device  
placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.  
DESCRIPTION (CONTINUED)  
The intended application of this device and signaling technique is for point-to-point baseband data transmission  
over controlled impedance media of approximately 100 . The transmission media may be printed-circuit board  
traces, backplanes, or cables. The large number of receivers integrated into the same substrate along with the  
low pulse skew of balanced signaling, allows extremely precise timing alignment of clock and data for  
synchronous parallel data transfers. When used with its companion, 8- or 16-channel driver, the SN65LVDS389  
or SN65LVDS387, over 300 million data transfers per second in single-edge clocked systems are possible with  
little power. (Note: The ultimate rate and distance of data transfer depends on the attenuation characteristics of  
the media, the noise coupling to the environment, and other system characteristics.)  
AVAILABLE OPTIONS  
TEMPERATURE  
RANGE  
NUMBER OF  
RECEIVERS  
PART NUMBER  
SN65LVDS386DGG  
BUS-PIN ESD  
SYMBOLIZATION  
–40°C to 85°C  
–40°C to 85°C  
0°C to 70°C  
16  
16  
16  
16  
8
15 kV  
15 kV  
4 kV  
LVDS386  
LVDT386  
SN65LVDT386DGG  
SN75LVDS386DGG  
SN75LVDT386DGG  
SN65LVDS388ADBT  
SN65LVDT388ADBT  
SN75LVDS388ADBT  
SN75LVDT388ADBT  
SN65LVDS390D  
75LVDS386  
75LVDT386  
LVDS388A  
LVDT388A  
75LVDS388A  
75LVDT388A  
LVDS390  
0°C to 70°C  
4 kV  
–40°C to 85°C  
–40°C to 85°C  
0°C to 70°C  
15 kV  
15 kV  
4 kV  
8
8
0°C to 70°C  
8
4 kV  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
–40°C to 85°C  
0°C to 70°C  
4
15 kV  
15 kV  
15 kV  
15 kV  
4 kV  
SN65LVDS390PW  
SN65LVDT390D  
4
LVDS390  
4
LVDT390  
SN65LVDT390PW  
SN75LVDS390D  
4
LVDT390  
4
75LVDS390  
DS390  
SN75LVDS390PW  
SN75LVDT390D  
0°C to 70°C  
4
4 kV  
0°C to 70°C  
4
4 kV  
75LVDT390  
DG390  
SN75LVDT390PW  
0°C to 70°C  
4
4 kV  
2
SN65LVDS386/388A/390, SN65LVDT386/388A/390  
SN75LVDS386/388A/390, SN75LVDT386/388A/390  
www.ti.com  
SLLS394GSEPTEMBER 1999REVISED NOVEMBER 2004  
LOGIC DIAGRAM (POSITIVE LOGIC)  
’LVDx388A  
’LVDx386  
’LVDx390  
’LVDT386 ONLY  
’LVDT390 ONLY  
’LVDT388A ONLY  
1A  
1A  
1Y  
1Y  
1A  
1B  
2A  
1B  
EN  
1Y  
2Y  
1B  
EN  
2A  
2A  
2Y  
3Y  
4Y  
2Y  
3Y  
4Y  
2B  
EN  
3A  
2B  
2B  
3A  
(1/4 of ’LVDx388A shown)  
3B  
4A  
4B  
3B  
EN  
4A  
4B  
(1/4 of ’LVDx386 shown)  
(’LVDx390 shown)  
FUNCTION TABLE  
SNx5LVD386/388A/390 and SNx5LVDT386/388A/390  
DIFFERENTIAL INPUT(1)  
ENABLES(1)  
OUTPUT(1)  
A-B  
EN  
H
Y
H
?
V
ID100 mV  
–100 mV < VID100 mV  
H
VID-100 mV  
H
L
X
L
Z
H
Open  
H
(1) H = high level, L = low level, X = irrelevant, Z = high impedance  
(off), ? = indeterminate  
EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
V
CC  
V
CC  
V
CC  
300 k  
300 kΩ  
400 Ω  
5 Ω  
EN  
7 V  
Y Output  
A Input  
B Input  
7 V  
300 kΩ  
7 V  
7 V  
110 Ω  
’LVDT Devices Only  
3
SN65LVDS386/388A/390, SN65LVDT386/388A/390  
SN75LVDS386/388A/390, SN75LVDT386/388A/390  
www.ti.com  
SLLS394GSEPTEMBER 1999REVISED NOVEMBER 2004  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature (unless otherwise noted)  
(1)  
UNITS  
(2)  
VCC  
VI  
Supply voltage range  
Voltage range:  
–0.5 V to 4 V  
–0.5 V to 6 V  
Enables or Y  
A or B  
–0.5 V to 4 V  
IO  
Output current  
Y
±12 mA  
|VID  
|
Differential input voltage magnitude  
SN65LVDT' or SN75LVDT' only  
SN65' (A, B, and GND)  
SN75' (A, B, and GND)  
1 V  
(3)  
Electrostatic discharge: see  
Class 3, A:15 kV, B: 400 V  
Class 2, A:4 kV, B: 400 V  
See Dissipation Rating Table  
–65°C to 150°C  
260°C  
Continuous power dissipation  
Storage temperature range  
Tstg  
Lead temperature 1,6 mm (1/16 in) from case  
for 10 seconds  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
(3) Tested in accordance with MIL-STD-883C Method 3015.7.  
DISSIPATION RATING TABLE  
DERATING FACTOR(1)  
ABOVE TA = 25°C  
TA = 70°C  
POWER RATING  
TA = 85°C  
POWER RATING  
PACKAGE  
TA25°C  
D
950 mW  
1071 mW  
2094 mW  
774 mW  
7.6 mW/°C  
8.5 mW/°C  
16.7 mW/°C  
6.2 mW/°C  
608 mW  
688 mW  
1342 mW  
496 mW  
494 mW  
556 mW  
1089 mW  
402 mW  
DBT  
DGG  
PW  
(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted (low-k) and with no air flow.  
RECOMMENDED OPERATING CONDITIONS  
MIN  
3
NOM  
MAX  
UNIT  
VCC  
VIH  
VIL  
IO  
Supply voltage  
3.3  
3.6  
V
V
High-level input voltage  
Low-level input voltage  
Output current  
2
0.8  
8
V
Y
– 8  
0.1  
mA  
V
|VID  
|
Magnitude of differential input voltage  
0.6  
|V  
|
|V  
|
ID  
ID  
2.4 *  
VIC, see Figure 4  
Common-mode input voltage  
Operating free-air temperature  
V
2
2
VCC – 0.8  
SN75'  
SN65'  
0
70  
85  
°C  
°C  
TA  
–40  
4
SN65LVDS386/388A/390, SN65LVDT386/388A/390  
SN75LVDS386/388A/390, SN75LVDT386/388A/390  
www.ti.com  
SLLS394GSEPTEMBER 1999REVISED NOVEMBER 2004  
ELECTRICAL CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX UNIT  
VIT+  
VIT–  
VOH  
VOL  
Positive-going differential input voltage threshold  
Negative-going differential input voltage threshold  
High-level output voltage  
100  
mV  
mV  
V
See Figure 1 and  
Table 1  
–100  
2.4  
IOH= –8 mA  
IOL = 8 mA  
3
0.2  
50  
22  
8
Low-level output voltage  
0.4  
70  
40  
18  
3
V
'LVDx386  
'LVDx388A Enabled, No load  
'LVDx390  
ICC  
Supply current  
mA  
'LVDx386  
'LVDx388A Disabled  
'LVDx390  
3
1.5  
–20  
VI = 0 V  
'LVDS  
–13  
–3  
VI = 2.4 V  
–1.2  
–2.4  
VI = 0 V, other input  
II  
Input current (A or B inputs)  
µA  
–40  
open  
'LVDT  
VI = 2.4 V, other input  
open  
VIA = 0 V, VIB = 0.1 V,  
'LVDS  
IID  
IID  
Differential input current |IIA - IIB|  
Differential input current (IIA - IIB)  
±2  
µA  
VIA= 2.4 V, VIB = 2.3 V  
VIA = 0.2 V, VIB = 0 V,  
'LVDT  
1.5  
2.2  
mA  
VIA= 2.4 V, VIB = 2.2 V  
II(OFF) Power-off input current (A or B inputs)  
II(OFF) Power-off input current (A or B inputs)  
'LVDS  
'LVDT  
VCC = 0 V, VI = 2.4 V  
VCC = 0 V, VI = 2.4 V  
VIH = 2 V  
12  
±20  
±40  
10  
µA  
µA  
µA  
µA  
IIH  
IIL  
High-level input current (enables)  
Low-level input current (enables)  
VIL = 0.8 V  
10  
VO = 0 V  
±1  
IOZ  
High-impedance output current  
µA  
VO= 3.6 V  
10  
CIN  
Z(t)  
Input capacitance, A or B input to GND  
Termination impedance  
VID = 0.4 sin 2.5E09 t V  
VID = 0.4 sin 2.5E09 t V  
5
pF  
88  
132  
(1) All typical values are at 25°C and with a 3.3-V supply.  
5
SN65LVDS386/388A/390, SN65LVDT386/388A/390  
SN75LVDS386/388A/390, SN75LVDT386/388A/390  
www.ti.com  
SLLS394GSEPTEMBER 1999REVISED NOVEMBER 2004  
SWITCHING CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
tPLH  
tPHL  
tr  
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
Output signal rise time  
1
1
2.6  
2.5  
4
4
ns  
ns  
ps  
ps  
ps  
ps  
ns  
ns  
ns  
ns  
ns  
500  
500  
800  
800  
150  
100  
1200  
1200  
600  
400  
1
tf  
Output signal fall time  
See Figure 2  
tsk(p)  
tsk(o)  
tsk(pp)  
tPZH  
tPZL  
tPHZ  
tPLZ  
Pulse skew (|tPHL - tPLH|)  
Output skew(2)  
Part-to-part skew(3)  
Propagation delay time, high-impedance-to-high-level output  
Propagation delay time, high-impedance-to-low-level output  
Propagation delay time, high-level-to-high-impedance output  
Propagation delay time, low-level-to-high-impedance output  
7
7
7
7
15  
15  
See Figure 3  
15  
15  
(1) All typical values are at 25°C and with a 3.3-V supply.  
(2) tsk(o) is the magnitude of the time difference between the tPLH or tPHL of all drivers of a single device with all of their inputs connected  
together.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of any two devices characterized in  
this data sheet when both devices operate with the same supply voltage, at the same temperature, and have the same test circuits.  
PARAMETER MEASUREMENT INFORMATION  
A
V
) V  
R
IA  
IB  
V
ID  
2
V
IA  
B
V
O
V
IC  
V
IB  
Figure 1. Voltage Definitions  
Table 1. Receiver Minimum and Maximum Input Threshold Test Voltages  
RESULTING DIFFERENTIAL  
INPUT VOLTAGE  
RESULTING COMMON-  
MODE INPUT VOLTAGE  
APPLIED VOLTAGES  
VIA  
1.25 V  
1.15 V  
2.4 V  
2.3 V  
0.1 V  
0 V  
VIB  
VID  
VIC  
1.15 V  
1.25 V  
2.3 V  
2.4 V  
0 V  
100 mV  
–100 mV  
100 mV  
–100 mV  
100 mV  
–100 mV  
600 mV  
–600 mV  
600 mV  
–600 mV  
600 mV  
–600 mV  
1.2 V  
1.2 V  
2.35 V  
2.35 V  
0.05 V  
0.05 V  
1.2 V  
1.2 V  
2.1 V  
2.1 V  
0.3 V  
0.3 V  
0.1 V  
0.9 V  
1.5 V  
1.8 V  
2.4 V  
0 V  
1.5 V  
0.9 V  
2.4 V  
1.8 V  
0.6 V  
0 V  
0.6 V  
6
SN65LVDS386/388A/390, SN65LVDT386/388A/390  
SN75LVDS386/388A/390, SN75LVDT386/388A/390  
www.ti.com  
SLLS394GSEPTEMBER 1999REVISED NOVEMBER 2004  
V
ID  
V
IA  
C
L
V
O
10 pF  
V
IB  
V
V
1.4 V  
1 V  
IA  
IB  
0.4 V  
0 V  
V
ID  
–0.4 V  
t
t
PHL  
PLH  
V
V
O
OH  
80%  
20%  
1.5 V  
V
OL  
t
f
t
r
A. All input pulses are supplied by a generator having the following characteristics: tr or tf1 ns, pulse repetition rate  
(PRR) = 50 Mpps, pulse width = 10 ± 0.2 ns. CL includes instrumentation and fixture capacitance within 0,06 mm of  
the D.U.T.  
Figure 2. Timing Test Circuit and Wave Forms  
7
SN65LVDS386/388A/390, SN65LVDT386/388A/390  
SN75LVDS386/388A/390, SN75LVDT386/388A/390  
www.ti.com  
SLLS394GSEPTEMBER 1999REVISED NOVEMBER 2004  
B
1.2 V  
500  
A
C
10 pF  
+
L
V
O
V
TEST  
Inputs  
EN  
A. All input pulses are supplied by a generator having the following characteristics: tr or tf1 ns, pulse repetition rate  
(PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns. CL includes instrumentation and fixture capacitance within 0,06 mm of  
the D.U.T.  
2.5 V  
V
TEST  
A
1 V  
2 V  
EN  
1.4 V  
0.8 V  
t
t
PZL  
PLZ  
2.5 V  
1.4 V  
Y
V
OL  
+0.5 V  
V
OL  
0 V  
V
TEST  
A
1.4 V  
2 V  
EN  
1.4 V  
0.8 V  
t
t
PZH  
PHZ  
V
OH  
V
OH  
–0.5 V  
Y
1.4 V  
0 V  
Figure 3. Enable/Disable Time Test Circuit and Wave Forms  
8
SN65LVDS386/388A/390, SN65LVDT386/388A/390  
SN75LVDS386/388A/390, SN75LVDT386/388A/390  
www.ti.com  
SLLS394GSEPTEMBER 1999REVISED NOVEMBER 2004  
TYPICAL CHARACTERISTICS  
LVDx390  
SUPPLY CURRENT  
vs  
COMMON-MODE INPUT VOLTAGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
SWITCHING FREQUENCY  
140  
120  
100  
80  
2.5  
2.0  
1.5  
1.0  
0.5  
Max at V > 3.15 V  
CC  
Max at V = 3 V  
CC  
V
CC  
= 3.6 V  
V
CC  
= 3 V  
60  
V
= 3.3 V  
CC  
40  
20  
Minimum  
0.3  
0
0.0  
0.0  
0
50  
100  
150  
200  
250  
300  
350  
0.1  
0.2  
0.4  
0.5  
0.6  
f − Switching Frequency − MHz  
|V | − Differential Input Voltage − V  
ID  
Figure 4.  
Figure 5.  
LVDx388A  
SUPPLY CURRENT  
vs  
LVDx386  
SUPPLY CURRENT  
vs  
SWITCHING FREQUENCY  
SWITCHING FREQUENCY  
350  
300  
250  
200  
150  
100  
50  
600  
500  
400  
300  
200  
100  
0
V
= 3.6 V  
CC  
V
= 3.6 V  
CC  
V
= 3 V  
CC  
V
= 3 V  
CC  
V
= 3.3 V  
CC  
V
= 3.3 V  
CC  
0
0
0
50  
100  
150  
200  
250  
300  
50  
100  
150  
200  
250  
300  
f − Switching Frequency − MHz  
f − Switching Frequency − MHz  
Figure 6.  
Figure 7.  
9
SN65LVDS386/388A/390, SN65LVDT386/388A/390  
SN75LVDS386/388A/390, SN75LVDT386/388A/390  
www.ti.com  
SLLS394GSEPTEMBER 1999REVISED NOVEMBER 2004  
TYPICAL CHARACTERISTICS (continued)  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
−70  
−60  
−50  
−40  
−30  
−20  
−10  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
I
− High-Level Output Current − mA  
I
− Low-Level Output Current − mA  
OH  
OL  
Figure 8.  
Figure 9.  
LOW-TO-HIGH PROPAGATION DELAY TIME  
HIGH-TO-LOW PROPAGATION DELAY TIME  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
3.0  
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
2.1  
2.0  
V
= 3 V  
CC  
V
= 3.6 V  
CC  
V
= 3 V  
V
= 3.6 V  
CC  
CC  
V
CC  
= 3.3 V  
V
CC  
= 3.3 V  
−50  
−30  
−10  
10  
30  
50  
70  
90  
−50  
−30  
−10  
10  
30  
50  
70  
90  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 10.  
Figure 11.  
10  
SN65LVDS386/388A/390, SN65LVDT386/388A/390  
SN75LVDS386/388A/390, SN75LVDT386/388A/390  
www.ti.com  
SLLS394GSEPTEMBER 1999REVISED NOVEMBER 2004  
APPLICATION INFORMATION  
Balanced Interconnect  
Host  
Target  
Power  
Power  
T
Host  
Target  
DBn  
DBn  
Controller  
Controller  
T
T
T
DBn–1  
DBn–2  
DBn–3  
DBn–1  
DBn–2  
DBn–3  
T
T
T
T
DB2  
DB1  
DB2  
DB1  
DB0  
DB0  
TX Clock  
RX Clock  
LVDx368, LVDx388  
LVDx388A, or LVDx390  
LVDS Drivers  
Indicates twisting of the  
conductors.  
Indicates the line termination  
circuit.  
T
Figure 12. Typical Application Schematic  
ANALOG AND DIGITAL GROUNDS/POWER SUPPLIES  
Although it is not necessary to separate out the analog/digital supplies and grounds on the SN65LVDS/T388A  
and SN75LVDS/T388A, the pinout provides the user that option. To help minimize or perhaps eliminate switching  
noise being coupled between the two supplies, the user could lay out separate supply and ground planes for the  
designated pinout.  
Most applications probably have all grounds connected together and all power supplies connected together. This  
configuration was used while characterizing and setting the data-sheet parameters.  
FAIL SAFE  
One of the most common problems with differential signaling applications is how the system responds when no  
differential voltage is present on the signal pair. The LVDS receiver is like most differential line receivers, in that  
its output logic state can be indeterminate when the differential input voltage is between –100 mV and 100 mV,  
and within its recommended input common-mode voltage range. TI's LVDS receiver is different in how it handles  
the open-input circuit situation, however.  
Open-circuit means that there is little or no input current to the receiver from the data line itself. This could be  
when the driver is in a high-impedance state or the cable is disconnected. When this occurs, the LVDS receiver  
pulls each line of the signal pair to near VCC through 300-kresistors, as shown in Figure 13. The fail-safe  
feature uses an AND gate with input voltage thresholds at about 2.3 V to detect this condition and force the  
output to a high-level, regardless of the differential input voltage.  
11  
SN65LVDS386/388A/390, SN65LVDT386/388A/390  
SN75LVDS386/388A/390, SN75LVDT386/388A/390  
www.ti.com  
SLLS394GSEPTEMBER 1999REVISED NOVEMBER 2004  
APPLICATION INFORMATION (continued)  
V
CC  
300 k  
300 kΩ  
A
Rt = 100 (Typ)  
Y
B
V
IT  
2.3 V  
Figure 13. Open-Circuit Fail Safe of the LVDS Receiver  
It is only under these conditions that the output of the receiver is valid with less than a 100-mV differential input  
voltage magnitude. The presence of the termination resistor, Rt, does not affect the fail-safe function as long as it  
is connected as shown in the figure. Other termination circuits may allow a dc current to ground that could defeat  
the pullup currents from the receiver and the fail-safe feature.  
12  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jan-2007  
PACKAGING INFORMATION  
Orderable Device  
SN65LVDS386DGG  
SN65LVDS386DGGG4  
SN65LVDS386DGGR  
SN65LVDS386DGGRG4  
SN65LVDS388ADBT  
SN65LVDS388ADBTG4  
SN65LVDS388ADBTR  
SN65LVDS388ADBTRG4  
SN65LVDS390D  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TSSOP  
DGG  
64  
64  
64  
64  
38  
38  
38  
38  
16  
16  
16  
16  
16  
16  
16  
16  
64  
64  
64  
64  
38  
38  
38  
38  
16  
25 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
SM8  
DGG  
DGG  
DGG  
DBT  
DBT  
DBT  
DBT  
D
25 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
50 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SM8  
50 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SM8  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SM8  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SOIC  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS390DG4  
SOIC  
D
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS390DR  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS390DRG4  
SN65LVDS390PW  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
SM8  
PW  
PW  
PW  
PW  
DGG  
DGG  
DGG  
DGG  
DBT  
DBT  
DBT  
DBT  
D
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS390PWG4  
SN65LVDS390PWR  
SN65LVDS390PWRG4  
SN65LVDT386DGG  
SN65LVDT386DGGG4  
SN65LVDT386DGGR  
SN65LVDT386DGGRG4  
SN65LVDT388ADBT  
SN65LVDT388ADBTG4  
SN65LVDT388ADBTR  
SN65LVDT388ADBTRG4  
SN65LVDT390D  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
50 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SM8  
50 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SM8  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SM8  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SOIC  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jan-2007  
Orderable Device  
SN65LVDT390DG4  
SN65LVDT390DR  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
16  
16  
16  
16  
16  
16  
16  
64  
64  
64  
64  
38  
38  
38  
38  
16  
16  
16  
16  
16  
16  
16  
16  
64  
64  
64  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDT390DRG4  
SN65LVDT390PW  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
SM8  
PW  
PW  
PW  
PW  
DGG  
DGG  
DGG  
DGG  
DBT  
DBT  
DBT  
DBT  
D
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDT390PWG4  
SN65LVDT390PWR  
SN65LVDT390PWRG4  
SN75LVDS386DGG  
SN75LVDS386DGGG4  
SN75LVDS386DGGR  
SN75LVDS386DGGRG4  
SN75LVDS388ADBT  
SN75LVDS388ADBTG4  
SN75LVDS388ADBTR  
SN75LVDS388ADBTRG4  
SN75LVDS390D  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
50 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SM8  
50 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SM8  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SM8  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SOIC  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN75LVDS390DG4  
SN75LVDS390DR  
SOIC  
D
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN75LVDS390DRG4  
SN75LVDS390PW  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
DGG  
DGG  
DGG  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN75LVDS390PWG4  
SN75LVDS390PWR  
SN75LVDS390PWRG4  
SN75LVDT386DGG  
SN75LVDT386DGGG4  
SN75LVDT386DGGR  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
25 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
Addendum-Page 2  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jan-2007  
Orderable Device  
SN75LVDT386DGGRG4  
SN75LVDT388ADBT  
SN75LVDT388ADBTG4  
SN75LVDT388ADBTR  
SN75LVDT388ADBTRG4  
SN75LVDT390D  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
TSSOP  
DGG  
64  
38  
38  
38  
38  
16  
16  
16  
16  
16  
16  
16  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SM8  
SM8  
DBT  
DBT  
DBT  
DBT  
D
50 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
50 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SM8  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SM8  
2000 Green (RoHS & CU NIPDAU Level-2-260C-1 YEAR  
no Sb/Br)  
SOIC  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN75LVDT390DR  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN75LVDT390DRG4  
SN75LVDT390PW  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
PW  
PW  
PW  
PW  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN75LVDT390PWG4  
SN75LVDT390PWR  
SN75LVDT390PWRG4  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
Addendum-Page 3  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Jan-2007  
to Customer on an annual basis.  
Addendum-Page 4  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTSS003D – JANUARY 1995 – REVISED JANUARY 1998  
DGG (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
48 PINS SHOWN  
0,27  
0,17  
M
0,08  
0,50  
48  
25  
6,20  
6,00  
8,30  
7,90  
0,15 NOM  
Gage Plane  
0,25  
1
24  
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
48  
56  
64  
DIM  
A MAX  
12,60  
12,40  
14,10  
13,90  
17,10  
16,90  
A MIN  
4040078/F 12/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to  
discontinue any product or service without notice. Customers should obtain the latest relevant information  
before placing orders and should verify that such information is current and complete. All products are sold  
subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent  
TI deems necessary to support this warranty. Except where mandated by government requirements, testing  
of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible  
for their products and applications using TI components. To minimize the risks associated with customer  
products and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent  
right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine,  
or process in which TI products or services are used. Information published by TI regarding third-party  
products or services does not constitute a license from TI to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or  
other intellectual property of the third party, or a license from TI under the patents or other intellectual  
property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices.  
Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not  
responsible or liable for such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for  
that product or service voids all express and any implied warranties for the associated TI product or service  
and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Interface  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Military  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Logic  
Power Mgmt  
Microcontrollers  
Low Power Wireless  
power.ti.com  
microcontroller.ti.com  
www.ti.com/lpw  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

SN65LVDS386_07

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
TI

SN65LVDS386_08

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
TI

SN65LVDS387

HIGH-SPEED DIFFERENTIAL LINE DRIVERS
TI

SN65LVDS387DGG

HIGH-SPEED DIFFERENTIAL LINE DRIVERS
TI

SN65LVDS387DGGG4

HIGH-SPEED DIFFERENTIAL LINE DRIVERS
TI

SN65LVDS387DGGR

HIGH-SPEED DIFFERENTIAL LINE DRIVERS
TI

SN65LVDS387DGGRG4

HIGH-SPEED DIFFERENTIAL LINE DRIVERS
TI

SN65LVDS387_07

HIGH-SPEED DIFFERENTIAL LINE DRIVERS
TI

SN65LVDS387_16

High-Speed Differential Line Drivers
TI

SN65LVDS388

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
TI

SN65LVDS388A

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
TI

SN65LVDS388ADBT

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
TI