SN65LVDS822RGZR [TI]

Flatlink™ 低电压差分信号 (LVDS) 接收器 | RGZ | 48 | -40 to 85;
SN65LVDS822RGZR
型号: SN65LVDS822RGZR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Flatlink™ 低电压差分信号 (LVDS) 接收器 | RGZ | 48 | -40 to 85

文件: 总36页 (文件大小:2747K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Sample &  
Buy  
Support &  
Community  
Product  
Folder  
Tools &  
Software  
Technical  
Documents  
SN65LVDS822  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
SN65LVDS822 Flatlink™ LVDS 接收器  
1 特性  
3 说明  
1
4:27 LVDS CMOS 解串器  
SN65LVDS822 是一种高级 Flatlink™ 低压差分信号  
(LVDS) 接收器,采用现代化 CMOS 工艺。 该器件具  
有几个独特的功能,其中包括 3 个可选 CMOS 输出转  
换率,1.8V 3.3V CMOS 输出电压支持,一个引  
脚分配交换选项,集成差分端接(可配置),一个自动  
低功耗模式和 4:27 2:27 解串化模式。 它与诸如  
SN75LVDS83BSN65LVDS93A TI FlatLink™ 发  
送器以及符合 TIA/EIA 644-A 标准的标准工业用 LVDS  
发送器兼容。  
对于 160 × 120 1024 × 600 范围内的分辨率,  
像素时钟范围为 4MHz 54MHz  
具有 14x 采样的特殊 2:27 模式允许只使用 2 条数  
据信道  
具有 3 路可选 CMOS 转换率的极低电磁干扰 (EMI)  
支持单个 3.3V 电源;VDDIO 允许 1.8V 3.3V 电  
压范围,可提供灵活的面板支持  
时钟输出为上升或下降边沿  
针对灵活印刷电路板 (PCB) 布局布线的总线交换特  
SN65LVDS822 特有一个自动低功耗待机模式,当  
LVDS 时钟被禁用时激活。 此器件在将低压施加到引  
SHTDN# 上时进入一个平均低功耗关断模式。  
集成型可切换输入端接  
所有输入引脚是故障安全的;±3kV 人体模型  
(HBM) 静电放电 (ESD) 保护  
SN65LVDS822 采用 48 引脚 7mm x 7mm 塑料四方扁  
平无引线 (QFN) 封装,封装的焊球间距为 0.5mm,并  
且可在 –40°C 85°C 的工业环境温度范围内使用。  
7mm x 7mm 48 引脚超薄四方扁平无引线  
(VQFN)0.5mm 间距  
TIA/EIA-644-A 发送器兼容  
器件信息(1)  
2 应用范围  
部件号  
封装  
封装尺寸(标称值)  
打印机  
SN65LVDS822  
VQFN (48)  
7.00mm x 7.00mm  
具有一个 LCD 的装置  
数码照相机  
(1) 如需了解所有可用封装,请见数据表末尾的可订购产品附录。  
SoC  
LVDS  
Serializer  
Video  
Source  
CMOS  
RGB  
LVDS  
Can be discrete  
SN75LVDS83B  
1
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not necessarily include testing of all parameters.  
English Data Sheet: SLLSEE8  
 
 
 
 
SN65LVDS822  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明(继续) ........................................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ..................................... 7  
7.2 Handling Ratings....................................................... 7  
7.3 Recommended Operating Conditions ...................... 8  
7.4 Thermal Information.................................................. 9  
7.5 DC Electrical Characteristics .................................. 10  
7.6 Power Supply Characteristics ................................ 10  
7.7 Switching Characteristics........................................ 11  
7.8 Typical Characteristics............................................ 16  
Parameter Measurement Information ................ 17  
8.1 Test Patterns........................................................... 17  
9
Detailed Description ............................................ 19  
9.1 Overview ................................................................. 19  
9.2 Functional Block Diagram ....................................... 19  
9.3 Feature Description................................................. 20  
9.4 Device Functional Modes........................................ 21  
10 Application and Implementation........................ 22  
10.1 Application Information.......................................... 22  
10.2 Typical Application ................................................ 24  
11 Power Supply Recommendations ..................... 26  
11.1 Decoupling Capacitor Recommendations............. 26  
12 Layout................................................................... 26  
12.1 Layout Guidelines ................................................. 26  
12.2 Layout Example .................................................... 27  
13 器件和文档支持 ..................................................... 28  
13.1 ....................................................................... 28  
13.2 静电放电警告......................................................... 28  
13.3 术语表 ................................................................... 28  
14 机械封装和可订购信息 .......................................... 28  
8
4 修订历史记录  
Changes from Revision A (October 2013) to Revision B  
Page  
已添加 引脚配置和功能部分,处理额定值表,特性描述部分,器件功能模式应用和实施部分,电源相关建议部分,  
布局部分,器件和文档支持部分以及机械、封装和可订购信息部分........................................................................................ 1  
2
版权 © 2013–2014, Texas Instruments Incorporated  
 
SN65LVDS822  
www.ti.com.cn  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
5 说明(继续)  
在标准 7x 模式下支持 4MHz 54MHz 的时钟频率范围,可与数据速率在 28Mbps 378Mbps 之间的 LVDS 数  
据一同使用。 对于 56Mbps 378Mbps LVDS 的数据速率,此 14x 模式支持 4MHz 27MHz 的频率。  
LVDS 时钟频率始终与 CMOS 输出时钟频率相匹配。 为了实现正常运行,在时钟线路上监视直流共模电压。 此器  
件的设计可支持 1/16 VGA (160 × 120) 1024 × 600 范围内的分辨率,每秒 60 帧,24 位彩色。  
SN65LVDS822 特有一个自动低功耗待机模式,当 LVDS 时钟被禁用时激活。 此器件在将低压施加到引脚  
SHTDN# 上时进入平均低功耗关断模式。 在这两个低功耗模式中,所有 CMOS 输出驱动为低电平。 所有输入引  
脚具有故障安全保护功能,此功能在电源电压为高值且稳定前,可防止器件损坏。  
SN65LVDS822 采用 48 引脚 7mm x 7mm 塑料四方扁平无引线 (QFN) 封装,封装的焊球间距为 0.5mm,并且可  
–40°C 85°C 的工业环境温度范围内使用。  
Copyright © 2013–2014, Texas Instruments Incorporated  
3
SN65LVDS822  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
6 Pin Configuration and Functions  
RGZ PACKAGE  
(TOP VIEW)  
SWAP Pin = Low or Floating  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
D15  
D14  
D13  
D12  
D24  
VDDIO  
D23  
D11  
D10  
1
2
3
4
5
6
7
8
9
36 MODE14  
35 SLEW  
34 A3P  
33 A3N  
32 CLKP  
31 CLKN  
30 A2P  
29 A2N  
28 A1P  
27 A1N  
26 A0P  
25 A0N  
GND  
D9 10  
D8 11  
D7 12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
4
Copyright © 2013–2014, Texas Instruments Incorporated  
SN65LVDS822  
www.ti.com.cn  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
RGZ PACKAGE  
(TOP VIEW)  
SWAP Pin = High  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
D22  
D6  
1
2
3
4
5
6
7
8
9
36 MODE14  
35 SLEW  
34 A3P  
33 A3N  
32 CLKP  
31 CLKN  
30 A2P  
29 A2N  
28 A1P  
27 A1N  
26 A0P  
25 A0N  
D7  
D8  
D9  
VDDIO  
D10  
D11  
D23  
GND  
D24 10  
D12 11  
D13 12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Copyright © 2013–2014, Texas Instruments Incorporated  
5
SN65LVDS822  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
26, 25  
28, 27  
30, 29  
34, 33  
32, 31  
(SWAP = L / H)  
22 / 38  
21 / 39  
20 / 40  
19 / 42  
18 / 46  
16 / 47  
13 / 2  
A0P, A0N  
A1P, A1N  
A2P, A2N  
A3P, A3N  
CLKP, CLKN  
LVDS Data Lane 0  
LVDS Data Lane 1  
LVDS Data Lane 2  
LVDS Data Lane 3  
LVDS Clock  
LVDS Input  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
12 / 3  
D8  
11 / 4  
D9  
10 / 5  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
D22  
D23  
D24  
D25  
D26  
CLKOUT  
9 / 7  
8 / 8  
4 / 11  
CMOS Output  
Data bus output  
3 / 12  
2 / 13  
1 / 14  
48 / 15  
47 / 16  
40 / 20  
39 / 21  
38 / 22  
15 / 48  
14 / 1  
7 / 9  
5 / 10  
46 / 18  
42 / 19  
41  
Clock output for the data bus  
6
Copyright © 2013–2014, Texas Instruments Incorporated  
SN65LVDS822  
www.ti.com.cn  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
Selects the CMOS output pinout, and also controls differential input termination.  
Low – Default pinout, RID connected  
SWAP  
45  
Floating – Default pinout, RID disconnected (requires external termination)  
High – Swapped pinout, RID connected  
Sets the number of LVDS serial bits per lane per clock period.  
Low – 7 bits (see 16)  
MODE14  
36  
High – 14 bits; only lanes A0 and A2 are used (see 17)  
CLKOUT polarity  
CMOS Input  
Low – D[26:0] is valid during the CLKOUT falling edge  
Floating – Reserved; do not use  
CLKPOL  
SHTDN#  
SLEW  
23  
37  
35  
High – D[26:0] is valid during the CLKOUT rising edge  
Shutdown Mode; Active-Low  
Sets the CMOS output slew rate  
Low – Slowest rise/fall time  
Floating – Medium rise/fall time  
High – Fastest rise/fall time  
VDD  
24, 44  
Main power supply; 3.3 V  
VDDIO  
GND  
6, 17, 43  
Power Supply  
Power supply for CMOS outputs; 1.8 V to 3.3 V  
Reference Ground  
Thermal Pad  
7 Specifications  
7.1 Absolute Maximum Ratings(1)  
MIN  
–0.3  
–0.5  
MAX  
UNIT  
Supply voltage range(2), VDD , VDDIO  
4
4
V
Voltage range at  
any input terminal  
When VDDIO > 0 V  
V
Voltage range at  
When VDDIO 0 V  
–0.5  
VDDIO + 0.7  
125  
any output terminal  
Maximum junction temperature, TJ  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values are with respect to the GND terminals  
7.2 Handling Ratings  
MIN  
–65  
–3  
MAX  
150  
3
UNIT  
Tstg  
Storage temperature range  
Electrostatic discharge  
°C  
Human body model(1) (all pins)  
Charged device model(2) (all pins)  
V(ESD)  
V
–1.5  
1.5  
(1) In accordance with JEDEC Standard 22, Test Method A114-B  
(2) In accordance with JEDEC Standard 22, Test Method C101  
Copyright © 2013–2014, Texas Instruments Incorporated  
7
SN65LVDS822  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
TEST CONDITIONS  
MIN  
3
TYP  
MAX  
3.6  
3.6  
100  
50  
UNIT  
V
VDD  
Main power supply  
3.3  
VDDIO  
Power supply for CMOS outputs  
1.65  
V
fNOISE < 1 MHz  
fNOISE > 1 MHz  
Power supply noise  
(peak-to-peak)  
VNOISE  
mV  
TA  
TC  
Operating free-air temperature  
Case temperature  
–40  
85  
°C  
°C  
98  
LVDS CLOCK (CLKP, CLKN)  
MODE14 = Low  
MODE14 = High  
Standby Mode  
MODE14 = Low  
MODE14 = High  
4
4
54  
27  
fCLK  
LVDS clock frequency  
LVDS clock duty cycle  
MHz  
0.5  
57%  
50%  
tDC  
LVDS INPUTS (A0P, A0N, A1P, A1N, A2P, A2N, A3P, A3N, CLKP, CLKN)  
|VID  
|
Input differential voltage(1)  
|VAxP – VAxN| and |VCLKP-VCLKN  
|
90  
–10%  
|VID|/2  
–100  
600  
10%  
mV  
Input differential voltage variation  
between lanes  
Input common mode voltage(1)  
ΔVID  
VCM  
2.4 - |VID|/2  
100  
V
Input common mode voltage  
variation between lanes  
ΔVCM  
mV  
fCLK = 4 MHz to 14 MHz  
fCLK = 14 MHz to 22 MHz  
fCLK = 22 MHz to 30 MHz  
fCLK = 30 MHz to 54 MHz  
fCLK = 4 MHz to 7 MHz  
fCLK = 7 MHz to 11 MHz  
fCLK = 11 MHz to 15 MHz  
fCLK = 15 MHz to 27 MHz  
3
2
MODE14 = Low  
MODE14 = High  
1.5  
1
tR/F(VID)  
LVDS VID rise/fall time(2)  
ns  
3
2
1.5  
1
CMOS OUTPUTS (D[26:0], CLKOUT)  
CL Capacitive load on the outputs  
10  
pF  
(1) See 1.  
(2) See 6. Defined from 20% to 80% of the differential voltage transition. Faster edge rates are generally preferred, as they provide more  
timing margin.  
8
版权 © 2013–2014, Texas Instruments Incorporated  
SN65LVDS822  
www.ti.com.cn  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
7.4 Thermal Information  
SN65LVDS822  
THERMAL METRIC(1)  
RGZ  
48 PINS  
30.1  
18.1  
6.9  
UNIT  
θJA  
Junction-to-ambient thermal resistance(2)  
Junction-to-case (top) thermal resistance(3)  
Junction-to-board thermal resistance(4)  
Junction-to-top characterization parameter(5)  
Junction-to-board characterization parameter(6)  
Junction-to-case (bottom) thermal resistance(7)  
θJCtop  
θJB  
°C/W  
ψJT  
0.2  
ψJB  
6.9  
θJCbot  
0.7  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, high-K board, as  
specified in JESD51-7, in an environment described in JESD51-2a.  
(3) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-  
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(4) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(5) The junction-to-top characterization parameter, ψJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(6) The junction-to-board characterization parameter, ψJB, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA , using a procedure described in JESD51-2a (sections 6 and 7).  
(7) The junction-to-case (bottom) thermal resistance is obtained by simulating a cold plate test on the exposed (power) pad. No specific  
JEDEC standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
Spacer  
版权 © 2013–2014, Texas Instruments Incorporated  
9
SN65LVDS822  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
7.5 DC Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
80  
TYP(1)  
MAX  
UNIT  
LVDS INPUTS (A0P, A0N, A1P, A1N, A2P, A2N, A3P, A3N, CLKP, CLKN)  
RID  
CID  
RPU  
Differential input termination resistance(1)  
SWAP = Low or High  
132  
Ω
Differential input capacitance  
Measured across differential pairs  
Measured from each input to VDD  
1
pF  
kΩ  
Pull-up resistor for standby detection  
90  
VDD = 3.6 V; RID disconnected; One P/N  
terminal is swept from 0 V to 2.4 V while  
the other is 1.2 V  
|II|  
Input leakage current  
70  
µA  
CMOS INPUTS (SWAP, MODE14, CLKPOL, SHTDN#, SLEW)  
CIN  
VIK  
VIH  
VIL  
Input capacitance for CMOS inputs  
Input clamp voltage  
2
pF  
V
II = -18 mA  
–1.2  
High-level input voltage  
Low-level input voltage  
0.8 x VDD  
V
0.2 x VDD  
V
3-STATE CMOS INPUTS (SWAP, CLKPOL, SLEW)  
VF  
IIH  
IIL  
Floating voltage  
VIN = High impedance  
VIN = 3.6 V  
VDD/2  
V
High-level input current (through pull-down)  
Low-level input current (through pull-up)  
36  
20  
µA  
µA  
VIN = GND, VDD = 3.6 V  
-36  
0
2-STATE CMOS INPUTS (MODE14, SHTDN#)  
IIH  
IIL  
High-level input current (through pull-down)  
Low-level input current  
VIN = 3.6 V  
VIN = GND  
µA  
µA  
CMOS OUTPUTS (D[26:0], CLKOUT)  
SLEW = Low; IOH = -250 µA  
SLEW = Floating; IOH = -500 µA  
SLEW = High; IOH = -1.33 mA  
SLEW = Low; IOL = 250 µA  
SLEW = Floating; IOL = 500 µA  
SLEW = High; IOL = 1.33 mA  
0.8 x VDDIO  
VDDIO  
VDDIO  
VDDIO  
0.5  
VOH  
High-level output voltage  
Low-level output voltage  
0.8 x VDDIO  
V
V
0.8 x VDDIO  
0
0
0
VOL  
0.5  
0.5  
(1) When VDD = 0 V, the connection of RID is unknown.  
7.6 Power Supply Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS(1)(2)  
TYP  
MAX(1)  
UNIT  
Grayscale pattern; outputs terminated with 10 pF;  
MODE14 = Low, VDD = 3.3 V, VDDIO = 1.8 V  
SLEW = Low; fCLK = 10 MHz  
24.6  
mA  
SLEW = Low; fCLK = 10 MHz  
SLEW = Float; fCLK = 20 MHz  
SLEW = High; fCLK = 54 MHz  
SLEW = Float; fCLK = 20 MHz  
SLEW = High; fCLK = 54 MHz  
25.7  
30.9  
51.5  
48.2  
Grayscale pattern; outputs terminated with 10pF;  
MODE14 = Low, VDD = VDDIO = 3.3 V  
mA  
Total average supply  
current of VDD and VDDIO  
IDD  
59  
1010 pattern; outputs terminated with 10 pF;  
MODE14 = Low, VDD = VDDIO = 3.6 V  
mA  
mA  
µA  
101.7  
4
124  
fCLK < 500 kHz;  
VCM-CLKP/N 0.80 x VDD  
7
LVDS inputs are open; CMOS  
inputs held static; Outputs  
terminated with 10 pF  
Standby Mode  
VCM-CLKP/N > 0.95 x VDD  
SHTDN# = Low  
75  
4
130  
20  
Shutdown Mode  
Grayscale pattern; outputs terminated with 10 pF;  
MODE14 = Low, VDD = 3.3 V, VDDIO = 1.8 V  
SLEW = Low; fCLK = 10 MHz  
SLEW = High; fCLK = 54 MHz  
83  
PD  
Power Dissipation  
mW  
1010 pattern; outputs terminated with 10 pF;  
MODE14 = Low, VDD = VDDIO = 3.6 V  
366  
446  
(1) Grayscale and 1010 test patterns are described by 5 to 6 and 1 to 2.  
(2) Standby Mode can be entered in two ways: fCLK = zero to 500 kHz, or a high VCM on the LVDS clock. If the LVDS transmitter device  
disables its clock driver to a high-impedance state, the SN65LVDS822’s integrated RPU will pull VCM high for the lower-power Standby  
state.  
10  
版权 © 2013–2014, Texas Instruments Incorporated  
SN65LVDS822  
www.ti.com.cn  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
7.7 Switching Characteristics  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
INPUT TO OUTPUT RESPONSE TIME  
Propagation delay of  
data  
tPD  
Measured from CLK input to CLKOUT  
2.4/fCLK  
s
Enable time, exiting  
Shutdown  
From Shutdown Mode, time from SHTDN# pulled High  
to valid output data (see 9)  
tPWRUP  
2
2
ms  
ms  
µs  
Enable time, exiting  
Standby  
From Standby Mode, time from when CLK input starts  
switching to valid output data  
tWAKE  
Disable time, entering  
Shutdown  
From Active Mode, time from SHTDN# pulled Low  
until all outputs are static-Low  
tPWRDN  
11  
3
Disable time, entering  
From Active Mode, time from CLK input stopping until  
all outputs are static-Low  
tSTANDBY  
Standby  
µs  
fBW  
PLL bandwidth(1)  
Tested from CLK input to CLKOUT  
6% x fCLK  
Hz  
LVDS INPUTS (A0P, A0N, A1P, A1N, A2P, A2N, A3P, A3N, CLKP, CLKN)  
MODE14 = Low  
1/(14 x fCLK) – 620E-12  
1/(28 x fCLK) – 620E-12  
Receiver input skew  
tRSKM  
s
(3) (4)  
margin(2)  
MODE14 = High  
LVDS data setup time  
required before internal  
clock edge  
tR/F(VID) = 600 ps  
VID = 90 mV  
See 2  
tSU1  
620  
620  
ps  
LVDS data hold time  
required after internal  
clock edge  
tH1  
ps  
CMOS OUTPUTS (D[26:0], CLKOUT)  
CLKPOL = Low  
CLKPOL = High  
43%  
57%  
50%  
15  
MODE14 = Low  
MODE14 = High  
tDCYC  
Duty cycle of CLKOUT  
SLEW = Low  
10  
5
20  
10  
3
CMOS output rise and  
fall time (20% to 80%)  
tR/F  
CL = 10 pF  
SLEW = Floating  
SLEW = High  
SLEW = Low  
7.5  
ns  
1.3  
2.1  
0.38/fCLK – 2.2E-9  
0.38/fCLK – 1.2E-9  
0.38/fCLK – 0.7E-9  
0.45/fCLK – 2.5E-9  
0.45/fCLK – 1.5E-9  
0.45/fCLK – 1E-9  
0.52/fCLK – 18.2E-9  
0.52/fCLK – 9.2E-9  
0.52/fCLK – 3.7E-9  
0.45/fCLK – 18.5E-9  
0.45/fCLK – 9.5E-9  
0.45/fCLK – 4E-9  
MODE14 = Low; CL = 10 pF  
MODE14 = High; CL = 10 pF  
MODE14 = Low; CL = 10 pF  
MODE14 = High; CL = 10 pF  
SLEW = Floating  
SLEW = High  
SLEW = Low  
Setup time available for  
the downstream  
receiver(5)  
tSU2  
s
SLEW = Floating  
SLEW = High  
SLEW = Low  
SLEW = Floating  
SLEW = High  
SLEW = Low  
Hold time available for  
the downstream  
receiver(5)  
tH2  
s
SLEW = Floating  
SLEW = High  
(1) The PLL bandwidth describes the typical highest modulation frequency that can be tracked. If the LVDS transmitter device generates a  
spread spectrum, the LVDS clock and data must stay synchronized throughout modulation. The SN65LVDS822 will track and pass  
through modulation, and the downstream CMOS receiver must be able to track it.  
(2) Receiver Input Skew Margin (tRSKM) is the timing margin available for transmitter output pulse position (tPPOS), interconnect skew, and  
interconnect inter-symbol interference. tRSKM represents the reminder of the serial bit time not taken up by the receiver strobe  
uncertainty. The tRSKM assumes a bit error rate better than 10-12  
.
(3) tRSKM is indirectly proportional to: internal setup and hold time uncertainty, ISI, duty cycle distortion from the front end receiver, skew  
mismatch between LVDS clock and data, and PLL cycle-to-cycle jitter.  
(4) LVDS input timing defined here is based on a simulated statistical analysis across process, voltage, and temperature ranges.  
(5) See 3 and 4.  
版权 © 2013–2014, Texas Instruments Incorporated  
11  
SN65LVDS822  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
1. FlatLink™ Input Voltage Definitions  
12  
版权 © 2013–2014, Texas Instruments Incorporated  
SN65LVDS822  
www.ti.com.cn  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
LVDS CLK  
Internal 7x CLK  
LVDS Data  
CLKM  
(1 ) 1  
14 fCLK  
Internal  
clock edge  
CLKP  
AxP  
tRSKM  
tSU1  
tH1  
tRSKM  
AxM  
2. LVDS Input Timing (MODE14 = Low)  
版权 © 2013–2014, Texas Instruments Incorporated  
13  
SN65LVDS822  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
CLKOUT  
20%  
tSU2  
tH2  
80%  
80%  
20%  
D[26:0]  
20%  
3. CMOS Output Timing (CLKPOL = Low)  
80%  
CLKOUT  
tSU2  
tH2  
80%  
20%  
80%  
20%  
D[26:0]  
4. CMOS Output Timing (CLKPOL = High)  
14  
版权 © 2013–2014, Texas Instruments Incorporated  
SN65LVDS822  
www.ti.com.cn  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
LVDS CLK  
LVDS Data  
SHTDN#  
tPWRUP  
Low  
Invalid  
Valid  
D[26:0]  
5. Time to Exit Shutdown Mode  
Positive V  
ID  
tF(VID)  
tR(VID)  
80%  
VID = 0V  
20%  
Negative VID  
6. LVDS Rise/Fall Time (Differential Voltage)  
版权 © 2013–2014, Texas Instruments Incorporated  
15  
SN65LVDS822  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
7.8 Typical Characteristics  
space  
Input: channel 2 (green), Output: channel 1 (yellow)  
7. Output Rise & Fall times - SLEW = High  
8. Total Output Delay  
16  
版权 © 2013–2014, Texas Instruments Incorporated  
SN65LVDS822  
www.ti.com.cn  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
8 Parameter Measurement Information  
SN65LVDS822  
CMOS  
Driver  
+
VO  
-
CL = 10pF  
9. CMOS Output Test Circuit  
8.1 Test Patterns  
CLKOUT  
D0/D8/D16  
D1/D9/D17  
D2/D10/D18  
D3/D11/D19  
D4-7/D12-15/D20-23  
D24-26  
10. Grayscale Pattern (CLKPOL = Low); Used for Typical Power Data  
1. Grayscale Pattern Data;  
Repeats Every 16 Words  
Word  
1
D[26:0]  
0x7000000  
0x7080808  
0x7040404  
0x70C0C0C  
0x7020202  
0x70A0A0A  
0x7060606  
0x70E0E0E  
0x7010101  
0x7090909  
0x7050505  
0x70D0D0D  
0x7030303  
0x70B0B0B  
0x7070707  
0x70F0F0F  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
版权 © 2013–2014, Texas Instruments Incorporated  
17  
SN65LVDS822  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
CLKOUT  
Even Dx  
Odd Dx  
11. 1010 Pattern (CLKPOL = Low); Used for Maximum Power Data  
2. 1010 Pattern Data;  
Repeats Every 2 Words  
Word  
D[26:0]  
1
2
0x2AAAAAA  
0x5555555  
18  
版权 © 2013–2014, Texas Instruments Incorporated  
SN65LVDS822  
www.ti.com.cn  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
9 Detailed Description  
9.1 Overview  
The SN65LVDS822 implements five low-voltage differential signal (LVDS) line receivers: 4 data lanes and 1  
clock lane. The clock is internally multiplied by 7 or 14 (depending on pin MODE14), and used for sampling  
LVDS data. The device operates in either 4-lane 7x mode, or 2-lane 14x mode. Each input lane contains a shift  
register that converts serial data to parallel. 27 total bits per clock period are deserialized and presented on the  
CMOS output bus, along with a clock that uses either rising- or falling-edge alignment.  
9.2 Functional Block Diagram  
A0P  
RID  
A0N  
SWAP  
MODE14  
CLKPOL  
SHTDN#  
SLEW  
A1P  
A1N  
RID  
RID  
RID  
RID  
Serial  
to  
D0  
Control  
Logic  
Parallel  
Conversion  
A2P  
A2N  
D26  
CLKOUT  
A3P  
A3N  
VDD  
7x or 14x  
VDDIO  
GND  
1x  
PLL  
Multiplier  
CLKP  
CLKN  
Standby  
Detector  
版权 © 2013–2014, Texas Instruments Incorporated  
19  
SN65LVDS822  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Unused LVDS Data Lanes  
When MODE14 = Low and fewer than 4 data lanes are used, or when MODE14 = High and only 1 data lane is  
used, it’s recommended that the unused lanes are biased with a constant differential voltage. This prevents high-  
frequency noise from toggling the unused receiver, which injects noise into the device. This is not a hard  
requirement, but it’s standard best-practice, and the amount of noise varies system-to-system.  
Two implementations are shown below, depending on whether the internal termination RID is connected. A  
reasonable choice for R1 and R2 is 5k, which produce a nominal VID of 34 mV and 0.3 mA of static current.  
Smaller resistors increase VID and noise floor margin, as well as static current.  
SN65LVDS822  
SN65LVDS822  
VDD  
VDD  
RPU  
RPU  
RPU  
RPU  
R1  
R2  
AxP  
AxN  
AxP  
AxN  
GND  
GND  
VDD  
RID  
12. Bias When RID is Connected  
9.3.2 Tying CMOS Inputs With Resistors  
13. Bias When RID is Disconnected  
The IIH/IIL specifications indicate that 2-state CMOS input pins have an internal pull-down that’s a minimum size  
of 180 k, and 3-state CMOS input pins have an internal pull-up and pull-down that are a minimum size of  
100 k.  
VDD  
PU  
PD  
PD  
14. 2-State CMOS Input  
15. 3-State CMOS Input  
CMOS inputs may be directly connected to VDD or GND, or tied through a resistor. Using a resistor creates a  
voltage divider network, so it’s important to use a small enough resistor to satisfy VIH/VIL at the pin, and to have  
voltage margin for system noise. When using a resistor, 5 kor smaller is recommended. Of course, 3-state  
inputs may be left unconnected to select their floating pin state.  
20  
版权 © 2013–2014, Texas Instruments Incorporated  
SN65LVDS822  
www.ti.com.cn  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
9.4 Device Functional Modes  
9.4.1 Active Modes  
9.4.1.1 4-Lanes 7-Bit Mode  
Previous  
Current cycle  
Next  
CLK  
D1  
D8  
D0  
D7  
D6  
D5  
D4  
D3  
D2  
D9  
D1  
D8  
D0  
D7  
D6  
A0  
A1  
A2  
A3  
D13 D12 D11 D10  
D13  
D15 D14 D20 D19 D18 D17 D16 D15 D14 D20  
D22 D21 RSV D26 D25 D24 D23 D22 D21 RSV  
16. Data Bits Within the LVDS Stream (MODE14 = Low)  
9.4.1.2 2-Lanes 14-Bit Mode  
Previous  
Current cycle  
Next  
CLK  
D1  
D0  
D13 D12 D11 D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
D13  
A0  
A2  
D15 D14 RSV D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 RSV  
17. Data Bits Within the LVDS Stream (MODE14 = High)  
9.4.2 Low-Power Modes  
9.4.2.1 Standby Mode  
In order to decrease the power consumption, the SN65LVDS822 automatically enters to standby when the LVDS  
clock is inactive.  
9.4.2.2 Shutdown Mode  
This is the lower-power mode, and the SN65LVDS822 enters to this mode only when the SHTDN# terminal is  
tied to low.  
In both low-power modes, all CMOS outputs drive low. All input pins have failsafe  
protection that prevents damage from occurring before power supply voltages are high  
and stable.  
版权 © 2013–2014, Texas Instruments Incorporated  
21  
SN65LVDS822  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
10.1.1 Color Bit Mapping  
The SN65LVDS822 is a simple deserializer that ignores bit representation in the LVDS stream. The CMOS  
output pin order was chosen so that if the color mapping within the LVDS stream matches the common VESA  
standard, the parallel output bus of red/green/blue fans out sequentially, which matches the order that many LCD  
panels require. Some LCD panels require a reversed order; for those, set pin “SWAP” high to reverse the output  
bus and simplify PCB routing. 19 shows the application setup when SWAP is in different statuses.  
Any color bit mapping is supported, by correctly connecting the output to the panel. However, bit “RSV” is  
ignored and unavailable for use.  
CLK +/-  
G0  
B1  
R5  
B0  
VS  
B7  
R4  
G5  
HS  
B6  
R3  
G4  
B5  
G7  
R2  
G3  
B4  
G6  
R1  
G2  
B3  
R7  
R0  
G1  
B2  
R6  
RX0 +/-  
RX1 +/-  
RX2 +/-  
RX3 +/-  
DE  
RSV  
18. Common VESA Color Bit Mapping  
22  
版权 © 2013–2014, Texas Instruments Incorporated  
 
SN65LVDS822  
www.ti.com.cn  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
Application Information (接下页)  
LVDS822  
Graphic Controller  
24BIT  
18BIT  
12BIT  
38  
22  
RED0  
RED0  
RED0  
D0  
D1  
D2  
D3  
A0P  
39  
40  
42  
46  
21  
20  
19  
RED1  
RED1  
RED1  
RED2  
RED3  
RED2  
RED3  
RED2  
RED3  
A0N  
A1P  
18  
16  
15  
RED4  
RED4  
NA  
D4  
D5  
47  
48  
RED5  
RED5  
NA  
RED6  
NA  
NA  
D21  
D22  
D6  
1
2
14  
13  
RED7  
NA  
NA  
A1N  
A2P  
GREEN0  
GREEN1  
GREEN2  
GREEN3  
GREEN4  
GREEN5  
GREEN6  
GREEN0  
GREEN1  
GREEN2  
GREEN3  
GREEN4  
GREEN5  
NA  
GREEN0  
GREEN1  
GREEN2  
GREEN3  
RSD  
3
12  
11  
10  
9
D7  
4
5
D8  
D9  
A2N  
A3P  
7
D10  
D11  
D23  
D24  
D12  
D13  
D14  
D15  
8
8
RSD  
9
7
NA  
10  
11  
12  
13  
14  
15  
16  
18  
5
GREEN7  
BLUE0  
BLUE1  
NA  
NA  
4
BLUE0  
BLUE1  
BLUE0  
BLUE1  
A3N  
CLKP  
CLKN  
3
2
1
BLUE2  
BLUE3  
BLUE2  
BLUE3  
BLUE2  
BLUE3  
48  
D16  
D17  
BLUE4  
BLUE5  
BLUE6  
BLUE7  
BLUE4  
BLUE5  
NA  
NA  
NA  
NA  
NA  
47  
46  
42  
40  
D25  
19  
20  
D26  
NA  
D18  
H-SYNC  
V-SYNC  
H-SYNC  
V-SYNC  
H-SYNC  
V-SYNC  
21  
22  
39  
38  
D19  
D20  
DISPLAY ENABLE  
CLOCK  
DISPLAY ENABLE  
CLOCK  
DISPLAY ENABLE  
CLOCK  
41  
41  
CLKOUT  
NOTE: NA t not applicable, these unused inputs should be left open  
19. Pin Assignments With SWAP  
版权 © 2013–2014, Texas Instruments Incorporated  
23  
SN65LVDS822  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
10.2 Typical Application  
20. Typical Application  
10.2.1 Design Requirements  
DESIGN PARAMETERS  
VALUE  
3 - 3.6 V  
1.65 - 3.6 V  
4 - 54 MHz  
80 - 132 Ω  
2 or 4  
VDD Main Power Supply  
VDDIO Power Supply for CMOS Outputs  
Input LVDS Clock Frequency  
RID Differential Input Termination Resistance  
LVDS Input Channels  
Output Load Capacitance  
1 pF  
10.2.2 Detailed Design Procedure  
10.2.2.1 Power Supply  
The implementation operates from the power provided by two banana jack connectors (P1 and P3) common  
ground. The VDD pin (P1) is connected to the main power supply to the SN65LVDS822 device and must be 3.3  
V (±10%). The VDDIO pin (P3) is connected to the power supply of the SN65LVDS822 CMOS outputs and must  
be in the range of 1.8 to 3.3 V.  
10.2.2.2 CMOS Output Bus Connector  
Color Bit Mapping shows the CMOS output and bit mapping. Because some LCD panels require a reversed  
order, the SN65LVDS822 device is capable of reversing the output bus and simplifying PCB routing. When the  
pin is tied to high, the CMOS outputs are in normal order, otherwise the CMOS outputs are in reverse order.  
10.2.2.3 Power-Up Sequence  
The SN75LVDS822 does not require a specific power up sequence.  
It is permitted to power up IOVCC while VCC remains powered down and connected to GND. The input level of  
the SHTDN during this time does not matter as only the input stage is powered up while all other device blocks  
are still powered down. It is also permitted to power up all 3.3V power domains while IOVCC is still powered  
down to GND. The device will not suffer damage. However, in this case, all the I/Os are detected as logic HIGH,  
regardless of their true input voltage level. Hence, connecting SHTDN to GND will still be interpreted as a logic  
HIGH; the LVDS output stage will turn on. The power consumption in this condition is significantly higher than  
standby mode, but still lower than normal mode. The user experience can be impacted by the way a system  
powers up and powers down an LCD screen. The following sequence is recommended:  
Power up sequence (SN75LVDS83B SHTDN input initially low):  
1. Ramp up LCD power and SN65LVDS822 (maybe 0.5ms to 10ms) but keep backlight turned off.  
24  
版权 © 2013–2014, Texas Instruments Incorporated  
SN65LVDS822  
www.ti.com.cn  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
2. Wait for additional 0-200ms to ensure display noise won’t occur.  
3. Enable video source output; start sending black video data.  
4. Toggle LVDS83B shutdown to SHTDN = VIH.  
5. Toggle LVDS822 shutdown to SHTDN = VIH.  
6. Send > 1 ms of black video data; this allows the LVDS83B to be phase locked, and the display to show black  
data first.  
7. Start sending true image data.  
8. Enable backlight.  
Power Down sequence (SN75LVDS83B SHTDN input initially high):  
1. Disable LCD backlight; wait for the minimum time specified in the LCD data sheet for the backlight to go low.  
2. Video source output data switch from active video data to black image data (all visible pixel turn black); drive  
this for > 2 frame times.  
3. Set SN75LVDS83B input SHTDN = GND; wait for 250 ns.  
4. Set SN75LVDS822 input SHTDN = GND; wait for 250 ns.  
5. Disable the video output of the video source.  
6. Remove power from the LCD panel for lowest system power.  
10.2.3 Application Curve  
21. Total Current Consumption (VDD & VDDIO)  
版权 © 2013–2014, Texas Instruments Incorporated  
25  
SN65LVDS822  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
11 Power Supply Recommendations  
11.1 Decoupling Capacitor Recommendations  
To minimize the power supply noise floor, provide good decoupling near the SN65LVDS822 power pins. It is  
recommended to place one 0.01-μF ceramic capacitor at each power pin, and two 0.1-μF ceramic capacitors on  
each power node. The distance between the SN65LVDS822 and capacitors should be minimized to reduce loop  
inductance and provide optimal noise filtering. Placing the capacitor underneath the SN65LVDS822 on the  
bottom of the PCB is often a good choice. A 100-pF ceramic capacitor can be put at each power pin to optimize  
the EMI performance.  
12 Layout  
12.1 Layout Guidelines  
Use 45 degree bends (chamfered corners), instead of right-angle (90°) bends. Right-angle bends increase the  
effective trace width, which changes the differential trace impedance creating large discontinuities. A 45o bends  
is seen as a smaller discontinuity.  
Place passive components within the signal path, such as source-matching resistors or ac-coupling capacitors,  
next to each other. Routing as in case a) creates wider trace spacing than in b), the resulting discontinuity,  
however, is limited to a far narrower area.  
When routing traces next to a via or between an array of vias, make sure that the via clearance section does not  
interrupt the path of the return current on the ground plane below.  
Avoid metal layers and traces underneath or between the pads off the DisplayPort connectors for better  
impedance matching. Otherwise they will cause the differential impedance to drop below 75 and fail the board  
during TDR testing.  
Use solid power and ground planes for 100 impedance control and minimum power noise.  
For a multilayer PCB, it is recommended to keep one common GND layer underneath the device and connect all  
ground terminals directly to this plane. For 100 differential impedance, use the smallest trace spacing possible,  
which is usually specified by the PCB vendor.  
Keep the trace length as short as possible to minimize attenuation.  
Place bulk capacitors (i.e. 10 μF) close to power sources, such as voltage regulators or where the power is  
supplied to the PCB.  
26  
版权 © 2013–2014, Texas Instruments Incorporated  
SN65LVDS822  
www.ti.com.cn  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
12.2 Layout Example  
22. Layout Example  
23. Footprint Example  
版权 © 2013–2014, Texas Instruments Incorporated  
27  
SN65LVDS822  
ZHCSBQ4B SEPTEMBER 2013REVISED SEPTEMBER 2014  
www.ti.com.cn  
13 器件和文档支持  
13.1 商标  
Flatlink is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
13.3 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、首字母缩略词和定义。  
14 机械封装和可订购信息  
以下页中包括机械封装和可订购信息。 这些信息是针对指定器件可提供的最新数据。 这些数据会在无通知且不对  
本文档进行修订的情况下发生改变。 欲获得该数据表的浏览器版本,请查阅左侧的导航栏。  
28  
版权 © 2013–2014, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN65LVDS822RGZR  
ACTIVE  
VQFN  
RGZ  
48  
2500 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 85  
LVDS822  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Mar-2015  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN65LVDS822RGZR  
VQFN  
RGZ  
48  
2500  
330.0  
16.4  
7.3  
7.3  
1.1  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
25-Mar-2015  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
VQFN RGZ 48  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 38.0  
SN65LVDS822RGZR  
2500  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
A
7.1  
6.9  
B
(0.1) TYP  
7.1  
6.9  
SIDE WALL DETAIL  
OPTIONAL METAL THICKNESS  
PIN 1 INDEX AREA  
(0.45) TYP  
CHAMFERED LEAD  
CORNER LEAD OPTION  
1 MAX  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 5.5  
5.15±0.1  
(0.2) TYP  
13  
24  
44X 0.5  
12  
25  
SEE SIDE WALL  
DETAIL  
SYMM  
2X  
5.5  
1
36  
0.30  
0.18  
PIN1 ID  
(OPTIONAL)  
48X  
48  
37  
SYMM  
0.1  
C A B  
C
0.5  
0.3  
48X  
0.05  
SEE LEAD OPTION  
4219044/D 02/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
5.15)  
SYMM  
(
48X (0.6)  
37  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(1.26)  
2X  
(1.065)  
(R0.05)  
TYP  
25  
12  
21X (Ø0.2) VIA  
TYP  
24  
13  
2X (1.065)  
2X (1.26)  
2X (5.5)  
LAND PATTERN EXAMPLE  
SCALE: 15X  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4219044/D 02/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RGZ0048A  
PLASTIC QUADFLAT PACK- NO LEAD  
2X (6.8)  
SYMM  
(
1.06)  
37  
48X (0.6)  
48  
48X (0.24)  
44X (0.5)  
1
36  
SYMM  
2X  
2X  
(5.5)  
(6.8)  
2X  
(0.63)  
2X  
(1.26)  
(R0.05)  
TYP  
25  
12  
24  
13  
2X  
(1.26)  
2X (0.63)  
2X (5.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
67% PRINTED COVERAGE BY AREA  
SCALE: 15X  
4219044/D 02/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SN65LVDS84A

FLATLINK TRANSMITTER
TI

SN65LVDS84ADGGRQ1

FlatLink™ TRANSMITTER
TI

SN65LVDS84AQ

FLATLINK TRANSMITTER
TI

SN65LVDS84AQ-Q1

FlatLink™ TRANSMITTER
TI

SN65LVDS84AQDGG

FLATLINK TRANSMITTER
TI

SN65LVDS84AQDGGR

FLATLINK TRANSMITTER
TI

SN65LVDS84AQDGGREP

QUAD LINE DRIVER, PDSO48, 0.020 INCH PITCH, PLASTIC, TSSOP-48
TI

SN65LVDS84AQDGGRQ1

FlatLink™ TRANSMITTER
TI

SN65LVDS86A

FLATLINK RECEIVER
TI

SN65LVDS86A-Q1

FlatLink™ RECEIVER
TI

SN65LVDS86ADGGRQ1

FlatLink™ RECEIVER
TI

SN65LVDS86AQ

FLATLINK RECEIVER
TI