SN65LVDS93BIDGGRQ1 [TI]

10MHz - 85MHz 汽车类 28 位平板显示器链路 LVDS | DGG | 56 | -40 to 85;
SN65LVDS93BIDGGRQ1
型号: SN65LVDS93BIDGGRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

10MHz - 85MHz 汽车类 28 位平板显示器链路 LVDS | DGG | 56 | -40 to 85

驱动 光电二极管 接口集成电路 驱动器 显示器
文件: 总35页 (文件大小:1926K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
SN65LVDS93B-Q1  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
SN65LVDS93B-Q1 10MHz - 85MHz 汽车级 28 位平板显示链路 LVDS  
SerDes 发变送器  
1 特性  
发送数据时,数据位 D0 D27 会在输入时钟信号  
(CLKIN) 边沿逐个载入寄存器。可通过时钟选择  
(CLKSEL) 引脚来选择时钟的上升沿或下降沿。CLKIN  
的频率会进行 7 倍倍频,然后用于以串行方式分 7 位  
时间片上传数据寄存器。接着会将 4 个串行数据流和  
锁相时钟 (CLKOUT) 输出至 LVDS 输出驱动器。  
CLKOUT 的频率与输入时钟 (CLKIN) 相同。  
1
符合面向汽车应用的 AEC-Q100 标准, 具有  
温度等级 3-40°C 85°C  
人体放电模型 (HBM) 静电放电 (ESD) 分类等级  
3
组件充电模式 (CDM) ESD 分类等级 C6  
低压差分信号 (LVDS) 显示系列接口,可直接连接  
具有集成 LVDS LCD 显示面板  
SN65LVDS93B-Q1 无需外部组件,只需很少控制,甚  
至无需控制。发送器输入端的数据总线与接收器输出端  
的相同,数据传输对于用户而言是透明的。用户唯一能  
够干预的是选择时钟上升沿(向 CLKSEL 输入高电  
平)或下降沿(向 CLKSEL 输入低电平),以及能够  
使用关断/清零 (SHTDN) 引脚。SHTDN 是一个低电平  
有效输入,可禁用时钟并关断 LVDS 输出驱动器,从  
而降低功耗。该信号为低电平时,可将所有内部寄存器  
置为低电平。  
封装:14mm x 6.1mm 薄型小外形尺寸 (TSSOP)  
1.8V 3.3V 耐压数据输入,可直接连接低功耗、  
低压应用和图形处理器  
传输速率高达 85Mpps(百万像素/秒);像素时钟  
频率范围 10MHz 85MHz;最高支持 2.38Gbps  
数据速率  
适合 HVGA 到高清 (HD) 范围内的显示分辨率,并  
且电磁干扰 (EMI) 较低  
通过 3.3V 单电源供电运行,75MHz 频率下的功耗  
170mW(典型值)  
SN65LVDS93B-Q1 的额定工作环境温度范围为 –40°C  
85°C。  
28 个数据通道 + 时钟输入低压晶体管-晶体管逻辑  
(TTL)4 个数据通道 + 时钟输出低压差分  
禁用时的功耗不到 1mW  
器件信息(1)  
可选上升或下降时钟沿触发输入  
支持扩频时钟 (SSC)  
器件型号  
封装  
封装尺寸(标称值)  
SN65LVDS93B-Q1  
TSSOP (56)  
14.00mm x 6.10mm  
支持从 RGB 888 转换至 LVDS I  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
2 应用范围  
简化原理图  
汽车导航显示屏  
R[0:7]  
汽车仪表组显示屏  
汽车中心堆栈显示屏  
TFT LCD Display  
G[0:7]  
Y0:3M  
Y0:3P  
B[0:7]  
Application  
Processor  
With  
LVCMOS/RGB  
Output  
RGB to LVDS  
Bridge  
3 说明  
SN65LVDS93B-Q1  
HSYNC  
VSYNC  
CLKOUTM/P  
SN65LVDS93B-Q1 变送器在单个集成电路中融合了 4  
7 位并行负载串行输出移位寄存器、1 7X 时钟合  
成器以及 5 个低电压差动信号 (LVDS) 线路驱动器。  
借助这些功能,可通过 5 个平衡对导体将 28 位单端  
LVTTL 数据同步发送至兼容接收器,如  
EN  
CLK  
24 bit TCON  
DS90CR286A-Q1 和具有集成 LVDS 接收器的 LCD  
面板。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSF42  
 
 
 
 
 
SN65LVDS93B-Q1  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 13  
8.3 Feature Description................................................. 14  
8.4 Device Functional Modes........................................ 15  
Application and Implementation ........................ 16  
9.1 Application Information............................................ 16  
9.2 Typical Application .................................................. 16  
1
2
3
4
5
6
特性.......................................................................... 1  
应用范围................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Timing Requirements................................................ 6  
6.7 Switching Characteristics.......................................... 8  
6.8 Typical Characteristics.............................................. 9  
Parameter Measurement Information .................. 9  
Detailed Description ............................................ 13  
8.1 Overview ................................................................. 13  
9
10 Power Supply Recommendations ..................... 22  
11 Layout................................................................... 22  
11.1 Layout Guidelines ................................................. 22  
11.2 Layout Example .................................................... 24  
12 器件和文档支持 ..................................................... 26  
12.1 ....................................................................... 26  
12.2 静电放电警告......................................................... 26  
12.3 接收文档更新通知 ................................................. 26  
12.4 社区资源................................................................ 26  
12.5 术语表 ................................................................... 26  
13 机械、封装和可订购信息....................................... 26  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (March 2018) to Revision A  
Page  
将器件状态从预告信息 更改为生产数据.................................................................................................................................. 1  
2
Copyright © 2018, Texas Instruments Incorporated  
 
SN65LVDS93B-Q1  
www.ti.com.cn  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
5 Pin Configuration and Functions  
DGG Package  
56-PIN (TSSOP)  
(Top View)  
IOVCC  
D5  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
D4  
2
D3  
D6  
3
D2  
D7  
4
GND  
D1  
GND  
D8  
5
6
D0  
D9  
7
D27  
D10  
VCC  
D11  
D12  
D13  
GND  
D14  
D15  
D16  
CLKSEL  
D17  
D18  
D19  
GND  
D20  
D21  
D22  
D23  
IOVCC  
D24  
D25  
8
GND  
Y0M  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Y0P  
Y1M  
Y1P  
LVDSVCC  
GND  
Y2M  
Y2P  
CLKOUTM  
CLKOUTP  
Y3M,Y3P  
Y3P  
GND  
GND  
PLLVCC  
GND  
SHTDN  
CLKIN  
D26  
GND  
Not to scale  
Copyright © 2018, Texas Instruments Incorporated  
3
SN65LVDS93B-Q1  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
www.ti.com.cn  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
NO.  
CMOS IN with  
pulldn  
CLKIN  
31  
Input pixel clock; rising or falling clock polarity is selectable by Control input CLKSEL.  
CLKOUTP  
CLKOUTM  
39  
40  
Differential LVDS pixel clock output.  
Output is high-impedance when SHTDN is pulled low (de-asserted).  
LVDS Out  
CMOS IN with  
pulldn  
Selects between rising edge input clock trigger (CLKSEL = VIH) and falling edge input clock  
trigger (CLKSEL = VIL).  
CLKSEL  
17  
2, 3, 4, 6  
7, 8, 10, 11  
12, 14, 15 , 16  
18, 19, 20, 22  
23, 24, 25, 27  
28, 30, 50  
D5, D6, D7, D8  
Data inputs; supports 1.8 V to 3.3 V input voltage selectable by VDD supply. To connect a  
graphic source successfully to a display, the bit assignment of D[27:0] is critical (and not  
necessarily intuitive).  
For input bit assignment see to for details.  
Note: if application only requires 18-bit color, connect unused inputs D5, D10, D11, D16,  
D17, D23, and D27 to GND.  
D9, D10, D11, D12  
D13, D14, D15, D16  
D17, D18, D19, D20  
D21, D22, D23, D24  
D25, D26, D27  
CMOS IN with  
pulldn  
51, 52, 54, 55,  
56  
D0, D1, D2, D3, D4  
5, 13, 21, 29, 33,  
35, 36, 43, 49,  
53  
GND  
Power Supply(1) Supply ground for VCC, IOVCC, LVDSVCC, and PLLVCC.  
IOVCC  
1, 26  
44  
Power Supply(1) I/O supply reference voltage (1.8 V up to 3.3 V matching the GPU data output signal swing)  
Power Supply(1) 3.3 V LVDS output analog supply  
Power Supply(1) 3.3 V PLL analog supply  
LVDSVCC  
PLLVCC  
34  
CMOS IN with  
pulldn  
Device shut down; pull low (de-assert) to shut down the device (low power, resets all  
registers) and high (assert) for normal operation.  
SHTDN  
32  
VCC  
Y0P  
Y0M  
Y1P  
Y1M  
Y2P  
Y2M  
Y3P  
9
Power Supply(1) 3.3 V digital supply voltage  
47  
48  
45  
45  
41  
42  
37  
Differential LVDS data outputs.  
LVDS Out  
Outputs are high-impedance when SHTDN is pulled low (de-asserted)  
Differential LVDS Data outputs.  
LVDS Out  
Output is high-impedance when SHTDN is pulled low (de-asserted).  
Note: if the application only requires 18-bit color, this output can be left open.  
Y3M  
38  
(1) For a multilayer pcb, it is recommended to keep one common GND layer underneath the device and connect all ground terminals  
directly to this plane.  
4
Copyright © 2018, Texas Instruments Incorporated  
SN65LVDS93B-Q1  
www.ti.com.cn  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
6 Specifications  
6.1 Absolute Maximum Ratings(1)  
MIN  
–0.5  
–0.5  
–0.5  
MAX  
4
UNIT  
Supply voltage range, VCC, IOVCC, LVDSVCC, PLLVCC(2)  
Voltage range at any output terminal  
Voltage range at any input terminal  
Continuous power dissipation  
V
V
V
VCC + 0.5  
IOVCC + 0.5  
See Thermal Information  
–65 150  
Storage temperature, Tstg  
°C  
(1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may  
degrade device reliability. These are stress ratings only, and functional operation of the device at these or any other conditions beyond  
those specified is not implied.  
(2) All voltages are with respect to the GND terminals.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. e.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
MIN  
3
NOM  
MAX  
3.6  
3.6  
3.6  
3.6  
0.1  
UNIT  
Supply voltage, VCC  
3.3  
3.3  
LVDS output Supply voltage, LVDSVCC  
PLL analog supply voltage, PLLVCC  
IO input reference supply voltage, IOVCC  
Power supply noise on any VCC terminal  
3
3
3.3  
V
1.62  
1.8 / 2.5 / 3.3  
IOVCC = 1.8 V  
IOVCC = 2.5 V  
IOVCC = 3.3 V  
IOVCC = 1.8 V  
IOVCC = 2.5 V  
IOVCC = 3.3 V  
IOVCC/2 + 0.3 V  
IOVCC/2 + 0.4 V  
IOVCC/2 + 0.5 V  
High-level input voltage, VIH  
Low-level input voltage, VIL  
V
V
IOVCC/2 - 0.3 V  
IOVCC/2 - 0.4 V  
IOVCC/2 - 0.5 V  
Differential load impedance, ZL  
Operating free-air temperature, TA  
Virtual junction temperature, TJ  
90  
132  
85  
–40  
°C  
°C  
105  
6.4 Thermal Information  
SN65LVDS93B-Q1  
THERMAL METRIC(1)  
DGG (TSSOP)  
56 PINS  
63.4  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
15.9  
32.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
0.4  
ψJB  
32.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2018, Texas Instruments Incorporated  
5
 
SN65LVDS93B-Q1  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
www.ti.com.cn  
Thermal Information (continued)  
SN65LVDS93B-Q1  
DGG (TSSOP)  
56 PINS  
THERMAL METRIC(1)  
UNIT  
RθJC(bot)  
Junction-to-case (bottom) thermal resistance  
N/A  
°C/W  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
V
VT  
Input voltage threshold  
IOVCC/2  
Differential steady-state output voltage  
magnitude  
mV  
|VOD  
|
250  
450  
35  
RL = 100, See 5  
Change in the steady-state differential  
output voltage magnitude between  
opposite binary states  
Δ|VOD  
|
1
mV  
Steady-state common-mode output  
voltage  
VOC(SS)  
VOC(PP)  
1.125  
1.375  
35  
V
See 5  
tR/F (Dx, CLKin) = 1ns  
Peak-to-peak common-mode output  
voltage  
mV  
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = IOVCC  
VIL = 0 V  
25  
±10  
±24  
±12  
±20  
μA  
μA  
VOY = 0 V  
mA  
mA  
μA  
IOS  
Short-circuit output current  
VOD = 0 V  
IOZ  
High-impedance state output current  
VO = 0 V to VCC  
IOVCC = 1.8 V  
IOVCC = 3.3 V  
200  
100  
Input pull-down integrated resistor on all  
inputs (Dx, CLKSEL, SHTDN, CLKIN)  
Rpdn  
kΩ  
μA  
disabled, all inputs at GND;  
SHTDN = VIL  
IQ  
Quiescent current (average)  
10  
100  
SHTDN = VIH, RL = 100(5 places),  
grayscale pattern (6)  
VCC = 3.3 V, fCLK = 75 MHz  
I(VCC) + I(PLLVCC) + I(LVDSVCC)  
51.9  
0.4  
I(IOVCC) with IOVCC = 3.3 V  
I(IOVCC) with IOVCC = 1.8 V  
mA  
mA  
0.1  
SHTDN = VIH, RL = 100(5 places), worst-  
case pattern (7),  
VCC = 3.6 V, fCLK = 75 MHz  
ICC  
Supply current (average)  
I(VCC) + I(PLLVCC) + I(LVDSVCC)  
I(IOVCC) with IOVCC = 3.3 V  
I(IOVCC) with IOVCC = 1.8 V  
63.7  
1.3  
0.5  
SHTDN = VIH, RL = 100(5 places), worst-  
case pattern (7),  
fCLK = 85 MHz  
I(VCC) + I(PLLVCC) + I(LVDSVCC)  
I(IOVCC) with IOVCC = 3.6 V  
I(IOVCC) with IOVCC = 1.8 V  
75.1  
1.5  
0.6  
2
mA  
pF  
CI  
Input capacitance  
(1) All typical values are at VCC = 3.3 V, TA = 25°C.  
6.6 Timing Requirements  
PARAMETER  
MIN  
MAX  
UNIT  
Input clock period, tc  
7.4  
100  
8%  
ns  
with modulation frequency 30 kHz  
with modulation frequency 50 kHz  
Input clock modulation  
6%  
High-level input clock pulse width duration, tw  
Input signal transition time, tt  
0.4 tc  
0.6 tc  
3
ns  
ns  
6
Copyright © 2018, Texas Instruments Incorporated  
SN65LVDS93B-Q1  
www.ti.com.cn  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
Timing Requirements (continued)  
PARAMETER  
MIN  
2
MAX  
UNIT  
ns  
Data set up time, D0 through D27 before CLKIN (See 4)  
Data hold time, D0 through D27 after CLKIN  
0.8  
ns  
Dn  
CLKIN  
or  
CLKIN  
CLKOUT  
Previous cycle  
Next  
Current cycle  
Y0  
Y1  
Y2  
Y3  
D7+1  
D0-1  
D8-1  
D7  
D18  
D26  
D23  
D6  
D15  
D25  
D17  
D4  
D14  
D24  
D16  
D3  
D13  
D22  
D11  
D2  
D1  
D9  
D0  
D8  
D12  
D21  
D10  
D18+1  
D26+1  
D23+1  
D19-1  
D27-1  
D20  
D5  
D19  
D27  
1. Typical SN65LVDS93B-Q1 Load and Shift Sequences  
LVDSVCC  
IOVCC  
5W  
YnP or  
YnM  
D or  
SHTDN  
50W  
10kW  
7V  
7V  
300kW  
2. Equivalent Input and Output Schematic Diagrams  
版权 © 2018, Texas Instruments Incorporated  
7
SN65LVDS93B-Q1  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
www.ti.com.cn  
6.7 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
Delay time, CLKOUTafter Yn valid  
(serial bit position 0, equal D1, D9,  
D20, D5)  
t0  
t1  
t2  
t3  
t4  
t5  
-0.1  
0
0.1  
7 tc + 0.1  
7 tc + 0.1  
7 tc + 0.1  
7 tc + 0.1  
7 tc + 0.1  
7 tc + 0.1  
ns  
Delay time, CLKOUTafter Yn valid  
(serial bit position 1, equal D0, D8,  
D19, D27)  
1
2
3
4
5
6
1
2
3
4
5
6
/
/
/
/
/
/
7 tc - 0.1  
7 tc - 0.1  
7 tc - 0.1  
7 tc - 0.1  
7 tc - 0.1  
7 tc - 0.1  
/
/
/
/
/
/
ns  
ns  
ns  
ns  
ns  
Delay time, CLKOUTafter Yn valid  
(serial bit position 2, equal D7, D18,  
D26. D23)  
Delay time, CLKOUTafter Yn valid  
(serial bit position 3; equal D6, D15,  
D25, D17)  
See 8, tC = 10ns,  
|Input clock jitter| < 25ps  
(2)  
Delay time, CLKOUTafter Yn valid  
(serial bit position 4, equal D4, D14,  
D24, D16)  
Delay time, CLKOUTafter Yn valid  
(serial bit position 5, equal D3, D13,  
D22, D11)  
Delay time, CLKOUTafter Yn valid  
(serial bit position 6, equal D2, D12,  
D21, D10)  
t6  
ns  
ns  
tc(o)  
Output clock period  
tc  
tC = 10ns; clean reference clock, see  
9  
±35  
tC = 10ns with 0.05UI added noise  
modulated at 3MHz, see 9  
±44  
±35  
(3)  
Δtc(o)  
Output clock cycle-to-cycle jitter  
ps  
tC = 7.4ns; clean reference clock,  
see 9  
tC = 7.4ns with 0.05UI added noise  
modulated at 3MHz, see 9  
±42  
High-level output clock pulse  
duration  
4
tw  
/
7 tc  
ns  
ps  
µs  
ns  
Differential output voltage transition  
time (tr or tf)  
tr/f  
ten  
tdis  
See 5  
225  
10  
500  
Enable time, SHTDNto phase lock  
(Yn valid)  
f(clk) = 85MHz, See 10  
f(clk) = 85MHz, See 11  
Disable time, SHTDNto off-state  
(CLKOUT high-impedance)  
12  
(1) All typical values are at VCC = 3.3 V, TA = 25°C.  
(2) |Input clock jitter| is the magnitude of the change in the input clock period.  
(3) The output clock cycle-to-cycle jitter is the largest recorded change in the output clock period from one cycle to the next cycle observed  
over 15,000 cycles.Tektronix TDSJIT3 Jitter Analysis software was used to derive the maximum and minimum jitter value.  
8
版权 © 2018, Texas Instruments Incorporated  
SN65LVDS93B-Q1  
www.ti.com.cn  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
6.8 Typical Characteristics  
80  
70  
60  
50  
V
= 3.6 V  
CC  
40  
V
= 3 V  
CC  
30  
20  
V
= 3.3 V  
CC  
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85  
- Clock Frequency - MHz  
f
clk  
Total Device Current (Using Grayscale pattern) Over Pixel Clock Frequency  
3. Average Grayscale ICC vs Clock Frequency  
7 Parameter Measurement Information  
tsu  
thold  
Dn  
CLKIN  
All input timing is defined at IOVDD / 2 on an input signal with a 10% to 90% rise or fall time of less than 3 ns.  
CLKSEL = 0 V.  
4. Set Up and Hold Time Definition  
版权 © 2018, Texas Instruments Incorporated  
9
SN65LVDS93B-Q1  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
www.ti.com.cn  
49.9W ꢀ1 ꢁ( ꢂPLCS  
Yꢂ  
V
OD  
V
YM  
OL  
ꢀ001  
801  
V
ODꢁHS  
0V  
V
ODꢁPS  
(01  
01  
t
t
r
f
V
OLꢁꢂꢂS  
V
V
OLꢁCCS  
OLꢁCCS  
0V  
5. Test Load and Voltage Definitions for LVDS Outputs  
CLKIN  
D0,8,16  
D1,9,17  
D2,10,18  
D3,11,19  
D4-7,12-15,20-23  
D24-27  
The 16 grayscale test pattern test device power consumption for a typical display pattern.  
6. 16 Grayscale Test Pattern  
T
CLKIN  
EVEN Dn  
ODD Dn  
The worst-case test pattern produces nearly the maximum switching frequency for all of the LVDS outputs.  
7. Worst-Case Power Test Pattern  
10  
版权 © 2018, Texas Instruments Incorporated  
SN65LVDS93B-Q1  
www.ti.com.cn  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
t7  
CLKIN  
CLKOUT  
t6  
t5  
t4  
t3  
t2  
t1  
t0  
Yn  
VOD(H)  
0.00V  
~2.5V  
1.40V  
~0.5V  
CLKOUT  
or Yn  
CLKIN  
VOD(L)  
t7  
t0-6  
CLKOUT is shown with CLKSEL at high-level.  
CLKIN polarity depends on CLKSEL input level.  
8. SN65LVDS93B-Q1 Timing Definitions  
Device  
Under  
Test  
+
Reference  
VCO  
+
Modulation  
v(t) = A sin(2 pf  
t)  
mod  
HP8656B Signal  
Generator,  
0.1 MHz-990 MHz  
HP8665A Synthesized  
Signal Generator,  
0.1 MHz-4200 MHz  
Device Under  
Test  
DTS2070C  
Digital  
TimeScope  
Input  
RF Output  
CLKIN  
CLKOUT  
RF Output  
Modulation Input  
9. Output Clock Jitter Test Set Up  
版权 © 2018, Texas Instruments Incorporated  
11  
SN65LVDS93B-Q1  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
www.ti.com.cn  
CLKIN  
Dn  
ten  
SHTDN  
Yn  
Invalid  
Valid  
10. Enable Time Waveforms  
CLKIN  
tdis  
SHTDN  
CLKOUT  
11. Disable Time Waveforms  
12  
版权 © 2018, Texas Instruments Incorporated  
SN65LVDS93B-Q1  
www.ti.com.cn  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
8 Detailed Description  
8.1 Overview  
The SN65LVDS93B-Q1 takes in three (or four) data words each containing seven single-ended data bits and  
converts this to an LVDS serial output. Each serial output runs at seven times that of the parallel data rate. The  
deserializer (receiver) device operates in the reverse manner. The three (or four) LVDS serial inputs are  
transformed back to the original seven-bit parallel single-ended data. Additional TI solutions are available in 21:3  
or 28:4 SerDes ratios.  
The 21-bit devices are designed for 6-bit RGB video for a total of 18 bits in addition to three extra bits for  
horizontal synchronization, vertical synchronization, and data enable.  
The 28-bit devices are intended for 8-bit RGB video applications. Again, the extra four bits are for horizontal  
synchronization, vertical synchronization, data enable, and the remaining is the reserved bit. These 28-bit  
devices can also be used in 6-bit and 4-bit RGB applications as shown in the subsequent system diagrams.  
8.2 Functional Block Diagram  
Parallel-Load 7-bit  
Shift Register  
D0, D1, D2, D3,  
D4, D6, D7  
7
7
7
7
Y0P  
Y0M  
A,B,...G  
SHIFT/LOAD  
>CLK  
Parallel-Load 7-bit  
Shift Register  
D8, D9, D12, D13,  
D14, D15, D18  
Y1P  
Y1M  
A,B,...G  
SHIFT/LOAD  
>CLK  
Parallel-Load 7-bit  
ShiftRegister  
D19, D20, D21, D22,  
D24, D25, D26  
Y2P  
Y2M  
A,B,...G  
SHIFT/LOAD  
>CLK  
Parallel-Load 7-bit  
Shift Register  
D5, D10, D11, D16,  
D17, D23, D27  
Y3P  
Y3M  
A,B,...G  
SHIFT/LOAD  
>CLK  
Control Logic  
SHTDN  
7X Clock/PLL  
7XCLK  
CLKOUTP  
CLKOUTM  
>CLK  
CLKIN  
CLKINH  
CLKSEL  
RISING/FALLING EDGE  
版权 © 2018, Texas Instruments Incorporated  
13  
SN65LVDS93B-Q1  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 TTL Input Data  
The data inputs to the transmitter come from the graphics processor and consist of up to 24 bits of video  
information, a horizontal synchronization bit, a vertical synchronization bit, an enable bit, and a spare bit. The  
data can be loaded into the registers upon either the rising or falling edge of the input clock selectable by the  
CLKSEL pin. Data inputs are 1.8 V to 3.3 V tolerant for the SN65LVDS93B-Q1 and can connect directly to low-  
power, low-voltage application and graphic processors. The bit mapping is listed in 1.  
1. Pixel Bit Ordering  
RED  
R0  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
GREEN  
G0  
BLUE  
B0  
LSB  
G1  
B1  
G2  
B2  
4-bit MSB  
6-bit MSB  
G3  
B3  
G4  
B4  
G5  
B5  
G6  
B6  
8-bit MSB  
G7  
B7  
8.3.2 LVDS Output Data  
The pixel data assignment is listed in 2 for 24-bit, 18-bit, and 12-bit color hosts.  
2. Pixel Data Assignment  
8-BIT  
6-BIT  
4-BIT  
SERIAL  
CHANNEL  
DATA BITS  
NON-LINEAR STEP LINEAR STEP  
FORMAT-1  
FORMAT-2  
FORMAT-3  
SIZE  
SIZE  
VCC  
GND  
R0  
D0  
D1  
R0  
R1  
R2  
R3  
R2  
R3  
R0  
R1  
R2  
R3  
D2  
R2  
R4  
R4  
R2  
R0  
Y0  
Y1  
Y2  
D3  
R3  
R5  
R5  
R3  
R1  
R1  
D4  
R4  
R6  
R6  
R4  
R2  
R2  
D6  
R5  
R7  
R7  
R5  
R3  
R3  
D7  
G0  
G2  
G2  
G0  
G2  
VCC  
GND  
G0  
D8  
G1  
G3  
G3  
G1  
G3  
D9  
G2  
G4  
G4  
G2  
G0  
D12  
D13  
D14  
D15  
D18  
D19  
D20  
D21  
D22  
D24  
D25  
D26  
G3  
G5  
G5  
G3  
G1  
G1  
G4  
G6  
G6  
G4  
G2  
G2  
G5  
G7  
G7  
G5  
G3  
G3  
B0  
B2  
B2  
B0  
B2  
VCC  
GND  
B0  
B1  
B3  
B3  
B1  
B3  
B2  
B4  
B4  
B2  
B0  
B3  
B5  
B5  
B3  
B1  
B1  
B4  
B6  
B6  
B4  
B2  
B2  
B5  
B7  
B7  
B5  
B3  
B3  
HSYNC  
VSYNC  
ENABLE  
HSYNC  
VSYNC  
ENABLE  
HSYNC  
VSYNC  
ENABLE  
HSYNC  
VSYNC  
ENABLE  
HSYNC  
VSYNC  
ENABLE  
HSYNC  
VSYNC  
ENABLE  
14  
版权 © 2018, Texas Instruments Incorporated  
 
 
SN65LVDS93B-Q1  
www.ti.com.cn  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
2. Pixel Data Assignment (接下页)  
8-BIT  
6-BIT  
4-BIT  
SERIAL  
CHANNEL  
DATA BITS  
NON-LINEAR STEP LINEAR STEP  
FORMAT-1  
FORMAT-2  
FORMAT-3  
SIZE  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
CLK  
SIZE  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
CLK  
D27  
D5  
R6  
R7  
R0  
R1  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
CLK  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
CLK  
D10  
D11  
D16  
D17  
D23  
CLKIN  
G6  
G0  
Y3  
G7  
G1  
B6  
B0  
B7  
B1  
RSVD  
CLK  
RSVD  
CLK  
CLKOUT  
8.4 Device Functional Modes  
8.4.1 Input Clock Edge  
The transmission of data bits D0 through D27 occurs as each are loaded into registers upon the edge of the  
CLKIN signal, where the rising or falling edge of the clock may be selected via CLKSEL. The selection of a clock  
rising edge occurs by inputting a high level to CLKSEL, which is achieved by populating pull-up resistor to pull  
CLKSEL=high. Inputting a low level to select a clock falling edge is achieved by directly connecting CLKSEL to  
GND.  
8.4.2 Low Power Mode  
The SN65LVDS93B-Q1 can be put in low-power consumption mode by active-low input SHTDN#. Connecting  
pin SHTDN# to GND will inhibit the clock and shut off the LVDS output drivers for lower power consumption. A  
low-level on this signal clears all internal registers to a low-level. Populate a pull-up to VCC on SHTDN# to  
enable the device for normal operation.  
版权 © 2018, Texas Instruments Incorporated  
15  
SN65LVDS93B-Q1  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
This section describes the power up sequence, provides information on device connectivity to various GPU and  
LCD display panels, and offers a PCB routing example.  
9.2 Typical Application  
J1  
U1H  
J2  
sma_surface  
C3  
GND1  
C5  
GND2  
D3  
GND3  
F5  
J3  
GND4  
sma_surface  
G3  
H3  
J5  
A1  
B1  
F2  
U1A  
GND5  
D1  
D2  
GND6  
CLKM  
CLKP  
GND7  
J4  
PLLGND  
LVDSGND1  
LVDSGND2  
sma_surface  
H2  
H1  
Y0P  
Y0M  
G2  
G1  
J5  
sma_surface  
Y1P  
Y1M  
SN65LVDS93B  
E1  
E2  
Y2P  
Y2M  
J6  
sma_surface  
IOVCC  
C2  
C1  
Y3P  
Y3M  
R4  
R5  
R6  
R7  
R8  
R9  
R10  
4.7k  
4.7k  
4.7k  
4.7k  
4.7k  
4.7k  
4.7k  
J7  
sma_surface  
JMP1  
SN65LVDS93B  
U1B  
J2  
D0  
D1  
D2  
D3  
D4  
D6  
D7  
D0  
K1  
D1  
K2  
1
2
J8  
sma_surface  
D2  
J3  
D3  
K3  
D4  
J4  
J9  
D6  
K5  
D7  
sma_surface  
14  
Header 7x2  
SN65LVDS93B  
J10  
sma_surface  
IOVCC  
R11  
4.7k  
R12  
4.7k  
R13  
4.7k  
R14  
4.7k  
R15  
4.7k  
R16  
4.7k  
R17  
4.7k  
sma_surface  
JMP2  
U1C  
K6  
D8  
D8  
J6  
D9  
1
2
D9  
IOVCC  
IOVCC  
G5  
D12  
D13  
D14  
D15  
D18  
D12  
G6  
D13  
F6  
D14  
E5  
D15  
D5  
D18  
14  
R1  
R2  
Header 7x2  
4.7k  
SN65LVDS93B  
IOVCC  
R18  
4.7k  
R19  
4.7k  
R20  
4.7k  
R21  
4.7k  
R22  
4.7k  
R23  
4.7k  
R24  
4.7k  
JMP6  
U1G  
JMP3  
B3  
SHTDN  
U1D  
SHTDN  
1
3
2
4
D4  
CLKSEL  
C6  
D19  
D19  
D20  
D21  
D22  
D24  
D25  
D26  
CLKSEL  
1
2
B6  
D20  
Header 2x2  
B5  
D21  
A6  
D22  
SN65LVDS93B  
A4  
D24  
B4  
D25  
A3  
D26  
14  
U1J  
E3  
NC1  
Header 7x2  
E4  
NC2  
SN65LVDS93B  
F3  
NC3  
F4  
NC4  
IOVCC  
R25  
4.7k  
R26  
4.7k  
R27  
4.7k  
R28  
4.7k  
R29  
4.7k  
R30  
4.7k  
R31  
4.7k  
SN65LVDS93B  
JMP4  
U1E  
K4  
D5  
D5  
VCC  
IOVCC  
1
2
H4  
D10  
H6  
D10  
D11  
D16  
D17  
D23  
D27  
U1I  
D11  
E6  
D16  
G4  
B2  
F1  
VCC  
PLLVCC  
D6  
D17  
A5  
D23  
LVDSVCC  
J1  
D27  
14  
H5  
C4  
IOVCC1  
IOVCC2  
Header 7x2  
SN65LVDS93B  
SN65LVDS93B  
VCC  
VCC  
VCC  
IOVCC  
C31  
1uF  
C32  
0.1uF  
C33  
0.01uF  
C34  
1uF  
C35  
0.1uF  
C36  
0.01uF  
C40  
1uF  
C41  
C42  
C37  
1uF  
C38  
C39  
0.1uF  
0.01uF  
0.1uF  
0.01uF  
PLACE UNDER LVDS93B-Q1  
(bottom pcb side)  
12. Schematic Example  
16  
版权 © 2018, Texas Instruments Incorporated  
 
SN65LVDS93B-Q1  
www.ti.com.cn  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
Typical Application (接下页)  
9.2.1 Design Requirements  
DESIGN PARAMETER  
EXAMPLE VALUE  
VCC  
VCCIO  
CLKIN  
3.3 V  
1.8 V  
Falling edge  
High  
SHTDN#  
Format  
18-bit GPU to 24-bit LCD  
9.2.2 Detailed Design Procedure  
9.2.2.1 Power Up Sequence  
The SN65LVDS93B-Q1 does not require a specific power up sequence.  
It is permitted to power up IOVCC while VCC, VCCPLL, and VCCLVDS remain powered down and connected to  
GND. The input level of the SHTDN during this time does not matter as only the input stage is powered up while  
all other device blocks are still powered down.  
It is also permitted to power up all 3.3V power domains while IOVCC is still powered down to GND. The device  
will not suffer damage. However, in this case, all the I/Os are detected as logic HIGH, regardless of their true  
input voltage level. Hence, connecting SHTDN to GND will still be interpreted as a logic HIGH; the LVDS output  
stage will turn on. The power consumption in this condition is significantly higher than standby mode, but still  
lower than normal mode.  
The user experience can be impacted by the way a system powers up and powers down an LCD screen. The  
following sequence is recommended:  
Power up sequence (SN65LVDS93B-Q1 SHTDN input initially low):  
A. Ramp up LCD power (maybe 0.5ms to 10ms) but keep backlight turned off.  
B. Wait for additional 0-200ms to ensure display noise won’t occur.  
C. Enable video source output; start sending black video data.  
D. Toggle SN65LVDS93B-Q1 shutdown to SHTDN = VIH.  
E. Send >1ms of black video data; this allows the SN65LVDS93B-Q1 to be phase locked, and the display to  
show black data first.  
F. Start sending true image data.  
G. Enable backlight.  
Power Down sequence (SN65LVDS93B-Q1 SHTDN input initially high):  
A. Disable LCD backlight; wait for the minimum time specified in the LCD data sheet for the backlight to go low.  
B. Video source output data switch from active video data to black image data (all visible pixel turn black); drive  
this for >2 frame times.  
C. Set SN65LVDS93B-Q1 input SHTDN = GND; wait for 250ns.  
D. Disable the video output of the video source.  
E. Remove power from the LCD panel for lowest system power.  
9.2.2.2 Signal Connectivity  
While there is no formal industry standardized specification for the input interface of LVDS LCD panels, the  
industry has aligned over the years on a certain data format (bit order). 13 through 15 show how each  
signal should be connected from the graphic source through the SN65LVDS93B-Q1 input, output and LVDS LCD  
panel input. Detailed notes are provided with each figure.  
版权 © 2018, Texas Instruments Incorporated  
17  
SN65LVDS93B-Q1  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
www.ti.com.cn  
24-bpc GPU  
SN65LVDS93B-Q1  
FORMAT1 FORMAT2 (See Note A)  
R0(LSB)  
R1  
R2  
D0  
D1  
D27  
D5  
D2  
D3  
D4  
D6  
D27  
D5  
D7  
D8  
D0  
D1  
D2  
D3  
R3  
R4  
R5  
R6  
Y0M  
Y0P  
100  
100  
to column  
driver  
D4  
R7(MSB)  
G0(LSB)  
G1  
D6  
Y1M  
Y1P  
D10  
D11  
D7  
FPC  
Cable  
LVDS  
timing  
Controller  
G2  
G3  
D9  
Y2M  
Y2P  
100  
D12  
D13  
D14  
D10  
D11  
D15  
D18  
D19  
D20  
D21  
D22  
D16  
D17  
D24  
D25  
D26  
D23  
D8  
G4  
D9  
(8bpc, 24bpp)  
G5  
G6  
D12  
D13  
D14  
D16  
D17  
D15  
D18  
D19  
D20  
D21  
D22  
D24  
D25  
D26  
D23  
Y3M  
Y3P  
100  
to row driver  
G7(MSB)  
B0(LSB)  
B1  
CLKOUTM  
CLKOUTP  
100  
B2  
B3  
B4  
B5  
24-bpp LCD Display  
B6  
B7(MSB)  
HSYNC  
VSYNC  
ENABLE  
RSVD (Note C)  
CLK  
CLKIN CLKIN  
4.8k  
3.3V  
C2  
3.3V  
C3  
1.8V or 2.5V  
or 3.3V  
C1  
Rpullup  
Rpulldown  
(See Note B)  
Main Board  
Note A. FORMAT: The majority of 24-bit LCD display panels require the two most significant bits (2 MSB ) of each  
color to be transferred over the 4th serial data output Y3. A few 24-bit LCD display panels require the two LSBs of  
each color to be transmitted over the Y3 output. The system designer needs to verify which format is expected by  
checking the LCD display data sheet.  
Format 1: use with displays expecting the 2 MSB to be transmitted over the 4th data channel Y3. This is the  
dominate data format for LCD panels.  
Format 2: use with displays expecting the 2 LSB to be transmitted over the 4th data channel.  
Note B. Rpullup: install only to use rising edge triggered clocking.  
Rpulldown: install only to use falling edge triggered clocking.  
C1: decoupling cap for the VDDIO supply; install at least 1x0.01µF.  
C2: decoupling cap for the VDD supply; install at least 1x0.1µF and 1x0.01µF.  
C3: decoupling cap for the VDDPLL and VDDLVDS supply; install at least 1x0.1µF and 1x0.01µF.  
Note C. If RSVD is not driven to a valid logic level, then an external connection to GND is recommended.  
Note D. RSVD must be driven to a valid logic level. All unused SN65LVDS93B-Q1 inputs must be tied to a valid logic  
level.  
13. 24-Bit Color Host to 24-Bit LCD Panel Application  
18  
版权 © 2018, Texas Instruments Incorporated  
SN65LVDS93B-Q1  
www.ti.com.cn  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
18-bpp GPU  
SN65LVDS93B-Q1  
R0(LSB)  
R1  
R2  
D0  
D1  
D2  
R3  
R4  
D3  
D4  
D6  
Y0M  
Y0P  
100  
R5(MSB)  
to column  
driver  
D27  
D5  
D7  
D8  
Y1M  
Y1P  
100  
G0(LSB)  
G1  
G2  
FPC  
Cable  
D9  
Y2M  
Y2P  
LVDS  
100  
timing  
Controller  
(6-bpc, 18-bpp)  
G3  
G4  
D12  
D13  
D14  
D10  
D11  
D15  
D18  
D19  
D20  
D21  
D22  
D16  
D17  
D24  
D25  
D26  
D23  
CLKIN  
G5(MSB)  
CLKOUTM  
CLKOUTP  
100  
to row driver  
B0(LSB)  
B1  
B2  
B3  
B4  
B5(MSB)  
18-bpp LCD Display  
Y3M  
Y3P  
(See Note A)  
HSYNC  
VSYNC  
ENABLE  
RSVD  
CLK  
3.3V  
C2  
3.3V  
C3  
4.8k  
1.8V or 2.5V  
or 3.3V  
C1  
Rpullup  
Rpulldown  
(See Note B)  
Main Board  
Note A. Leave output Y3 NC.  
Note B.Rpullup: install only to use rising edge triggered clocking.  
Rpulldown: install only to use falling edge triggered clocking.  
C1: decoupling cap for the VDDIO supply; install at least 1x0.01µF.  
C2: decoupling cap for the VDD supply; install at least 1x0.1µF and 1x0.01µF.  
C3: decoupling cap for the VDDPLL and VDDLVDS supply; install at least 1x0.1µF and 1x0.01µF.  
14. 18-Bit Color Host to 18-Bit Color LCD Panel Display Application  
版权 © 2018, Texas Instruments Incorporated  
19  
SN65LVDS93B-Q1  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
www.ti.com.cn  
24-bpp GPU  
SN65LVDS93B-Q1  
R0 and R1: NC  
(See Note B)  
R2  
D0  
R3  
R4  
D1  
D2  
R5  
R6  
D3  
D4  
D6  
Y0M  
Y0P  
100  
100  
R7(MSB)  
to column  
driver  
D27  
D5  
D7  
D8  
G0 and G1: NC  
(See Note B)  
Y1M  
Y1P  
G2  
G3  
FPC  
Cable  
G4  
G5  
G6  
D9  
Y2M  
Y2P  
LVDS  
timing  
Controller  
100  
D12  
D13  
D14  
D10  
D11  
D15  
D18  
D19  
D20  
D21  
D22  
D16  
D17  
D24  
D25  
D26  
D23  
CLKIN  
(6-bpc, 18-bpp)  
G7(MSB)  
CLKOUTM  
CLKOUTP  
100  
to row driver  
B0 and B1: NC  
(See Note B)  
B2  
B3  
B4  
B5  
B6  
B7(MSB)  
18-bpp LCD Display  
B0 and B1: NC  
(See Note B)  
Y3M  
Y3P  
(See Note A)  
HSYNC  
VSYNC  
ENABLE  
RSVD  
CLK  
4.8k  
3.3V  
C2  
3.3V  
C3  
1.8V or 2.5V  
or 3.3V  
C1  
Rpullup  
Rpulldown  
(See Note C)  
Main Board  
Note A. Leave output Y3 NC.  
Note B. R0, R1, G0, G1, B0, B1: For improved image quality, the GPU should dither the 24-bit output pixel down  
to18-bit per pixel.  
NoteC.Rpullup: install only to use rising edge triggered clocking.  
Rpulldown: install only to use falling edge triggered clocking.  
C1: decoupling cap for the VDDIO supply; install at least 1x0.01µF.  
C2: decoupling cap for the VDD supply; install at least 1x0.1µF and 1x0.01µF.  
C3: decoupling cap for the VDDPLL and VDDLVDS supply; install at least 1x0.1µF and 1x0.01µF.  
15. 24-Bit Color Host to 18-Bit Color LCD Panel Display Application  
20  
版权 © 2018, Texas Instruments Incorporated  
SN65LVDS93B-Q1  
www.ti.com.cn  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
9.2.2.3 PCB Routing  
16 shows a possible breakout of the data input and output signals on two layers of a printed circuit board.  
D27  
D5  
D10  
D11  
D16  
D17  
D23  
Y0M  
Y0P  
D19  
D20  
D21  
D22  
D24  
D25  
D26  
Y1M  
Y1P  
Y2M  
Y2P  
D8  
D9  
CLKINM  
CLKINP  
D12  
D13  
D14  
D15  
D18  
Y3M  
Y3P  
D0  
D1  
D2  
D3  
D4  
D6  
D7  
CLKIN  
16. Printed Circuit Board Routing Example (See 12 for the Schematic)  
9.2.3 Application Curve  
250  
200  
150  
100  
50  
0
1
4
7
10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64  
Pixel Samples  
17. 18b GPU to 24b LCD  
版权 © 2018, Texas Instruments Incorporated  
21  
 
SN65LVDS93B-Q1  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
www.ti.com.cn  
10 Power Supply Recommendations  
Power supply PLL, IO, and LVDS pins must be uncoupled from each.  
11 Layout  
11.1 Layout Guidelines  
11.1.1 Board Stackup  
There is no fundamental information about how many layers should be used and how the board stackup should  
look. Again, the easiest way the get good results is to use the design from the EVMs of Texas Instruments. The  
magazine Elektronik Praxis has published an article with an analysis of different board stackups. These are listed  
in 3. Generally, the use of microstrip traces needs at least two layers, whereas one of them must be a GND  
plane. Better is the use of a four-layer PCB, with a GND and a VCC plane and two signal layers. If the circuit is  
complex and signals must be routed as stripline, because of propagation delay and/or characteristic impedance,  
a six-layer stackup should be used.  
3. Possible Board Stackup on a Four-Layer PCB  
MODEL 1  
SIG  
MODEL 2  
SIG  
MODEL 3  
SIG  
MODEL 4  
GND  
SIG  
Layer 1  
Layer 2  
SIG  
GND  
GND  
Layer 3  
VCC  
VCC  
SIG  
VCC  
SIG  
Layer 4  
GND  
SIG  
VCC  
Decoupling  
EMC  
Good  
Bad  
Good  
Bad  
Bad  
Bad  
Bad  
Bad  
Signal Integrity  
Self Disturbance  
Bad  
Bad  
Good  
Satisfaction  
Bad  
Satisfaction  
Satisfaction  
High  
11.1.2 Power and Ground Planes  
A complete ground plane in high-speed design is essential. Additionally, a complete power plane is  
recommended as well. In a complex system, several regulated voltages can be present. The best solution is for  
every voltage to have its own layer and its own ground plane. But this would result in a huge number of layers  
just for ground and supply voltages. What are the alternatives? Split the ground planes and the power planes? In  
a mixed-signal design, e.g., using data converters, the manufacturer often recommends splitting the analog  
ground and the digital ground to avoid noise coupling between the digital part and the sensitive analog part. Take  
care when using split ground planes because:  
Split ground planes act as slot antennas and radiate.  
A routed trace over a gap creates large loop areas, because the return current cannot flow beside the signal,  
and the signal can induce noise into the nonrelated reference plane (18).  
With a proper signal routing, crosstalk also can arise in the return current path due to discontinuities in the  
ground plane. Always take care of the return current (19).  
For 19, do not route a signal referenced to digital ground over analog ground and vice versa. The return  
current cannot take the direct way along the signal trace and so a loop area occurs. Furthermore, the signal  
induces noise, due to crosstalk (dotted red line) into the analog ground plane.  
22  
版权 © 2018, Texas Instruments Incorporated  
 
SN65LVDS93B-Q1  
www.ti.com.cn  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
18. Loop Area and Crosstalk Due to Poor Signal Routing and Ground Splitting  
19. Crosstalk Induced by the Return Current Path  
11.1.3 Traces, Vias, and Other PCB Components  
A right angle in a trace can cause more radiation. The capacitance increases in the region of the corner, and the  
characteristic impedance changes. This impedance change causes reflections.  
Avoid right-angle bends in a trace and try to route them at least with two 45° corners. To minimize any  
impedance change, the best routing would be a round bend (see 20).  
Separate high-speed signals (e.g., clock signals) from low-speed signals and digital from analog signals;  
again, placement is important.  
To minimize crosstalk not only between two signals on one layer but also between adjacent layers, route  
them with 90° to each other.  
版权 © 2018, Texas Instruments Incorporated  
23  
SN65LVDS93B-Q1  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
www.ti.com.cn  
20. Poor and Good Right Angle Bends  
11.2 Layout Example  
21. EVM Top Layer – TSSOP Package  
24  
版权 © 2018, Texas Instruments Incorporated  
SN65LVDS93B-Q1  
www.ti.com.cn  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
Layout Example (接下页)  
22. EVM VCC Layer – TSSOP Package  
版权 © 2018, Texas Instruments Incorporated  
25  
SN65LVDS93B-Q1  
ZHCSHV1A MARCH 2018REVISED MAY 2018  
www.ti.com.cn  
12 器件和文档支持  
12.1 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.2 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.5 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
26  
版权 © 2018, Texas Instruments Incorporated  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2018 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN65LVDS93BIDGGRQ1  
SN65LVDS93BIDGGTQ1  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
DGG  
DGG  
56  
56  
2000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
LVDS93BQ  
LVDS93BQ  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Aug-2018  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN65LVDS93BIDGGRQ1 TSSOP  
SN65LVDS93BIDGGTQ1 TSSOP  
DGG  
DGG  
56  
56  
2000  
250  
330.0  
330.0  
24.4  
24.4  
8.6  
8.6  
15.6  
15.6  
1.8  
1.8  
12.0  
12.0  
24.0  
24.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
16-Aug-2018  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN65LVDS93BIDGGRQ1  
SN65LVDS93BIDGGTQ1  
TSSOP  
TSSOP  
DGG  
DGG  
56  
56  
2000  
250  
367.0  
367.0  
367.0  
367.0  
45.0  
45.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DGG0056A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
1
.
2
0
0
SMALL OUTLINE PACKAGE  
C
8.3  
7.9  
SEATING PLANE  
TYP  
PIN 1 ID  
AREA  
0.1 C  
A
54X 0.5  
56  
1
14.1  
13.9  
NOTE 3  
2X  
13.5  
28  
B
29  
0.27  
0.17  
6.2  
6.0  
56X  
1.2 MAX  
0.08  
C A  
B
(0.15) TYP  
0.25  
GAGE PLANE  
0 - 8  
SEE DETAIL A  
0.15  
0.05  
0.75  
0.50  
DETAIL A  
TYPICAL  
4222167/A 07/2015  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DGG0056A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
56X (1.5)  
SYMM  
1
56  
56X (0.3)  
54X (0.5)  
(R0.05)  
TYP  
SYMM  
28  
29  
(7.5)  
LAND PATTERN EXAMPLE  
SCALE:6X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
METAL  
SOLDER MASK  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4222167/A 07/2015  
NOTES: (continued)  
5. Publication IPC-7351 may have alternate designs.  
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DGG0056A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
56X (1.5)  
SYMM  
1
56  
56X (0.3)  
54X (0.5)  
(R0.05) TYP  
SYMM  
28  
29  
(7.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:6X  
4222167/A 07/2015  
NOTES: (continued)  
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
8. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX