SN65LVDS9637D [TI]

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS; 高速差动线路接收器
SN65LVDS9637D
型号: SN65LVDS9637D
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
高速差动线路接收器

线路驱动器或接收器 驱动程序和接口 接口集成电路 光电二极管 PC
文件: 总37页 (文件大小:911K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀ ꢁꢂꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁ ꢉꢂ ꢃꢄ ꢅꢀ ꢌꢉ ꢆꢍ  
ꢎꢏ ꢐꢎ ꢑꢀꢒꢓ ꢓꢅ ꢅꢏ ꢔꢔ ꢓꢕ ꢓꢁꢖ ꢏꢗ ꢃ ꢃ ꢏꢁꢓ ꢕꢓꢘ ꢓ ꢏꢄ ꢓ ꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
SN55LVDS32 . . . J OR W  
SN65LVDS32 . . . D OR PW  
(Marked as LVDS32 or 65LVDS32)  
D
Meet or Exceed the Requirements of ANSI  
TIA/EIA-644 Standard  
D
Operate With a Single 3.3-V Supply  
(TOP VIEW)  
D
Designed for Signaling Rate of up to  
400 Mbps  
1B  
1A  
V
CC  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
4B  
4A  
4Y  
G
D
D
D
Differential Input Thresholds 100 mV Max  
Typical Propagation Delay Time of 2.1 ns  
1Y  
G
2Y  
Power Dissipation 60 mW Typical Per  
Receiver at 200 MHz  
2A  
11 3Y  
10 3A  
2B  
D
Bus-Terminal ESD Protection Exceeds 8 kV  
GND  
9
3B  
D
Low-Voltage TTL (LVTTL) Logic Output  
Levels  
SN55LVDS32FK  
(TOP VIEW)  
D
D
Pin Compatible With AM26LS32, MC3486,  
and µA9637  
Open-Circuit Fail-Safe  
3
4
2
1
20 19  
description  
1Y  
4A  
4Y  
NC  
G
18  
17  
16  
15  
14  
The  
SN55LVDS32,  
SN65LVDS32,  
G
NC  
2Y  
2A  
5
6
7
SN65LVDS3486, and SN65LVDS9637 are  
differential line receivers that implement the  
electrical characteristics of low-voltage differential  
signaling (LVDS). This signaling technique lowers  
the output voltage levels of 5-V differential  
standard levels (such as EIA/TIA-422B) to reduce  
the power, increase the switching speeds, and  
allow operation with a 3.3-V supply rail. Any of the  
four differential receivers provides a valid logical  
output state with a 100-mV differential input  
voltage within the input common-mode voltage  
range. The input common-mode voltage range  
allows 1 V of ground potential difference between  
two LVDS nodes.  
3Y  
8
9
10 11 12 13  
SN65LVDS3486D (Marked as LVDS3486)  
(TOP VIEW)  
1B  
1A  
V
CC  
4B  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
1Y  
4A  
1,2EN  
2Y  
4Y  
3,4EN  
3Y  
The intended application of these devices and  
signaling technique is both point-to-point and  
multidrop (one driver and multiple receivers) data  
transmission over controlled impedance media of  
approximately 100 . The transmission media  
may be printed-circuit board traces, backplanes,  
or cables. The ultimate rate and distance of  
data transfer depends on the attenuation  
characteristics of the media and the noise  
coupling to the environment.  
2A  
2B  
10 3A  
3B  
GND  
9
SN65LVDS9637D (Marked as DK637 or LVDS37)  
SN65LVDS9637DGN (Marked as L37)  
SN65LVDS9637DGK (Marked as AXF)  
(TOP VIEW)  
V
1A  
1B  
2A  
2B  
1
2
3
4
8
7
6
5
CC  
1Y  
The SN65LVDS32, SN65LVDS3486, and  
SN65LVDS9637 are characterized for operation  
from 40°C to 85°C. The SN55LVDS32 is  
characterized for operation from 55°C to 125°C.  
2Y  
GND  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments.  
ꢒꢕ ꢚ ꢅꢛ ꢘ ꢖꢏ ꢚ ꢁ ꢅ ꢗꢖꢗ ꢜꢝ ꢞ ꢟꢠ ꢡ ꢢꢣ ꢜꢟꢝ ꢜꢤ ꢥꢦ ꢠ ꢠ ꢧꢝꢣ ꢢꢤ ꢟꢞ ꢨꢦꢩ ꢪꢜꢥ ꢢꢣ ꢜꢟꢝ ꢫꢢ ꢣꢧ ꢬ  
ꢒꢠ ꢟ ꢫꢦꢥ ꢣ ꢤ ꢥ ꢟꢝ ꢞꢟ ꢠ ꢡ ꢣ ꢟ ꢤ ꢨꢧ ꢥ ꢜꢞ ꢜꢥꢢ ꢣꢜ ꢟꢝꢤ ꢨꢧ ꢠ ꢣꢭ ꢧ ꢣꢧ ꢠ ꢡꢤ ꢟꢞ ꢖꢧꢮ ꢢꢤ ꢏꢝꢤ ꢣꢠ ꢦꢡ ꢧꢝꢣ ꢤ  
ꢤ ꢣ ꢢ ꢝꢫ ꢢ ꢠꢫ ꢯ ꢢ ꢠꢠ ꢢ ꢝ ꢣꢰꢬ ꢒꢠ ꢟ ꢫꢦꢥ ꢣꢜꢟꢝ ꢨꢠ ꢟꢥ ꢧꢤ ꢤꢜ ꢝꢱ ꢫꢟꢧ ꢤ ꢝꢟꢣ ꢝꢧ ꢥꢧ ꢤꢤ ꢢꢠ ꢜꢪ ꢰ ꢜꢝꢥ ꢪꢦꢫ ꢧ  
ꢣ ꢧ ꢤ ꢣꢜ ꢝꢱ ꢟꢞ ꢢ ꢪꢪ ꢨꢢ ꢠ ꢢ ꢡ ꢧ ꢣ ꢧ ꢠ ꢤ ꢬ  
Copyright 1997 − 2004, Texas Instruments Incorporated  
ꢚ ꢝ ꢨ ꢠ ꢟꢫ ꢦꢥ ꢣꢤ ꢥꢟ ꢡꢨ ꢪꢜ ꢢꢝ ꢣ ꢣꢟ ꢲꢏ ꢃꢑ ꢒꢕ ꢔ ꢑꢆꢋꢂ ꢆꢂꢈ ꢢꢪꢪ ꢨꢢ ꢠ ꢢ ꢡꢧ ꢣꢧꢠ ꢤ ꢢ ꢠ ꢧ ꢣꢧ ꢤꢣꢧ ꢫ  
ꢦ ꢝꢪ ꢧꢤꢤ ꢟ ꢣꢭꢧ ꢠ ꢯꢜ ꢤꢧ ꢝ ꢟꢣꢧ ꢫꢬ ꢚ ꢝ ꢢꢪ ꢪ ꢟ ꢣꢭꢧ ꢠ ꢨꢠ ꢟ ꢫꢦꢥ ꢣꢤ ꢈ ꢨꢠ ꢟ ꢫꢦꢥ ꢣꢜꢟ ꢝ  
ꢨ ꢠ ꢟꢥꢧ ꢤꢤꢜ ꢝꢱ ꢫ ꢟꢧꢤ ꢝ ꢟꢣ ꢝ ꢧꢥꢧꢤ ꢤꢢꢠ ꢜ ꢪꢰ ꢜ ꢝꢥꢪ ꢦ ꢫꢧ ꢣꢧꢤ ꢣꢜꢝ ꢱ ꢟꢞ ꢢ ꢪꢪ ꢨꢢ ꢠ ꢢ ꢡꢧ ꢣꢧꢠ ꢤ ꢬ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢂꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀ ꢁꢉ ꢂ ꢃꢄ ꢅꢀ ꢆ ꢇꢈ ꢀ ꢁꢉ ꢂ ꢃꢄ ꢅꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁꢉ ꢂ ꢃꢄꢅꢀ ꢌ ꢉ ꢆ ꢍ  
ꢎ ꢏꢐ ꢎꢑꢀ ꢒꢓꢓ ꢅ ꢅ ꢏꢔ ꢔꢓ ꢕꢓ ꢁꢖ ꢏ ꢗꢃ ꢃꢏ ꢁ ꢓ ꢕꢓ ꢘ ꢓꢏꢄ ꢓꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
AVAILABLE OPTIONS  
PACKAGE  
SMALL OUTLINE  
(PW)  
SN65LVDS32PW  
T
CHIP CARRIER  
(FK)  
CERAMIC DIP  
(J)  
FLAT PACK  
(W)  
A
MSOP  
(D)  
SN65LVDS32D  
SN65LVDS3486D  
SN65LVDS9637D  
−40°C to  
85°C  
SN65LVDS9637DGN  
SN65LVDS9637DGK  
−55°C to  
125°C  
SNJ55LVDS32W  
SN55LVDS32W  
SNJ55LVDS32FK SNJ55LVDS32J  
’LVDS32 logic diagram  
(positive logic)  
SN65LVDS3486D logic diagram  
SN65LVDS9637D logic diagram  
(positive logic)  
(positive logic)  
2
8
4
3
1A  
1B  
2
1A  
1B  
G
1Y  
1Y  
1
4
7
12  
G
6
5
2
1,2EN  
3
3
1A  
2A  
2B  
2Y  
1Y  
6
7
1
5
2A  
2B  
1B  
2Y  
3Y  
6
5
2A  
2B  
2Y  
3Y  
4Y  
7
10  
9
3A  
3B  
11  
10  
9
3A  
3B  
11  
13  
12  
3,4EN  
14  
15  
4A  
4B  
14  
15  
13  
4A  
4B  
4Y  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁ ꢉꢂ ꢃꢄ ꢅꢀ ꢌꢉ ꢆꢍ  
ꢎꢏ ꢐꢎ ꢑꢀꢒꢓ ꢓꢅ ꢅꢏ ꢔꢔ ꢓꢕ ꢓꢁꢖ ꢏꢗ ꢃ ꢃ ꢏꢁꢓ ꢕꢓꢘ ꢓ ꢏꢄ ꢓ ꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
FUNCTION TABLE  
SN55LVDS32, SN65LVDS32  
FUNCTION TABLE  
SN65LVDS3486  
ENABLES  
DIFFERENTIAL INPUT  
A, B  
OUTPUT  
Y
DIFFERENTIAL INPUT  
A, B  
ENABLE OUTPUT  
EN  
Y
G
G
H
X
X
L
H
H
V
ID  
100 mV  
V
ID  
100 mV  
H
H
H
X
X
L
?
?
−100 mV < V < 100 mV  
ID  
−100 mV < V < 100 mV  
ID  
H
?
H
X
X
L
L
L
V
ID  
−100 mV  
X
V
ID  
−100 mV  
X
H
L
L
Z
H
L
H
Z
H
X
X
L
H
H
Open  
Open  
H
H = high level, L = low level, X = irrelevant, Z = high impedance (off),  
? = indeterminate  
H = high level, L = low level, X = irrelevant, Z = high  
impedance (off), ? = indeterminate  
logic symbols  
SN55LVDS32, SN65LVDS32  
SN65LVDS3486  
4
4
1, 2EN  
EN  
1  
G
G
EN  
2
1
6
7
12  
1A  
1B  
2A  
2B  
3
5
1Y  
2Y  
2
1
1A  
1B  
3
5
1Y  
2Y  
3Y  
12  
6
7
3, 4EN  
EN  
2A  
2B  
3A  
3B  
10  
9
3A  
3B  
4A  
4B  
11  
13  
10  
9
11  
13  
3Y  
4Y  
14  
15  
14  
15  
4A  
4B  
4Y  
This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.  
logic symbol  
FUNCTION TABLE  
SN65LVDS9637  
SN65LVDS9637  
DIFFERENTIAL INPUT  
A, B  
OUTPUT  
Y
8
7
6
5
1A  
1B  
2A  
2B  
2
1Y  
V
100 mV  
H
?
ID  
−100 mV < V < 100 mV  
3
ID  
2Y  
V
ID  
−100 mV  
L
Open  
H
This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC  
Publication 617-12.  
H = high level, L = low level, ? = indeterminate  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢂꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀ ꢁꢉ ꢂ ꢃꢄ ꢅꢀ ꢆ ꢇꢈ ꢀ ꢁꢉ ꢂ ꢃꢄ ꢅꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁꢉ ꢂ ꢃꢄꢅꢀ ꢌ ꢉ ꢆ ꢍ  
ꢎ ꢏꢐ ꢎꢑꢀ ꢒꢓꢓ ꢅ ꢅ ꢏꢔ ꢔꢓ ꢕꢓ ꢁꢖ ꢏ ꢗꢃ ꢃꢏ ꢁ ꢓ ꢕꢓ ꢘ ꢓꢏꢄ ꢓꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
equivalent input and output schematic diagrams  
EQUIVALENT OF EACH A OR B INPUT  
EQUIVALENT OF G, G, 1,2EN OR  
3,4EN INPUTS  
TYPICAL OF ALL OUTPUTS  
V
CC  
V
CC  
V
CC  
300 kΩ  
300 kΩ  
50 Ω  
5 Ω  
Input  
Y Output  
7 V  
A Input  
B Input  
7 V  
7 V  
7 V  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4 V  
CC  
Input voltage range, V (enables and output) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to V  
+ 0.5 V  
I
CC  
Input voltage range, V (A or B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 4 V  
I
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260_C  
Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65_C to 150_C  
stg  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltages, except differential I/O bus voltages, are with respect to the network ground terminal.  
DISSIPATION RATING TABLE  
T
25°C  
DERATING FACTOR  
T
A
= 70°C  
T
= 85°C  
T = 125°C  
A
POWER RATING  
A
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
POWER RATING  
POWER RATING  
A
D (8)  
D (16)  
DGK  
725 mW  
5.8 mW/°C  
7.6 mW/°C  
3.4 mW/°C  
17.1 mW/°C  
11.0 mW/°C  
11.0 mW/°C  
6.2 mW/°C  
8.0 mW/°C  
464 mW  
377 mW  
950 mW  
608 mW  
494 mW  
425 mW  
272 mW  
221 mW  
§
DGN  
2.14 W  
1.37 W  
1.11 W  
FK  
1375 mW  
1375 mW  
774 mW  
880 mW  
715 mW  
275 mW  
275 mW  
J
PW (16)  
W
880 mW  
715 mW  
496 mW  
402 mW  
1000 mW  
640 mW  
520 mW  
200 mW  
§
This is the inverse of the junction-to-ambient thermal resistance when board mounted and with no air flow.  
The PowerPADmust be soldered to a thermal land on the printed-circuit board. See the application note PowerPAD Thermally Enhanced  
Package (SLMA002)  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁ ꢉꢂ ꢃꢄ ꢅꢀ ꢌꢉ ꢆꢍ  
ꢎꢏ ꢐꢎ ꢑꢀꢒꢓ ꢓꢅ ꢅꢏ ꢔꢔ ꢓꢕ ꢓꢁꢖ ꢏꢗ ꢃ ꢃ ꢏꢁꢓ ꢕꢓꢘ ꢓ ꢏꢄ ꢓ ꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
recommended operating conditions  
MIN NOM  
MAX  
UNIT  
Supply voltage, V  
CC  
3
2
3.3  
3.6  
V
V
V
V
High-level input voltage, V  
IH  
G, G, 1,2EN, or 3,4EN  
G, G, 1,2EN, or 3,4EN  
Low-level input voltage, V  
IL  
0.8  
0.6  
Magnitude of differential input voltage, |V  
ID  
|
0.1  
|
|V  
|
|V  
ID  
ID  
2.4 *  
2
2
Common-mode input voltage, V (see Figure 1)  
IC  
V
V
CC  
− 0.8  
85  
SN65 prefix  
SN55 prefix  
−40  
−55  
Operating free-air temperature, T  
°C  
A
125  
COMMON-MODE INPUT VOLTAGE RANGE  
vs  
DIFFERENTIAL INPUT VOLTAGE  
2.5  
2
Max at V  
CC  
> 3.15 V  
Max at V  
CC  
= 3 V  
1.5  
1
0.5  
0
Min  
0.3  
0
0.1  
0.2  
0.4  
0.5  
0.6  
V
ID  
− Differential Input Voltage − V  
Figure 1. V Versus V and V  
CC  
IC  
ID  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢂꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀ ꢁꢉ ꢂ ꢃꢄ ꢅꢀ ꢆ ꢇꢈ ꢀ ꢁꢉ ꢂ ꢃꢄ ꢅꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁꢉ ꢂ ꢃꢄꢅꢀ ꢌ ꢉ ꢆ ꢍ  
ꢎ ꢏꢐ ꢎꢑꢀ ꢒꢓꢓ ꢅ ꢅ ꢏꢔ ꢔꢓ ꢕꢓ ꢁꢖ ꢏ ꢗꢃ ꢃꢏ ꢁ ꢓ ꢕꢓ ꢘ ꢓꢏꢄ ꢓꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
SN55LVDS32 electrical characteristics over recommended operating conditions (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
mV  
mV  
V
V
V
V
V
Positive-going differential input voltage threshold  
Negative-going differential input voltage threshold  
High-level output voltage  
See Figure 2, Table 1, and Note 2  
See Figure 2, Table 1, and Note 2  
100  
ITH+  
ITH−  
OH  
−100  
2.4  
I
I
= −8 mA  
= 8 mA  
OH  
Low-level output voltage  
0.4  
18  
V
OL  
OL  
Enabled,  
Disabled  
No load  
10  
0.25  
−10  
−3  
I
Supply current  
mA  
CC  
0.5  
−20  
V = 0  
−2  
I
I
I
Input current (A or B inputs)  
µA  
V = 2.4 V  
−1.2  
I
I
I
I
I
Power-off input current (A or B inputs)  
High-level input current (EN, G, or G inputs)  
Low-level input current (EN, G, or G inputs)  
High-impedance output current  
V
V
V
V
= 0,  
V = 2.4 V  
I
6
20  
10  
10  
12  
µA  
µA  
µA  
µA  
I(OFF)  
CC  
= 2 V  
IH  
IH  
IL  
O
= 0.8 V  
= 0 or V  
IL  
OZ  
CC  
All typical values are at T = 25°C and with V  
CC  
= 3.3 V.  
A
The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for the negative-going  
differential input voltage threshold only.  
NOTE 2: |V  
| = 200 mV for operation at −55°C  
ITH  
SN55LVDS32 switching characteristics over recommended operating conditions (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
1.3  
TYP  
2.3  
2.2  
0.1  
0.6  
0.7  
6.5  
5.5  
8
MAX  
6
UNIT  
ns  
t
t
t
t
t
t
t
t
t
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
PLH  
PHL  
sk(o)  
r
1.4  
6.1  
ns  
§
Channel-to-channel output skew  
ns  
C
= 10 pF, See Figure 3  
L
Output signal rise time, 20% to 80%  
ns  
Output signal fall time, 80% to 20%  
ns  
f
Propagation delay time, high-level-to-high-impedance output  
Propagation delay time, low-level-to-high-impedance output  
Propagation delay time, high-impedance-to-high-level output  
Propagation delay time, high-impedance-to-low-level output  
12  
12  
14  
12  
ns  
PHZ  
PLZ  
PZH  
PZL  
ns  
See Figure 4  
ns  
3
ns  
§
t
is the maximum delay time difference between drivers on the same device.  
sk(o)  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁ ꢉꢂ ꢃꢄ ꢅꢀ ꢌꢉ ꢆꢍ  
ꢎꢏ ꢐꢎ ꢑꢀꢒꢓ ꢓꢅ ꢅꢏ ꢔꢔ ꢓꢕ ꢓꢁꢖ ꢏꢗ ꢃ ꢃ ꢏꢁꢓ ꢕꢓꢘ ꢓ ꢏꢄ ꢓ ꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
SN65LVDSxxxx electrical characteristics over recommended operating conditions (unless  
otherwise noted)  
SN65LVDS32  
SN65LVDS3486  
SN65LVDS9637  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN TYP  
MAX  
V
V
Positive-going differential input voltage threshold  
Negative-going differential input voltage threshold  
See Figure 2 and Table 1  
See Figure 2 and Table 1  
100  
mV  
mV  
IT+  
−100  
2.4  
IT−  
I
I
I
= −8 mA  
= −4 mA  
= 8 mA  
OH  
OH  
OL  
V
V
High-level output voltage  
Low-level output voltage  
V
V
OH  
2.8  
0.4  
18  
OL  
Enabled,  
Disabled  
No load  
No load  
10  
0.25  
5.5  
−10  
−3  
SN65LVDS32,  
SN65LVDS3486  
0.5  
10  
I
Supply current  
mA  
CC  
SN65LVDS9637  
V = 0  
I
−2  
−20  
I
I
Input current (A or B inputs)  
µA  
V = 2.4 V  
I
−1.2  
I
I
I
I
Power-off input current (A or B inputs)  
High-level input current (EN, G, or G inputs)  
Low-level input current (EN, G, or G inputs)  
High-impedance output current  
V
V
V
V
= 0,  
V = 3.6 V  
I
6
20  
10  
10  
10  
µA  
µA  
µA  
µA  
I(OFF)  
CC  
= 2 V  
IH  
IH  
IL  
O
= 0.8 V  
= 0 or V  
IL  
OZ  
CC  
All typical values are at T = 25°C and with V  
CC  
The algebraic convention, in which the less-positive (more-negative) limit is designated minimum, is used in this data sheet for the negative-going  
differential input voltage threshold only.  
= 3.3 V.  
A
SN65LVDSxxxx switching characteristics over recommended operating conditions (unless  
otherwise noted)  
SN65LVDS32  
SN65LVDS3486  
SN65LVDS9637  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
2.1  
2.1  
0
MAX  
t
t
t
t
t
t
t
t
t
t
t
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
1.5  
1.5  
3
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PLH  
PHL  
sk(p)  
sk(o)  
sk(pp)  
r
Pulse skew (|t  
− t  
|)  
0.4  
0.3  
1
PHL PLH  
§
Channel-to-channel output skew  
0.1  
C
= 10 pF, See Figure 3  
L
Part-to-part skew  
Output signal rise time, 20% to 80%  
0.6  
0.7  
6.5  
5.5  
8
Output signal fall time, 80% to 20%  
f
Propagation delay time, high-level-to-high-impedance output  
Propagation delay time, low-level-to-high-impedance output  
Propagation delay time, high-impedance-to-high-level output  
Propagation delay time, high-impedance-to-low-level output  
12  
12  
12  
12  
PHZ  
PLZ  
PZH  
PZL  
See Figure 4  
3
§
t
is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the same  
sk(o)  
direction while driving identical specified loads.  
t
is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate  
sk(pp)  
with the same supply voltages, same temperature, and have identical packages and test circuits.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢂꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀ ꢁꢉ ꢂ ꢃꢄ ꢅꢀ ꢆ ꢇꢈ ꢀ ꢁꢉ ꢂ ꢃꢄ ꢅꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁꢉ ꢂ ꢃꢄꢅꢀ ꢌ ꢉ ꢆ ꢍ  
ꢎ ꢏꢐ ꢎꢑꢀ ꢒꢓꢓ ꢅ ꢅ ꢏꢔ ꢔꢓ ꢕꢓ ꢁꢖ ꢏ ꢗꢃ ꢃꢏ ꢁ ꢓ ꢕꢓ ꢘ ꢓꢏꢄ ꢓꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
PARAMETER MEASUREMENT INFORMATION  
A
Y
V
ID  
B
V
IA  
(V + V )/2  
IA IB  
V
O
V
IC  
V
IB  
Figure 2. Voltage Definitions  
Table 1. Receiver Minimum and Maximum Input Threshold Test Voltages  
RESULTING  
DIFFERENTIAL  
INPUT VOLTAGE  
RESULTING  
COMMON-MODE  
INPUT VOLTAGE  
APPLIED  
VOLTAGES  
V
V
V
(mV)  
V
IC  
IA  
IB  
ID  
(V)  
1.25  
1.15  
2.4  
2.3  
0.1  
0
(V)  
1.15  
1.25  
2.3  
2.4  
0
(V)  
100  
1.2  
−100  
100  
1.2  
2.35  
2.35  
0.05  
0.05  
1.2  
−100  
100  
0.1  
0.9  
1.5  
1.8  
2.4  
0
−100  
600  
1.5  
0.9  
2.4  
1.8  
0.6  
0
−600  
600  
1.2  
2.1  
−600  
600  
2.1  
0.3  
0.6  
−600  
0.3  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁ ꢉꢂ ꢃꢄ ꢅꢀ ꢌꢉ ꢆꢍ  
ꢎꢏ ꢐꢎ ꢑꢀꢒꢓ ꢓꢅ ꢅꢏ ꢔꢔ ꢓꢕ ꢓꢁꢖ ꢏꢗ ꢃ ꢃ ꢏꢁꢓ ꢕꢓꢘ ꢓ ꢏꢄ ꢓ ꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
PARAMETER MEASUREMENT INFORMATION  
V
ID  
V
IA  
C
= 10 pF  
L
V
O
V
IB  
V
V
1.4 V  
1 V  
IA  
IB  
0.4 V  
0
V
ID  
−0.4 V  
t
t
PLH  
PHL  
V
OH  
1.4 V  
80%  
20%  
80%  
20%  
V
O
V
OL  
t
t
r
f
NOTES: A. All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate  
r
f
(PRR) = 50 Mpps, pulse width = 10 0.2 ns.  
B.  
C
includes instrumentation and fixture capacitance within 6 mm of the D.U.T.  
L
Figure 3. Timing Test Circuit and Waveforms  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢂꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀ ꢁꢉ ꢂ ꢃꢄ ꢅꢀ ꢆ ꢇꢈ ꢀ ꢁꢉ ꢂ ꢃꢄ ꢅꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁꢉ ꢂ ꢃꢄꢅꢀ ꢌ ꢉ ꢆ ꢍ  
ꢎ ꢏꢐ ꢎꢑꢀ ꢒꢓꢓ ꢅ ꢅ ꢏꢔ ꢔꢓ ꢕꢓ ꢁꢖ ꢏ ꢗꢃ ꢃꢏ ꢁ ꢓ ꢕꢓ ꢘ ꢓꢏꢄ ꢓꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
PARAMETER MEASUREMENT INFORMATION  
B
1.2 V  
500 Ω  
A
10 pF  
G
G
(see Note B)  
V
O
Inputs  
(see Note A)  
V
TEST  
1,2EN or 3,4EN  
2.5 V  
V
TEST  
A
1 V  
2 V  
1.4 V  
0.8 V  
G, 1,2EN,  
or 3,4EN  
2 V  
1.4 V  
0.8 V  
G
t
t
PLZ  
PLZ  
t
t
PZL  
PZL  
Y
2.5 V  
1.4 V  
OL  
OL  
V
V
+ 0.5 V  
V
TEST  
0
1.4 V  
A
2 V  
1.4 V  
0.8 V  
G, 1,2EN,  
or 3,4EN  
2 V  
1.4 V  
0.8 V  
t
PHZ  
G
t
PHZ  
t
t
PZH  
PZH  
Y
V
V
OH  
OH  
− 0.5 V  
1.4 V  
0
NOTES: A. All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate  
r
f
(PRR) = 0.5 Mpps, pulse width = 500 10 ns.  
B.  
C
L
includes instrumentation and fixture capacitance within 6 mm of the D.U.T.  
Figure 4. Enable- and Disable-Time Test Circuit and Waveforms  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁ ꢉꢂ ꢃꢄ ꢅꢀ ꢌꢉ ꢆꢍ  
ꢎꢏ ꢐꢎ ꢑꢀꢒꢓ ꢓꢅ ꢅꢏ ꢔꢔ ꢓꢕ ꢓꢁꢖ ꢏꢗ ꢃ ꢃ ꢏꢁꢓ ꢕꢓꢘ ꢓ ꢏꢄ ꢓ ꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
TYPICAL CHARACTERISTICS  
SN55LVDS32, SN65LVDS32  
SUPPLY CURRENT  
vs  
LOW-TO-HIGH PROPAGATION DELAY TIME  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
85  
75  
2.7  
2.5  
2.3  
Four Receivers, Loaded  
Per Figure 3, Switching  
Simultaneously  
V
V
= 3.6 V  
= 3.3 V  
CC  
V
CC  
= 3 V  
CC  
65  
55  
V
CC  
= 3.3 V  
V
= 3 V  
CC  
V
CC  
= 3.6 V  
2.1  
1.9  
45  
35  
1.7  
1.5  
25  
15  
50  
100  
150  
200  
−50  
0
50  
100  
f − Frequency − MHz  
T
A
− Free-Air Temperature − °C  
Figure 5  
Figure 6  
HIGH-TO-LOW PROPAGATION DELAY TIME  
vs  
FREE-AIR TEMPERATURE  
2.7  
2.5  
2.3  
2.1  
1.9  
1.7  
1.5  
V
= 3 V  
CC  
V
CC  
= 3.3 V  
V
CC  
= 3.6 V  
−50  
0
50  
100  
T
A
− Free-Air Temperature − °C  
Figure 7  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢂꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀ ꢁꢉ ꢂ ꢃꢄ ꢅꢀ ꢆ ꢇꢈ ꢀ ꢁꢉ ꢂ ꢃꢄ ꢅꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁꢉ ꢂ ꢃꢄꢅꢀ ꢌ ꢉ ꢆ ꢍ  
ꢎ ꢏꢐ ꢎꢑꢀ ꢒꢓꢓ ꢅ ꢅ ꢏꢔ ꢔꢓ ꢕꢓ ꢁꢖ ꢏ ꢗꢃ ꢃꢏ ꢁ ꢓ ꢕꢓ ꢘ ꢓꢏꢄ ꢓꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
TYPICAL CHARACTERISTICS  
HIGH-LEVEL OUTPUT VOLTAGE  
vs  
HIGH-LEVEL OUTPUT CURRENT  
LOW-LEVEL OUTPUT VOLTAGE  
vs  
LOW-LEVEL OUTPUT CURRENT  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
−60  
−50  
−40  
−30  
−20  
−10  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
I
− High-Level Output Current − mA  
OH  
I
− Low-Level Output Current − mA  
OL  
Figure 8  
Figure 9  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁ ꢉꢂ ꢃꢄ ꢅꢀ ꢌꢉ ꢆꢍ  
ꢎꢏ ꢐꢎ ꢑꢀꢒꢓ ꢓꢅ ꢅꢏ ꢔꢔ ꢓꢕ ꢓꢁꢖ ꢏꢗ ꢃ ꢃ ꢏꢁꢓ ꢕꢓꢘ ꢓ ꢏꢄ ꢓ ꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
APPLICATION INFORMATION  
using an LVDS receiver with RS-422 data  
Receipt of data from a TIA/EIA-422 line driver can be accomplished using a TIA/EIA-644 line receiver with the  
addition of an attenuator circuit. This technique gives the user a high-speed and low-power 422 receiver.  
If the ground noise between the transmitter and receiver is not a concern (less than 1 V), the answer can be  
as simple as shown in Figure 10. A resistor divider circuit in front of the LVDS receiver attenuates the 422  
differential signal to LVDS levels.  
The resistors present a total differential load of 100 to match the characteristic impedance of the transmission  
line and to reduce the signal 10:1. The maximum 422 differential output signal, or 6 V, is reduced to 600 mV.  
The high input impedance of the LVDS receiver prevents input bias offsets and maintains a greater than 200-mV  
differential input voltage threshold at the inputs to the divider. This circuit is used in front of each LVDS channel  
that also receives 422 signals.  
R1  
45.3 Ω  
’LVDS32  
R3  
5.11 Ω  
A
B
Y
R4  
5.11 Ω  
R2  
45.3 Ω  
NOTE A: The components used were standard values.  
R1, R2 = NRC12F45R3TR, NIC components, 45.3 , 1/8 W, 1%, 1206 package  
R3, R4 = NRC12F5R11TR, NIC components, 5.11 , 1/8 W, 1%, 1206 package  
The resistor values do not need to be 1% tolerance. However, it can be difficult locating a supplier of resistors having values less than  
100 in stock and readily available. The user may find other suppliers with comparable parts having tolerances of 5% or even 10%.  
These parts are adequate for use in this circuit.  
Figure 10. RS-422 Data Input to an LVDS Receiver Under Low Ground-Noise Conditions  
If ground noise between the RS-422 driver and LVDS receiver is a concern, the common-mode voltage must  
be attenuated. The circuit must then be modified to connect the node between R3 and R4 to the LVDS receiver  
ground. This modification to the circuit increases the common-mode voltage from 1 V to greater than 4.5 V.  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢂꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀ ꢁꢉ ꢂ ꢃꢄ ꢅꢀ ꢆ ꢇꢈ ꢀ ꢁꢉ ꢂ ꢃꢄ ꢅꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁꢉ ꢂ ꢃꢄꢅꢀ ꢌ ꢉ ꢆ ꢍ  
ꢎ ꢏꢐ ꢎꢑꢀ ꢒꢓꢓ ꢅ ꢅ ꢏꢔ ꢔꢓ ꢕꢓ ꢁꢖ ꢏ ꢗꢃ ꢃꢏ ꢁ ꢓ ꢕꢓ ꢘ ꢓꢏꢄ ꢓꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
APPLICATION INFORMATION  
The devices are generally used as building blocks for high-speed point-to-point data transmission where ground  
differences are less than 1 V. Devices can interoperate with RS-422, PECL, and IEEE-P1596. Drivers/receivers  
approach ECL speeds without the power and dual-supply requirements.  
TRANSMISSION DISTANCE  
vs  
SIGNALING RATE  
100  
30% Jitter  
(see Note A)  
10  
5% Jitter  
(see Note A)  
1
24 AWG UTP 96 Ω  
(PVC Dielectric)  
0.1  
10  
100  
1000  
Signaling Rate − Mbps  
NOTE A: This parameter is the percentage of distortion of the unit interval (UI) with a pseudorandom data pattern.  
Figure 11. Typical Transmission Distance Versus Signaling Rate  
3.3 V  
1
2
16  
1B  
1A  
V
CC  
0.1 µF  
(see Note A)  
0.001 µF  
(see Note A)  
100 Ω  
15  
14  
4B  
4A  
3
4
100 Ω  
(see Note B)  
1Y  
G
V
CC  
13  
12  
11  
5
6
4Y  
G
2Y  
2A  
See Note C  
3Y  
100 Ω  
7
8
10  
9
3A  
3B  
2B  
100 Ω  
GND  
NOTES: A. Place a 0.1-µF and a 0.001-µF Z5U ceramic, mica, or polystyrene dielectric, 0805 size, chip capacitor between V  
and the ground  
CC  
plane. The capacitors should be located as close as possible to the device terminals.  
B. The termination resistance value should match the nominal characteristic impedance of the transmission media with 10%.  
C. Unused enable inputs should be tied to V or GND as appropriate.  
CC  
Figure 12. Typical Application Circuit Schematic  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁ ꢉꢂ ꢃꢄ ꢅꢀ ꢌꢉ ꢆꢍ  
ꢎꢏ ꢐꢎ ꢑꢀꢒꢓ ꢓꢅ ꢅꢏ ꢔꢔ ꢓꢕ ꢓꢁꢖ ꢏꢗ ꢃ ꢃ ꢏꢁꢓ ꢕꢓꢘ ꢓ ꢏꢄ ꢓ ꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
APPLICATION INFORMATION  
1/4 ’LVDS31  
Strb/Data_TX  
TpBias on  
Strb/Data_Enable  
Twisted-Pair A  
TP  
TP  
’LVDS32  
55 Ω  
5 kΩ  
Data/Strobe  
1 Arb_RX  
55 Ω  
3.3 V  
20 kΩ  
500 Ω  
500 Ω  
VG on  
Twisted-Pair B  
20 kΩ  
3.3 V  
20 kΩ  
500 Ω  
500 Ω  
2 Arb_RX  
20 kΩ  
3.3 V  
Twisted-Pair B Only  
Port_Status  
7 kΩ  
7 kΩ  
10 kΩ  
3.3 kΩ  
NOTES: A. Resistors are leadless, thick film (0603), 5% tolerance.  
B. Decoupling capacitance is not shown but recommended.  
C.  
V
CC  
is 3 V to 3.6 V.  
D. The differential output voltage of the ’LVDS31 can exceed that allowed by IEEE1394.  
Figure 13. 100-Mbps IEEE 1394 Transceiver  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢂꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀ ꢁꢉ ꢂ ꢃꢄ ꢅꢀ ꢆ ꢇꢈ ꢀ ꢁꢉ ꢂ ꢃꢄ ꢅꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁꢉ ꢂ ꢃꢄꢅꢀ ꢌ ꢉ ꢆ ꢍ  
ꢎ ꢏꢐ ꢎꢑꢀ ꢒꢓꢓ ꢅ ꢅ ꢏꢔ ꢔꢓ ꢕꢓ ꢁꢖ ꢏ ꢗꢃ ꢃꢏ ꢁ ꢓ ꢕꢓ ꢘ ꢓꢏꢄ ꢓꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
APPLICATION INFORMATION  
fail-safe  
One of the most common problems with differential signaling applications is how the system responds when  
no differential voltage is present on the signal pair. The LVDS receiver is like most differential line receivers in  
that its output logic state can be indeterminate when the differential input voltage is between −100 mV and  
100 mV if it is within its recommended input common-mode voltage range. However, TI LVDS receivers handle  
the open-input circuit situation differently.  
Open-input circuit means that there is little or no input current to the receiver from the data line itself. This could  
be when the driver is in a high-impedance state or the cable is disconnected. When this occurs, the LVDS  
receiver pulls each line of the signal pair to near V  
through 300-kresistors (see Figure 14). The fail-safe  
CC  
feature uses an AND gate with input voltage thresholds at about 2.3 V to detect this condition and force the  
output to a high level, regardless of the differential input voltage.  
V
CC  
300 kΩ  
300 kΩ  
A
B
Rt  
Y
V
IT  
2.3 V  
Figure 14. Open-Circuit Fail-Safe of LVDS Receiver  
It is only under these conditions that the output of the receiver is valid with less than a 100-mV differential input  
voltage magnitude. The presence of the termination resistor, Rt, does not affect the fail-safe function as long  
as it is connected as shown in Figure 14. Other termination circuits may allow a dc current to ground that could  
defeat the pullup currents from the receiver and the fail-safe feature.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁ ꢉꢂ ꢃꢄ ꢅꢀ ꢌꢉ ꢆꢍ  
ꢎꢏ ꢐꢎ ꢑꢀꢒꢓ ꢓꢅ ꢅꢏ ꢔꢔ ꢓꢕ ꢓꢁꢖ ꢏꢗ ꢃ ꢃ ꢏꢁꢓ ꢕꢓꢘ ꢓ ꢏꢄ ꢓ ꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
APPLICATION INFORMATION  
0.01 µF  
3.6 V  
16  
V
CC  
5 V  
1
1B  
0.1 µF  
1N645  
(see Note A)  
(two places)  
100 Ω  
2
1A  
15  
14  
4B  
4A  
3
4
100 Ω  
(see Note B)  
1Y  
G
V
CC  
13  
12  
11  
5
6
4Y  
G
2Y  
2A  
See Note C  
3Y  
100 Ω  
7
8
10  
9
3A  
3B  
2B  
100 Ω  
GND  
NOTES: A. Place a 0.1-µF Z5U ceramic, mica, or polystyrene dielectric, 0805 size, chip capacitor between V  
and the ground plane. The  
CC  
capacitor should be located as close as possible to the device terminals.  
B. The termination resistance value should match the nominal characteristic impedance of the transmission media with 10%.  
C. Unused enable inputs should be tied to V or GND, as appropriate.  
CC  
Figure 15. Operation With 5-V Supply  
related information  
IBIS modeling is available for this device. Please contact the local TI sales office or the TI Web site at www.ti.com  
for more information.  
For more application guidelines, please see the following documents:  
D
D
D
D
D
D
Low-Voltage Differential Signaling Design Notes (literature number SLLA014)  
Interface Circuits for TIA/EIA-644 (LVDS) (literature number SLLA038)  
Reducing EMI With LVDS (literature number SLLA030)  
Slew Rate Control of LVDS Circuits (literature number SLLA034)  
Using an LVDS Receiver With TIA/EIA-422 Data (literature number SLLA031)  
Low Voltage Differential Signaling (LVDS) EVM (literature number SLLA033)  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢂꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀ ꢁꢉ ꢂ ꢃꢄ ꢅꢀ ꢆ ꢇꢈ ꢀ ꢁꢉ ꢂ ꢃꢄ ꢅꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁꢉ ꢂ ꢃꢄꢅꢀ ꢌ ꢉ ꢆ ꢍ  
ꢎ ꢏꢐ ꢎꢑꢀ ꢒꢓꢓ ꢅ ꢅ ꢏꢔ ꢔꢓ ꢕꢓ ꢁꢖ ꢏ ꢗꢃ ꢃꢏ ꢁ ꢓ ꢕꢓ ꢘ ꢓꢏꢄ ꢓꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
THERMAL PAD MECHANICAL DATA  
PowerPADt PLASTIC SMALL-OUTLINE  
DGN (S−PDSO−G8)  
Top View  
8
5
Exposed Pad  
1,73 MAX  
1
4
1,78 MAX  
Not to Scale  
PPTD041  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. For additional information on the PowerPADpackage and how to take advantage of its heat dissipating abilities, refer to  
Technical Brief, PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and Application  
Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004. Both documents are available at www.ti.com.  
PowerPAD is a trademark of Texas Instruments  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁ ꢉꢂ ꢃꢄ ꢅꢀ ꢌꢉ ꢆꢍ  
ꢎꢏ ꢐꢎ ꢑꢀꢒꢓ ꢓꢅ ꢅꢏ ꢔꢔ ꢓꢕ ꢓꢁꢖ ꢏꢗ ꢃ ꢃ ꢏꢁꢓ ꢕꢓꢘ ꢓ ꢏꢄ ꢓ ꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
MECHANICAL INFORMATION  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PIN SHOWN  
0.050 (1,27)  
0.020 (0,51)  
0.010 (0,25)  
M
0.014 (0,35)  
14  
8
0.008 (0,20) NOM  
0.244 (6,20)  
0.228 (5,80)  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
0.010 (0,25)  
1
7
0°ā8°  
0.044 (1,12)  
A
0.016 (0,40)  
Seating Plane  
0.004 (0,10)  
0.010 (0,25)  
0.004 (0,10)  
0.069 (1,75) MAX  
PINS **  
8
14  
16  
DIM  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
A MAX  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢂꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀ ꢁꢉ ꢂ ꢃꢄ ꢅꢀ ꢆ ꢇꢈ ꢀ ꢁꢉ ꢂ ꢃꢄ ꢅꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁꢉ ꢂ ꢃꢄꢅꢀ ꢌ ꢉ ꢆ ꢍ  
ꢎ ꢏꢐ ꢎꢑꢀ ꢒꢓꢓ ꢅ ꢅ ꢏꢔ ꢔꢓ ꢕꢓ ꢁꢖ ꢏ ꢗꢃ ꢃꢏ ꢁ ꢓ ꢕꢓ ꢘ ꢓꢏꢄ ꢓꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
MECHANICAL INFORMATION  
DGK (R-PDSO-G8)  
PLASTIC SMALL-OUTLINE PACKAGE  
0,38  
M
0,65  
0,25  
0,25  
8
5
0,15 NOM  
3,05  
2,95  
4,98  
4,78  
Gage Plane  
0,25  
0°ā6°  
1
4
0,69  
0,41  
3,05  
2,95  
Seating Plane  
0,10  
0,15  
0,05  
1,07 MAX  
4073329/B 04/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion.  
D. Falls within JEDEC MO-187  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁ ꢉꢂ ꢃꢄ ꢅꢀ ꢌꢉ ꢆꢍ  
ꢎꢏ ꢐꢎ ꢑꢀꢒꢓ ꢓꢅ ꢅꢏ ꢔꢔ ꢓꢕ ꢓꢁꢖ ꢏꢗ ꢃ ꢃ ꢏꢁꢓ ꢕꢓꢘ ꢓ ꢏꢄ ꢓ ꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
MECHANICAL INFORMATION  
DGN (S-PDSO-G8)  
PowerPADPLASTIC SMALL-OUTLINE PACKAGE  
0,38  
0,25  
0,65  
M
0,25  
8
5
Thermal Pad  
(See Note D)  
0,15 NOM  
3,05  
2,95  
4,98  
4,78  
Gage Plane  
0,25  
0°ā6°  
1
4
0,69  
0,41  
3,05  
2,95  
Seating Plane  
0,10  
0,15  
0,05  
1,07 MAX  
4073271/A 01/98  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions include mold flash or protrusions.  
D. The package thermal performance may be enhanced by attaching an external heat sink to the thermal pad. This pad is electrically  
and thermally connected to the backside of the die and possibly selected leads.  
E. Falls within JEDEC MO-187  
PowerPAD is a trademark of Texas Instruments.  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢂꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀ ꢁꢉ ꢂ ꢃꢄ ꢅꢀ ꢆ ꢇꢈ ꢀ ꢁꢉ ꢂ ꢃꢄ ꢅꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁꢉ ꢂ ꢃꢄꢅꢀ ꢌ ꢉ ꢆ ꢍ  
ꢎ ꢏꢐ ꢎꢑꢀ ꢒꢓꢓ ꢅ ꢅ ꢏꢔ ꢔꢓ ꢕꢓ ꢁꢖ ꢏ ꢗꢃ ꢃꢏ ꢁ ꢓ ꢕꢓ ꢘ ꢓꢏꢄ ꢓꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
MECHANICAL INFORMATION  
FK (S-CQCC-N**)  
LEADLESS CERAMIC CHIP CARRIER  
28 TERMINAL SHOWN  
A
B
NO. OF  
TERMINALS  
**  
18 17 16 15 14 13 12  
MIN  
MAX  
MIN  
MAX  
0.342  
(8,69)  
0.358  
(9,09)  
0.307  
(7,80)  
0.358  
(9,09)  
19  
20  
21  
22  
23  
24  
25  
11  
10  
9
20  
28  
44  
52  
68  
84  
0.442  
(11,23)  
0.458  
(11,63)  
0.406  
(10,31)  
0.458  
(11,63)  
B SQ  
A SQ  
0.640  
(16,26)  
0.660  
(16,76)  
0.495  
(12,58)  
0.560  
(14,22)  
8
0.739  
(18,78)  
0.761  
(19,32)  
0.495  
(12,58)  
0.560  
(14,22)  
7
6
0.938  
(23,83)  
0.962  
(24,43)  
0.850  
(21,6)  
0.858  
(21,8)  
5
1.141  
(28,99)  
1.165  
(29,59)  
1.047  
(26,6)  
1.063  
(27,0)  
26 27 28  
1
2
3
4
0.080 (2,03)  
0.064 (1,63)  
0.020 (0,51)  
0.010 (0,25)  
0.020 (0,51)  
0.010 (0,25)  
0.055 (1,40)  
0.045 (1,14)  
0.045 (1,14)  
0.035 (0,89)  
0.045 (1,14)  
0.035 (0,89)  
0.028 (0,71)  
0.022 (0,54)  
0.050 (1,27)  
4040140/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
E. Falls within JEDEC MS-004  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁ ꢉꢂ ꢃꢄ ꢅꢀ ꢌꢉ ꢆꢍ  
ꢎꢏ ꢐꢎ ꢑꢀꢒꢓ ꢓꢅ ꢅꢏ ꢔꢔ ꢓꢕ ꢓꢁꢖ ꢏꢗ ꢃ ꢃ ꢏꢁꢓ ꢕꢓꢘ ꢓ ꢏꢄ ꢓ ꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
MECHANICAL INFORMATION  
J (R-GDIP-T**)  
CERAMIC DUAL-IN-LINE PACKAGE  
14 PIN SHOWN  
PINS **  
14  
16  
18  
20  
DIM  
0.310  
(7,87)  
0.310  
(7,87)  
0.310  
(7,87)  
0.310  
(7,87)  
A MAX  
B
0.290  
(7,37)  
0.290  
(7,37)  
0.290  
(7,37)  
0.290  
(7,37)  
A MIN  
B MAX  
B MIN  
C MAX  
C MIN  
14  
8
0.785  
0.785  
0.910  
0.975  
(19,94) (19,94) (23,10) (24,77)  
C
0.755  
(19,18) (19,18)  
0.755  
0.930  
(23,62)  
0.300  
(7,62)  
0.300  
(7,62)  
0.300  
(7,62)  
0.300  
(7,62)  
1
7
0.065 (1,65)  
0.045 (1,14)  
0.245  
(6,22)  
0.245  
(6,22)  
0.245  
(6,22)  
0.245  
(6,22)  
0.100 (2,54)  
0.070 (1,78)  
0.020 (0,51) MIN  
A
0.200 (5,08) MAX  
Seating Plane  
0.130 (3,30) MIN  
0.100 (2,54)  
0°−15°  
0.023 (0,58)  
0.015 (0,38)  
0.014 (0,36)  
0.008 (0,20)  
4040083/D 08/98  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal.  
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18, GDIP1-T20, and GDIP1-T22.  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢂꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀ ꢁꢉ ꢂ ꢃꢄ ꢅꢀ ꢆ ꢇꢈ ꢀ ꢁꢉ ꢂ ꢃꢄ ꢅꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁꢉ ꢂ ꢃꢄꢅꢀ ꢌ ꢉ ꢆ ꢍ  
ꢎ ꢏꢐ ꢎꢑꢀ ꢒꢓꢓ ꢅ ꢅ ꢏꢔ ꢔꢓ ꢕꢓ ꢁꢖ ꢏ ꢗꢃ ꢃꢏ ꢁ ꢓ ꢕꢓ ꢘ ꢓꢏꢄ ꢓꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
MECHANICAL INFORMATION  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
M
0,10  
0,65  
14  
0,19  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°ā8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢇ ꢈ ꢀꢁ ꢉꢂ ꢃꢄꢅ ꢀꢆ ꢊ ꢋ ꢉ ꢈ ꢀꢁ ꢉꢂ ꢃꢄ ꢅꢀ ꢌꢉ ꢆꢍ  
ꢎꢏ ꢐꢎ ꢑꢀꢒꢓ ꢓꢅ ꢅꢏ ꢔꢔ ꢓꢕ ꢓꢁꢖ ꢏꢗ ꢃ ꢃ ꢏꢁꢓ ꢕꢓꢘ ꢓ ꢏꢄ ꢓ ꢕꢀ  
SLLS262N − JULY 1997 − REVISED MARCH 2004  
MECHANICAL INFORMATION  
W (R-GDFP-F16)  
CERAMIC DUAL FLATPACK  
Base and Seating Plane  
0.285 (7,24)  
0.245 (6,22)  
0.006 (0,15)  
0.004 (0,10)  
0.085 (2,16)  
0.045 (1,14)  
0.045 (1,14)  
0.026 (0,66)  
0.305 (7,75)  
0.275 (6,99)  
0.355 (9,02)  
0.235 (5,97)  
0.355 (9,02)  
0.235 (5,97)  
0.019 (0,48)  
0.015 (0,38)  
1
16  
0.050 (1,27)  
0.440 (11,18)  
0.371 (9,42)  
0.025 (0,64)  
0.015 (0,38)  
8
9
1.025 (26,04)  
0.745 (18,92)  
4040180-3/B 03/95  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a ceramic lid using glass frit.  
D. Index point is provided on cap for terminal identification only.  
E. Falls within MIL-STD-1835 GDFP1-F16 and JEDEC MO-092AC  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Sep-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
LCCC  
CDIP  
CFP  
Drawing  
5962-9762201Q2A  
5962-9762201QEA  
5962-9762201QFA  
5962-9762201VFA  
5962-9762202Q2A  
SN55LVDS32W  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
FK  
J
20  
16  
16  
16  
20  
16  
16  
1
1
1
1
1
1
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
POST-PLATE Level-NC-NC-NC  
A42 SNPB  
A42 SNPB  
A42 SNPB  
Level-NC-NC-NC  
Level-NC-NC-NC  
Level-NC-NC-NC  
W
W
FK  
W
D
CFP  
LCCC  
CFP  
POST-PLATE Level-NC-NC-NC  
A42 SNPB Level-NC-NC-NC  
SN65LVDS32D  
SOIC  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS32DR  
SN65LVDS32NSR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SO  
D
NS  
NS  
PW  
PW  
PW  
D
16  
16  
16  
16  
16  
16  
16  
16  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS32NSRG4  
SN65LVDS32PW  
SO  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
SOIC  
SOIC  
SOIC  
SOIC  
MSOP  
MSOP  
MSOP  
MSOP  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS32PWR  
SN65LVDS32PWRG4  
SN65LVDS3486D  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS3486DR  
SN65LVDS9637D  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS9637DG4  
SN65LVDS9637DGK  
SN65LVDS9637DGKG4  
SN65LVDS9637DGKR  
SN65LVDS9637DGKRG4  
SN65LVDS9637DGN  
D
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
DGK  
DGK  
DGK  
DGK  
DGN  
8
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
8
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS9637DGNG4  
SN65LVDS9637DGNR  
SN65LVDS9637DGNRG4  
SN65LVDS9637DR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
MSOP-  
Power  
PAD  
DGN  
DGN  
DGN  
D
8
8
8
8
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP-  
Power  
PAD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Sep-2005  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
no Sb/Br)  
SN65LVDS9637DRG4  
ACTIVE  
SOIC  
D
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SNJ55LVDS32FK  
SNJ55LVDS32J  
SNJ55LVDS32W  
ACTIVE  
ACTIVE  
ACTIVE  
LCCC  
CDIP  
CFP  
FK  
J
20  
16  
16  
1
1
1
TBD  
TBD  
TBD  
POST-PLATE Level-NC-NC-NC  
A42 SNPB  
A42 SNPB  
Level-NC-NC-NC  
Level-NC-NC-NC  
W
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
MECHANICAL DATA  
MLCC006B – OCTOBER 1996  
FK (S-CQCC-N**)  
LEADLESS CERAMIC CHIP CARRIER  
28 TERMINAL SHOWN  
A
B
NO. OF  
TERMINALS  
**  
18 17 16 15 14 13 12  
MIN  
MAX  
MIN  
MAX  
0.342  
(8,69)  
0.358  
(9,09)  
0.307  
(7,80)  
0.358  
(9,09)  
19  
20  
11  
10  
9
20  
28  
44  
52  
68  
84  
0.442  
(11,23)  
0.458  
(11,63)  
0.406  
(10,31)  
0.458  
(11,63)  
21  
B SQ  
22  
0.640  
(16,26)  
0.660  
(16,76)  
0.495  
(12,58)  
0.560  
(14,22)  
8
A SQ  
23  
0.739  
(18,78)  
0.761  
(19,32)  
0.495  
(12,58)  
0.560  
(14,22)  
7
24  
25  
6
0.938  
(23,83)  
0.962  
(24,43)  
0.850  
(21,6)  
0.858  
(21,8)  
5
1.141  
(28,99)  
1.165  
(29,59)  
1.047  
(26,6)  
1.063  
(27,0)  
26 27 28  
1
2
3
4
0.080 (2,03)  
0.064 (1,63)  
0.020 (0,51)  
0.010 (0,25)  
0.020 (0,51)  
0.010 (0,25)  
0.055 (1,40)  
0.045 (1,14)  
0.045 (1,14)  
0.035 (0,89)  
0.045 (1,14)  
0.035 (0,89)  
0.028 (0,71)  
0.022 (0,54)  
0.050 (1,27)  
4040140/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
E. Falls within JEDEC MS-004  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

SN65LVDS9637DG4

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
TI

SN65LVDS9637DGK

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
TI

SN65LVDS9637DGKG4

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
TI

SN65LVDS9637DGKR

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
TI

SN65LVDS9637DGKRG4

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
TI

SN65LVDS9637DGN

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
TI

SN65LVDS9637DGNG4

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
TI

SN65LVDS9637DGNR

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
TI

SN65LVDS9637DGNRG4

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
TI

SN65LVDS9637DR

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
TI

SN65LVDS9637DRG4

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
TI

SN65LVDS9637ID

DUAL LINE TRANSCEIVER, PDSO8
TI