SN65LVDT101 [TI]

DIFFERENTIAL TRANSLATOR/REPEATER; 微分翻译/中继器
SN65LVDT101
型号: SN65LVDT101
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DIFFERENTIAL TRANSLATOR/REPEATER
微分翻译/中继器

中继器
文件: 总20页 (文件大小:668K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65LVDS100, SN65LVDT100  
SN65LVDS101, SN65LVDT101  
www.ti.com  
SLLS516CAUGUST 2002REVISED JUNE 2004  
DIFFERENTIAL TRANSLATOR/REPEATER  
FEATURES  
DESCRIPTION  
Designed for Signaling Rates (1) 2 Gbps  
Total Jitter < 65 ps  
The SN65LVDS100, SN65LVDT100, SN65LVDS101,  
and SN65LVDT101 are a high-speed differential re-  
ceiver and driver connected as a repeater. The  
receiver accepts low-voltage differential signaling  
(LVDS), positive-emitter-coupled logic (PECL), or cur-  
rent-mode logic (CML) input signals at rates up to 2  
Gbps and repeats it as either an LVDS or PECL  
output signal. The signal path through the device is  
differential for low radiated emissions and minimal  
added jitter.  
Low-Power Alternative for the MC100EP16  
Low 100 ps (Max) Part-To-Part Skew  
25 mV of Receiver Input Threshold Hysteresis  
Over 0-V to 4-V Common-Mode Range  
Inputs Electrically Compatible With LVPECL,  
CML, and LVDS Signal Levels  
3.3-V Supply Operation  
The  
outputs  
of  
the  
SN65LVDS100  
and  
LVDT Integrates 110-Terminating Resistor  
Offered in SOIC and MSOP  
SN65LVDT100 are LVDS levels as defined by  
TIA/EIA-644-A. The outputs of the SN65LVDS101  
and SN65LVDT101 are compatible with 3.3-V PECL  
levels. Both drive differential transmission lines with  
nominally 100-characteristic impedance.  
APPLICATIONS  
622 MHz Central Office Clock Distribution  
High-Speed Network Routing  
Wireless Basestations  
Low Jitter Clock Repeater  
Serdes LVPECL Output to FPGA LVDS  
Input Translator  
The SN65LVDT100 and SN65LVDT101 include a  
110-differential line termination resistor for less  
board space, fewer components, and the shortest  
stub length possible. They do not include the VBB  
voltage reference found in the SN65LVDS100 and  
SN65LVDS101. VBB provides a voltage reference of  
typically 1.35 V below VCC for use in receiving  
single-ended input signals and is particularly useful  
with single-ended 3.3-V PECL inputs. When not used,  
VBB should be unconnected or open.  
(1) The signaling rate of a line is the number of voltage  
transitions that are made per second expressed in the units  
bps (bits per second).  
All devices are characterized for operation from  
–40°C to 85°C.  
FUNCTIONAL DIAGRAM  
EYE PATTERN  
SN65LVDS100 and SN65LVDS101  
8
2
4
2 Gbps  
- 1 PRBS  
V
V
BB  
CC  
23  
2
A
7
6
Y
V
= 3.3 V  
CC  
V
= 200 mV  
ID  
Z
V
IC  
= 1.2 V  
3
B
Vert.Scale= 200 mV/div  
SN65LVDT100 and SN65LVDT101  
1 GHz  
2
A
7
Y
Z
110  
6
3
B
Horizontal Scale= 200 ps/div  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
UNLESS OTHERWISE NOTED this document contains PRO-  
Copyright © 2002–2004, Texas Instruments Incorporated  
DUCTION DATA information current as of publication date. Prod-  
ucts conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily  
include testing of all parameters.  
SN65LVDS100, SN65LVDT100  
SN65LVDS101, SN65LVDT101  
www.ti.com  
SLLS516CAUGUST 2002REVISED JUNE 2004  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated  
circuits be handled with appropriate precautions. Failure to observe proper handling and installation  
procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision  
integrated circuits may be more susceptible to damage because very small parametric changes could  
cause the device not to meet its published specifications.  
ORDERING INFORMATION  
OUTPUT  
LVDS  
TERMINATION RESISTOR  
VBB  
Yes  
Yes  
No  
PART NUMBER(1)  
PART MARKING  
DL100  
AZK  
PACKAGE  
SOIC  
No  
No  
SN65LVDS100D  
LVDS  
SN65LVDS100DGK  
SN65LVDT100D  
MSOP  
SOIC  
LVDS  
Yes  
Yes  
No  
DE100  
AZL  
LVDS  
No  
SN65LVDT100DGK  
SN65LVDS101D  
MSOP  
SOIC  
LVPECL  
LVPECL  
LVPECL  
LVPECL  
Yes  
Yes  
No  
DL101  
AZM  
No  
SN65LVDS101DGK  
SN65LVDT101D  
MSOP  
SOIC  
Yes  
Yes  
DE101  
BAF  
No  
SN65LVDT101DGK  
MSOP  
(1) Add the suffix R for taped and reeled carrier (i.e. SN65LVDS100DR).  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range unless otherwise noted  
UNIT  
VCC  
IBB  
VI  
Supply voltage range(2)  
VBB Output current  
–0.5 V to 4 V  
±0.5 mA  
Voltage range, (A, B, Y, Z)  
0 V to 4.3 V  
VO  
VID  
Differential voltage, |VA– VB| ('LVDT100 and 'LVDT101 only)  
1 V  
±5 kV  
A, B, Y, Z, and GND  
Human Body Model(3)  
ESD  
All pins  
All pins  
±2 kV  
Charged-Device Model(4)  
±1500 V  
PD  
Continuous power dissipation  
See Dissipation Rating Table  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
(3) Tested in accordance with JEDEC Standard 22, Test Method A114-A.7.  
(4) Tested in accordance with JEDEC Standard 22, Test Method C101.  
POWER DISSIPATION RATINGS  
T
A 25°C  
DERATING FACTOR(1)  
ABOVE TA = 25°C  
TA = 85°C  
POWER RATING  
PACKAGE  
POWER RATING  
DGK  
D
377 mW  
3.8 mW/°C  
4.8 mW/°C  
151 mW  
192 mW  
481 mW  
(1) This is the inverse of the junction-to-ambient thermal resistance with no air flow installed on the JESD51-3 low effective thermal  
conductivity test board for leadless surface mount packages.  
2
SN65LVDS100, SN65LVDT100  
SN65LVDS101, SN65LVDT101  
www.ti.com  
SLLS516CAUGUST 2002REVISED JUNE 2004  
RECOMMENDED OPERATING CONDITIONS  
MIN NOM  
MAX UNIT  
Supply voltage, VCC  
3
0.1  
3.3  
3.6  
1
V
V
V
'LVDS100 or 'LVDS101  
'LVDT100 or 'LVDT101  
Magnitude of differential input voltage |VID  
|
0.1  
0.8  
4
Input voltage (any combination of common-mode or input signals), VI  
VBB output current, IO(VBB)  
0
–400(1)  
12 µA  
Operating free-air temperature, TA  
–40  
85 °C  
(1) The algebraic convention, in which the less positive (more negative) limit is designated minimum, is used in this data sheet.  
ELECTRICAL CHARACTERISTICS  
over recommended operating conditions (unless otherwise specified)  
(1)  
PARAMETER  
TEST CONDITIONS  
No load or input  
MIN  
TYP  
MAX UNIT  
Supply current, 'LVDx100  
Supply current, 'LVDx101  
Device power dissipation, 'LVDx100  
25  
50  
30  
ICC  
mA  
61  
RL = 50 to 1 V, No input  
RL = 100 , No input  
110  
PD  
mW  
142  
Y and Z to VCC - 2 V through 50 ,  
No input  
Device power dissipation, 'LVDx101  
116  
Reference voltage output, 'LVDS100 or  
'LVDS101  
VBB  
IO = –400 µA or 12 µA  
VCC–1.4 VCC–1.35 VCC–1.3  
mV  
SN65LVDS100 and SN65LVDS101 INPUT CHARACTERISTICS (see Figure 1)  
Positive-going differential input voltage  
threshold  
VIT+  
100  
See Figure 1 and Table 1  
mV  
Negative-going differential input voltage  
threshold  
VIT-  
–100  
VI = 0 V or 2.4 V,  
Second input at 1.2 V  
–20  
–20  
20  
33  
20  
µA  
µA  
II  
Input current  
VI = 4 V, Second input at 1.2 V  
VCC = 1.5 V, VI = 0 V or 2.4 V,  
Second input at 1.2 V  
II(OFF)  
Power off input current  
µA  
VCC= 1.5 V, VI = 4 V,  
Second input at 1.2 V  
33  
6
IIO  
Ci  
Input offset current (|IIA - IIB|)  
VIA = VIB, 0VIA 4 V  
–6  
µA  
pF  
Small-signall input capacitance to GND  
VI = 1.2 V  
0.6  
SN65LVDT100 and SN65LVDT101 INPUT CHARACTERISTICS (see Figure 1)  
Positive-going differential input voltage  
threshold  
VIT+  
100  
See Figure 1 and Table 1  
mV  
µA  
µA  
Negative-going differential input voltage  
threshold  
VIT-  
–100  
–40  
VI = 0 V or 2.4 V, Other input open  
VI = 4 V, Other input open  
40  
66  
II  
Input current  
VCC = 1.5 V, VI = 0 V or 2.4 V,  
Other input open  
–40  
40  
66  
II(OFF)  
Power off input current  
VCC= 1.5 V, VI = 4 V, Other input  
open  
VID = 300 mV or 500 mV, VIC = 0 V  
or 2.4 V  
90  
90  
110  
132  
132  
R(T)  
Ci  
Differential input resistance  
VCC= 0 V, VID = 300 mV or 500 mV,  
VIC = 0 V or 2.4 V  
110  
0.6  
Small-signall differential input capacitance  
VI = 1.2 V  
pF  
(1) Typical values are with a 3.3-V supply voltage and room temperature  
3
SN65LVDS100, SN65LVDT100  
SN65LVDS101, SN65LVDT101  
www.ti.com  
SLLS516CAUGUST 2002REVISED JUNE 2004  
ELECTRICAL CHARACTERISTICS (continued)  
over recommended operating conditions (unless otherwise specified)  
(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SN65LVDS100 and SN65LVDT100 OUTPUT CHARACTERISTICS (see Figure 1)  
|VOD  
|
Differential output voltage magnitude  
247  
–50  
340  
454  
See Figure 2  
See Figure 3  
mV  
50  
Change in differential output voltage magni-  
tude between logic states  
|VOD  
|
VOC(SS)  
Steady-state common-mode output voltage  
1.125  
–50  
1.375  
50  
V
Change in steady-state common-mode output  
voltage between logic states  
VOC(SS)  
mV  
VOC(PP)  
IOS  
Peak-to-peak common-mode output voltage  
Short-circuit output current  
50  
150  
24  
mV  
mA  
mA  
VO(Y) or VO(Z) = 0 V  
VOD = 0 V  
–24  
–12  
IOS(D)  
Differential short-circuit output current  
12  
SN65LVDS101 and SN65LVDT101 OUTPUT CHARACTERISTICS (see Figure 1)  
50 to VCC– 2 V, See Figure 4  
VCC = 3.3 V, 50-load to 2.3 V  
50 to VCC - 2 V, See Figure 4  
VCC = 3.3 V, 50-load to 2.3 V  
50-load to VCC– 2 V, SeeFigure 4  
VCC–1.25 VCC–1.02 VCC–0.9  
2055 2280 2405  
VCC–1.83 VCC–1.61 VCC–1.53  
V
VOH  
High-level output voltage  
mV  
V
VOL  
Low-level output voltage  
1475  
475  
1690  
575  
1775  
750  
mV  
mV  
|VOD  
|
Differential output voltage magnitude  
SWITCHING CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1) MAX UNIT  
'LVDx100  
300  
400  
300  
400  
470  
630  
470  
630  
800  
900  
800  
900  
220  
220  
50  
Propagation delay time,  
low-to-high-level output  
tPLH  
ps  
ps  
'LVDx101  
'LVDx100  
Propagation delay time,  
high-to-low-level output  
tPHL  
'LVDx100 See Figure 5  
tr  
tf  
Differential output signal rise time (20%–80%)  
ps  
ps  
ps  
ps  
ps  
ps  
Differential output signal fall time (20%–80%)  
(2)  
tsk(p) Pulse skew (|tPHL– tPLH|)  
tsk(pp) Part-to-part skew(3)  
tjit(per) RMS period jitter(4)  
5
VID = 0.2 V, See Figure 5  
100  
3.7  
23  
1
6
1 GHz 50% duty cycle square wave input,  
VID = 200 mV, VIC = 1.2 V, See Figure 6  
tjit(cc) Peak cycle-to-cycle jitter(5)  
2 GHz PRBS, 223–1 run length, VID = 200 mV,  
VIC = 1.2 V, See Figure 6  
2 GHz PRBS, 27–1 run length, VID = 200 mV,  
VIC = 1.2 V, See Figure 6  
tjit(pp) Peak-to-peak jitter  
28  
17  
65  
48  
ps  
ps  
tjit(det) Peak-to-peak deterministic jitter(6)  
(1) All typical values are at 25°C and with a 3.3 V supply.  
(2) tsk(p) is the magnitude of the time difference between the tPLH and tPHL of any output of a single device.  
(3) tsk(pp) is the magnitude of the time difference in propagation delay time between any specified terminals of two devices when both  
devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
(4) Period jitter is the deviation in cycle time of a signal with respect to the ideal period over a random sample of 1000,000 cycles.  
(5) Cycle-to-cycle jitter is the variation in cycle time of a signal between adjacent cycles, over a random sample of 1,000 adjacent cycle  
pairs.  
(6) Deterministic jitter is the sum of pattern-dependent jitter and pulse-width distortion.  
4
SN65LVDS100, SN65LVDT100  
SN65LVDS101, SN65LVDT101  
www.ti.com  
SLLS516CAUGUST 2002REVISED JUNE 2004  
PARAMETER MEASUREMENT INFORMATION  
I
IA  
A
B
Y
Z
I
O
V
BB  
V
ID  
V
OD  
V
IA  
V
O(Y)  
V
IC  
+
V
+V  
IA IB  
V
OC  
V
V
IB  
V
O(Z)  
BB  
-
I
IB  
2
Figure 1. Voltage and Current Definitions  
Table 1. Receiver Input Voltage Threshold Test  
RESULTING DIFFERENTIAL  
INPUT VOLTAGE  
RESULTING COMMON-  
MODE INPUT VOLTAGE  
APPLIED VOLTAGES  
OUTPUT(1)  
VIA  
VIB  
VID  
VIC  
1.25 V  
1.15 V  
4.0 V  
3.9 V  
0.1 V  
0.0 V  
1.7 V  
0.7 V  
4.0 V  
3.0 V  
1.0 V  
0.0 V  
1.15 V  
1.25 V  
3.9 V  
4. 0 V  
0.0 V  
0.1 V  
0.7 V  
1.7 V  
3.0 V  
4.0 V  
0.0 V  
1.0 V  
100 mV  
1.2 V  
1.2 V  
3.95 V  
3.95 V  
0.05 V  
0.05 V  
1.2 V  
1.2 V  
3.5 V  
3.5 V  
0.5 V  
0.5 V  
H
L
–100 mV  
100 mV  
H
L
–100 mV  
100 mV  
H
L
–100 mV  
1000 mV  
–1000 mV  
1000 mV  
–1000 mV  
1000 mV  
–1000 mV  
H
L
H
L
H
L
(1) H = high level, L = low level  
3.74 k  
Y
+
0 V V  
2.4 V  
V
OD  
100 Ω  
(test)  
_
Z
3.74 kΩ  
Figure 2. SN65LVDx100 Differential Output Voltage (VOD) Test Circuit  
A
1.4 V  
1.0 V  
49.9 ±1%  
A
B
Y
B
V
ID  
V
V
OC(SS)  
OC(PP)  
V
OC  
Z
1 pF  
V
49.9 ±1%  
OC  
NOTE: All input pulses are supplied by a generator having the following characteristics: tr or tf 0.25 ns, pulse repetition rate  
(PRR) = 0.5 Mpps, pulse width = 500 ± 10 ns . CL includes instrumentation and fixture capacitance within 0,06 mm of  
the D.U.T. The measurement of VOC(PP) is made on test equipment with a –3 dB bandwidth of at least 300 MHz.  
Figure 3. Test Circuit and Definitions for the SN65LVDx100 Driver Common-Mode Output Voltage  
5
SN65LVDS100, SN65LVDT100  
SN65LVDS101, SN65LVDT101  
www.ti.com  
SLLS516CAUGUST 2002REVISED JUNE 2004  
V
OY  
+
OD  
-
50 Ω  
50 Ω  
V
V
OZ  
+
-
V
CC  
- 2V  
Figure 4. Typical Termination for LVPECL Output Driver (65LVDx101)  
V
1.4 V  
1 V  
A
B
IA  
Y
V
OD  
1 pF  
100 Ω  
V
ID  
V
IB  
ID  
V
IA  
Z
V
IB  
0.4 V  
0 V  
V
-0.4 V  
50 Ω  
50 Ω  
t
t
PLH  
PHL  
V
OD  
100%  
0 V  
OR  
80%  
V
OD  
20%  
0%  
+
-
V
CC  
- 2V  
t
f
t
r
NOTE: All input pulses are supplied by a generator having the following characteristics: tr or tf 0.25 ns, pulse repetition rate  
(PRR) = 50 Mpps, pulse width = 10 ± 0.2 ns. CL includes instrumentation and fixture capacitance within 0,06 mm of  
the D.U.T. Measurement equipment provides a bandwidth of 5 GHz minimum.  
Figure 5. Timing Test Circuit and Waveforms  
IDEAL OUTPUT  
CLOCK INPUT  
0 V  
0 V  
1/fo  
1/fo  
Period Jitter  
Cycle to Cycle Jitter  
ACTUAL OUTPUT  
0 V  
ACTUAL OUTPUT  
0 V  
t
t
t
c(n)  
c(n+1)  
c(n)  
t
= |t  
- t  
|
t
= |t  
- 1/fo|  
jit(cc)  
c(n) c(n+1)  
jit(per)  
c(n)  
PRBS INPUT  
0 V  
PRBS OUTPUT  
0 V  
t
jit(pp)  
Figure 6. Driver Jitter Measurement Waveforms  
6
SN65LVDS100, SN65LVDT100  
SN65LVDS101, SN65LVDT101  
www.ti.com  
SLLS516CAUGUST 2002REVISED JUNE 2004  
Power Supply 1  
+
3.3V  
-
+
Power Supply 2  
1.22V  
-
J3  
DUT  
J2  
EVM  
GND  
J1  
VCC  
GND  
J4  
J5  
J6  
J7  
100 W  
50 W  
50 W  
Agilent  
E4862B  
DUT  
Matched  
Cables  
Matched  
Cables  
Pattern  
Generator  
(Note A)  
SMA to SMA  
SMA to SMA  
Tektronix  
TDS6604  
EVM  
Oscilloscope  
(Note B)  
A. Source jitter is subtracted from the measured values.  
B. TDS JIT3 jitter analysis software installed  
Figure 7. Jitter Setup Connections for SN65LVDS100 and SN65LVDS101  
PIN ASSIGNMENTS  
SN65LVDS100 and SN65LVDS101  
D AND DGK PACKAGE  
(TOP VIEW)  
SN65LVDT100 and SN65LVDT101  
D AND DGK PACKAGE  
(TOP VIEW)  
NC  
A
VCC  
Y
NC  
A
VCC  
Y
8
7
6
5
8
7
6
5
1
2
3
4
1
2
3
4
B
Z
B
Z
VBB  
GND  
NC  
GND  
NC = Not Connected  
FUNCTION TABLE  
DIFFERENTIAL INPUT  
OUTPUTS(1)  
VID= VA– VB  
Y
H
?
Z
V
ID 100 mV  
L
?
–100 mV < VID < 100 mV  
V
ID – 100 mV  
L
H
?
Open  
?
(1) H = high level, L = low level, ? = indeterminate  
7
SN65LVDS100, SN65LVDT100  
SN65LVDS101, SN65LVDT101  
www.ti.com  
SLLS516CAUGUST 2002REVISED JUNE 2004  
EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
INPUT  
V
CC  
V
CC  
B
A
110 W  
(SN65LVDT only)  
V
CC  
V
CC  
215 m A  
215 m A  
7 V  
7 V  
350 m A  
350 m A  
OUTPUT  
(SN65LVDS100 and SN65LVDT100)  
OUTPUT  
(SN65LVDS101 and SN65LVDT101)  
V
CC  
V
CC  
R
R
Y
R
R
V
CC  
Y
Z
7 V  
Z
7 V  
7 V  
7 V  
8
SN65LVDS100, SN65LVDT100  
SN65LVDS101, SN65LVDT101  
www.ti.com  
SLLS516CAUGUST 2002REVISED JUNE 2004  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
SUPPLY CURRENT  
vs  
FREE-AIR TEMPERATURE  
DIFFERENTIAL OUTPUT VOLTAGE  
vs  
FREQUENCY  
FREQUENCY  
55  
60  
700  
LVDS101= Loaded  
LVDS101 = Loaded  
LVDS101  
600  
50  
V
= 3.3 V  
CC  
= 25°C  
45  
35  
T
A
V
V
= 1.2 V  
= 200 mV  
V
V
= 3.3 V  
IC  
CC  
= 1.2 V  
500  
40  
30  
IC  
ID  
V
= 200 mV  
ID  
f = 750 MHz  
LVDS100  
400  
LVDS100  
LVDS100  
V
= 3.3 V  
CC  
= 25°C  
25  
15  
T
A
20  
10  
300  
200  
V
V
= 1.2 V  
= 200 mV  
IC  
ID  
0
200  
400  
600  
800 1000 1200  
-40  
-20  
0
20  
40  
60  
80 100  
0
200  
400  
600  
800  
1000 1200  
Frequency - MHz  
f - Frequency - MHz  
T
A
- Free-Air Temperature - °C  
Figure 8.  
Figure 9.  
Figure 10.  
SN65LVDS100  
SN65LVDS101  
SN65LVDS100  
PROPAGATION DELAY TIME  
vs  
PROPAGATION DELAY TIME  
vs  
PROPAGATION DELAY TIME  
vs  
COMMON-MODE INPUT VOLTAGE  
COMMON-MODE INPUT VOLTAGE  
FREE-AIR TEMPERATURE  
600  
550  
500  
450  
400  
550  
750  
700  
650  
600  
550  
500  
450  
V = 3.3 V  
CC  
V
T
= 3.3 V  
V
T
= 3.3 V  
CC  
= 25°C  
CC  
= 25°C  
V
= 200 mV  
ID  
A
A
f = 150 MHz  
V
= 200 mV  
V
= 200 mV  
ID  
f = 150 MHz  
ID  
f = 150 MHz  
t
PHL  
t
PLH  
500  
450  
400  
350  
t
PHL  
t
PLH  
t
PLH  
t
PHL  
350  
300  
-40 -20  
0
20  
40  
60  
80  
100  
0
1
2
3
4
5
0
1
2
3
4
5
V
- Common-Mode Input Voltage - V  
T
A
- Free-Air Temperature - °C  
IC  
V
- Common-Mode Input Voltage - V  
IC  
Figure 11.  
Figure 12.  
Figure 13.  
SN65LVDS101  
SN65LVDS100  
SN65LVDS100  
PROPAGATION DELAY TIME  
vs  
PEAK-TO-PEAK JITTER  
PEAK-TO-PEAK JITTER  
vs  
vs  
FREE-AIR TEMPERATURE  
FREQUENCY  
DATA RATE  
30  
25  
20  
15  
10  
60  
50  
40  
30  
20  
750  
V
V
= 3.3 V  
= 200 mV  
V
T
V
= 3.3 V  
= 25°C  
= 400 mV  
CC  
V
= 3.3 V  
CC  
= 25°C  
OC  
ID  
T
V
A
A
700  
650  
600  
550  
f = 150 MHz  
= 400 mV  
IC  
IC  
23  
2 -1  
Input = PRBS  
Input = Clock  
t
PLH  
t
PHL  
V
= 0.3 V  
V
= 0.3 V  
ID  
V
ID  
V
= 0.5 V  
ID  
V
= 0.8 V  
ID  
10  
0
500  
450  
5
0
V
= 0.8 V  
ID  
= 0.5 V  
ID  
-40  
-20  
0
20  
40  
60  
80  
100  
300  
800  
1300  
1800  
2300  
200  
400  
600  
800  
1000  
T
A
- Free-Air Temperature - °C  
Data Rate - Mbps  
f - Frequency - MHz  
Figure 14.  
Figure 15.  
Figure 16.  
9
SN65LVDS100, SN65LVDT100  
SN65LVDS101, SN65LVDT101  
www.ti.com  
SLLS516CAUGUST 2002REVISED JUNE 2004  
TYPICAL CHARACTERISTICS (continued)  
SN65LVDS101  
PEAK-TO-PEAK JITTER  
vs  
SN65LVDS101  
PEAK-TO-PEAK JITTER  
vs  
SN65LVDS100  
PEAK-TO-PEAK JITTER  
vs  
FREQUENCY  
DATA RATE  
FREQUENCY  
60  
50  
40  
30  
20  
10  
0
30  
25  
20  
30  
25  
20  
15  
10  
V
= 3.3 V  
V
T
V
= 3.3 V  
CC  
= 25°C  
V
T
V
= 3.3 V  
= 25°C  
= 400 mV  
CC  
= 25°C  
CC  
T
A
A
A
V
= 1.2 V  
= 400 mV  
IC  
Input = Clock  
IC  
Input = Clock  
IC  
23  
2 -1  
Input = PRBS  
= 0.8 V  
V
= 0.5 V  
ID  
V
ID  
15  
10  
V
= 0.8 V  
V
= 0.8 V  
ID  
ID  
V
= 0.5 V  
ID  
V
= 0.3 V  
ID  
V
= 0.3 V  
ID  
5
0
5
0
V
= 0.3 V  
1800  
ID  
V
= 0.5 V  
800  
ID  
200  
400  
600  
1000  
2300  
1000  
300  
800  
1300  
2300  
1000  
2300  
200  
400  
600  
800  
1000  
f - Frequency - MHz  
Data Rate - Mbps  
f - Frequency - MHz  
Figure 17.  
Figure 18.  
Figure 19.  
SN65LVDS100  
PEAK-TO-PEAK JITTER  
SN65LVDS101  
PEAK-TO-PEAK JITTER  
SN65LVDS101  
PEAK-TO-PEAK JITTER  
vs  
vs  
vs  
DATA RATE  
FREQUENCY  
DATA RATE  
30  
25  
20  
15  
10  
60  
50  
40  
30  
20  
10  
0
60  
50  
40  
30  
20  
V
T
= 3.3 V  
= 25°C  
= 1.2 V  
V
T
= 3.3 V  
= 25°C  
= 1.2 V  
V
T
= 3.3 V  
CC  
CC  
CC  
= 25°C  
A
A
A
V
V
IC  
V
IC  
= 1.2 V  
IC  
23  
2 -1  
23  
2 -1  
Input = PRBS  
Input = PRBS  
Input = Clock  
V
= 0.3 V  
V
= 0.8 V  
ID  
ID  
V
= 0.8 V  
= 0.5 V  
ID  
V
= 0.5 V  
ID  
V
ID  
V
= 0.8 V  
ID  
V
= 0.3 V  
ID  
V
= 0.5 V  
ID  
10  
0
5
0
V
= 0.3 V  
ID  
200  
400  
600  
800  
300  
800  
1300  
1800  
300  
800  
1300  
1800  
2300  
Data Rate - Mbps  
f - Frequency - MHz  
Data Rate - Mbps  
Figure 20.  
Figure 21.  
Figure 22.  
SN65LVDS100  
PEAK-TO-PEAK JITTER  
vs  
SN65LVDS100  
PEAK-TO-PEAK JITTER  
SN65LVDS101  
PEAK-TO-PEAK JITTER  
vs  
vs  
FREQUENCY  
DATA RATE  
FREQUENCY  
60  
30  
30  
25  
V
T
V
= 3.3 V  
CC  
= 25°C  
= 2.9 V  
V
T
V
= 3.3 V  
CC  
= 25°C  
= 2.9 V  
V
T
= 3.3 V  
CC  
= 25°C  
A
A
50  
40  
30  
20  
A
25  
20  
IC  
Input = Clock  
IC  
Input = PRBS  
V
= 2.9 V  
IC  
Input = Clock  
23  
V
2
-1  
20  
15  
10  
= 0.3 V  
ID  
15  
10  
V
= 0.8 V  
ID  
V
= 0.8 V  
ID  
V
= 0.5 V  
ID  
V
= 0.5 V  
ID  
V
= 0.8 V  
ID  
10  
0
5
0
5
0
V
= 0.5 V  
1300  
ID  
V
= 0.3 V  
V
= 0.3 V  
800  
ID  
ID  
200  
400  
600  
1000  
300  
800  
1800  
200  
400  
600  
800  
f - Frequency - MHz  
f - Frequency - MHz  
Data Rate - Mbps  
Figure 23.  
Figure 24.  
Figure 25.  
10  
SN65LVDS100, SN65LVDT100  
SN65LVDS101, SN65LVDT101  
www.ti.com  
SLLS516CAUGUST 2002REVISED JUNE 2004  
TYPICAL CHARACTERISTICS (continued)  
SN65LVDS101  
PEAK-TO-PEAK JITTER  
vs  
SN65LVDS100  
PEAK-TO-PEAK JITTER  
vs  
SN65LVDS100  
DIFFERENTIAL OUTPUT VOLTAGE  
vs  
DATA RATE  
FREE-AIR TEMPERATURE  
FREQUENCY  
400  
350  
300  
250  
60  
50  
40  
50  
40  
30  
20  
80  
70  
60  
50  
V
V
V
= 3.3 V  
CC  
= 1.2 V  
IC  
= 200 mV  
ID  
Input = 2 Gbps 2 -1  
V
= 0.3 V  
ID  
23  
V
= 0.5 V  
LVDS100  
LVDS101  
ID  
V
V
= 3.3 V,  
CC  
= 1.2 V,  
IC  
200  
150  
100  
50  
30  
40  
30  
20  
10  
|V | = 200 mV,  
ID  
T
= 25°C,  
A
Input = Clock  
20  
10  
0
V
= 0.8 V  
ID  
V
T
A
= 3.3 V  
CC  
= 25°C  
10  
0
V
= 2.9 V  
IC  
Added Random Jitter  
500 1000 1500  
23  
2
Input = PRBS  
-1  
0
0
2500  
1300  
1800  
2300  
0
2000  
300  
800  
-40  
-20  
0
20  
40  
60  
80  
100  
T
A
- Free-Air Temperature - °C  
Data Rate - Mbps  
f - Frequency - MHz  
Figure 26.  
Figure 27.  
Figure 28.  
SN65LVDS100  
PEAK-TO-PEAK JITTER  
vs  
SN65LVDS101  
SN65LVDS101  
PEAK-TO-PEAK JITTER  
vs  
DIFFERENTIAL OUTPUT VOLTAGE  
vs  
DATA RATE  
FREQUENCY  
DATA RATE  
100  
80  
700  
620  
540  
460  
100  
80  
50  
V
V
= 3.3 V,  
CC  
= 1.2 V,  
V
V
= 3.3 V,  
V
V
= 3.3 V,  
CC  
= 1.2 V,  
CC  
= 1.2 V,  
IC  
IC  
IC  
|V | = 200 mV,  
ID  
|V | = 200 mV,  
|V | = 200 mV,  
ID  
ID  
40  
30  
20  
10  
T
= 25°C,  
A
T
= 25°C,  
T = 25°C,  
A
A
Input = Clock  
23  
Input = PRBS 2 -1  
23  
Input = PRBS 2 -1  
60  
40  
60  
40  
20  
0
380  
300  
20  
0
Added Random Jitter  
0
2000  
0
400  
800  
1200  
1600  
0
1000  
2000  
3000  
4000  
0
1000  
2000  
3000  
4000  
5000  
f - Frequency - MHz  
Data Rate - Mbps  
Data Rate - Mbps  
Figure 29.  
Figure 30.  
Figure 31.  
11  
SN65LVDS100, SN65LVDT100  
SN65LVDS101, SN65LVDT101  
www.ti.com  
SLLS516CAUGUST 2002REVISED JUNE 2004  
TYPICAL CHARACTERISTICS (continued)  
SN65LVDS100  
SN65LVDS100  
622 Mbps, 223– 1 PRBS  
2 Gbps, 223– 1 PRBS  
Horizontal Scale= 200 ps/div  
LVPECL-to-LVDS  
Horizontal Scale= 100 ps/div  
LVPECL-to-LVDS  
Figure 32.  
Figure 33.  
SN65LVDS101  
SN65LVDS101  
622 Mbps, 223– 1 PRBS  
2 Gbps, 223– 1 PRBS  
Horizontal Scale= 100 ps/div  
LVDS-to-LVPECL  
Horizontal Scale= 200 ps/div  
LVDS-to-LVPECL  
Figure 34.  
Figure 35.  
12  
SN65LVDS100, SN65LVDT100  
SN65LVDS101, SN65LVDT101  
www.ti.com  
SLLS516CAUGUST 2002REVISED JUNE 2004  
TYPICAL CHARACTERISTICS (continued)  
20  
3.6 V, 85°C  
3 V, 85°C  
15  
3.6 V, -40°C  
V
IT+  
10  
5
3 V, -40°C  
0
|V | = 250 mV,  
OD  
R
= 100 ,  
L
3 V, -40°C  
Nominal Process  
-5  
-10  
V
IT-  
3.6 V, -40°C  
-15  
3 V, 85°C  
3.6 V, 85°C  
-20  
0
1
2
3
4
5
Common-Mode Input Voltage - V  
NOTE: VIT is a steady-state parameter. The switching time is influenced by the input overdrive above this steady-state  
threshold up to a differential input voltage magnitude of 100 mV.  
Figure 36. SN65LVDS100 Simulated Input Voltage Threshold vs  
Common-Mode Input Voltage, Supply Voltage, and Temperature  
13  
SN65LVDS100, SN65LVDT100  
SN65LVDS101, SN65LVDT101  
www.ti.com  
SLLS516CAUGUST 2002REVISED JUNE 2004  
APPLICATION INFORMATION  
The SN65LVDS100, SN65LVDT100, SN65LVDS101, and SN65LVDT101 inputs will detect a 100-mV difference  
between any two signals between 0 V and 4 V, This range will allow receipt of many different single-ended and  
differential signals. Following are some of the more common connections.  
V
CC  
SN65LVDS100  
ECL  
100 W  
50 W  
50 W  
V
EE  
V -2 V  
CC  
Figure 37. PECL-to-LVDS Translation  
LVDS  
SN65LVDT101  
3.3 v  
PECL  
LVDS  
50 W  
50 W  
Figure 38. LVDS-to-3.3 V PECL Translation  
5 V  
ECL  
SN65LVDS101  
3.3 v  
PECL  
50 W  
50 W  
50 W  
50 W  
V
EE  
3 V  
Figure 39. 5-V PECL to 3.3-V PECL Translation  
V
TT  
50 W  
50 W  
SN65LVDS100 or  
SN65LVDS101  
CML  
Figure 40. CML-to-LVDS or 3.3-V PECL Translation  
14  
SN65LVDS100, SN65LVDT100  
SN65LVDS101, SN65LVDT101  
www.ti.com  
SLLS516CAUGUST 2002REVISED JUNE 2004  
APPLICATION INFORMATION (continued)  
3.3 V  
ECL  
SN65LVDS100  
Z = 50 W  
0
100 W  
LVDS  
50 W  
V
EE  
V
BB  
0.01 mF  
22 kW  
Figure 41. Single-Ended 3.3-V PECL-to-LVDS Translation  
V
DD  
V /600 mA*  
DD  
1 V < V < 4 V  
DD  
CMOS  
SN65LVDS100  
100 W  
LVDS  
0.01 mF  
V /600 mA*  
DD  
* closest standard value  
Figure 42. Single-Ended CMOS-to-LVDS Translation  
V
DD  
1 V < V < 4 V  
DD  
V /600 mA*  
DD  
CMOS  
SN65LVDS101  
3.3 v  
PECL  
50 W  
50 W  
0.01 mF  
V /600 mA*  
DD  
* closest standard  
value  
Figure 43. Single-Ended CMOS-to-3.3-V PECL Translation  
C
SN65LVDS100 or  
SN65LVDS101  
50 W  
50 W  
C
V
BB  
0.01 mF  
22 kW  
Figure 44. Receipt of AC-Coupled Signals  
15  
SN65LVDS100, SN65LVDT100  
SN65LVDS101, SN65LVDT101  
www.ti.com  
SLLS516CAUGUST 2002REVISED JUNE 2004  
APPLICATION INFORMATION (continued)  
FAILSAFE CONSIDERATIONS  
Failsafe, in regard to a line receiver, usually means that the output goes to a defined logical state with no input  
signal. To keep added jitter to an absolute minimum, the SN65LVDS100 does not include this feature. It does  
exhibit 25 mV of input voltage hysteresis to prevent oscillation and keep the output in the last state prior to  
input-signal loss (assuming the differential noise in the system is less than the hysteresis).  
Should failsafe be required, it may be added externally with a 1.6-kpull-up resistor to the 3.3-V supply and a  
1.6-kpull-down resistor to ground as shown in Figure 45 The default output state is determined by which line is  
pulled up or down and is the user's choice. The location of the 1.6-kresistors is not critical. However the 100-Ω  
resistor should be located at the end of the transmission line.  
3.3 V  
1.6 k  
100 Ω  
1.6 kΩ  
Figure 45. External Failsafe Circuit  
Addition of this external failsafe will reduce the differential noise margin and add jitter to the output signal. The  
roughly 100-mV steady-state voltage generated across the 100-resistor adds (or subtracts) from the signal  
generated by the upstream line driver. If the line driver's differential output is symmetrical about zero volts, then  
the input at the receiver will appear asymmetrical with the external failsafe. Perhaps more important, is the extra  
time it takes for the input signal to overcome the added failsafe offset voltage.  
In Figure 46 and using an external failsafe, the high-level differential voltage at the input of the SN65LVDS100  
reaches 340 mV and the low-level –400 mV indicating a 60-mV differential offset induced by the external failsafe  
circuitry. The figure also reveals that the lowest peak-to-peak time jitter does not occur at zero-volt differential  
(the nominal input threshold of the receiver) but at –60 mV, the failsafe offset.  
The added jitter from external failsafe increases as the signal transition times are slowed by cable effects. When  
a ten-meter CAT-5 UTP cable is introduced between the driver and receiver, the zero-crossing peak-to-peak jitter  
at the receiver output adds 250 ps when the external failsafe is added with this specific test set up. If external  
failsafe is used in conjunction with the SN65LVDS100, the noise margin and jitter effects should be budgeted.  
16  
 
SN65LVDS100, SN65LVDT100  
SN65LVDS101, SN65LVDT101  
www.ti.com  
SLLS516CAUGUST 2002REVISED JUNE 2004  
Figure 46. Receiver Input Eye Pattern With External Failsafe  
17  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2004, Texas Instruments Incorporated  

相关型号:

SN65LVDT101D

DIFFERENTIAL TRANSLATOR/REPEATER
TI

SN65LVDT101DG4

DIFFERENTIAL TRANSLATOR/REPEATER
TI

SN65LVDT101DGK

DIFFERENTIAL TRANSLATOR/REPEATER
TI

SN65LVDT101DGKG4

DIFFERENTIAL TRANSLATOR/REPEATER
TI

SN65LVDT101DGKR

DIFFERENTIAL TRANSLATOR/REPEATER
TI

SN65LVDT101DGKRG4

DIFFERENTIAL TRANSLATOR/REPEATER
TI

SN65LVDT101DR

DIFFERENTIAL TRANSLATOR/REPEATER
TI

SN65LVDT101DRG4

DIFFERENTIAL TRANSLATOR/REPEATER
TI

SN65LVDT122

1.5-Gbps 2 ⅴ 2 LVDS CROSSPOINT SWITCH
TI

SN65LVDT122D

1.5-Gbps 2 x 2 LVDS CROSSPOINT SWITCH
TI

SN65LVDT122DG4

1.5-Gbps 2 ⅴ 2 LVDS CROSSPOINT SWITCH
TI

SN65LVDT122DR

1.5-Gbps 2 x 2 LVDS CROSSPOINT SWITCH
TI