SN65LVDT348PWR [TI]

暂无描述;
SN65LVDT348PWR
型号: SN65LVDT348PWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

暂无描述

文件: 总20页 (文件大小:299K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65LVDS348, SN65LVDT348  
SN65LVDS352, SN65LVDT352  
SLLS523D – FEBRUARY 2002 – REVISED FEBRUATY 2003  
QUAD HIGH-SPEED DIFFERENTIAL RECEIVERS  
FEATURES  
APPLICATIONS  
D
D
D
Meets or Exceeds the Requirements of ANSI  
TIA/EIA-644A Standard  
D
Logic Level Translator  
D
Point-to-Point Baseband Data Transmission  
Over 100-Media  
1
Single-Channel Signaling Rates up to  
560 Mbps  
D
D
D
ECL/PECL-to-LVTTL Conversion  
Wireless Base Stations  
–4 V to 5 V Common-Mode Input Voltage  
Range  
Central Office or PABX Switches  
D
Flow-Through Architecture  
DESCRIPTION  
D
Active Failsafe Assures a High-level Output  
When an Input Signal Is not Present  
The SN65LVDS348, SN65LVDT348, SN65LVDS352,  
and SN65LVDT352 are high-speed, quadruple  
differential receivers with a wide common-mode input  
voltage range. This allows receipt of TIA/EIA-644  
signals with up to 3-V of ground noise or a variety of  
differential and single-ended logic levels. The ‘348 is in  
a 16-pin package to match the industry-standard  
footprint of the DS90LV048. The ‘352 adds two  
D
SN65LVDS348 Provides a Wide  
Common-Mode Range Replacement for the  
SN65LVDS048A or the DS90LV048A  
DATA TRANSFER RATE  
vs  
FREE-AIR TEMPERATURE  
additional V  
and GND pins in a 24-pin package to  
CC  
550  
provide higher data transfer rates with multiple  
receivers in operation. All offer a flow-through  
architecture with all inputs on one side and outputs on  
the other to ease board layout and reduce crosstalk  
between receivers. LVDT versions of both integrate a  
110-line termination resistor.  
SN65LVDS352PW  
500  
450  
400  
350  
300  
250  
200  
SN65LVDS348PW  
Timer  
LVDT Device  
Only  
15  
2
–1 prbs NRZ, V = 0.4 V  
ID  
V
= 1.2 V, C = 5.5 pF, 40% Open Eye  
IC  
4 Receivers Switching, Input Jitter < 45 ps  
L
–60 –40 –20  
0
20  
40  
60  
80  
100  
T
A
– Free-Air Temperature – °C  
(One of Four Shown)  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
1
The signaling rate of a line is the number of voltage transitions that are made per second expressed in the units bps (bits per second).  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
Copyright 2002 – 2003 Texas Instruments Incorporated  
1
www.ti.com  
SN65LVDS348, SN65LVDT348  
SN65LVDS352, SN65LVDT352  
SLLS523D FEBRUARY 2002 REVISED FEBRUATY 2003  
description (continued)  
These receivers also provide 3x the standards minimum common-mode noise voltage tolerance. The 4 V to  
5 V common-mode range allows usage in harsh operating environments or accepts LVPECL, PECL, LVECL,  
ECL, CMOS, and LVCMOS levels without level shifting circuitry. See the Application Information Section for  
more details on the ECL/PECL to LVDS interface.  
Precise control of the differential input voltage thresholds allows for inclusion of 50 mV of input-voltage  
hysteresis to improve noise rejection. The differential input thresholds are still no more than ±50 mV over the  
full input common-mode voltage range.  
The receiver inputs can withstand ±15 kV human-body model (HBM), with respect to ground, without damage.  
This provides reliability in cabled and other connections where potentially damaging noise is always a threat.  
The receivers also include a (patent-pending) failsafe circuit that provides a high-level output approximately  
600 ns after loss of the input signal. The most common causes of signal loss are disconnected cables, shorted  
lines, or powered-down transmitters. This prevents noise from being received as valid data under these fault  
conditions. This feature may also be used for Wired-Or bus signaling.  
The SN65LVDT348 and SN65LVDT352 include an integrated termination resistor. This reduces board space  
requirements and parts count by eliminating the need for a separate termination resistor. This can also improve  
signal integrity at the receiver by reducing the stub length from the line termination to the receiver.  
The intended application of these devices and signaling technique is for point-to-point baseband data  
transmission over controlled impedance media of approximately 100 . The transmission media may be  
printed-circuit board traces, backplanes, or cables. The ultimate rate and distance of data transfer is dependent  
upon the attenuation characteristics of the media and the noise coupling to the environment.  
The SN65LVDS348, SN65LVDT348, SN65LVDS352 and SN65LVDT352 are characterized for operation from  
40°C to 85°C.  
SN65LVDS348, SN65LVDT348  
D or PW PACKAGE  
(TOP VIEW)  
SN65LVDS352, SN65LVDT352  
PW PACKAGE  
(TOP VIEW)  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
1A  
1B  
2A  
NC  
1Y  
DGND1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
R
R
R
R
R
R
R
R
EN  
IN1–  
IN1+  
IN2+  
IN2–  
IN3–  
IN3+  
IN4+  
IN4–  
2
R
R
V
OUT1  
OUT2  
CC  
3
4
2B  
V
CCD1  
5
EN 1,2  
2Y  
NC  
NC  
3Y  
GND  
6
V
CCA  
R
R
OUT3  
OUT4  
7
AGND  
EN 3,4  
3A  
8
EN  
9
V
CCD2  
10  
11  
12  
3B  
4A  
4B  
DGND2  
4Y  
NC  
NC No internal connection  
2
www.ti.com  
SN65LVDS348, SN65LVDT348  
SN65LVDS352, SN65LVDT352  
SLLS523D FEBRUARY 2002 REVISED FEBRUATY 2003  
functional block diagrams (one of four receivers shown)  
To Three Other Receivers  
To One Other Receiver  
352 Devices  
348 Devices  
EN  
EN  
EN  
R
R
A
IN+  
R
Y
OUT1  
B
IN–  
Timer  
Timer  
SN65LVDT348  
Only  
SN65LVDT352  
Only  
Window Comparator  
PART NUMBER  
Window Comparator  
AVAILABLE OPTIONS  
INTEGRATED  
TERMINATION  
PACKAGE  
TYPE  
PACKAGE  
MARKING  
SN65LVDS348D  
SN65LVDT348D  
SN65LVDS348PW  
SN65LVDT348PW  
SN65LVDS352PW  
SN65LVDT352PW  
SOIC  
LVDS348  
LVDT348  
DL348  
n
n
n
SOIC  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
DE348  
DL352  
DE352  
Add the R suffix to the device type (e.g., SN65LVDS348DR) for taped and reeled carrier.  
Function Tables  
348 DEVICES  
INPUTS  
OUTPUTS  
V
= V  
V  
EN  
H
EN  
L or OPEN  
L or OPEN  
L or OPEN  
L or OPEN  
X
R
OUT  
ID  
RIN+  
RIN–  
V
32 mV  
H
ID  
100 mV < V < 32 mV  
H
?
L
ID  
V
ID  
100 mV  
H
Open  
H
H
Z
Z
L or OPEN  
X
X
H
352 DEVICES  
INPUTS  
OUTPUTS  
V
= V V  
IB  
EN  
Y
H
?
ID  
IA  
32 mV  
V
H
ID  
100 mV < V < 32 mV  
H
ID  
V
ID  
100 mV  
X
H
L or OPEN  
H
L
Z
H
Open  
H = high level, L = low level, X = irrelevant, Z = high impedance (off), ? = indeterminate  
3
www.ti.com  
SN65LVDS348, SN65LVDT348  
SN65LVDS352, SN65LVDT352  
SLLS523D FEBRUARY 2002 REVISED FEBRUATY 2003  
equivalent input and output schematic diagrams  
V
CC  
V
CC  
6.5 kΩ  
Attenuation  
6.5 kΩ  
1 pF  
60 kΩ  
Attenuation  
Network  
R
, A  
IN+  
R
, B  
IN–  
Network  
200 kΩ  
7 V  
7 V  
250 kΩ  
7 V  
7 V  
3 pF  
110 Ω  
LVDT Only  
Attenuation  
Network  
V
CC  
V
CC  
100 Ω  
37 Ω  
EN, EN  
R
Y
OUT,  
7 V  
300 kΩ  
7 V  
4
www.ti.com  
SN65LVDS348, SN65LVDT348  
SN65LVDS352, SN65LVDT352  
SLLS523D FEBRUARY 2002 REVISED FEBRUATY 2003  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage range (see Note 1), V , V  
, V  
,
V
. . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 4 V  
CC CCA CCD1 and CCD2  
Voltage range: Enables, R  
, or Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 6 V  
OUT  
Differential input magnitude V  
(LVDT only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 V  
ID  
R
, R , A or B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 V to 6 V  
IN+ IN–  
Electrostatic discharge: Human body model (see Note 2): A, B, R , R  
and GND . . . . . . . . . . . . . . . . ±15 kV  
IN+  
IN–  
All pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±7 kV  
Charged-device model (see Note 3): All pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±500 V  
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential I/O bus voltages, are with respect to network ground terminal (GND, AGND).  
2. Tested in accordance with JEDEC Standard 22, Test Method A114-A.  
3. Tested in accordance with JEDEC Standard 22, Test Method C101.  
DISSIPATION RATING TABLE  
T
25°C  
OPERATING FACTOR  
T = 85°C  
A
POWER RATING  
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
A
D16  
950 mW  
7.6 mW/°C  
6.2 mW/°C  
8.7 mW/°C  
494 mW  
PW16  
PW24  
774 mW  
402 mW  
1087 mW  
565 mW  
This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with  
no air flow.  
recommended operating conditions  
MIN NOM  
MAX  
3.6  
5
UNIT  
Supply voltage, V , V  
, V  
and V  
3
2
3.3  
V
V
V
CC CCA CCD1,  
CCD2  
High-level input voltage, V  
IH  
Enables  
Enables  
Low-level input voltage, V  
0
0.8  
0.8  
3
IL  
V
V
(LVDT348, 352)  
(LVDS348, 352)  
0.1  
0.1  
4  
40  
ID  
Magnitude of differential input voltage  
V
ID  
Input voltage (any combination of common mode or input signals)  
Operating free-air temperature, T  
5
V
85  
°C  
A
5
www.ti.com  
SN65LVDS348, SN65LVDT348  
SN65LVDS352, SN65LVDT352  
SLLS523D FEBRUARY 2002 REVISED FEBRUATY 2003  
electrical characteristics over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
UNIT  
Positive-going differential input voltage  
threshold  
V
50  
ITH1  
See Figure 1 and Figure 2  
mV  
Negative-going differential input voltage  
threshold  
V
V
V
50  
32  
ITH2  
Differential input failsafe voltage threshold  
Differential input voltage hysteresis,  
See Figure 1 and Table 1  
100  
mV  
mV  
ITH3  
50  
ID(HYS)  
V
ITH1  
V  
ITH2  
V
V
High-level output voltage  
Low-level output voltage  
I
I
= 4 mA  
2.4  
V
V
OH  
OH  
= 4 mA  
0.4  
20  
4
OL  
OL  
Enabled, EN at V  
,
EN at 0 V, No load  
16  
1.1  
16  
LVDS348,  
LVDT348  
CC  
mA  
mA  
Disabled, EN at 0 or EN at V  
CC  
I
Supply current  
CC  
Enabled, EN at V  
CC  
,
No load  
20  
4
LVDS352,  
LVDT352  
Disabled, EN at 0  
1.1  
V = 4 V,  
Other input open  
Other input 1.2 V  
Other input open  
Other input open  
Other input open  
Other input open  
75  
20  
0
0
I
LVDS348,  
LVDS352  
0 V V 2.4 V,  
0
µA  
µA  
I
V = 5 V,  
I
40  
0
Input current (RIN+, RIN,  
A or B inputs)  
I
I
V = 4 V,  
I
150  
40  
0
LVDT348,  
LVDT352  
0 V V 2.4 V,  
0
I
V = 5 V,  
I
80  
V
= 1.5 V,  
V = 4 V or 5 V,  
I
CC  
Other input open  
50  
20  
100  
40  
4  
50  
20  
LVDS348,  
LVDS352  
µA  
µA  
V
= 1.5 V,  
0 V V 2.4 V,  
I
CC  
Other input at 1.2 V  
Poweroff input current (RIN+,  
RIN, A or B inputs)  
I
I
I(OFF)  
V
= 1.5 V,  
V = 4 V or 5 V,  
I
CC  
Other input open  
100  
40  
LVDT348,  
LVDT352  
V
= 1.5 V,  
V = 0 V or 2.4 V,  
I
CC  
Other input open  
Differential input current  
LVDS348,  
LVDS352  
V
V
= 100 mV,  
V
V
= 3.9 V or 4.9 V  
4
µA  
ID  
ID  
IC  
(I  
I  
, or I I )  
IA IB  
RIN+ RIN–  
LVDT348,  
= 0 V,  
= 250 mV,  
CC  
ID  
R
T
Differential input resistance  
90  
111  
132  
LVDT352 V = 0 V to 2.4 V  
I
I
I
I
High-level input current  
Enables  
Enables  
V
IH  
V
IL  
V
O
= 2 V  
= 0.8 V  
= 0 V  
0
0
10  
10  
10  
µA  
µA  
µA  
IH  
Low-level input current  
IL  
High-impedance output current  
10  
OZ  
Input capacitance, R  
or A or B input to AGND  
, R  
input to GND  
IN+ IN–  
C
V = 0.4 sin (4E6πft) + 0.5 V  
I
5
pF  
IN  
All typical values are at 25°C and with a 3.3-V supply.  
6
www.ti.com  
SN65LVDS348, SN65LVDT348  
SN65LVDS352, SN65LVDT352  
SLLS523D FEBRUARY 2002 REVISED FEBRUATY 2003  
switching characteristics over recommended operating conditions (unless otherwise noted)  
PARAMETER  
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
Delay time, failsafe disable time  
TEST CONDITIONS  
MIN TYP  
MAX  
6
UNIT  
ns  
ns  
ns  
µs  
ps  
ps  
ns  
ns  
ns  
ps  
ps  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
2.5  
2.5  
4
4
PLH  
PHL  
d1  
6
9
Delay time, failsafe enable time  
0.3  
1.5  
d2  
C
= 10 pF,  
L
Pulse skew (|t  
t  
|)  
200  
150  
sk(p)  
sk(o)  
sk(pp)  
r
pHL1 pLH1  
See Figure 3  
Output skew  
§
Part-to-part skew  
1
Output signal rise time  
Output signal fall time  
Output signal rise time  
Output signal fall time  
1.2  
1
f
650  
400  
5
r
C = 1 pF,  
L
See Figure 3  
f
Propagation delay time, high-level-to-high-impedance output  
Propagation delay time, low-level-to-high-impedance output  
Propagation delay time, high-impedance-to-high-level output  
Propagation delay time, high-impedance-to-low-level output  
9
9
PHZ  
PLZ  
PZH  
PZL  
5
See Figure 4 and  
Figure 5  
8
12  
12  
8
§
All typical values are at 25°C and with a 3.3-V supply.  
t
t
isthemagnitudeofthetimedifferencebetweenthet ofallreceiversofasingledevicewithalloftheirinputsconnectedtogether.  
or t  
is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate  
sk(o)  
PHL PLH  
sk(pp)  
with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
PARAMETER MEASUREMENT INFORMATION  
I
IA  
or I  
RIN+  
A or R  
IN+  
Y or R  
OUT  
V
ID  
I
or I  
ROUT  
OY  
B or R  
IN–  
V
IA  
or V  
RIN+  
I
or I  
RIN–  
(V + V )/2 or  
IB  
IA  
IB  
+ V  
V
IC  
V
OY  
or V  
ROUT  
(V  
RIN+  
V
or V  
RIN–  
RIN)/2  
IB  
Figure 1. Voltage and Current Definitions  
7
www.ti.com  
SN65LVDS348, SN65LVDT348  
SN65LVDS352, SN65LVDT352  
SLLS523D FEBRUARY 2002 REVISED FEBRUATY 2003  
PARAMETER MEASUREMENT INFORMATION  
1000 Ω  
100 Ω  
100 Ω  
V
ID  
1000 Ω  
+
+
V
1
V
2
V
O
10 pF  
10 pF  
10 pF  
+
V
IC  
Remove for testing LVDT device.  
NOTES: A. Input signal of 3 MHz, duty cycle of 50±0.2%, and transition time of < 1ns.  
B. Fixture capacitance ±20%.  
C. Resistors are metal film, 1% tolerance, and surface mount  
V
ITH1  
0 V  
V
ID  
100 mV  
V
O
100 mV  
0 V  
V
ID  
V
ITH2  
V
O
Figure 2. V  
and V  
, Input Voltage Threshold Test Circuit and Definitions  
ITH2  
ITH1  
Table 1. Receiver Minimum and Maximum Failsafe Input Voltage  
FAILSAFE THRESHOLD TEST VOLTAGES  
APPLIED VOLTAGES  
(mV) (mV)  
RESULTANT INPUTS  
(mV) (mV)  
Output  
V
IA  
V
IB  
V
V
IC  
ID  
100  
4000  
4000  
4900  
3900  
3968  
5000  
3950  
3984  
4950  
L
H
L
32  
100  
32  
4968  
5000  
4984  
H
Voltage applied for greater than 1.5 µs.  
8
www.ti.com  
SN65LVDS348, SN65LVDT348  
SN65LVDS352, SN65LVDT352  
SLLS523D FEBRUARY 2002 REVISED FEBRUATY 2003  
PARAMETER MEASUREMENT INFORMATION  
A or R  
IN+  
Y or R  
OUT  
V
ID  
V
IA  
or V  
RIN+  
V
OY  
or V  
B or R  
ROUT  
IN–  
C
L
V
IB  
or V  
RIN–  
A or V  
B or V  
1.4 V  
1 V  
RIN+  
RIN–  
>1.5 µs  
0.4 V  
0 V  
V
ID  
0.2 V  
0.4 V  
t
t
t
d1  
PHL  
PLH  
t
d2  
V
OH  
/2  
V
OY  
or V  
ROUT  
V
CC  
V
OL  
t
t
r
f
NOTE: All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, signaling rate = 250 kHz,  
r
f
duty cycle = 50 ±2%, C includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T and is ±20%.  
L
Figure 3. Timing Test Circuit and Waveforms  
9
www.ti.com  
SN65LVDS348, SN65LVDT348  
SN65LVDS352, SN65LVDT352  
SLLS523D FEBRUARY 2002 REVISED FEBRUATY 2003  
PARAMETER MEASUREMENT INFORMATION  
R
R
IN–  
R
OUT  
500 Ω  
1.2 V  
IN+  
+
EN  
EN  
V
TEST  
V
_
ROUT  
10 pF  
Inputs  
2.5 V  
V
TEST  
V
RIN+  
1 V  
2 V  
1.4 V  
EN  
0.8 V  
2 V  
1.4 V  
0.8 V  
EN  
t
t
PLZ  
PZL  
t
t
PLZ  
PZL  
2.5 V  
1.4 V  
VOL +0.5 V  
VOL  
V
ROUT  
V
TEST  
0 V  
1.4 V  
V
RIN+  
2 V  
1.4 V  
EN  
0.8 V  
2 V  
1.4 V  
EN  
0.8 V  
t
t
PHZ  
PZH  
t
t
PHZ  
PZH  
VOH  
VOH 0.5 V  
1.4 V  
0 V  
V
ROUT  
NOTE: All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, signaling rate = 500 kHz,  
r
f
duty cycle = 50 ±2%, C includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T and is ±20%.  
L
Figure 4. 348 Enable/Disable Time Test Circuit and Waveforms  
10  
www.ti.com  
SN65LVDS348, SN65LVDT348  
SN65LVDS352, SN65LVDT352  
SLLS523D FEBRUARY 2002 REVISED FEBRUATY 2003  
PARAMETER MEASUREMENT INFORMATION  
B
A
Y
500 Ω  
1.2 V  
Inputs  
+
EN  
V
TEST  
V
O
_
10 pF  
2.5 V  
V
TEST  
A
1 V  
2 V  
EN  
1.4 V  
0.8 V  
t
t
PLZ  
PZL  
2.5 V  
1.4 V  
V
O
VOL +0.5 V  
VOL  
V
TEST  
A
0 V  
1.4 V  
2 V  
EN  
1.4 V  
0.8 V  
t
t
PHZ  
PZH  
VOH  
VOH 0.5 V  
V
O
1.4 V  
0 V  
NOTE: All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, signaling rate = 500 kHz,  
r
f
duty cycle = 50 ±2 %, C includes instrumentation and fixture capacitance within 0,06 mm of the D.U.T and is ±20%.  
L
Figure 5. 352 Enable/Disable Time Test Circuit and Waveforms  
11  
www.ti.com  
SN65LVDS348, SN65LVDT348  
SN65LVDS352, SN65LVDT352  
SLLS523D FEBRUARY 2002 REVISED FEBRUATY 2003  
TYPICAL CHARACTERISTICS  
HIGH-TO-LOW PROPAGATION DELAY  
LOW-TO-HIGH PROPAGATION DELAY  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
5
4.5  
4
5
See Figure 3  
See Figure 3  
V
CC  
= 3 V  
4.5  
V
CC  
= 3 V  
V
CC  
= 3.3 V  
V
CC  
= 3.3 V  
4
3.5  
3
V
CC  
= 3.6 V  
V
CC  
= 3.6 V  
3.5  
3
50  
0
50  
100  
50  
0
50  
100  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 6  
Figure 7  
LOW-LEVEL OUTPUT CURRENT  
vs  
HIGH-LEVEL OUTPUT CURRENT  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
40  
30  
0
T
V
= 25°C,  
T
V
= 25°C,  
A
A
= 3.3 V  
= 3.3 V  
CC  
CC  
10  
20  
10  
0
20  
30  
40  
0
1
2
3
4
5
0
1
2
3
4
V
OL  
Low-Level Output Voltage V  
V
OH  
High-Level Output Voltage V  
Figure 8  
Figure 9  
12  
www.ti.com  
SN65LVDS348, SN65LVDT348  
SN65LVDS352, SN65LVDT352  
SLLS523D FEBRUARY 2002 REVISED FEBRUATY 2003  
TYPICAL CHARACTERISTICS  
DATA TRANSFER RATE  
vs  
FREE-AIR TEMPERATURE  
RMS SUPPLY CURRENT  
vs  
SWITCHING FREQUENCY  
500  
450  
400  
350  
300  
110  
90  
15  
4 Receivers Switching,  
50% Duty Cycle,  
2
1 prbs NRZ,  
= 1.2 V,  
V
C
IC  
L
V
= 3.6 V  
CC  
C
T
= 5.5 pF,  
= 25°C  
= 5.5 pF,  
L
A
40% Open Eye,  
4 Receivers Switching,  
V
= 3.3 V,  
CC  
SN65LVDS348PW  
V
CC  
= 3.3 V  
70  
V
= 0.4 V  
ID  
V
= 3 V  
CC  
50  
30  
V
= 0.2 V  
ID  
V
ID  
= 0.1 V  
250  
200  
10  
60 40 20  
0
20  
40  
60  
80  
100  
0
50  
100  
150  
200  
250  
300  
T
A
Free-Air Temperature °C  
f Switching Frequency MHz  
Figure 11  
Figure 10  
23  
23  
2
1 prbs NRZ, T = 25°C, C = 5.5 pF,  
2
1 prbs NRZ, T = 25°C, C = 5.5 pF,  
A
L
A
L
4 Receivers Switching, V  
CC  
= 3.3 V  
4 Receivers Switching, V  
CC  
= 3.3 V  
Figure 13. SN65LVDS352 Eye  
Pattern Running at 200 Mxfr/s  
Figure 12. SN65LVDS348 Eye  
Pattern Running at 200 Mxfr/s  
13  
www.ti.com  
SN65LVDS348, SN65LVDT348  
SN65LVDS352, SN65LVDT352  
SLLS523D FEBRUARY 2002 REVISED FEBRUATY 2003  
APPLICATION INFORMATION  
impedance matching and reflections  
A termination mismatch can result in reflections that degrade the signal at the load. A low source impedance  
causes the signal to alternate polarity at the load (oscillates) as shown in Figure 14. High source impedance  
results in the signal accumulating monotonically to the final value (stair step) as shown in Figure 15. Both of  
these modes result in a delay in valid signal and reduce the opening in the eye pattern. A 10% termination  
mismatch results in a 5% reflection (ρ = Z Z /Z + Z ), even a 1:3 mismatch absorbs half of the incoming  
L
O
L
O
signal. This shows that termination is important in the more critical cases, however, in a general sense, a rather  
large termination mismatch is not as critical when the differential output signal is much greater than the receiver  
sensitivity.  
TIME DOMAIN RESPONSE  
TIME DOMAIN RESPONSE  
0.25  
0.2  
0.25  
0.2  
Z
S
Z
O
Z
T
= 0 Ω  
= 100 Ω  
= 132 Ω  
Z
S
Z
O
Z
T
= 0 Ω  
= 100 Ω  
= 90 Ω  
V at Load  
V at Load  
V
I
V
I
0.15  
0.1  
0.15  
0.1  
0.05  
0
0.05  
0
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
25  
t Time ns  
t Time ns  
Figure 14. Low-Source Impedance  
Figure 15. High-Source Impedance  
For example a 200-mV drive signal into a 100-lossless transmission media with a termination resistor of 90 Ω  
to 132 results in ~227 mV to 189 mV into the receiver. This would typically be more than enough signal into  
a receiver with a sensitivity of ±50 mV assuming no other disturbance or attenuation on the line. The other  
factors, which reduce the signal margin, do affect this and therefore it is important to match the impedance as  
closely as possible to allow more noise immunity at the receiver.  
14  
www.ti.com  
SN65LVDS348, SN65LVDT348  
SN65LVDS352, SN65LVDT352  
SLLS523D FEBRUARY 2002 REVISED FEBRUATY 2003  
APPLICATION INFORMATION  
active failsafe feature  
A differential line receiver commonly has a failsafe circuit to prevent it from switching on input noise. Current  
LVDS failsafe solutions require either external components with subsequent reductions in signal quality or  
integrated solutions with limited application. This family of receivers has a new integrated failsafe that solves  
the limitations seen in present solutions. A detailed theory of operation is presented in application note The  
Active Fail-Safe in TI’s LVDS Receivers, literature number SLLA082B.  
The following figure shows one receiver channel with active failsafe. It consists of a main receiver that can  
respond to a high-speed input differential signal. Also connected to the input pair are two failsafe receivers that  
form a window comparator. The window comparator has a much slower response than the main receiver and  
it detects when the input differential falls below 80 mV. A 600-ns failsafe timer filters the window comparator  
outputs. When failsafe is asserted, the failsafe logic drives the main receiver output to logic high.  
Output  
Buffer  
Main Receiver  
+
_
A
B
R
Failsafe  
Timer  
Reset  
A > B + 80 mV  
+
_
Failsafe  
B > A + 80 mV  
+
_
Window Comparator  
Figure 16. Receiver With Active Failsafe  
15  
www.ti.com  
SN65LVDS348, SN65LVDT348  
SN65LVDS352, SN65LVDT352  
SLLS523D FEBRUARY 2002 REVISED FEBRUATY 2003  
APPLICATION INFORMATION  
ECL/PECL-to-LVTTL conversion with TIs LVDS receiver  
The various versions of emitter-coupled logic (i.e., ECL, PECL and LVPECL) are often the physical layer of  
choice for system designers. Designers know that established technology is capable of high-speed data  
transmission. In the past, system requirements often forced the selection of ECL. Now technologies like LVDS  
provide designers with another alternative. While the total exchange of ECL for LVDS may not be a design  
option, designers have been able to take advantage of LVDS by implementing a small resistor divider network  
at the input of the LVDS receiver. TI has taken the next step by introducing a wide common-mode LVDSreceiver  
(no divider network required) which can be connected directly to an ECL driver with only the termination bias  
voltage required for ECL termination (V  
2 V).  
CC  
Figure 17 shows the use of an LV/PECL driver driving 5 meters of CAT5 cable and being received by TIs wide  
common-mode receiver and the resulting eye-pattern. The values for R3 are required in order to provide a  
resistor path to ground for the LV/PECL driver. With no resistor divider, R1 simply needs to match the  
characteristic load impedance of 50 . The R2 resistor is a small value intended to minimize common-mode  
reflections.  
V
V
CC  
I
CC  
I
R1 = 50 Ω  
R2 = 50 Ω  
CC  
CC  
V
B
5 Meters  
of CAT-5  
LV/PECL  
LVDS  
V
B
R3  
R3  
R1  
R1  
V
EE  
R2  
R3 = 240 Ω  
Figure 17. LVPECL or PECL to Remote Wide Common-Mode LVDS Receiver  
16  
www.ti.com  
SN65LVDS348, SN65LVDT348  
SN65LVDS352, SN65LVDT352  
SLLS523D FEBRUARY 2002 REVISED FEBRUATY 2003  
APPLICATION INFORMATION  
device power and grounding  
The SN65LVDS352 device provides separate power and ground pins for the analog input section and the two  
digital output sections. All of the power pins and all of the ground pins of the device must be tied together at some  
point in the system. Figure 18 shows one recommended scheme for power and ground to the device. This point  
will be determined by the power and grounding distribution design, which can greatly affect system  
performance.  
Key points to remember when routing power and grounds in your system are:  
D
D
D
D
The grounding system must provide a low impedance path back to the power source.  
The signal return must be close to the signal path.  
Ground noise occurs due to ground loops and common-mode noise pick-up.  
Closely spaced power and ground planes reduce inductance and increase capacitance.  
A good rule to remember when doing your power distribution and board layout is that the current always flows  
in the lowest impedance path. At dc the lowest resistance is the lowest impedance, but at high frequencies the  
lowest impedance is the lowest inductance path.  
V
CC  
V
CCD1  
Bypass  
Capacitor  
DGND1  
V
CCA  
Bypass  
Capacitor  
AGND  
V
CCD2  
Bypass  
Capacitor  
DGND2  
Bypass capacitors used for data sheet electrical testing were low ESR ceramic, surface mount, 0.01 µF ±10%. For a more accurate  
determination of these values refer to the application note, The Bypass Capacitor in High-Speed Environments, literature number  
SCBA007A.  
Figure 18. Recommended Power and Ground Connection  
17  
www.ti.com  
SN65LVDS348, SN65LVDT348  
SN65LVDS352, SN65LVDT352  
SLLS523D FEBRUARY 2002 REVISED FEBRUATY 2003  
MECHANICAL DATA  
D (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
8 PINS SHOWN  
0.020 (0,51)  
0.014 (0,35)  
0.050 (1,27)  
0.010 (0,25)  
8
5
0.244 (6,20)  
0.228 (5,80)  
0.008 (0,20) NOM  
0.157 (4,00)  
0.150 (3,81)  
Gage Plane  
1
4
0.010 (0,25)  
0°8°  
A
0.044 (1,12)  
0.016 (0,40)  
Seating Plane  
0.010 (0,25)  
0.069 (1,75) MAX  
0.004 (0,10)  
0.004 (0,10)  
PINS **  
8
14  
16  
DIM  
A MAX  
0.197  
(5,00)  
0.344  
(8,75)  
0.394  
(10,00)  
0.189  
(4,80)  
0.337  
(8,55)  
0.386  
(9,80)  
A MIN  
4040047/E 09/01  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).  
D. Falls within JEDEC MS-012  
18  
www.ti.com  
SN65LVDS348, SN65LVDT348  
SN65LVDS352, SN65LVDT352  
SLLS523D FEBRUARY 2002 REVISED FEBRUATY 2003  
MECHANICAL DATA  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°ā8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
7,70  
9,80  
9,60  
A MAX  
A MIN  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
19  
www.ti.com  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third–party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Mailing Address:  
Texas Instruments  
Post Office Box 655303  
Dallas, Texas 75265  
Copyright 2003, Texas Instruments Incorporated  

相关型号:

SN65LVDT348PWRG4

具有 –4V 至 5V 共模范围的四路接收器 | PW | 16 | -40 to 85
TI

SN65LVDT34D

HIGH-SPEED DIFFERENTIAL RECEIVERS
TI

SN65LVDT34DG4

HIGH-SPEED DIFFERENTIAL RECEIVERS
TI

SN65LVDT34DR

HIGH-SPEED DIFFERENTIAL RECEIVERS
TI

SN65LVDT34DRG4

HIGH-SPEED DIFFERENTIAL RECEIVERS
TI

SN65LVDT352

QUAD HIGH-SPEED DIFFERENTIAL RECEIVERS
TI

SN65LVDT352PW

QUAD HIGH-SPEED DIFFERENTIAL RECEIVERS
TI

SN65LVDT352PWR

具有 –4V 至 5V 共模范围的四路接收器 | PW | 24 | -40 to 85
TI

SN65LVDT386

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
TI

SN65LVDT386DGG

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
TI

SN65LVDT386DGGG4

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
TI

SN65LVDT386DGGR

HIGH-SPEED DIFFERENTIAL LINE RECEIVERS
TI