SN65MLVD128DGGR [TI]

1:8 LVTTL 到 M-LVDS 中继器 | DGG | 48 | -40 to 85;
SN65MLVD128DGGR
型号: SN65MLVD128DGGR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

1:8 LVTTL 到 M-LVDS 中继器 | DGG | 48 | -40 to 85

驱动 中继器 光电二极管 接口集成电路 驱动器
文件: 总16页 (文件大小:184K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢇꢈ ꢉꢊ  
ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢇꢈ ꢉꢋ  
www.ti.com  
SLLS586 − MARCH 2004  
D
D
Independent Enables for each Driver  
FEATURES  
Output-to-Ouput Skew t  
3 160 ps  
sk(o)  
3 800 ps  
D
LVTTL Receiver and Eight Line Drivers  
Configured as an 8-Port M-LVDS Repeater −  
SN65MLVD128  
Part-to-Part Skew t  
sk(pp)  
D
D
D
Single 3.3-V Voltage Supply  
D
2 LVTTL Receivers and Eight Line Drivers  
Configured as Dual 4-Port M-LVDS Repeaters  
− SN65MLVD129  
Bus Pin ESD Protection Exceeds 9 kV  
Packaged in 48-Pin TSSOP (DGG)  
D
D
Drivers Meet or Exceed the M-LVDS Standard  
(TIA/EIA-899)  
APPLICATIONS  
Low-Voltage Differential 30-to 55-Line  
Drivers for Data Rates Up to 250 Mbps or  
Clock Frequencies Up to 125 MHz  
D
D
D
AdvancedTCAE (ATCAE) Clock Bus Driver  
(1)  
Clock Distribution  
Data and Clock Repeating Over Backplanes  
and Cables  
D
D
Power Up/Down Glitch Free  
Controlled Driver Output Voltage Transition  
Times for Improved Signal Quality  
D
D
D
Cellular Base Stations  
Central Office Switches  
Network Switches and Routers  
D
Bus Pins High Impedance When Disabled or  
V
1.5 V  
CC  
LOGIC DIAGRAM  
EN1  
EN1  
1A  
1B  
1A  
1B  
EN2  
EN3  
EN4  
EN2  
2A  
2B  
2A  
2B  
1 D  
EN3  
3A  
3B  
3A  
3B  
EN4  
EN5  
EN6  
4A  
4B  
4A  
4B  
1D  
EN5  
5A  
5B  
5A  
5B  
EN6  
EN7  
EN8  
6A  
6B  
6A  
6B  
2 D  
EN7  
7A  
7B  
7A  
7B  
EN8  
8A  
8B  
8A  
8B  
SN65MLVD128  
SN65MLVD129  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
(1)  
The data rate of a line, is the number of voltage transitions that are made per second expressed in the units bps (bits per second).  
AdvancedTCA and ATCA are trademarks of the PCI Industrial Computer Manufacturers Group.  
ꢒꢐ ꢎ ꢇꢔ ꢖ ꢍꢗ ꢎꢁ ꢇ ꢓꢍꢓ ꢘꢙ ꢚꢛ ꢜ ꢝꢞ ꢟꢘꢛꢙ ꢘꢠ ꢡꢢ ꢜ ꢜ ꢣꢙꢟ ꢞꢠ ꢛꢚ ꢤꢢꢥ ꢦꢘꢡ ꢞꢟꢘ ꢛꢙ ꢧꢞ ꢟꢣꢨ ꢒꢜ ꢛꢧꢢ ꢡꢟꢠ  
ꢡ ꢛꢙ ꢚꢛꢜ ꢝ ꢟꢛ ꢠ ꢤꢣ ꢡ ꢘ ꢚꢘ ꢡ ꢞ ꢟꢘ ꢛꢙꢠ ꢤ ꢣꢜ ꢟꢩꢣ ꢟꢣ ꢜ ꢝꢠ ꢛꢚ ꢍꢣꢪ ꢞꢠ ꢗꢙꢠ ꢟꢜ ꢢꢝ ꢣꢙꢟ ꢠ ꢠꢟ ꢞꢙꢧ ꢞꢜ ꢧ ꢫ ꢞꢜ ꢜ ꢞ ꢙꢟꢬꢨ  
ꢒꢜ ꢛ ꢧꢢꢡ ꢟ ꢘꢛ ꢙ ꢤꢜ ꢛ ꢡ ꢣ ꢠ ꢠ ꢘꢙ ꢭ ꢧꢛ ꢣ ꢠ ꢙꢛꢟ ꢙꢣ ꢡꢣ ꢠꢠ ꢞꢜ ꢘꢦ ꢬ ꢘꢙꢡ ꢦꢢꢧ ꢣ ꢟꢣ ꢠꢟꢘ ꢙꢭ ꢛꢚ ꢞꢦ ꢦ ꢤꢞ ꢜ ꢞꢝ ꢣꢟꢣ ꢜ ꢠꢨ  
Copyright 2004, Texas Instruments Incorporated  
ꢀ ꢁꢂꢃ ꢄꢅꢆꢇ ꢈ ꢉꢊ  
www.ti.com  
SLLS586 − MARCH 2004  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during  
storage or handling to prevent electrostatic damage to the MOS gates.  
DESCRIPTION  
The SN65MLVD128 and SN65MLVD129 are LVTTL-to-M−LVDS translators/repeaters. Outputs comply with the M−LVDS  
standard (TIA/EIA-899) and are optimized for data rates up to 250 Mbps, and clock frequencies up to 125 MHz. The driver  
outputs have been designed to support multipoint buses presenting loads as low as 30 and incorporates controlled  
transition times for backbone operation.  
M-LVDS compliant devices allow for 32 nodes on a common bus, providing a high-speed replacement for RS-485 devices  
when lower common-mode voltage range and lower output signaling levels are acceptable. The SN65MLVD128 and  
SN65MLVD129 provide separate driver enables, allowing for independent control of each output signal.  
Intended applications for these devices include transmission of clock signals from a central clock module, as well as  
translation and buffering of data or control signals for transmission through a controlled impedance backplane or cable.  
ORDERING INFORMATION  
INPUT:OUTPUT  
CHANNEL  
PART NUMBER  
PART MARKING  
PACKAGE/CARRIER  
SN65MLVD128DGG  
SM65MLVD128DGGR  
SN65MLVD129DGG  
SM65MLVD129DGGR  
1:8  
MLVD128  
MLVD128  
MLVD129  
MLVD129  
48-Pin TSSOP/Tube  
48-Pin TSSOP/Tape and Reeled  
48-Pin TSSOP/Tube  
1:8  
Dual 1:4  
Dual 1:4  
48-Pin TSSOP/Tape and Reeled  
PACKAGE DISSIPATION RATINGS  
(1)  
PCB JEDEC  
T
25°C  
DERATING FACTOR  
T = 85°C  
A
POWER RATING  
A
PACKAGE  
STANDARD  
POWER RATING  
ABOVE T = 25°C  
A
(2)  
48-DGG  
48-DGG  
Low-K  
1114.6 mW  
9.7 mW/_C  
533.1 mW  
(3)  
High-K  
1824.5 mW  
15.9 mW/_C  
872.6 mw  
(1)  
(2)  
(3)  
This is the inverse of the junction-to-ambient thermal resistance when board mounted and with no air flow.  
In accordance with the Low-K thermal metric definitions of EIA/JESD51-3.  
In accordance with the High-K thermal metric definitions of EIA/JESD51-7.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted  
(1)  
SN65MLVD128, 129  
−0.5 V to 4 V  
−0.5 V to 4 V  
−1.8 V to 4 V  
9 kV  
(2)  
Supply voltage range , V  
CC  
Input voltage range, V  
D, EN  
I
Output voltage range, V  
A or B  
O
A, B  
(3)  
Human Body Model  
All pins  
All pins  
All pins  
4 kV  
Electrostatic discharge  
(4)  
Charged-Device Model  
1500 V  
(5)  
Machine Model  
200 V  
Continuous power dissipation  
See Dissipation Rating Table  
(1)  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
Tested in accordance with JEDEC Standard 22, Test Method A114−B.  
(2)  
(3)  
(4)  
(5)  
Tested in accordance with JEDEC Standard 22, Test Method C101−A.  
Tested in accordance with JEDEC Standard 22, Test Method A115−A.  
2
ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢇꢈ ꢉꢊ  
ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢇꢈ ꢉꢋ  
www.ti.com  
SLLS586 − MARCH 2004  
RECOMMENDED OPERATING CONDITIONS  
MIN NOM  
MAX UNIT  
Supply voltage, V  
CC  
3
2
3.3  
3.6  
V
V
V
V
High-level input voltage, V  
IH  
V
CC  
0.8  
Low-level input voltage, V  
IL  
0
Voltage at any bus terminal (separate or common mode) V or V  
−1.4  
30  
3.8  
55  
A
B
Differential load resistance, R  
L
Signaling rate, 1/t  
Clock frequency  
250 Mbps  
125 MHz  
UI  
Ambient temperature, T  
−40  
85  
°C  
A
(1)  
(2)  
In accordance with the Low-K thermal metric difinitions of EIA/JESD51−3.  
In accordance with the High-K thermal metric difinitions of EIA/JESD51−7.  
DEVICE ELECTRICAL CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
(1)  
MIN  
(2)  
TYP  
PARAMETER  
TEST CONDITIONS  
MAX  
140  
45  
7
UNIT  
mA  
EN = V , Ιnput = V  
CC  
or GND, R = 50 Ω  
112  
CC  
CC  
CC  
CC  
L
Driver enabled  
Driver disabled  
EN = V , Ιnput = V  
CC  
or GND, R = No load  
mA  
L
I
Supply current  
CC  
EN = V , Ιnput = V  
CC  
or GND, R = 50 Ω  
mA  
L
EN = V , Ιnput = V  
CC  
or GND, R = No load  
7
mA  
L
V
CC  
= 3.6 V, EN = V , C = 15 pF, R = 50 ,Input 125  
CC  
L
L
Device power dissipation, P  
MHz 50 % duty cycle square wave,  
= 85°C  
529  
mW  
D
T
A
(1)  
(2)  
The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.  
All typical values are at 25°C and with a 3.3-V supply voltage.  
3
ꢀ ꢁꢂꢃ ꢄꢅꢆꢇ ꢈ ꢉꢊ  
www.ti.com  
SLLS586 − MARCH 2004  
DEVICE ELECTRICAL CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
(1)  
MIN  
(2)  
TYP  
PARAMETER  
TEST CONDITIONS  
MAX  
UNIT  
LVTTL (D, EN) INPUT SPECIFICATIONS  
|I  
|I  
|
10  
10  
µA  
µA  
pF  
High-level input current  
Low-level input current  
Input capacitance  
V
V
= 2 V or V  
CC  
IH  
IH  
|
= GND or 0.8 V  
IL  
IL  
(3)  
C
5
V = 0.4 sin(30E6πt) + 0.5 V  
I
i
M−LVDS (A, B) OUTPUT SPECIFICATIONS  
V  
480  
−50  
0.8  
650  
50  
mV  
mV  
V
Differential output voltage magnitude  
AB  
See Figure 2  
See Figure 3  
Change in differential output voltage magnitude  
between logic states  
V  
AB  
V
1.2  
50  
Steady-state common-mode output voltage  
OS(SS)  
Change in steady-state common-mode output  
voltage between logic states  
V  
−50  
mV  
mV  
V
OS(SS)  
V
150  
2.4  
Peak-to-peak common-mode output voltage  
OS(PP)  
Maximum steady-state open-circuit output  
voltage  
V
0
0
A(OC)  
See Figure 7  
See Figure 5  
Maximum steady-state open-circuit output  
voltage  
V
2.4  
V
B(OC)  
V
V
I  
1.2V  
V
V
Voltage overshoot, low-to-high level output  
Voltage overshoot, high-to-low level output  
P(H)  
SS  
−0.2 V  
P(L)  
SS  
24  
20  
mA  
Differential short-circuit output current magnitude See Figure 4  
OS  
−1.4 V (V or V ) 3.8 V,  
A
B
I
−20  
−20  
µA  
µA  
High-impedance state output current  
OZ  
Other output = 1.2 V  
−1.4 V (V or V ) 3.8 V,  
A
B
I
20  
Power-off output current  
Other output = 1.2 V,  
0 V 1.5 V  
O(OFF)  
CC  
(3)  
V = 0.4 sin(30E6πt) + 0.5 V,  
I
C
or C  
3
pF  
pF  
Output capacitance  
A
B
Other input at 1.2 V, driver disabled  
(3)  
V = 0.4 sin(30E6πt) V,  
I
C
C
2.5  
Differential output capacitance  
AB  
Driver disabled  
0.99  
1.01  
Output capacitance balance, (C /C )  
A/B  
A
B
(1)  
(2)  
(3)  
The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.  
All typical values are at 25°C and with a 3.3-V supply voltage.  
HP4194A impedance analyzer (or equivalent)  
4
ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢇꢈ ꢉꢊ  
ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢇꢈ ꢉꢋ  
www.ti.com  
SLLS586 − MARCH 2004  
SWITCHING CHARACTERISTICS  
over recommended operating conditions unless otherwise noted  
(1)  
PARAMETER  
TEST CONDITIONS  
See Figure 5  
MIN TYP  
MAX  
3
UNIT  
ns  
t
t
t
t
t
t
t
t
1
1
1
1
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
Differential output signal rise time  
pLH  
pHL  
r
3
ns  
2
ns  
2
ns  
Differential output signal fall time  
f
100  
160  
100  
800  
ps  
Pulse skew (|t  
− t  
|)  
sk(p)  
sk(o)  
sk(bb)  
sk(pp)  
pHL pLH  
ps  
Output skew  
(2)  
ps  
Bank-to-bank skew  
(3)  
ps  
Part-to-part skew  
100 MHz clock input, All channels  
enabled  
(4)  
t
t
t
1
3
20  
ps  
ps  
ps  
Period jitter, rms (1 standard deviation)  
jit(per)  
jit(c−c)  
jit(pp)  
100 MHz clock input, All channels  
enabled  
(4)  
Cycle-to-cycle jitter  
15  
200 Mbps 2 −1 PRBS input, All  
(4)  
46  
110  
Peak-to-peak jitter  
channels enabled  
t
t
t
t
7
7
7
7
ns  
ns  
ns  
ns  
Enable time, high-impedance-to-high-level output  
Enable time, high-impedance-to-low-level output  
Disable time, high-level-to-high-impedance output  
pZH  
pZL  
pHZ  
pLZ  
See Figure 6  
See Figure 6  
Disable time, low-level-to-high-impedance output  
(1)  
(2)  
(3)  
All typical values are at 25°C and with a 3.3-V supply voltage.  
t , which only applies to the SN65MLVD129, is the magnitude of the difference between the t  
sk(bb)  
sk(pp)  
and t  
of two outputs of any bank.  
PLH  
PHL  
t
is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices operate  
with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
Stimulus jitter has been subtracted from the numbers.  
(4)  
5
ꢀ ꢁꢂꢃ ꢄꢅꢆꢇ ꢈ ꢉꢊ  
www.ti.com  
SLLS586 − MARCH 2004  
PARAMETER MEASUREMENT INFORMATION  
V
CC  
I
A
A
B
V
A
+ V  
2
B
I
I
D
V
AB  
I
B
V
Y
V
I
V
OS  
V
B
Figure 1. Driver Voltage and Current Definitions  
3.32 kΩ  
A
+
−1 V V  
test  
3.4 V  
V
AB  
49.9 Ω  
3.32 kΩ  
D
_
B
:
NOTE All resistors are 1% tolerance.  
Figure 2. Differential Output Voltage Test Circuit  
A
B
R1  
24.9 Ω  
1.3 V  
0.7 V  
A
C1  
1 pF  
D
V
V  
OS(SS)  
OS(PP)  
V
OS  
B
C3  
2.5 pF  
R2  
24.9 Ω  
V
OS(SS)  
C2  
1 pF  
NOTES:A. All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, frequency = 1 MHz,  
r
f
duty cycle = 50 5%.  
B. C1, C2 and C3 include instrumentation and fixture capacitance within 2 cm of the D.U.T. and are 20%.  
C. R1 and R2 are metal film, surface mount, 1%, and located within 2 cm of the D.U.T.  
D. The measurement of V  
is made on test equipment with a −3 dB bandwidth of at least 1 GHz.  
OS(PP)  
Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage  
I
OS  
A
B
0 V or V  
CC  
+
V
Test  
−1 V or 3.4 V  
Figure 4. Driver Short-Circuit Test Circuit  
6
ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢇꢈ ꢉꢊ  
ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢇꢈ ꢉꢋ  
www.ti.com  
SLLS586 − MARCH 2004  
V
CC  
V
CC  
/2  
Input  
0 V  
t
pLH  
t
pHL  
V
SS  
0.9V  
V
P(H)  
SS  
Output  
0 V  
V
P(L)  
0.1V  
SS  
0 V  
SS  
t
f
t
r
:
NOTE All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, frequency = 1 MHz,  
r
f
duty cycle = 50 5%.  
Figure 5. Driver Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal  
R1  
24.9 Ω  
A
C1  
1 pF  
D
C4  
0.5 pF  
GND or V  
CC  
Output  
C3  
2.5 pF  
C2  
1 pF  
B
R2  
24.9 Ω  
EN  
Input  
V
CC  
V
CC  
/2  
EN  
0 V  
t
t
t
pZH  
pHZ  
0.6 V  
0.1 V  
Output With  
D at V  
0 V  
CC  
t
pZL  
pLZ  
Output With  
D at GND  
0 V  
−0.1 V  
−0.6 V  
NOTES:A. All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, frequency = 1 MHz,  
r
f
duty cycle = 50 5%.  
B. C1, C2, C3, and C4 include instrumentation and fixture capacitance within 2 cm of the D.U.T. and are 20%.  
C. R1 and R2 are metal film, surface mount, 1%, and located within 2 cm of the D.U.T.  
Figure 6. Driver Enable and Disable Time Circuit and Definitions  
A
0 V or V  
CC  
B
V
A
or V  
B
1.62 k, 1%  
Figure 7. Driver Maximum Steady State Output Voltage  
7
ꢀ ꢁꢂꢃ ꢄꢅꢆꢇ ꢈ ꢉꢊ  
www.ti.com  
SLLS586 − MARCH 2004  
V
V
CC  
CLOCK  
INPUT  
/2  
CC  
0 V  
1/f0  
Period Jitter  
IDEAL  
OUTPUT  
V
V
CC  
0 V  
PRBS INPUT  
/2  
CC  
V
A
−V  
B
1/f0  
0 V  
ACTUAL  
OUTPUT  
Peak to Peak Jitter  
0 V  
V
−V  
−V  
A
B
V
−V  
B
A
OUTPUT 0 V  
t
c(n)  
=t  
V
A
t
−1/f0  
B
jit(per)  
c(n)  
t
jit(pp)  
Cycle to Cycle Jitter  
OUTPUT  
0 V  
− V  
V
A
B
t
t
c(n+1)  
c(n)  
t
= | t |  
− t  
jit(cc)  
c(n) c(n+1)  
NOTES:D. All input pulses are supplied by an Agilent 8304A Stimulus System.  
E. The measurement is made on a TEK TDS6604 running TDSJIT3 application software  
F. Period jitter and cycle-to-cycle jitter are measured using a 100 MHz 50 1% duty cycle clock input.  
15  
G. Peak-to-peak jitter is measured using a 200 Mbps 2 −1 PRBS input.  
Figure 8. Driver Jitter Measurement Waveforms  
Terminal Functions − SN65MLVD128  
PIN  
TYPE  
DESCRIPTION  
NAME  
1D  
NO.  
39  
Input  
Input  
Data inputs for drivers  
EN1 − EN8  
1A − 8A  
1B − 8B  
27, 28, 32, 33, 40, 41, 45, 46  
2, 4, 8, 10, 14, 16, 20, 22  
3, 5, 9, 11, 15, 17, 21, 23  
Driver enable, active high, individual enables  
M-LVDS bus noninverting output  
M-LVDS bus inverting output  
Output  
Output  
6, 12, 18, 24, 25, 26, 31, 37,  
38, 43, 44  
GND  
Power  
Circuit ground  
1, 7, 13, 19, 29, 30, 35, 36,  
47, 48  
V
Power  
N/A  
Supply voltage  
Not connected  
CC  
NC  
34, 42  
8
ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢇꢈ ꢉꢊ  
ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢇꢈ ꢉꢋ  
www.ti.com  
SLLS586 − MARCH 2004  
Terminal Functions − SN65MLVD129  
PIN  
TYPE  
Input  
Input  
DESCRIPTION  
NAME  
NO.  
1D, 2D  
39, 34  
Data inputs for drivers  
27, 28, 32, 33,  
40, 41, 45, 46  
EN1 − EN8  
1A − 8A  
1B − 8B  
GND  
Driver enable, active high, individual enables  
2, 4, 8, 10,  
14, 16, 20, 22  
Output  
Output  
Power  
M-LVDS bus noninverting output  
M-LVDS bus inverting output  
Circuit ground  
3, 5, 9, 11,  
15, 17, 21, 23  
6, 12, 18, 24, 25, 26, 31, 37,  
38, 43, 44  
1, 7, 13, 19, 29, 30, 35, 36,  
47, 48  
V
Power  
N/A  
Supply voltage  
Not connected  
CC  
NC  
42  
PIN ASSIGNMENTS  
MLVD129DGG  
48-TSSOP PACKAGE  
(TOP VIEW)  
MLVD128DGG  
48-TSSOP PACKAGE  
(TOP VIEW)  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
48  
47  
46  
45  
44  
43  
42  
41  
40  
VCC  
1A  
VCC  
VCC  
EN1  
EN2  
GND  
GND  
NC  
EN3  
EN4  
1D  
GND  
GND  
VCC  
VCC  
2D  
EN5  
EN6  
GND  
VCC  
VCC  
EN7  
EN8  
GND  
GND  
VCC  
1A  
1
2
3
4
5
6
7
8
1
2
3
4
5
6
7
8
9
VCC  
VCC  
EN1  
EN2  
GND  
GND  
NC  
1B  
1B  
2A  
2B  
GND  
VCC  
3A  
3B  
4A  
4B  
GND  
VCC  
5A  
5B  
6A  
6B  
GND  
VCC  
7A  
2A  
2B  
GND  
VCC  
3A  
3B  
4A  
4B  
GND  
VCC  
5A  
5B  
6A  
EN3  
EN4  
1D  
GND  
GND  
VCC  
VCC  
NC  
EN5  
EN6  
GND  
VCC  
VCC  
EN7  
EN8  
GND  
GND  
9
39  
10  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
6B  
GND  
VCC  
7A  
7B  
8A  
8B  
7B  
8A  
8B  
GND  
GND  
NC − No internal connection  
FUNCTION TABLE  
MLVD128/MLVD129  
INPUT ENABLE  
OUTPUTS  
D
EN  
A
B
L
H
H
H
OPEN  
L
L
H
L
Z
Z
H
L
H
Z
Z
H
OPEN  
X
X
H = high level, L = low level, Z = high impedance, X = Don’t care, OPEN = indeterminate  
9
ꢀ ꢁꢂꢃ ꢄꢅꢆꢇ ꢈ ꢉꢊ  
www.ti.com  
SLLS586 − MARCH 2004  
EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
DRIVER OUTPUT  
DRIVER INPUT AND DRIVER ENABLE  
V
CC  
V
CC  
400 Ω  
D or EN  
7 V  
A or  
B
360 kΩ  
10  
ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢇꢈ ꢉꢊ  
ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢇꢈ ꢉꢋ  
www.ti.com  
SLLS586 − MARCH 2004  
TYPICAL CHARACTERISTICS  
RMS SUPPLY CURRENT  
RMS SUPPLY CURRENT  
vs  
vs  
INPUT FREQUENCY  
FREE-AIR TEMPERATURE  
180  
180  
150  
120  
90  
V
T
= 3.3 V  
CC  
A
V
CC  
= 3.3 V  
= 255C  
f = 100 MHz  
All EN = V  
All EN = V  
R
CC  
CC  
= 50 W  
L
R
L
= 50 W  
150  
120  
90  
60  
60  
25  
50  
75  
100  
125  
−40  
−15  
35  
60  
85  
10  
f − Input Frequency − MHz  
T
A
− Free-Air Temperature − °C  
Figure 9  
Figure 10  
DIFFERENTIAL OUTPUT VOLTAGE MAGNITUDE  
PROPAGATION DELAY TIME  
vs  
vs  
INPUT FREQUENCY  
FREE-AIR TEMPERATURE  
2.4  
2.3  
2.2  
700  
650  
600  
V
= 3.3 V  
CC  
T
= 255C  
A
f = 500 kHz  
EN = V  
EN = V  
R
CC  
CC  
= 50 W,  
L
R
= 50 W  
L
2.1  
2
t
V
CC  
= 3.6 V  
PLH  
V
CC  
= 3.3 V  
550  
500  
1.9  
1.8  
t
V
CC  
= 3 V  
PHL  
1.7  
1.6  
450  
−40  
−15  
10  
60  
85  
35  
25  
50  
75  
100  
125  
T
A
− Free-Air Temperature − °C  
f − Input Frequency − MHz  
Figure 12  
Figure 11  
11  
ꢀ ꢁꢂꢃ ꢄꢅꢆꢇ ꢈ ꢉꢊ  
www.ti.com  
SLLS586 − MARCH 2004  
TRANSITION TIME  
vs  
PEAK-TO-PEAK JITTER  
vs  
FREE-AIR TEMPERATURE  
DATA RATE  
2
1.9  
1.8  
100  
90  
V
T
2
= 3.3 V,  
V
= 3.3 V  
CC  
CC  
f = 500 kHz  
EN = V  
= 255C,  
A
15  
-1 PRBS NRZ,  
CC  
= 50 W  
All EN = V  
See Figure 8  
CC  
R
80  
L
1.7  
70  
60  
50  
40  
30  
1.6  
1.5  
1.4  
t
f
t
r
1.3  
1.2  
20  
10  
1.1  
1
35  
−40  
−15  
60  
85  
10  
50  
100  
150  
200  
250  
T
A
− Free-Air Temperature − °C  
Data Rate − Mbps  
Figure 13  
Figure 14  
PERIOD JITTER  
vs  
CYCLE-TO-CYCLE JITTER  
vs  
CLOCK FREQUENCY  
CLOCK FREQUENCY  
13  
12  
11  
10  
1.0  
V
= 3.3 V,  
= 255C,  
V
CC  
= 3.3 V,  
= 255C,  
CC  
T
T
0.9  
0.8  
0.7  
0.6  
A
A
Input = Clock  
Input = Clock  
All EN = V  
See Figure 8  
All EN = V  
See Figure 8  
CC  
CC  
9
8
7
6
5
4
0.5  
0.4  
0.3  
0.2  
0.1  
3
2
1
0
0
25  
50  
75  
100  
125  
50  
75  
100  
125  
25  
f − Clock Frequency − MHz  
f − Clock Frequency − MHz  
Figure 15  
Figure 16  
12  
ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢇꢈ ꢉꢊ  
ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢇꢈ ꢉꢋ  
www.ti.com  
SLLS586 − MARCH 2004  
APPLICATION INFORMATION  
CLOCK DISTRIBUTION  
SN65MLVD128 Output  
Input Source: 19.6608 MHz Clock With 50%  
SN65MLVD128 Output  
Input Source: 61.44 MHz Clock With 50%  
Duty Cycle, V  
= 3.3 V, R = 50 W, C = 2.5 pF  
Duty Cycle, V  
= 3.3 V, R = 50 W, C = 2.5 pF  
CC  
L
L
CC  
L
L
Output Duty cycle = 49.97%.  
Vertical scale = 142 mV/div  
Horizontal scale = 11 ns/div  
Output duty cycle = 50.01%.  
Vertical scale = 142 mV/div  
Horizontal scale = 4 ns/div  
Figure 17  
Figure 18  
DATA DISTRIBUTION  
SN65MLVD128 Output  
15  
Input Source: 250 Mbps, 2 −1 PRBS,  
V
= 3.3 V, R = 50 W, C = 2.5 pF  
CC  
L L  
Vertical scale = 150 mV/div  
Horizontal scale = 1.21 ns/div  
Figure 19  
13  
PACKAGE OPTION ADDENDUM  
www.ti.com  
30-Mar-2005  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SN65MLVD128DGG  
SN65MLVD128DGGR  
SN65MLVD129DGG  
SN65MLVD129DGGR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
DGG  
48  
48  
48  
48  
40  
2000  
40  
TBD  
TBD  
TBD  
TBD  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-1-220C-UNLIM  
CU NIPDAU Level-1-220C-UNLIM  
DGG  
DGG  
DGG  
2000  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
MECHANICAL DATA  
MTSS003D – JANUARY 1995 – REVISED JANUARY 1998  
DGG (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
48 PINS SHOWN  
0,27  
0,17  
M
0,08  
0,50  
48  
25  
6,20  
6,00  
8,30  
7,90  
0,15 NOM  
Gage Plane  
0,25  
1
24  
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
48  
56  
64  
DIM  
A MAX  
12,60  
12,40  
14,10  
13,90  
17,10  
16,90  
A MIN  
4040078/F 12/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

SN65MLVD128DGGRG4

LINE TRANSCEIVER, PDSO48, GREEN, PLASTIC, TSSOP-48
TI

SN65MLVD129

双路 1:4 LVTTL 到 M-LVDS 中继器
TI

SN65MLVD129DGG

1:8 LVTTL TO M-LVDS REPEATER DUAL 1:4 LVTTL TO M-LVDS REPEATER
TI

SN65MLVD129DGGG4

DUAL LINE TRANSCEIVER, PDSO48, GREEN, PLASTIC, TSSOP-48
TI

SN65MLVD129DGGR

Dual 1:4 LVTTL to M-LVDS Repeater 48-TSSOP -40 to 85
TI

SN65MLVD129DGGRG4

Dual 1:4 LVTTL to M-LVDS Repeater 48-TSSOP -40 to 85
TI

SN65MLVD2

SINGLE M-LVDS RECEIVERS
TI

SN65MLVD200

MULTIPOINT-LVDS LINE DRIVERS AND RECEIVERS
TI

SN65MLVD200A

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD200AD

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD200ADG4

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD200ADR

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI