SN65MLVD201D [TI]

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER; 多点LVDS线路驱动器和接收器
SN65MLVD201D
型号: SN65MLVD201D
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
多点LVDS线路驱动器和接收器

驱动器
文件: 总21页 (文件大小:328K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65MLVD201, SN65MLVD203  
SN65MLVD206, SN65MLVD207  
www.ti.com  
SLLS558ADECEMBER 2002 – JUNE 2003  
MULTIPOINT-LVDS LINE DRIVER AND RECEIVER  
D
D
D
D
Backplane or Cabled Multipoint Data and  
Clock Transmission  
FEATURES  
D
Low-Voltage Differential 30-to 55-Line  
Drivers and Receivers for Signaling Rates  
Up to 200 Mbps  
Cellular Base Stations  
(1)  
Central-Office Switches  
Network Switches and Routers  
D
D
Type-1 Receivers Incorporate 25 mV of  
Hysteresis  
DESCRIPTION  
Type-2 Receivers Provide an Offset  
(100 mV) Threshold to Detect Open-Circuit  
and Idle-Bus Conditions  
The SN65MLVD201, 203, 206, and 207 are  
multipoint-low-voltage differential (M-LVDS) line drivers  
and receivers, which are optimized to operate at signaling  
rates up to 200 Mbps. All parts comply with the multipoint  
low-voltage differential signaling (M–LVDS) standard  
TIA/EIA-899. These circuits are similar to their  
TIA/EIA-644 standard compliant LVDS counterparts, with  
added features to address multipoint applications. The  
driver output has been designed to support multipoint  
buses presenting loads as low as 30 , and incorporates  
controlled transition times to allow for stubs off of the  
backbone transmission line.  
D
Meets or Exceeds the M-LVDS Standard  
TIA/EIA-899 for Multipoint Data Interchange  
D
Power Up/Down Glitch Free  
D
Controlled Driver Output Voltage Transition  
Times for Improved Signal Quality  
D
–1 V to 3.4 V Common-Mode Voltage Range  
Allows Data Transfer With 2 V of Ground  
Noise  
D
D
Bus Pins High Impedance When Disabled or  
These devices have Type-1 and Type-2 receivers that  
detect the bus state with as little as 50 mV of differential  
input voltage over a common-mode voltage range of –1 V  
to 3.4 V. The Type-1 receivers exhibit 25 mV of differential  
input voltage hysteresis to prevent output oscillations with  
slowly changing signals or loss of input. Type-2 receivers  
include an offset threshold to provide a known output state  
under open-circuit, idle-bus, and other faults conditions.  
The devices are characterized for operation from –40°C to  
85°C.  
V
1.5 V  
CC  
100-Mbps Devices Available  
(SN65MLVD200, 202, 204, 205)  
APPLICATIONS  
D
Low-Power High-Speed Short-Reach  
Alternative to TIA/EIA-485  
LOGIC DIAGRAM (POSITIVE LOGIC)  
SN65MLVD201,SN65MLVD206  
SN65MLVD203,SN65MLVD207  
9
3
Y
DE  
5
D
DE  
RE  
10  
Z
4
D
4
3
2
RE  
R
12  
11  
A
B
6
7
2
A
B
1
R
Pleasebe aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
(1)  
The signaling rate of a line, is the number of voltage transitions that are made per second expressed in the units bps (bits per second).  
PRODUCTION DATA information is current as of publication date. Products  
conform to specifications per the terms of Texas Instruments standard warranty.  
Production processing does not necessarily include testing of all parameters.  
Copyright 2002 – 2003, Texas Instruments Incorporated  
SN65MLVD201, SN65MLVD203  
SN65MLVD206, SN65MLVD207  
www.ti.com  
SLLS558ADECEMBER 2002 JUNE 2003  
Thesedeviceshavelimitedbuilt-inESDprotection.Theleadsshouldbeshortedtogetherorthedeviceplacedinconductivefoamduring  
storageor handling to prevent electrostatic damage to the MOS gates.  
ORDERING INFORMATION  
PART NUMBER  
FOOTPRINT  
SN75176  
RECEIVER TYPE  
Type 1  
PACKAGE MARKING  
MF201  
SN65MLVD201D  
SM65MLVD203D  
SN65MLVD206D  
SM65MLVD207D  
SN75ALS180  
SN75176  
Type 1  
MLVD203  
Type 2  
MF206  
SN75ALS180  
Type 2  
MLVD207  
PACKAGE DISSIPATION RATINGS  
T
25°C  
DERATING FACTOR  
T = 85°C  
A
POWER RATING  
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
A
D(8)  
725 mW  
5.8 mW/_C  
7.6 mW/_C  
377 mW  
D(14)  
950 mW  
494 mw  
ABSOLUTE MAXIMUM RATINGS  
overoperating free-air temperature range unless otherwise noted  
(1)  
SN65MLVD201, 203, 206, AND  
207  
(2)  
Supply voltage range , V  
0.5 V to 4 V  
0.5 V to 4 V  
1.8 V to 4 V  
4 V to 6 V  
CC  
D, DE, RE  
A, B (201, 206)  
A, B (203, 207)  
R
Input voltage range  
Output voltage range  
Electrostaticdischarge  
0.3 V to 4 V  
1.8 V to 4 V  
±8 kV  
Y, Z, A, or B  
A, B, Y, and Z  
All pins  
(3)  
Human Body Model  
±2 kV  
(4)  
Charged-DeviceModel  
All pins  
±1500 V  
Continuouspowerdissipation  
Storagetemperaturerange  
See Dissipation Rating Table  
65°C to 150°C  
(1)  
Stressesbeyondthoselistedunderabsolutemaximumratingsmaycausepermanentdamagetothedevice. Thesearestressratingsonly,and  
functionaloperation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
Tested in accordance with JEDEC Standard 22, Test Method A114A.  
(2)  
(3)  
(4)  
Tested in accordance with JEDEC Standard 22, Test Method C101.  
RECOMMENDED OPERATING CONDITIONS  
MIN NOM  
MAX UNIT  
Supply voltage, V  
3
2
3.3  
3.6  
V
V
CC  
High-level input voltage, V  
V
IH  
CC  
0.8  
Low-level input voltage, V  
IL  
GND  
1.4  
0.05  
40  
V
Voltage at any bus terminal V , V  
V
or V  
Z
3.8  
V
A
B,  
Y
Magnitude of differential input voltage, V  
V
V
ID  
CC  
85  
Operatingfree-airtemperature, T  
°C  
A
2
SN65MLVD201, SN65MLVD203  
SN65MLVD206, SN65MLVD207  
www.ti.com  
SLLS558ADECEMBER 2002 JUNE 2003  
DEVICE ELECTRICAL CHARACTERISTICS  
overrecommended operating conditions unless otherwise noted  
(1)  
PARAMETER  
TEST CONDITIONS  
= 50 , All others open  
MIN TYP  
MAX  
22  
4
UNIT  
Driver only  
RE and DE at V  
,
R
L
13  
1
CC  
Bothenabled  
Bothenabled  
Receiver only  
RE at V , DE at 0 V, R = No Load, All others open  
CC  
L
I
Supplycurrent  
mA  
CC  
RE at 0 V, DE at V , R = 50 , All others open  
16  
4
24  
13  
CC  
RE at 0 V, DE at 0 V,  
L
R
= 50 , All others open  
L
(1)  
All typical values are at 25°C and with a 3.3-V supply voltage.  
DRIVER ELECTRICAL CHARACTERISTICS  
overrecommended operating conditions unless otherwise noted  
(1)  
MIN  
(2)  
TYP  
PARAMETER  
TEST CONDITIONS  
MAX  
UNIT  
V
or  
AB  
480  
650  
mV  
Differentialoutputvoltagemagnitude  
V
YZ  
See Figure 2  
See Figure 3  
V  
or  
Change in differentialoutputvoltagemagnitude  
between logic states  
AB  
50  
0.8  
50  
1.2  
50  
mV  
V
V  
YZ  
V
Steady-statecommon-modeoutputvoltage  
OS(SS)  
Changeinsteady-statecommon-modeoutput  
voltage between logic states  
V  
50  
mV  
mV  
V
OS(SS)  
V
150  
2.4  
Peak-to-peakcommon-modeoutputvoltage  
OS(PP)  
V
V
Maximumsteady-stateopen-circuitoutput  
voltage  
Y(OC) or  
A(OC)  
0
0
See Figure 7  
See Figure 5  
V
Maximumsteady-stateopen-circuitoutput  
voltage  
Z(OC) or  
B(OC)  
2.4  
V
V
V
V
I
1.2V  
V
V
Voltage overshoot, low-to-high level output  
Voltageovershoot, high-to-low level output  
High-level input current (D, DE)  
P(H)  
P(L)  
SS  
0.2 V  
SS  
0
10  
10  
24  
µA  
µA  
mA  
V
V
= 2 V  
IH  
IH  
I
IL  
0
Low-level input current (D, DE)  
= 0.8 V  
IL  
I
Differentialshort-circuitoutputcurrentmagnitude See Figure 4  
OS  
High-impedance state output current (driver  
only)  
1.4 V V or V 3.8 V,  
Y Z  
I
I
15  
10  
10  
10  
µA  
µA  
OZ  
Other output = 1.2 V  
1.4 V V or V 3.8 V,  
Y
Z
Power-off output current  
Outputcapacitance  
Other output = 1.2 V,  
0 V V 1.5 V  
O(OFF)  
CC  
V = 0.4 sin(30E6πt) + 0.5 V,  
(3)  
I
C
or C  
3
pF  
pF  
Y
Z
Other input at 1.2 V, driver disabled  
(3)  
V
= 0.4 sin(30E6πt) V,  
AB  
C
C
2.5  
Differentialoutputcapacitance  
YZ  
Driver disabled  
0.99  
1.01  
Output capacitance balance, (C /C )  
Y/Z  
Y
Z
(1)  
(2)  
(3)  
The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.  
All typical values are at 25°C and with a 3.3-V supply voltage.  
HP4194A impedance analyzer (or equivalent)  
3
SN65MLVD201, SN65MLVD203  
SN65MLVD206, SN65MLVD207  
www.ti.com  
SLLS558ADECEMBER 2002 JUNE 2003  
RECEIVER ELECTRICAL CHARACTERISTICS  
(1)  
overrecommended operating conditions unless otherwise noted  
(1)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
50  
UNIT  
Type 1  
Positive-goingdifferentialinputvoltage  
V
V
V
mV  
mV  
mV  
IT+  
threshold  
Type 2  
Type 1  
Type 2  
Type 1  
Type 2  
150  
50  
Negative-goingdifferentialinputvoltage  
threshold  
See Figure 9 and Table 1 and  
Table 2  
IT–  
50  
25  
0
Differential input voltage hysteresis,  
HYS  
(V  
IT+  
V )  
IT  
V
V
I
2.4  
V
High-leveloutputvoltage  
I
I
= 8 mA  
= 8 mA  
OH  
OH  
0.4  
0
V
Low-leveloutputvoltage  
OL  
OL  
10  
10  
10  
µA  
µA  
µA  
High-level input current (RE)  
Low-level input current (RE)  
High-impedanceoutputcurrent  
V
V
V
= 2 V  
IH  
IH  
IL  
O
I
0
= 0.8 V  
IL  
OZ  
I
15  
= 0 V or 3.6 V  
(2)  
V = 0.4 sin(30E6πt) + 0.5 V,  
Other input at 1.2 V  
I
C
C
or C  
3
pF  
pF  
Inputcapacitance  
A
B
(2)  
2.5  
Differentialinputcapacitance  
V
AB  
= 0.4 sin(30E6πt) V  
AB  
C
(1)  
(2)  
0.99  
1.01  
Input capacitance balance, (C C )  
A/ B  
All typical values are at 25°C and with a 3.3-V supply voltage.  
HP4194A impedance analyzer (or equivalent)  
A/B  
BUS INPUT AND OUTPUT ELECTRICAL CHARACTERISTICS  
overrecommended operating conditions unless otherwise noted  
(1)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
32  
20  
0
UNIT  
0
20  
32  
0
V
= 3.8 V,  
V
V
V
= 1.2 V,  
= 1.2 V  
= 1.2 V  
= 1.2 V  
= 1.2 V  
= 1.2 V  
A
B
B
B
Receiver or transceiver with driver  
disabled input current  
V
A
= 0 V or 2.4 V,  
= 1.4 V,  
I
A
µA  
V
A
32  
20  
0
V
B
V
B
V
B
= 3.8 V,  
V
A
Receiver or transceiver with driver  
disabled input current  
20  
32  
= 0 V or 2.4 V,  
= 1.4 V,  
V
A
I
I
I
µA  
µA  
µA  
B
V
A
Receiver or transceiver with driver  
disabled differential input current  
(I I )  
4  
4
V
A
= V  
B,  
1.4 V 3.8 V  
A
AB  
A
B
0
20  
32  
0
32  
20  
0
V
A
= 3.8 V,  
V
V
= 1.2 V, 0 V V  
= 1.2 V, 0 V V  
1.5 V  
1.5 V  
1.5 V  
1.5 V  
1.5 V  
1.5 V  
B
CC  
CC  
CC  
CC  
CC  
CC  
Receiver or transceiver power-off input  
current  
V
A
= 0 V or 2.4 V,  
= 1.4 V,  
B
A(OFF)  
V
A
V = 1.2 V, 0 V V  
B
32  
20  
0
V
= 3.8 V,  
V
= 1.2 V, 0 V V  
= 1.2 V, 0 V V  
= 1.2 V, 0 V V  
B
B
B
A
Receiver or transceiver power-off input  
current  
20  
32  
V
V
= 0 V or 2.4 V,  
= 1.4 V,  
V
A
I
I
µA  
B(OFF)  
V
A
Receiver input or transceiver power-off  
4  
4
µA  
pF  
pF  
V
= V , 0 V V  
1.5 V, 1.4 V 3.8 V  
AB(OFF)  
A
B
CC  
A
differential input current (I I )  
A
B
Transceiver with driver disabled input  
capacitance  
(2)  
,
C
A
5
5
V
A
= 0.4 sin (30E6πt) + 0.5V  
= 0.4 sin (30E6πt) + 0.5V  
V
B
=1.2 V  
=1.2 V  
Transceiver with driver disabled input  
capacitance  
(2)  
,
C
B
V
B
V
A
(1)  
(2)  
All typical values are at 25°C and with a 3.3-V supply voltage.  
HP4194A impedance analyzer (or equivalent)  
4
SN65MLVD201, SN65MLVD203  
SN65MLVD206, SN65MLVD207  
www.ti.com  
SLLS558ADECEMBER 2002 JUNE 2003  
BUS INPUT AND OUTPUT ELECTRICAL CHARACTERISTICS (continued)  
(1)  
MIN TYP  
PARAMETER  
TEST CONDITIONS  
MAX  
UNIT  
Transceiver with driver disabled differential  
inputcapacitance  
(2)  
= 0.4 sin (30E6πt)V  
C
C
3
pF  
V
AB  
AB  
Transceiver with driver disabled input  
0.99  
1.01  
A/B  
capacitance balance, (C /C )  
A
B
(1)  
(2)  
All typical values are at 25°C and with a 3.3-V supply voltage.  
HP4194A impedance analyzer (or equivalent)  
DRIVER SWITCHING CHARACTERISTICS  
overrecommended operating conditions unless otherwise noted  
(1)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
2.4  
2.4  
1.6  
1.6  
100  
1
UNIT  
ns  
ns  
ns  
ns  
ps  
ns  
ps  
ps  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
t
1
1
1
1
1.5  
1.5  
Propagationdelaytime,low-to-high-leveloutput  
Propagationdelaytime,high-to-low-leveloutput  
Differential output signal rise time  
pLH  
pHL  
r
See Figure 5  
Differential output signal fall time  
f
0
Pulse skew (|t  
t |)  
pHL pLH  
sk(p)  
sk(pp)  
jit(per)  
jit(pp)  
pHZ  
pLZ  
pZH  
pZL  
Part-to-partskew  
(2)  
(3)  
2
3
Periodjitter, rms (1 standard deviation)  
100 MHz clock input  
15  
(2)(5)  
Peak-to-peakjitter  
(4)  
30  
130  
7
200 Mbps 2 1 PRBS input  
Disable time, high-level-to-high-impedance output  
Disable time, low-level-to-highimpedance output  
Enable time, high-impedance-to-high-level output  
7
See Figure 6  
7
7
Enable time, high-impedance-to-low-level output  
(1)  
(2)  
(3)  
(4)  
(5)  
All typical values are at 25°C and with a 3.3-V supply voltage.  
Jitter is ensured by design and characterization. Stimulus jitter has been subtracted from the numbers.  
t = t = 0.5 ns (10% to 90%), measured over 30 k samples.  
r
f
t = t = 0.5 ns (10% to 90%), measured over 100 k samples.  
r
f
Peak-to-peak jitter includes jitter due to pulse skew (t  
).  
sk(p)  
RECEIVER SWITCHING CHARACTERISTICS  
overrecommended operating conditions unless otherwise noted  
(1)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
6
UNIT  
ns  
t
t
t
t
2
2
1
1
4
4
Propagationdelaytime,low-to-high-leveloutput  
Propagationdelaytime,high-to-low-leveloutput  
Output signal rise time  
pLH  
6
ns  
pHL  
2.3  
2.3  
300  
500  
1
ns  
r
f
ns  
Output signal fall time  
C = 15 pF, See Figure 10  
L
Type 1  
Type 2  
100  
300  
ps  
Pulse skew (|t  
t  
|)  
t
pHL pLH  
sk(p)  
ps  
(2)  
t
t
ns  
Part-to-partskew  
sk(pp)  
(3)  
(4)  
100 MHz clock input  
4
300  
450  
7
700  
800  
10  
ps  
ps  
ps  
ns  
ns  
ns  
ns  
Periodjitter, rms (1 standard deviation)  
jit(per)  
Type 1  
Type 2  
(3)(6)  
Peak-to-peakjitter  
15  
(5)  
200 Mbps 2 1 PRBS input  
t
jit(pp)  
t
t
t
t
Disable time, high-level-to-high-impedance output  
Disable time, low-level-to-high-impedance output  
Enable time, high-impedance-to-high-level output  
Enable time, high-impedance-to-low-level output  
pHZ  
pLZ  
pZH  
pZL  
10  
See Figure 11  
15  
15  
(1)  
(2)  
(3)  
(4)  
(5)  
(6)  
All typical values are at 25°C and with a 3.3-V supply voltage.  
HP4194A impedance analyzer (or equivalent)  
Jitter is ensured by design and characterization. Stimulus jitter has been subtracted from the numbers.  
V
V
= 200 mV (LVD201, 203), V = 400 mV (LVD206, 207), V  
pp ID pp  
= 1 V, t = t = 0.5 ns (10% to 90%), measured over 30 k samples.  
r f  
ID  
ID  
cm  
cm  
= 200 mV (LVD201, 203), V = 400 mV (LVD206, 207), V  
= 1 V, t = t = 0.5 ns (10% to 90%), measured over 100 k samples.  
r f  
pp ID pp  
Peak-to-peak jitter includes jitter due to pulse skew (t  
).  
sk(p)  
5
SN65MLVD201, SN65MLVD203  
SN65MLVD206, SN65MLVD207  
www.ti.com  
SLLS558ADECEMBER 2002 JUNE 2003  
PARAMETER MEASUREMENT INFORMATION  
V
CC  
I
A
or I  
Y
A/Y  
I
I
D
V
or V  
or V  
AB  
YZ  
I
B
or I  
Z
V
A
or V  
Y
B/Z  
V
I
V
OS  
V
B
Z
V
A
+ V  
2
V
Y
+ V  
2
B
Z
or  
Figure 1. Driver Voltage and Current Definitions  
3.32 kΩ  
A/Y  
+
1 V V  
3.4 V  
V
AB  
or V  
YZ  
49.9 Ω  
D
test  
_
B/Z  
3.32 kΩ  
:
NOTE All resistors are 1% tolerance.  
Figure 2. Differential Output Voltage Test Circuit  
A/Y  
B/Z  
R1  
24.9 Ω  
1.3 V  
0.7 V  
A/Y  
C1  
1 pF  
D
V
V
OS(SS)  
OS(PP)  
V
OS  
B/Z  
C3  
2.5 pF  
R2  
24.9 Ω  
V
OS  
C2  
1 pF  
NOTES:A. All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse frequency = 500 kHz,  
r
f
duty cycle = 50 ± 5%.  
B. C1, C2 and C3 include instrumentation and fixture capacitance within 2 cm of the D.U.T. and are ±20%.  
C. R1 and R2 are metal film, surface mount, ±1%, and located within 2 cm of the D.U.T.  
D. The measurement of V  
is made on test equipment with a 3 dB bandwidth of at least 1 GHz.  
OS(PP)  
Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage  
I
OS  
A/Y  
B/Z  
0 V or V  
CC  
+
V
Test  
1 V or 3.4 V  
Figure 4. Driver Short-Circuit Test Circuit  
6
SN65MLVD201, SN65MLVD203  
SN65MLVD206, SN65MLVD207  
www.ti.com  
SLLS558ADECEMBER 2002 JUNE 2003  
A/Y  
B/Z  
C1  
1 pF  
C3  
0.5 pF  
R1  
50 Ω  
Output  
D
C2  
1 pF  
V
CC  
V
CC  
/2  
Input  
0 V  
t
t
pHL  
pLH  
V
SS  
0.9V  
SS  
V
P(H)  
Output  
0 V  
V
P(L)  
0.1V  
SS  
0 V  
SS  
t
f
t
r
NOTES:A. All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, frequency = 500 kHz,  
r
f
duty cycle = 50 ± 5%.  
B. C1, C2, and C3 include instrumentation and fixture capacitance within 2 cm of the D.U.T. and are ±20%.  
C. R1 is a metal film, surface mount, and 1% tolerance and located within 2 cm of the D.U.T.  
D. The measurement is made on test equipment with a 3 dB bandwidth of at least 1 GHz.  
Figure 5. Driver Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal  
R1  
24.9 Ω  
A/Y  
C1  
1 pF  
D
C4  
0.5 pF  
0 V or V  
Output  
CC  
C3  
2.5 pF  
C2  
1 pF  
B/Z  
R2  
24.9 Ω  
DE  
V
CC  
V
CC  
/2  
DE  
0 V  
t
t
t
pZH  
pHZ  
0.6 V  
0.1 V  
Output With  
D at V  
0 V  
CC  
t
pZL  
pLZ  
Output With  
D at 0 V  
0 V  
0.1 V  
0.6 V  
NOTES:A. All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, frequency = 500 kHz, duty cycle = 50 ±  
r
f
5%.  
B. C1, C2, C3, and C4 includes instrumentation and fixture capacitance within 2 cm of the D.U.T. and are ±20%.  
C. R1 and R2 are metal film, surface mount, and 1% tolerance and located within 2 cm of the D.U.T.  
D. The measurement is made on test equipment with a 3 dB bandwidth of at least 1 GHz.  
Figure 6. Driver Enable and Disable Time Circuit and Definitions  
7
SN65MLVD201, SN65MLVD203  
SN65MLVD206, SN65MLVD207  
www.ti.com  
SLLS558ADECEMBER 2002 JUNE 2003  
A/Y  
B/Z  
0 V or V  
CC  
V , V , V or V  
Z
1.62 k, ±1%  
A
B
Y
Figure 7. Maximum Steady State Output Voltage  
V
V
CC  
CLOCK  
INPUT  
/2  
CC  
0 V  
1/f0  
Period Jitter  
IDEAL  
OUTPUT  
V
V
CC  
0 V  
PRBS INPUT  
/2  
CC  
V
A
V or V V  
B
Y
Z
1/f0  
0 V  
ACTUAL  
OUTPUT  
Peak to Peak Jitter  
0 V  
V
V or V V  
B Y Z  
A
V
A
V or V V  
B Y Z  
OUTPUT 0 V Diff  
V or V V  
Z
t
c(n)  
= t  
V
t
1/f0  
c(n)  
A
B
Y
jit(per)  
t
jit(pp)  
NOTES:A. All input pulses are supplied by an Agilent 8304A Stimulus System.  
B. The measurement is made on a TEK TDS6604 running TDSJIT3 application software  
C. Period jitter is measured using a 100 MHz 50 ±1% duty cycle clock input.  
15  
D. Peak-to-peak jitter is measured using a 200Mbps 2 1 PRBS input.  
Figure 8. Driver Jitter Measurement Waveforms  
I
A
A
B
I
O
R
V
ID  
V
O
V
CM  
V
A
I
B
(V + V )/2  
V
B
A
B
Figure 9. Receiver Voltage and Current Definitions  
8
SN65MLVD201, SN65MLVD203  
SN65MLVD206, SN65MLVD207  
www.ti.com  
SLLS558ADECEMBER 2002 JUNE 2003  
Table 1. Type-1 Receiver Input Threshold Test Voltages  
RESULTING DIFFERENTIAL  
INPUT VOLTAGE  
RESULTING COMMON–  
MODE INPUT VOLTAGE  
APPLIED VOLTAGES  
RECEIVER  
OUTPUT  
V
IA  
V
IB  
V
ID  
V
IC  
2.400  
0.000  
3.800  
3.750  
1.350  
1.400  
0.000  
2.400  
3.750  
3.800  
1.400  
1.350  
2.400  
2.400  
0.050  
1.200  
1.200  
3.775  
3.775  
1.375  
1.375  
H
L
H
L
0.050  
0.050  
H
L
0.050  
:
NOTE H= high level, L = low level, output state assumes receiver is enabled (RE = L)  
Table 2. Type-2 Receiver Input Threshold Test Voltages  
RESULTING DIFFERENTIAL  
INPUT VOLTAGE  
RESULTING COMMON–  
MODE INPUT VOLTAGE  
APPLIED VOLTAGES  
RECEIVER  
OUTPUT  
V
IA  
V
IB  
V
ID  
V
IC  
2.400  
0.000  
3.800  
3.800  
1.250  
1.350  
0.000  
2.400  
3.650  
3.750  
1.400  
1.400  
2.400  
2.400  
0.150  
0.050  
0.150  
0.050  
1.200  
1.200  
3.725  
3.775  
1.325  
1.375  
H
L
H
L
H
L
:
NOTE H= high level, L = low level, output state assumes receiver is enabled (RE = L)  
V
ID  
V
A
C
L
15 pF  
V
O
V
B
V
1.2 V  
1.0 V  
A
V
B
V
ID  
0.2 V  
0 V  
0.2 V  
t
t
pLH  
pHL  
V
V
O
OH  
90%  
10%  
V
CC  
V
OL  
/2  
t
f
t
r
NOTES:A. All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, frequency = 50 MHz, duty cycle = 50 ±  
r
f
5%.C isacombinationofa20%-tolerance,low-lossceramic,surface-mountcapacitorandfixturecapacitancewithin2cmoftheD.U.T.  
L
B. The measurement is made on test equipment with a 3 dB bandwidth of at least 1 GHz.  
Figure 10. Receiver Timing Test Circuit and Waveforms  
9
SN65MLVD201, SN65MLVD203  
SN65MLVD206, SN65MLVD207  
www.ti.com  
SLLS558ADECEMBER 2002 JUNE 2003  
R
L
B
A
1.2 V  
499 Ω  
R
+
_
C
L
V
TEST  
V
O
Inputs  
RE  
15 pF  
V
CC  
V
TEST  
1 V  
A
V
V
CC  
RE  
/2  
CC  
0 V  
t
pLZ  
t
pZL  
V
CC  
V
CC  
/2  
Output  
R
V
OL  
V
OL  
+0.5 V  
V
TEST  
0 V  
1.4 V  
A
V
V
CC  
RE  
/2  
CC  
0 V  
t
pHZ  
t
pZH  
V
V
V
OH  
0.5 V  
OH  
/2  
V
O
CC  
0 V  
NOTES:A. All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, frequency = 500 kHz,  
r
f
duty cycle = 50 ± 5%.  
B. R is 1% tolerance, metal film, surface mount, and located within 2 cm of the D.U.T.  
L
C. R is 1% tolerance, metal film, surface mount, and located within 2 cm of the D.U.T.  
L
D. C is the instrumentation and fixture capacitance within 2 cm of the DUT and ±20%.  
L
Figure 11. Receiver Enable/Disable Time Test Circuit and Waveforms  
10  
SN65MLVD201, SN65MLVD203  
SN65MLVD206, SN65MLVD207  
www.ti.com  
SLLS558ADECEMBER 2002 JUNE 2003  
INPUTS  
V  
CLOCK INPUT  
V
A
V
IC  
B
0.2 V Type 1 1 V  
0.4 V Type 2  
V
A
V  
B
1/f0  
Period Jitter  
V
IDEAL  
OUTPUT  
OH  
V
A
V
CC  
/2  
PRBS INPUT  
V
OL  
1/f0  
V
B
V
OH  
ACTUAL  
OUTPUT  
Peak to Peak Jitter  
V
CC  
/2  
V
OH  
V
OL  
OUTPUT  
V
CC  
/2  
t
c(n)  
t
= t 1/f0  
c(n)  
V
OL  
jit(per)  
t
jit(pp)  
NOTES:A. All input pulses are supplied by an Agilent 8304A Stimulus System.  
B. The measurement is made on a TEK TDS6604 running TDSJIT3 application software  
C. Period jitter is measured using a 100 MHz 50 ±1% duty cycle clock input.  
15  
D. Peak-to-peak jitter is measured using a 200 Mbps 2 1 PRBS input.  
Figure 12. Receiver Jitter Measurement Waveforms  
PIN ASSIGNMENTS  
SN65MLVD201D (Marked as MF201)  
SN65MLVD206D (Marked as MF206)  
(TOP VIEW)  
SN65MLVD203D(Marked as MLVD203)  
SN65MLVD207D (Marked as MLVD207)  
(TOP VIEW)  
R
RE  
DE  
D
V
B
A
1
2
3
4
8
7
6
5
NC  
R
RE  
V
V
A
B
Z
Y
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
CC  
CC  
CC  
GND  
DE  
D
GND  
GND  
8
NC  
NC No internal connection  
11  
SN65MLVD201, SN65MLVD203  
SN65MLVD206, SN65MLVD207  
www.ti.com  
SLLS558ADECEMBER 2002 JUNE 2003  
DEVICE FUNCTION TABLE  
TYPE-1 RECEIVER (201, 203)  
TYPE-2 RECEIVER (206, 207)  
INPUTS  
= V V  
OUTPUT  
R
INPUTS  
= V V  
OUTPUT  
R
RE  
RE  
V
ID  
V
ID  
A
B
A
B
L
L
H
?
L
Z
Z
L
L
H
?
L
Z
Z
V
50 mV  
V
150 mV  
ID  
50 mV < V < 50 mV  
ID  
50 mV < V < 150 mV  
ID  
ID  
50 mV  
V
ID  
50 mV  
L
V
L
ID  
X
X
H
X
X
H
Open  
Open  
Open Circuit  
?
Open Circuit  
L
L
L
DRIVER  
INPUT ENABLE  
OUTPUTS  
A OR Y B OR Z  
D
DE  
L
H
H
H
OPEN  
L
L
H
L
Z
Z
H
L
H
Z
Z
H
OPEN  
X
X
H = high level, L = low level, Z = high impedance, X = Dont care, ? = indeterminate  
EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
DRIVER OUTPUT  
DRIVER INPUT AND DRIVER ENABLE  
RECEIVER ENABLE  
V
CC  
V
CC  
V
CC  
360 kΩ  
400 Ω  
400 Ω  
D or DE  
7 V  
A/Y or B/Z  
RE  
7 V  
360 kΩ  
RECEIVER INPUT  
RECEIVER OUTPUT  
V
CC  
V
CC  
100 kΩ  
250 kΩ  
100 kΩ  
250 kΩ  
10 Ω  
R
A
B
10 Ω  
200 kΩ  
200 kΩ  
7 V  
12  
SN65MLVD201, SN65MLVD203  
SN65MLVD206, SN65MLVD207  
www.ti.com  
SLLS558ADECEMBER 2002 JUNE 2003  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
SUPPLY CURRENT  
vs  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
20  
20  
16  
12  
V
T
A
=3.3V  
= 25°C  
CC  
16  
12  
Driver  
Driver  
Receiver  
8
4
0
8
4
0
Receiver  
Receiver  
V
= 3.3 V  
= 25°C  
Receiver  
CC  
V
ID  
V
IC  
= 250 mV  
= 1 V  
T
V
ID  
V
IC  
= 250 mV  
= 1 V  
A
f = 100 MHz  
10  
30  
50  
70  
90  
110  
50 30  
10  
10  
30  
50  
70  
90  
T
A
Free-Air Temperature°C  
f Frequency MHz  
Figure 13  
Figure 14  
RECEIVER HIGH-LEVEL OUTPUT CURRENT  
RECEIVER LOW-LEVEL OUTPUT CURRENT  
vs  
vs  
HIGH-LEVEL OUTPUT VOLTAGE  
LOW-LEVEL OUTPUT VOLTAGE  
70  
60  
0
T = 25°C  
A
T
A
= 25°C  
10  
V
CC  
=3.6V  
20  
30  
V
V
=3.3V  
=3.0V  
CC  
50  
40  
30  
CC  
V
CC  
=3.0V  
40  
50  
60  
70  
V
CC  
=3.3V  
20  
10  
0
V
CC  
=3.6V  
80  
90  
0
1
2
3
4
0
1
2
3
4
V
OH  
High Level Output Voltage V  
V
OL  
Low Level Output Voltage V  
Figure 15  
Figure 16  
13  
SN65MLVD201, SN65MLVD203  
SN65MLVD206, SN65MLVD207  
www.ti.com  
SLLS558ADECEMBER 2002 JUNE 2003  
DIFFERENTIAL OUTPUT VOLTAGE  
DRIVER PROPAGATION DELAY  
vs  
vs  
OUTPUT CURRENT  
FREE-AIR TEMPERATURE  
2
2
V
= 3.3 V  
CC  
f = 1 MHz  
1.6  
1.2  
1.8  
1.6  
t
pLH  
t
pHL  
0.8  
1.4  
0.4  
0
1.2  
1
V
T
A
= 3.3 V  
2
CC  
= 25°C  
0
4
6
8
10  
12  
50 30  
10  
10  
30  
50  
70  
90  
I
O
Output Current mA  
T
A
Free-Air Temperature°C  
Figure 17  
Figure 18  
ADDED DRIVER CYCLE-TO-CYCLE JITTER (PEAK)  
RECEIVER PROPAGATION DELAY  
vs  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
45  
6
4
V
= 3.3 V  
= 250 mV  
= 1 V  
V
= 3.3 V  
CC  
CC  
T = 25°C  
A
V
ID  
V
IC  
Input = Clock  
t
pHL  
36  
27  
f = 1 MHz  
t
pLH  
18  
9
2
1
0
10  
30  
50  
70  
90  
110  
50 30  
10  
10  
30  
50  
70  
90  
f Frequency MHz  
T
A
Free-Air Temperature°C  
Figure 19  
Figure 20  
14  
SN65MLVD201, SN65MLVD203  
SN65MLVD206, SN65MLVD207  
www.ti.com  
SLLS558ADECEMBER 2002 JUNE 2003  
ADDED DRIVER PEAK-TO-PEAK JITTER  
ADDED DRIVER PEAK-TO-PEAK JITTER  
vs  
vs  
DATA RATE  
FREE-AIR TEMPERATURE  
60  
60  
V
= 3.3 V  
CC  
= 25°C  
T
A
151  
Input = PRBS 2  
50  
40  
50  
40  
30  
30  
20  
10  
20  
10  
V
= 3.3 V  
CC  
= 25°C  
T
A
151  
Input = PRBS 2  
f = 200 Mbps  
0
0
25  
65  
105  
145  
185  
225  
50 30 10  
10  
30  
50  
70  
90  
Data Rate Mbps  
T
A
Free-Air Temperature°C  
Figure 21  
Figure 22  
ADDED RECEIVER CYCLE-TO-CYCLE JITTER  
ADDED RECEIVER PEAK-TO-PEAK JITTER  
vs  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
35  
28  
21  
400  
320  
240  
V
V
T
= 3.3 V  
CC  
= 250 mV  
V
V
T
A
= 3.3 V  
CC  
= 250 mV  
ID  
= 25°C  
ID  
V
IC  
= 3.0 V  
A
= 25°C  
151  
Pattern = 2  
V
IC  
= 0.5 V  
V
IC  
= 1 V  
14  
7
160  
80  
0
0
10  
30  
50  
70  
90  
110  
0
30  
60  
90  
120  
150  
180 210  
Data Rate Mbps  
f Frequency MHz  
Figure 23  
Figure 24  
15  
SN65MLVD201, SN65MLVD203  
SN65MLVD206, SN65MLVD207  
www.ti.com  
SLLS558ADECEMBER 2002 JUNE 2003  
ADDED RECEIVER PEAK-TOPEAK JITTER  
vs  
SN65MLVD201 DRIVER OUTPUT EYE PATTERN  
FREE-AIR TEMPERATURE  
151  
200 Mbps, 2  
PRBS, R = 50 Ω  
L
400  
320  
240  
160  
V
V
V
= 3.3 V  
= 250 mV  
=1 V  
CC  
ID  
IC  
80  
0
f =200 Mbps  
151  
Pattern = 2  
Horizontal Scale = 1 ns/div  
50 30  
10  
10  
30  
50  
70  
90  
T
A
Free-Air Temperature°C  
Figure 25  
Figure 26  
SN65MLVD201 RECEIVER OUTPUT EYE PATTERN  
151  
200 Mbps, 2  
PRBS, C = 15 pF  
L
Horizontal Scale = 1 ns/div  
Figure 27  
16  
SN65MLVD201, SN65MLVD203  
SN65MLVD206, SN65MLVD207  
www.ti.com  
SLLS558ADECEMBER 2002 JUNE 2003  
APPLICATION INFORMATION  
COMPARISON OF MLVD TO TIA/EIA-485  
Receiver Input Threshold (Failsafe)  
The MLVD standard defines a type 1 and type 2 receiver. Type 1 receivers include no provisions for failsafe and have their  
differential input voltage thresholds near zero volts. Type 2 receivers have their differential input voltage thresholds offset  
from zero volts to detect the absence of a voltage difference. The impact to receiver output by the offset input can be seen  
in Table 3 and Figure 28.  
Table 3. Receiver Input Voltage Threshold Requirements  
RECEIVER TYPE  
Type 1  
OUTPUT LOW  
OUTPUT HIGH  
0.05 V V 2.4 V  
2.4 V V 0.05 V  
ID  
2.4 V V 0.05 V  
ID  
Type 2  
0.15 V V 2.4 V  
ID  
ID  
Type 1  
High  
Type 2  
High  
200  
150  
100  
50  
0
Low  
50  
Low  
100  
Transition Regions  
Figure 28. Expanded Graph of Receiver Differential Input Voltage Showing Transition Region  
17  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-Feb-2005  
PACKAGING INFORMATION  
Orderable Device  
SN65MLVD201D  
SN65MLVD201DR  
SN65MLVD203D  
SN65MLVD203DR  
SN65MLVD206D  
SN65MLVD206DR  
SN65MLVD207D  
SN65MLVD207DR  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
75  
2500  
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
D
D
8
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
14  
14  
8
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
2500  
75  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
8
2500  
50  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
14  
14  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
2500  
Pb-Free  
(RoHS)  
CU NIPDAU Level-2-260C-1YEAR/  
Level-1-220C-UNLIM  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional  
product content details.  
None: Not yet available Lead (Pb-Free).  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens,  
including bromine (Br) or antimony (Sb) above 0.1% of total product weight.  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX