SN65MLVD203BRUMR [TI]

Multipoint-LVDS line driver and receiver (transceiver) with IEC ESD protection | RUM | 16 | -40 to 125;
SN65MLVD203BRUMR
型号: SN65MLVD203BRUMR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

Multipoint-LVDS line driver and receiver (transceiver) with IEC ESD protection | RUM | 16 | -40 to 125

文件: 总37页 (文件大小:1976K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
SN65MLVD203B IEC ESD 保护功能的全双1 类多点  
LVDS 收发器  
1 特性  
3 说明  
M-LVDS TIA/EIA-899 兼容可进行多点数  
据交换  
• 低电压差3055线路驱动器和接收器信  
号传输速率(1) 高达  
SN65MLVD203B 器件是一款多点低电压差分信号 (M-  
LVDS) 线路驱动器和接收器经优化能够以最高  
200Mbps 的信号传输速率运行。该器件具有稳健耐用  
3.3V 驱动器和接收器并且采用标准 QFN 封装,  
适用于严苛的工业应用。总线引脚可耐受 ESD 事件,  
具有针对人体模型IEC 接触放电规范的高级保护。  
200Mbps时钟频率高100MHz  
1 类接收器具25mV 迟滞  
• 总线I/O 保护  
该器件包含一个差分驱动器和一个差分接收器收发  
),3.3V 电源供电。该收发器经过优化能够以  
200Mbps 的信号传输速率运行。  
±8kV HBM  
±8kV IEC 61000-4-2 接触放电  
• 驱动器输出电压转换时间可控可改善信号质量  
• –1V 3.4V 共模电压范围可实现2V 接地噪  
声下进行数据传输  
• 总线引脚在禁用VCC 1.5V 时具有高阻抗  
• 提100Mbps (SN65MLVD202B)  
SN65MLVD203 的改进备选器1  
SN65MLVD203B 较同类器件具有增强特性。改进的特  
性包括驱动器输出端可控的压摆率有助于尽量减少无  
端桩线的反射从而提高信号完整性。这些器件的额定  
工作温度范围-40°C 125°C。  
SN65MLVD203B M-LVDS 收器是 TI 广泛的 M-  
LVDS 产品系列的其中一款器件。  
2 应用  
封装信息(1)  
TIA/EIA-485 的低功耗、高速和短距备选器件  
• 背板或电缆式多点数据和时钟传输  
蜂窝基站  
封装尺寸标称值)  
器件型号  
封装  
SN65MLVD203B  
RUMWQFN164.00mm × 4.00mm  
局端交换机  
网络交换机和路由器  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
Y
Z
D
DE  
RE  
A
B
R
简化版原理图SN65MLVD203B  
1
线路的信号传输速率是指每秒钟的电压转换次数单位bps每秒比特数。  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSFG7  
 
 
 
 
 
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
Table of Contents  
8.1 Overview...................................................................15  
8.2 Functional Block Diagrams....................................... 15  
8.3 Feature Description...................................................15  
8.4 Device Functional Modes..........................................16  
9 Application and Implementation..................................18  
9.1 Application Information............................................. 18  
9.2 Typical Application.................................................... 18  
9.3 Power Supply Recommendations.............................23  
9.4 Layout....................................................................... 23  
10 Device and Documentation Support..........................28  
10.1 Documentation Support.......................................... 28  
10.2 接收文档更新通知................................................... 28  
10.3 支持资源..................................................................28  
10.4 Trademarks.............................................................28  
10.5 Electrostatic Discharge Caution..............................28  
10.6 术语表..................................................................... 28  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 绝对最大额定值...........................................................4  
6.2 ESD 等级.................................................................... 4  
6.3 建议运行条件.............................................................. 4  
6.4 热性能信息..................................................................5  
6.5 电气特性......................................................................5  
6.6 电气特- 驱动器........................................................5  
6.7 电气特- 接收器........................................................7  
6.8 开关特- 驱动器........................................................7  
6.9 开关特- 接收器........................................................8  
6.10 Typical Characteristics..............................................8  
7 Parameter Measurement Information............................9  
8 Detailed Description......................................................15  
Information.................................................................... 28  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (November 2020) to Revision B (November 2022)  
Page  
• 将器件信表更改为封装信...........................................................................................................................1  
• 更新了绝对最大额定一节中的表注................................................................................................................. 4  
• 更新了“ESD 等级”一节中CDM 测试.......................................................................................................... 4  
Added RX Maximum Jitter While DE Toggling section..................................................................................... 16  
Moved the Power Supply Recommendations and Layout sections to the Application and Implementation  
section.............................................................................................................................................................. 23  
Changes from Revision * (September 2020) to Revision A (November 2020)  
Page  
• 将器件状态更新为量产数................................................................................................................................1  
• 在“电气特- 驱动器”中IIL最小值0µA 更改-1µA....................................................................5  
• 在“电气特- 接收器”中IIH最大值0µA 更改1µA.....................................................................7  
• 在“开关特- 驱动器”中删除tsk(p) 脉冲偏斜规格....................................................................................7  
• 将禁用时间高电平至高阻抗输出从典型4ns 更改为典型5ns.......................................................................7  
• 将禁用时间低电平至高阻抗输出从典型4ns 更改为典型5ns.......................................................................7  
• 在“开关特- 接收器”中tsk(p) 脉冲偏斜最大值300ps 更改600ps并将典型值100ps 更改为  
80ps ...................................................................................................................................................................8  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: SN65MLVD203B  
 
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
R
RE  
DE  
D
1
2
3
4
12  
11  
10  
9
A
B
Z
Y
Thermal Pad  
Not to scale  
5-1. RUM Package, 16-Pin WQFN (Top View)  
5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NAME  
NO.  
1
R
Output  
Input  
Input  
Input  
Power  
Power  
NC  
Receiver output  
RE  
2
Receiver enable pin; High = Disable, Low = Enable  
Driver enable pin; High = Enable, Low = Disable  
Driver input  
DE  
3
D
4
GND  
5
Supply ground  
GND  
6
Supply ground  
NC  
7
No internal connection  
No internal connection  
Differential output  
NC  
8
NC  
Y
9
Output  
Output  
Input  
Input  
Power  
Power  
NC  
Z
10  
11  
12  
13  
14  
15  
16  
Differential output  
B
Differential input  
A
Differential input  
VCC  
Power supply, 3.3 V  
VCC  
Power supply, 3.3 V  
NC  
No internal connection  
No internal connection  
Thermal pad. Connect to a solid ground plane.  
NC  
NC  
Thermal Pad  
Power  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN65MLVD203B  
 
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 绝对最大额定值  
在自然通风条件下的工作温度范围内测得除非另有说明(1)  
最小值  
0.5  
0.5  
-4  
最大值  
单位  
(2)  
4
V
电源电压范VCC  
4
6
4
4
V
V
V
V
DDERE  
输入电压范围  
AB  
R
0.3  
输出电压范围  
-1.8  
YZ  
请参阅热性能信表  
-65 150  
连续功耗  
°C  
贮存温度Tstg  
(1) 超出绝对最大额定的运行可能会对器件造成永久损坏。绝对最大额定并不表示器件在这些条件下或在建议运行条以外的任何其  
他条件下能够正常运行。如果超出建议运行条件、但在绝对最大额定范围内使用器件可能不会完全正常运行这可能影响器件的可  
靠性、功能和性能并缩短器件寿命。  
(2) 除差I/O 总线电压外的所有电压值都是相对于网络接地引脚的值。  
6.2 ESD 等级  
单位  
±8000  
接触放电IEC 61000-4-2 标准  
ABY Z  
ABY Z  
±8000  
±4000  
±1500  
人体放电模(HBM)ANSI/ESDA/JEDEC JS-001所  
V(ESD)  
V
静电放电  
有引脚(1)  
ABY Z  
外的所有引脚  
充电器件模(CDM)JEDEC JS-002所有引脚(2)  
所有引脚  
(1) JEDEC JEP155 指出500V HBM 可实现在标ESD 控制流程下安全生产。  
(2) JEDEC JEP157 指出250V HBM 可实现在标ESD 控制流程下安全生产。  
6.3 建议运行条件  
在自然通风条件下的工作温度范围内测得除非另有说明)  
最小值 标称值 最大值  
单位  
V
VCC  
VIH  
VIL  
3
2
3.3  
3.6  
VCC  
0.8  
电源电压  
V
高电平输入电压  
0
V
低电平输入电压  
3.8  
V
V
任何总线端VAVBVY VZ 上的电压  
差分输入电压幅度  
1.4  
|VID|  
RL  
VCC  
30  
50  
差分负载电阻  
1/tUI  
TA  
200 Mbps  
信令速率  
-40  
125 °C  
自然通风工作温度RUM 封装  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: SN65MLVD203B  
 
 
 
 
 
 
 
 
 
 
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.4 热性能信息  
SN65MLVD203B  
热指标(1)  
RUM (WQFN)  
单位  
16 引脚  
39.0  
RθJA  
结至环境热阻  
RθJC(top)  
RθJB  
34.7  
结至外壳顶部热阻  
结至电路板热阻  
17.7  
°C/W  
0.6  
ψJT  
结至顶部特征参数  
结至电路板特征参数  
结至外壳底部热阻  
17.7  
7.5  
ψJB  
RθJC(bot)  
(1) 有关传统和新热指标的更多信息请参阅半导体IC 封装热指标应用报告。  
6.5 电气特性  
在建议运行条件下测得除非另有说明(1)  
最大  
参数  
测试条件  
最小值 典型值  
单位  
13  
22  
RE DEVCC ),RL = 50Ω,所有其他均为开路  
仅驱动器  
REVCC ),DE0V ),RL = 空载所有其他均为  
开路  
1
4
两者都禁用  
ICC  
mA  
电源电流  
RE0V ),DEVCC ),RL = 50Ω,所有其他均为  
开路  
16  
4
24  
13  
两者都启用  
仅接收器  
RE0V ),DE0V ),所有其他均为开路  
RL = 50ΩD 的输入50MHz 50% 占空比方波DE = 高  
电平RE = 低电平TA = 85°C  
PD  
100  
mW  
器件功率耗散  
(1) 所有典型值均25°C 3.3V 电源电压条件下测得。  
6.6 电气特- 驱动器  
在建议运行条件下测得除非另有说明)  
典型值  
(2)  
最小值(1)  
参数  
测试条件  
最大值  
单位  
差分输出电压幅(4)  
|VYZ  
|
480  
-50  
0.8  
-50  
650  
50  
mV  
mV  
V
请参阅7-2  
请参阅7-3  
Δ|VYZ  
|
逻辑状态之间的差分输出电压幅度变化  
稳定状态共模输出电压  
VOS(SS)  
ΔVOS(SS)  
VOS(PP)  
VY(OC)  
VZ(OC)  
VP(H)  
1.2  
50  
mV  
mV  
V
逻辑状态之间的稳态共模输出电压变化  
峰峰值共模输出电压  
150  
2.4  
0
0
最大稳态开路输出电压  
请参阅7-7  
请参阅7-5  
2.4  
V
最大稳态开路输出电压  
1.2VSS  
V
电压过冲低电平至高电平输出  
电压过冲高电平至低电平输出  
高电平输入电流DDE)  
低电平输入电流DDE)  
VP(L)  
V
0.2VSS  
IIH  
0
10  
10  
24  
µA  
µA  
mA  
VIH = 2V VCC  
VIL = GND 0.8V  
请参阅7-4  
IIL  
-1  
|IOS  
IOZ  
|
差分短路输出电流幅度  
1.4V VY VZ3.8V,  
其他输= 1.2V  
-15  
-10  
10  
10  
µA  
µA  
高阻抗状态输出电流仅驱动器)  
1.4V VY VZ3.8V,  
其他输= 1.2V0V VCC ≤  
1.5V  
IO(OFF)  
断电输出电流  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN65MLVD203B  
 
 
 
 
 
 
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
在建议运行条件下测得除非另有说明)  
典型值  
(2)  
最小值(1)  
参数  
测试条件  
最大值  
单位  
VI = 0.4 sin(30E6πt) + 0.5V(3)  
其他输入1.2V禁用驱动器  
6
pF  
CY CZ  
输出电容  
VAB = 0.4 sin(30E6πt)V(3)  
禁用驱动器  
CYZ  
4.5  
pF  
差分输出电容  
CY/Z  
0.98  
1.02  
输出电容平衡(CY/CZ)  
(1) 本数据表采用将最小正值最大负值指定为最小值的代数约定。  
(2) 所有典型值均25°C 3.3V 电源电压条件下测得。  
(3) HP4194A 阻抗分析仪或等效产品)  
(4) 40°C 时的测量设备精度10mV  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN65MLVD203B  
 
 
 
 
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.7 电气特- 接收器  
在建议运行条件下测得除非另有说明)  
最小 典型值 最大  
参数  
测试条件  
单位  
(1)  
正向差分输入电压  
阈值(2)  
VIT+  
50  
mV  
1 型  
负向差分输入电压  
阈值(2)  
请参阅7-9 7-1  
VIT-  
-50  
2.4  
mV  
1 型  
1 型  
VHYS  
VOH  
VOL  
IIH  
25  
mV  
V
差分输入电压迟滞(VIT+ VIT–  
高电平输出电(R)  
)
IOH = 8 mA  
IOL=8mA  
0.4  
1
V
低电平输出电(R)  
-10  
-10  
-10  
µA  
µA  
µA  
高电平输入电(RE)  
低电平输入电(RE)  
高阻抗输出电(R)  
VIH = 2V VCC  
VIL = GND 0.8V  
VO = 0 V 3.6 V  
IIL  
0
IOZ  
15  
VI = 0.4 sin(30E6πt) + 0.5V(3)  
其他输入1.2V  
6
pF  
pF  
CA CB  
输入电容  
VAB = 0.4 sin(30E6πt)V(3)  
CAB  
4.5  
差分输入电容  
CA/B  
0.94  
1.06  
输入电容平衡(CA/CB)  
(1) 所有典型值均25°C 3.3V 电源电压条件下测得。  
(2) -40的测量设备精度10mV  
(3) HP4194A 阻抗分析仪或等效产品)  
6.8 开关特- 驱动器  
在建议运行条件下测得除非另有说明)  
最小 典型值 最大  
参数  
测试条件  
单位  
(1)  
tpLH  
tpHL  
tr  
2
2.5  
2.5  
2.0  
2.0  
3.5  
ns  
ns  
ns  
ns  
ns  
ps  
ps  
ps  
ps  
ps  
ns  
ns  
ns  
ns  
传播延时低至高电平输出  
传播延时高至低电平输出  
差分输出信号上升时间  
2
3.5  
请参7-5  
tf  
差分输出信号下降时间  
器件间偏斜(2)  
tsk(pp)  
tjit(per)  
tjit(per)  
tjit(pp)  
tjit(pp)  
tjit(pp)  
tPHZ  
tPLZ  
tPZH  
tPZL  
0.9  
5
周期抖动rms1 个标准差(3)  
周期抖动rms1 个标准差(3)  
峰峰值抖动(3) (6)  
62.5MHz 时钟输入(4)  
100MHz 时钟输入(4)  
2
125Mbps 8b10b 输入(5)  
200Mbps 8b10b 输入(5)  
200Mbps 215 1 PRBS 输入(5)  
250  
325  
325  
7
峰峰值抖动(3) (6)  
峰峰值抖动(3) (6)  
5
5
4
4
禁用时间高电平至高阻抗输出  
禁用时间低电平至高阻抗输出  
启用时间高阻抗至高电平输出  
启用时间高阻抗至低电平输出  
7
请参阅7-6  
7
7
(1) 所有典型值均25°C 3.3V 电源电压条件下测得。  
(2) 器件间偏斜定义为在相V/T 条件下运行的两个器件之间的传播延迟差异。  
(3) 抖动由设计和特性来确保。已从数字中减去激励抖动。  
(4) tr = tf = 0.5ns10% 90%),30K 个样本测得。  
(5) tr = tf = 0.5ns10% 90%),100K 个样本测得。  
(6) 峰峰值抖动包括脉冲偏(tsk(p)) 引起的抖动。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN65MLVD203B  
 
 
 
 
 
 
 
 
 
 
 
 
 
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.9 开关特- 接收器  
在建议运行条件下测得除非另有说明)  
最小 典型值 最大  
参数  
测试条件  
单位  
(1)  
tPLH  
tPHL  
tr  
2
6
6
10  
ns  
ns  
ns  
ns  
ps  
ns  
ps  
ps  
ps  
ps  
ps  
ns  
ns  
ns  
ns  
传播延时低至高电平输出  
传播延时高至低电平输出  
输出信号上升时间  
2
10  
2.3  
2.3  
600  
1
CL = 15pF请参阅7-10  
tf  
输出信号下降时间  
tsk(p)  
tsk(pp)  
tjit(per)  
tjit(per)  
tjit(pp)  
tjit(pp)  
tjit(pp)  
tPHZ  
tPLZ  
tPZH  
tPZL  
80  
脉冲偏(|tpHL tpLH|)  
器件间偏斜(2)  
1 型  
CL = 15pF请参阅7-10  
CL = 15pF请参阅7-10  
62.5MHz 时钟输入(4)  
周期抖动rms1 个标准差(3)  
周期抖动rms1 个标准差(3)  
峰峰值抖动(3) (6)  
5
100MHz 时钟输入(4)  
3
130  
250  
300  
10  
1 型  
1 型  
1 型  
125Mbps 8b10b 输入(5)  
200Mbps 8b10b 输入(5)  
200Mbps 215 1 PRBS 输入(5)  
峰峰值抖动(3) (6)  
峰峰值抖动(3) (6)  
6
6
禁用时间高电平至高阻抗输出  
禁用时间低电平至高阻抗输出  
启用时间高阻抗至高电平输出  
启用时间高阻抗至低电平输出  
10  
请参阅7-11  
10  
10  
15  
15  
(1) 所有典型值均25°C 3.3V 电源电压条件下测得。  
(2) 器件间偏斜定义为在相V/T 条件下运行的两个器件之间的传播延迟差异。  
(3) 抖动由设计和特性来确保。已从数字中减去激励抖动。  
(4) VID = 200mVpp Vcm = 1Vtr = tf = 0.5ns10% 90%),30K 个样本测得。  
(5) VID = 200mVpp Vcm = 1Vtr = tf = 0.5ns10% 90%),100K 个样本测得。  
(6) 峰峰值抖动包括脉冲偏(tsk(p)) 引起的抖动  
6.10 Typical Characteristics  
594  
592  
590  
588  
586  
584  
582  
580  
578  
576  
3
3.1  
3.2  
3.3  
VCC (V)  
3.4  
3.5  
3.6  
D001  
TA = 25°C  
6-1. Differential Output Voltage vs Supply Voltage  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: SN65MLVD203B  
 
 
 
 
 
 
 
 
 
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
V
CC  
I
Y
Y
I
I
D
V
YZ  
I
Z
V
Y
Z
V
I
V
OS  
V
Z
V
Y
+ V  
Z
2
7-1. Driver Voltage and Current Definitions  
3.32 kΩ  
Y
+
_
-1 V V < 3.4 V  
test  
V
YZ  
49.9 Ω  
D
Z
3.32 kΩ  
A. All resistors are 1% tolerance.  
7-2. Differential Output Voltage Test Circuit  
Y
R1  
24.9 Ω  
1.3 V  
0.7 V  
Y
Z
C1  
1 pF  
D
V
V
OS(SS)  
OS(PP)  
V
OS  
Z
C3  
R2  
24.9 Ω  
V
OS(SS)  
2.5 pF  
C2  
1 pF  
A. All input pulses are supplied by a generator having the following characteristics: tr or tf1 ns, pulse frequency = 1 MHz, duty cycle = 50  
± 5%.  
B. C1, C2 and C3 include instrumentation and fixture capacitance within 2 cm of the D.U.T. and are ±20%.  
C. R1 and R2 are metal film, surface mount, ±1%, and located within 2 cm of the D.U.T.  
D. The measurement of VOS(PP) is made on test equipment with a -3 dB bandwidth of at least 1 GHz.  
7-3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage  
I
OS  
Y
0 V or V  
CC  
+
Z
V
-
-1 V or 3.4 V  
Test  
7-4. Driver Short-Circuit Test Circuit  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN65MLVD203B  
 
 
 
 
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
Y
C1  
1 pF  
C3  
R1  
50 Ω  
Output  
D
0.5 pF  
Z
C2  
1 pF  
V
V
CC  
/2  
CC  
Input  
0 V  
t
t
pHL  
pLH  
V
SS  
0.9V  
SS  
V
P(H)  
Output  
0 V  
V
P(L)  
0.1V  
SS  
0 V  
SS  
t
t
r
f
A. All input pulses are supplied by a generator having the following characteristics: tr or tf1 ns, frequency = 1 MHz, duty cycle = 50 ±  
5%.  
B. C1, C2, and C3 include instrumentation and fixture capacitance within 2 cm of the D.U.T. and are ±20%.  
C. R1 is a metal film, surface mount, and 1% tolerance and located within 2 cm of the D.U.T.  
D. The measurement is made on test equipment with a -3 dB bandwidth of at least 1 GHz.  
7-5. Driver Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal  
R1  
24.9 Ω  
Y
C1  
1 pF  
D
C4  
0.5 pF  
0 V or V  
Output  
CC  
C3  
2.5 pF  
C2  
1 pF  
Z
R2  
24.9 Ω  
DE  
V
V
CC  
/2  
CC  
DE  
0 V  
t
t
t
pZH  
pHZ  
~ 0.6 V  
0.1 V  
0 V  
Output With  
D at V  
CC  
t
pZL  
pLZ  
Output With  
D at 0 V  
0 V  
-0.1 V  
~ -0.6 V  
A. All input pulses are supplied by a generator having the following characteristics: tr or tf1 ns, frequency = 1 MHz, duty cycle = 50 ±  
5%.  
B. C1, C2, C3, and C4 includes instrumentation and fixture capacitance within 2 cm of the D.U.T. and are ±20%.  
C. R1 and R2 are metal film, surface mount, and 1% tolerance and located within 2 cm of the D.U.T.  
D. The measurement is made on test equipment with a -3 dB bandwidth of at least 1 GHz.  
7-6. Driver Enable and Disable Time Circuit and Definitions  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: SN65MLVD203B  
 
 
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
Y
Z
0 V or V  
CC  
V , V  
Y
1.62 kΩ , 1ꢀ  
Z
7-7. Maximum Steady State Output Voltage  
V
CC  
V
CC  
CLOCK  
INPUT  
/2  
0 V  
1/f0  
Period Jitter  
IDEAL  
V
V
CC  
0 V  
OUTPUT  
PRBS INPUT  
/2  
CC  
V
Y
-V  
Z
1/f0  
0 V  
ACTUAL  
OUTPUT  
Peak to Peak Jitter  
0 V  
V
Y
-V  
Z
V
Y
-V  
Z
OUTPUT 0 V Diff  
-V  
t
c(n)  
V
t
=
t
-1/f0  
c(n)  
Y
Z
jit(per)  
t
jit(pp)  
A. All input pulses are supplied by an Agilent 81250 Stimulus System.  
B. The measurement is made on a TEK TDS6604 running TDSJIT3 application software  
C. Period jitter is measured using a 100 MHz 50 ±1% duty cycle clock input.  
D. Peak-to-peak jitter is measured using a 200 Mbps 2151 PRBS input.  
7-8. Driver Jitter Measurement Waveforms  
I
A
A
B
I
O
R
V
ID  
V
O
V
CM  
V
A
I
B
(V + V )/2  
A B  
V
B
Copyright © 2016, Texas Instruments Incorporated  
7-9. Receiver Voltage and Current Definitions  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN65MLVD203B  
 
 
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
7-1. Type-1 Receiver Input Threshold Test Voltages  
RESULTING DIFFERENTIAL RESULTING COMMON-  
APPLIED VOLTAGES  
RECEIVER  
OUTPUT  
INPUT VOLTAGE  
MODE INPUT VOLTAGE  
VIA  
VIB  
VID  
VIC  
1.200  
1.200  
3.4  
2.400  
0.000  
3.425  
3.375  
0.000  
2.400  
3.375  
3.425  
2.400  
H
L
2.400  
0.050  
H
L
3.4  
0.050  
0.050  
H
L
0.975  
1.025  
1.025  
0.975  
1  
1  
0.050  
V
ID  
V
A
C
L
V
O
15 pF  
V
B
V
1.2 V  
1 V  
A
V
B
V
ID  
0.2 V  
0 V  
–0.2 V  
t
t
pLH  
pHL  
V
OH  
V
O
90%  
10%  
V
V
/2  
CC  
OL  
t
t
r
f
A. All input pulses are supplied by a generator having the following characteristics: tr or tf 1 ns, frequency = 1 MHz, duty cycle = 50 ±  
5%. CL is a combination of a 20%-tolerance, low-loss ceramic, surface-mount capacitor and fixture capacitance within 2 cm of the  
D.U.T.  
B. The measurement is made on test equipment with a 3 dB bandwidth of at least 1 GHz.  
7-10. Receiver Timing Test Circuit and Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: SN65MLVD203B  
 
 
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
R
L
499 Ω  
B
A
1.2 V  
R
+
_
C
L
V
TEST  
V
O
Inputs  
RE  
15 pF  
V
CC  
V
TEST  
1 V  
A
V
V
CC  
RE  
/2  
/2  
CC  
0 V  
t
t
pLZ  
pZL  
V
CC  
V
CC  
Output  
R
V
OL  
V
OL  
+0.5 V  
V
TEST  
0 V  
1.4 V  
A
V
V
CC  
RE  
/2  
CC  
0 V  
t
t
pHZ  
pZH  
V
V
V
OH  
0.5 V  
OH  
V
O
/2  
CC  
0 V  
A. All input pulses are supplied by a generator having the following characteristics: tr or tf 1 ns, frequency = 1 MHz, duty cycle = 50 ±  
5%.  
B. RL is 1% tolerance, metal film, surface mount, and located within 2 cm of the D.U.T.  
C. CL is the instrumentation and fixture capacitance within 2 cm of the DUT and ±20%.  
7-11. Receiver Enable and Disable Time Test Circuit and Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN65MLVD203B  
 
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
INPUTS  
–V  
CLOCK INPUT  
V
A
V
IC  
B
1 V  
0.4 V  
V
A
–V  
B
1/f0  
Period Jitter  
V
OH  
IDEAL  
OUTPUT  
V
A
V /2  
CC  
PRBS INPUT  
V
OL  
1/f0  
V
B
V
OH  
ACTUAL  
OUTPUT  
Peak-to-Peak Jitter  
V
/2  
CC  
V
OH  
V
OL  
OUTPUT  
V /2  
CC  
t
c(n)  
t
= t  
–1/f0│  
V
OL  
jit(per)  
c(n)  
t
jit(pp)  
A. All input pulses are supplied by an Agilent 8304A Stimulus System.  
B. The measurement is made on a TEK TDS6604 running TDSJIT3 application software  
C. Period jitter is measured using a 10 MHz 50 ±1% duty cycle clock input.  
D. Peak-to-peak jitter is measured using a 200 Mbps 215-1 PRBS input.  
7-12. Receiver Jitter Measurement Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: SN65MLVD203B  
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The SN65MLVD203B is a multipoint-low-voltage differential (M-LVDS) line driver and receiver, which is optimized  
to operate at signaling rates up to 200 Mbps. the device complies with the multipoint low-voltage differential  
signaling (M-LVDS) standard TIA/EIA-899. These circuit is similar to the TIA/EIA-644 standard compliant LVDS  
counterpart, with added features to address multipoint applications. The driver output has been designed to  
support multipoint buses presenting loads as low as 30 Ω, and incorporates controlled transition times to allow  
for stubs off of the backbone transmission line.  
The SN65MLVD203B has a Type-1 receivers exhibit 25 mV of differential input voltage hysteresis to prevent  
output oscillations with slowly changing signals or loss of input.  
8.2 Functional Block Diagrams  
Y
D
Z
DE  
RE  
A
R
B
8.3 Feature Description  
8.3.1 Power-On-Reset  
The SN65MLVD203B operates and meets all the specified performance requirements for supply voltages in the  
range of 3 V to 3.6 V. When the supply voltage drops below 1.5 V (or is turning on and has not yet reached 1.5  
V), power-on reset circuitry set the driver output to a high-impedance state.  
8.3.2 ESD Protection  
The bus terminals of the SN65MLVD203B possess on-chip ESD protection against ±8-kV human body model  
(HBM) and ±8-kV IEC61000-4-2 contact discharge. The IEC-ESD test is far more severe than the HBM-ESD  
test. The 50% higher charge capacitance, CS, and 78% lower discharge resistance, RD of the IEC model  
produce significantly higher discharge currents than the HBM-model.  
As stated in the IEC 61000-4-2 standard, contact discharge is the preferred test method; although IEC air-gap  
testing is less repeatable than contact testing, air discharge protection levels are inferred from the contact  
discharge test results.  
RC  
RD  
40  
35  
30  
25  
20  
15  
10  
5
50 M  
(1 M)  
330 Ω  
10-kV IEC  
(1.5 kΩ)  
Device  
Under  
Test  
High-Voltage  
Pulse  
Generator  
150 pF  
(100 pF)  
CS  
10-kV HBM  
0
0
50  
100  
150  
200  
250  
300  
Time (ns)  
Copyright © 2016, Texas Instruments Incorporated  
8-1. HBM and IEC-ESD Models and Currents in Comparison (HBM Values in Parenthesis)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: SN65MLVD203B  
 
 
 
 
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.3.3 RX Maximum Jitter While DE Toggling  
Due to the internal circuitry of the Receiver and Driver Enable/Disable (DE), toggling the DE pin disrupts the  
biasing of the receiver and results in a current change. This current change adds jitter to the receiver. If the DE  
pin is toggled, the maximum peak-to-peak jitter of the receiver is estimated to be 2.1 ns.  
8.4 Device Functional Modes  
8.4.1 Operation with VCC < 1.5 V  
Bus pins are high impedance under this condition.  
8.4.2 Operations with 1.5 V VCC < 3 V  
Operation with supply voltages in the range of 1.5 V VCC < 3 V is undefined and no specific device  
performance is guaranteed in this range.  
8.4.3 Operation with 3 V VCC < 3.6 V  
Operation with the supply voltages greater than or equal to 3 V and less than or equal to 3.6 V is normal  
operation.  
8.4.4 Device Function Tables  
8-1. Type-1 Receiver  
INPUTS  
OUTPUT  
VID = VA - VB  
RE  
R
H
?
L
L
VID 50 mV  
-50 mV < VID < 50 mV  
L
L
VID -50 mV  
X
X
H
Z
Z
Open  
8-2. Driver  
INPUTS  
ENABLE  
OUTPUTS  
D
L
DE  
H
X
L
Y
H
L
H
H
H
L
Open  
X
H
H
Z
Z
Open  
L
Z
Z
X
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: SN65MLVD203B  
 
 
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.4.5 Equivalent Input and Output Schematic Diagrams  
DRIVER OUTPUT  
DRIVER INPUT AND DRIVER ENABLE  
RECEIVER ENABLE  
V
CC  
V
CC  
V
CC  
360 kΩ  
400 Ω  
400 Ω  
D or DE  
7 V  
Y or Z  
RE  
7 V  
360 kΩ  
RECEIVER INPUT  
RECEIVER OUTPUT  
V
CC  
V
CC  
100 kΩ  
250 kΩ  
100 kΩ  
250 kΩ  
10 Ω  
R
A
B
10 Ω  
200 kΩ  
200 kΩ  
7 V  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: SN65MLVD203B  
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The SN65MLVD203B is a multipoint line driver and receiver. The functionality of the device is simple, yet  
extremely flexible, leading to their use in designs ranging from wireless base stations to desktop computers.  
9.2 Typical Application  
9.2.1 Multipoint Communications  
In a multipoint configuration many transmitters and many receivers can be interconnected on a single  
transmission line. The key difference compared to multi-drop is the presence of two or more drivers. Such a  
situation creates contention issues that need not be addressed with point-to-point or multidrop systems.  
Multipoint operation allows for bidirectional, half-duplex communication over a single balanced media pair. To  
support the location of the various drivers throughout the transmission line, double termination of the  
transmission line is now necessary.  
The major challenge that system designers encounter are the impedance discontinuities that device loading and  
device connections (stubs) introduce on the common bus. Matching the impedance of the loaded bus and using  
signal drivers with controlled signal edges are the keys to error-free signal transmissions in multipoint topologies.  
RT  
RT  
RT  
RT  
MASTER  
SLAVE  
SLAVE  
SLAVE  
9-1. Multipoint Configuration  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: SN65MLVD203B  
 
 
 
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
9.2.2 Design Requirements  
For this design example, use the parameters listed in 9-1.  
9-1. Design Parameters  
PARAMETERS  
Driver supply voltage  
VALUES  
3 to 3.6 V  
Driver input voltage  
0.8 to 3.3 V  
DC to 200 Mbps  
100 Ω  
Driver signaling rate  
Interconnect characteristic impedance  
Termination resistance (differential)  
Number of receiver nodes  
Receiver supply voltage  
100 Ω  
2 to 32  
3 to 3.6 V  
Receiver input voltage  
0 to (VCC 0.8) V  
DC to 200 Mbps  
±1 V  
Receiver signaling rate  
Ground shift between driver and receiver  
9.2.3 Detailed Design Procedure  
9.2.3.1 Supply Voltage  
The SN65MLVD203B is operated from a single supply. The device can support operations with a supply as low  
as 3 V and as high as 3.6 V.  
9.2.3.2 Supply Bypass Capacitance  
Bypass capacitors play a key role in power distribution circuitry. At low frequencies, power supply offers very  
low-impedance paths between its terminals. However, as higher frequency currents propagate through power  
traces, the source is often incapable of maintaining a low-impedance path to ground. Bypass capacitors are  
used to address this shortcoming. Usually, large bypass capacitors (10 μF to 1000 μF) at the board level do a  
good job up into the kHz range. Due to their size and length of their leads, large capacitors tend to have large  
inductance values at the switching frequencies. To solve this problem, smaller capacitors (in the nF to μF range)  
must be installed locally next to the integrated circuit.  
Multilayer ceramic chip or surface-mount capacitors (size 0603 or 0805) minimize lead inductances of bypass  
capacitors in high-speed environments, because their lead inductance is about 1 nH. For comparison purposes,  
a typical capacitor with leads has a lead inductance around 5 nH.  
The value of the bypass capacitors used locally with M-LVDS chips can be determined by 方程式 1 and 方程式  
2, according to High Speed Digital Design A Handbook of Black Magic by Howard Johnson and Martin  
Graham (1993). A conservative rise time of 4 ns and a worst-case change in supply current of 100 mA covers  
the whole range of M-LVDS devices offered by Texas Instruments. In this example, the maximum power supply  
noise tolerated is 100 mV; however, this figure varies depending on the noise budget available for the design.  
æ
ç
ç
è
ö
÷
÷
ø
DIMaximum Step Change Supply Current  
Cchip  
=
´ T  
Rise Time  
DVMaximum Power Supply Noise  
(1)  
(2)  
æ
ç
è
ö
÷
ø
100 mA  
100 mV  
CMLVDS  
=
´ 4ns = 0.004 mF  
9-2 shows a configuration that lowers lead inductance and covers intermediate frequencies between the  
board-level capacitor (>10 µF) and the value of capacitance found above (0.004 µF). Place the smallest value of  
capacitance as close as possible to the chip.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: SN65MLVD203B  
 
 
 
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
3.3 V  
0.1 µF  
0.004 µF  
9-2. Recommended M-LVDS Bypass Capacitor Layout  
9.2.3.3 Driver Input Voltage  
The input stage accepts LVTTL signals. The driver operates with a decision threshold of approximately 1.4 V.  
9.2.3.4 Driver Output Voltage  
The driver outputs a steady state common mode voltage of 1 V with a differential signal of 540 mV under  
nominal conditions.  
9.2.3.5 Termination Resistors  
As shown earlier, an M-LVDS communication channel employs a current source driving a transmission line  
which is terminated with two resistive loads. These loads serve to convert the transmitted current into a voltage  
at the receiver input. To ensure good signal integrity, the termination resistors should be matched to the  
characteristic impedance of the transmission line. The designer should ensure that the termination resistors are  
within 10% of the nominal media characteristic impedance. If the transmission line is targeted for 100-Ω  
impedance, the termination resistors should be between 90 Ω and 110 Ω. The line termination resistors are  
typically placed at the ends of the transmission line.  
9.2.3.6 Receiver Input Signal  
The M-LVDS receivers herein comply with the M-LVDS standard and correctly determine the bus state. These  
devices have Type-1 and Type-2 receivers that detect the bus state with as little as 50 mV of differential voltage  
over the common mode range of 1 V to 3.4 V.  
9.2.3.7 Receiver Input Threshold (Failsafe)  
The MLVDS standard defines a Type-1 and Type-2 receiver. Type-1 receivers have their differential input voltage  
thresholds near zero volts. Type-2 receivers have their differential input voltage thresholds offset from 0 V to  
detect the absence of a voltage difference. The impact to receiver output by the offset input can be seen in 表  
9-2 and 9-3.  
9-2. Receiver Input Voltage Threshold Requirements  
RECEIVER TYPE  
OUTPUT LOW  
OUTPUT HIGH  
Type 1  
2.4 V VID 0.05 V  
2.4 V VID 0.05 V  
0.05 V VID 2.4 V  
0.15 V VID 2.4 V  
Type 2  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: SN65MLVD203B  
 
 
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
Type 1  
High  
Type 2  
High  
200  
150  
100  
50  
0
Low  
-50  
-100  
Low  
Transition Regions  
9-3. Expanded Graph of Receiver Differential Input Voltage Showing Transition Region  
9.2.3.8 Receiver Output Signal  
Receiver outputs comply with LVTTL output voltage standards when the supply voltage is within the range of 3 V  
to 3.6 V.  
9.2.3.9 Interconnecting Media  
The physical communication channel between the driver and the receiver may be any balanced paired metal  
conductors meeting the requirements of the M-LVDS standard, the key points which will be included here. This  
media may be a twisted pair, twinax, flat ribbon cable, or PCB traces.  
The nominal characteristic impedance of the interconnect should be between 100 Ω and 120 Ω with variation  
no more than 10% (90 Ωto 132 Ω).  
9.2.3.10 PCB Transmission Lines  
As per SNLA187, 9-4 depicts several transmission line structures commonly used in printed-circuit boards  
(PCBs). Each structure consists of a signal line and a return path with uniform cross-section along its length. A  
microstrip is a signal trace on the top (or bottom) layer, separated by a dielectric layer from its return path in a  
ground or power plane. A stripline is a signal trace in the inner layer, with a dielectric layer in between a ground  
plane above and below the signal trace. The dimensions of the structure along with the dielectric material  
properties determine the characteristic impedance of the transmission line (also called controlled-impedance  
transmission line).  
When two signal lines are placed close by, they form a pair of coupled transmission lines. 9-4 shows  
examples of edge-coupled microstrips, and edge-coupled or broad-side-coupled striplines. When excited by  
differential signals, the coupled transmission line is referred to as a differential pair. The characteristic  
impedance of each line is called odd-mode impedance. The sum of the odd-mode impedances of each line is  
the differential impedance of the differential pair. In addition to the trace dimensions and dielectric material  
properties, the spacing between the two traces determines the mutual coupling and impacts the differential  
impedance. When the two lines are immediately adjacent; for example, if S is less than 2 × W, the differential  
pair is called a tightly-coupled differential pair. To maintain constant differential impedance along the length, it is  
important to keep the trace width and spacing uniform along the length, as well as maintain good symmetry  
between the two lines.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: SN65MLVD203B  
 
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
Single-Ended Microstrip  
Single-Ended Stripline  
W
W
T
H
H
T
H
«
÷
1.9 2 H+ T  
87  
5.98 H  
[
]
60  
Z0  
=
ln  
Z0  
=
ln  
÷
÷
0.8 W + T  
0.8 W + T  
er +1.41  
[
]
er  
«
Edge-Coupled  
Edge-Coupled  
S
S
H
H
Differential Microstrip  
Differential Stripline  
s
s
÷
÷
-0.96 ì  
-2.9 ì  
H
H
Zdiff = 2 ì Z0 ì 1- 0.48 ì e  
Zdiff = 2 ì Z0 ì 1- 0.347 ì e  
«
÷
«
÷
Co-Planar Coupled Microstrips  
Broad-Side Coupled Striplines  
W
W
W
G
S
G
H
S
H
9-4. Controlled-Impedance Transmission Lines  
9.2.4 Application Curves  
VCC = 3.3 V  
TA = 25°C  
VCC = 3.3 V  
TA = 25°C  
9-5. Driver Fall Time  
9-6. Driver Rise Time  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: SN65MLVD203B  
 
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
9.3 Power Supply Recommendations  
The M-LVDS driver and receivers in this data sheet are designed to operate from a single power supply. Both  
drivers and receivers operate with supply voltages in the range of 3 V to 3.6 V. In a typical application, a driver  
and a receiver may be on separate boards, or even separate equipment. In these cases, separate supplies  
would be used at each location. The expected ground potential difference between the driver power supply and  
the receiver power supply would be less than ±1 V. Board level and local device level bypass capacitance should  
be used and are covered Supply Bypass Capacitance.  
9.4 Layout  
9.4.1 Layout Guidelines  
9.4.1.1 Microstrip vs. Stripline Topologies  
As per SLLD009, printed-circuit boards usually offer designers two transmission line options: Microstrip and  
stripline. Microstrips are traces on the outer layer of a PCB, as shown in 9-7.  
9-7. Microstrip Topology  
On the other hand, striplines are traces between two ground planes. Striplines are less prone to emissions and  
susceptibility problems because the reference planes effectively shield the embedded traces. However, from the  
standpoint of high-speed transmission, juxtaposing two planes creates additional capacitance. TI recommends  
routing M-LVDS signals on microstrip transmission lines if possible. The PCB traces allow designers to specify  
the necessary tolerances for ZO based on the overall noise budget and reflection allowances. Footnotes 12, 23,  
and 34 provide formulas for ZO and tPD for differential and single-ended traces. 2 3 4  
9-8. Stripline Topology  
2
Howard Johnson & Martin Graham.1993. High Speed Digital Design A Handbook of Black Magic. Prentice Hall PRT. ISBN number  
013395724.  
3
Mark I. Montrose. 1996. Printed Circuit Board Design Techniques for EMC Compliance. IEEE Press. ISBN number 0780311310.  
Clyde F. Coombs, Jr. Ed, Printed Circuits Handbook, McGraw Hill, ISBN number 0070127549.  
4
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: SN65MLVD203B  
 
 
 
 
 
 
 
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
9.4.1.2 Dielectric Type and Board Construction  
The speeds at which signals travel across the board dictates the choice of dielectric. FR-4, or equivalent, usually  
provides adequate performance for use with M-LVDS signals. If rise or fall times of TTL/CMOS signals are less  
than 500 ps, empirical results indicate that a material with a dielectric constant near 3.4, such as Rogers4350  
or Nelco N4000-13 is better suited. Once the designer chooses the dielectric, there are several parameters  
pertaining to the board construction that can affect performance. The following set of guidelines were developed  
experimentally through several designs involving M-LVDS devices:  
Copper weight: 15 g or 1/2 oz start, plated to 30 g or 1 oz  
All exposed circuitry should be solder-plated (60/40) to 7.62 μm or 0.0003 in (minimum).  
Copper plating should be 25.4 μm or 0.001 in (minimum) in plated-through-holes.  
Solder mask over bare copper with solder hot-air leveling  
9.4.1.3 Recommended Stack Layout  
Following the choice of dielectrics and design specifications, you must decide how many levels to use in the  
stack. To reduce the TTL/CMOS to M-LVDS crosstalk, it is a good practice to have at least two separate signal  
planes as shown in 9-9.  
Layer 1: Routed Plane (MLVDS Signals)  
Layer 2: Ground Plane  
Layer 3: Power Plane  
Layer 4: Routed Plane (TTL/CMOS Signals)  
9-9. Four-Layer PCB Board  
备注  
The separation between layers 2 and 3 should be 127 μm (0.005 in). By keeping the power and  
ground planes tightly coupled, the increased capacitance acts as a bypass for transients.  
One of the most common stack configurations is the six-layer board, as shown in 9-10.  
Layer 1: Routed Plane (MLVDS Signals)  
Layer 2: Ground Plane  
Layer 3: Power Plane  
Layer 4: Ground Plane  
Layer 5: Ground Plane  
Layer 4: Routed Plane (TTL Signals)  
9-10. Six-Layer PCB Board  
In this particular configuration, it is possible to isolate each signal layer from the power plane by at least one  
ground plane. The result is improved signal integrity; however, fabrication is more expensive. Using the 6-layer  
board is preferable, because it offers the layout designer more flexibility in varying the distance between signal  
layers and referenced planes, in addition to ensuring reference to a ground plane for signal layers 1 and 6.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: SN65MLVD203B  
 
 
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
9.4.1.4 Separation Between Traces  
The separation between traces depends on several factors; however, the amount of coupling that can be  
tolerated usually dictates the actual separation. Low noise coupling requires close coupling between the  
differential pair of an M-LVDS link to benefit from the electromagnetic field cancellation. The traces should be  
100-differential and thus coupled in the manner that best fits this requirement. In addition, differential pairs  
should have the same electrical length to ensure that they are balanced, thus minimizing problems with skew  
and signal reflection.  
In the case of two adjacent single-ended traces, one should use the 3-W rule, which stipulates that the distance  
between two traces must be greater than two times the width of a single trace, or three times its width measured  
from trace center to trace center. This increased separation effectively reduces the potential for crosstalk. The  
same rule should be applied to the separation between adjacent M-LVDS differential pairs, whether the traces  
are edge-coupled or broad-side-coupled.  
W
MLVDS  
Pair  
Minimum spacing as  
defined by PCB vendor  
Differential Traces  
S =  
W
í 2 W  
Single-Ended Traces  
TTL/CMOS  
Trace  
W
9-11. 3-W Rule for Single-Ended and Differential Traces (Top View)  
You should exercise caution when using autorouters, because they do not always account for all factors affecting  
crosstalk and signal reflection. For instance, it is best to avoid sharp 90° turns to prevent discontinuities in the  
signal path. Using successive 45° turns tends to minimize reflections.  
9.4.1.5 Crosstalk and Ground Bounce Minimization  
To reduce crosstalk, it is important to provide a return path to high-frequency currents that is as close as possible  
to its originating trace. A ground plane usually achieves this. Because the returning currents always choose the  
path of lowest inductance, they are most likely to return directly under the original trace, thus minimizing  
crosstalk. Lowering the area of the current loop lowers the potential for crosstalk. Traces kept as short as  
possible with an uninterrupted ground plane running beneath them emit the minimum amount of electromagnetic  
field strength. Discontinuities in the ground plane increase the return path inductance and should be avoided.  
9.4.1.6 Decoupling  
Each power or ground lead of a high-speed device should be connected to the PCB through a low inductance  
path. For best results, one or more vias are used to connect a power or ground pin to the nearby plane. Ideally,  
via placement is immediately adjacent to the pin to avoid adding trace inductance. Placing a power plane closer  
to the top of the board reduces the effective via length and its associated inductance.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: SN65MLVD203B  
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
V
GND  
Via  
CC  
Via  
TOP signal layer + GND fill  
4 mil  
6 mil  
V
1 plane  
DD  
2 mil  
Buried capacitor  
>
GND plane  
Signal layer  
GND plane  
Signal layers  
V
plane  
CC  
Signal layer  
GND plane  
Buried capacitor  
>
V
2 plane  
DD  
4 mil  
6 mil  
BOTTOM signal layer + GND fill  
Typical 12-Layer PCB  
9-12. Low Inductance, High-Capacitance Power Connection  
Bypass capacitors should be placed close to VDD pins. They can be placed conveniently near the corners or  
underneath the package to minimize the loop area. This extends the useful frequency range of the added  
capacitance. Small-physical-size capacitors, such as 0402, 0201, or X7R surface-mount capacitors should be  
used to minimize body inductance of capacitors. Each bypass capacitor is connected to the power and ground  
plane through vias tangent to the pads of the capacitor as shown in 9-13(a).  
An X7R surface-mount capacitor of size 0402 has about 0.5 nH of body inductance. At frequencies above 30  
MHz or so, X7R capacitors behave as low-impedance inductors. To extend the operating frequency range to a  
few hundred MHz, an array of different capacitor values like 100 pF, 1 nF, 0.03 μF, and 0.1 μF are commonly  
used in parallel. The most effective bypass capacitor can be built using sandwiched layers of power and ground  
at a separation of 2 to 3 mils. With a 2-mil FR4 dielectric, there is approximately 500 pF per square inch of PCB.  
Many high-speed devices provide a low-inductance GND connection on the backside of the package. This  
center pad must be connected to a ground plane through an array of vias. The via array reduces the effective  
inductance to ground and enhances the thermal performance of the small Surface Mount Technology (SMT)  
package. Placing vias around the perimeter of the pad connection ensures proper heat spreading and the lowest  
possible die temperature. Placing high-performance devices on opposing sides of the PCB using two GND  
planes (as shown in 9-4) creates multiple paths for heat transfer. Often thermal PCB issues are the result of  
one device adding heat to another, resulting in a very high local temperature. Multiple paths for heat transfer  
minimize this possibility. In many cases the GND pad makes the optimal decoupling layout impossible to achieve  
due to insufficient pad-to-pad spacing as shown in 9-13(b). When this occurs, placing the decoupling  
capacitor on the backside of the board keeps the extra inductance to a minimum. It is important to place the VDD  
via as close to the device pin as possible while still allowing for sufficient solder mask coverage. If the via is left  
open, solder may flow from the pad and into the via barrel. This will result in a poor solder connection.  
V
DD  
0402  
INœ  
IN+  
Typical Decoupling Capacitor Layouts(a)  
0402  
Typical Decoupling Capacitor Layouts(b)  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: SN65MLVD203B  
 
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
9.4.2 Layout Example  
At least two or three times the width of an individual trace should separate single-ended traces and differential  
pairs to minimize the potential for crosstalk. Single-ended traces that run in parallel for less than the wavelength  
of the rise or fall times usually have negligible crosstalk. Increase the spacing between signal paths for long  
parallel runs to reduce crosstalk. Boards with limited real estate can benefit from the staggered trace layout, as  
shown in 9-13.  
Layer 1  
Layer 6  
9-13. Staggered Trace Layout  
This configuration lays out alternating signal traces on different layers; thus, the horizontal separation between  
traces can be less than 2 or 3 times the width of individual traces. To ensure continuity in the ground signal path,  
TI recommends having an adjacent ground via for every signal via, as shown in 9-14. Note that vias create  
additional capacitance. For example, a typical via has a lumped capacitance effect of 1/2 pF to 1 pF in FR4.  
Signal Via  
Signal Trace  
Uninterrupted Ground Plane  
Signal Trace  
Uninterrupted Ground Plane  
Ground Via  
9-14. Ground Via Location (Side View)  
Short and low-impedance connection of the device ground pins to the PCB ground plane reduces ground  
bounce. Holes and cutouts in the ground planes can adversely affect current return paths if they create  
discontinuities that increase returning current loop areas.  
To minimize EMI problems, TI recommends avoiding discontinuities below a trace (for example, holes, slits, and  
so on) and keeping traces as short as possible. Zoning the board wisely by placing all similar functions in the  
same area, as opposed to mixing them together, helps reduce susceptibility issues.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: SN65MLVD203B  
 
 
SN65MLVD203B  
ZHCSMQ9B SEPTEMBER 2020 REVISED NOVEMBER 2022  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 Documentation Support  
10.1.1 Related Documentation  
For releated documentation, see the following:  
1. Howard Johnson & Martin Graham.1993. High Speed Digital Design A Handbook of Black Magic.  
Prentice Hall PRT. ISBN number 013395724.  
2. Mark I. Montrose. 1996. Printed Circuit Board Design Techniques for EMC Compliance. IEEE Press. ISBN  
number 0780311310.  
3. Clyde F. Coombs, Jr. Ed, Printed Circuits Handbook, McGraw Hill, ISBN number 0070127549.  
10.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 Trademarks  
Rogersis a trademark of Rogers Corporation.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: SN65MLVD203B  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Nov-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN65MLVD203BRUMR  
SN65MLVD203BRUMT  
ACTIVE  
WQFN  
WQFN  
RUM  
16  
16  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
MLVD  
203B  
Samples  
Samples  
ACTIVE  
RUM  
NIPDAU  
MLVD  
203B  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
2-Nov-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Nov-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN65MLVD203BRUMR WQFN  
SN65MLVD203BRUMT WQFN  
RUM  
RUM  
16  
16  
3000  
250  
330.0  
180.0  
12.4  
12.4  
4.25  
4.25  
4.25  
4.25  
1.15  
1.15  
8.0  
8.0  
12.0  
12.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
2-Nov-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN65MLVD203BRUMR  
SN65MLVD203BRUMT  
WQFN  
WQFN  
RUM  
RUM  
16  
16  
3000  
250  
367.0  
210.0  
367.0  
185.0  
35.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RUM 16  
4 x 4, 0.65 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224843/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SN65MLVD203BRUMT

Multipoint-LVDS line driver and receiver (transceiver) with IEC ESD protection | RUM | 16 | -40 to 125
TI

SN65MLVD203D

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD203DG4

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD203DR

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD203DRG4

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD204

MULTIPOINT-LVDS LINE DRIVERS AND RECEIVERS
TI

SN65MLVD204A

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD204AD

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD204ADG4

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD204ADR

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD204ADRG4

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD204B

高噪声抗扰度 100Mbps M-LVDS 收发器
TI