SN65MLVD205DR [TI]

LINE TRANSCEIVER, PDSO14, GREEN, PLASTIC, MS-012AB, SOIC-14;
SN65MLVD205DR
型号: SN65MLVD205DR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LINE TRANSCEIVER, PDSO14, GREEN, PLASTIC, MS-012AB, SOIC-14

驱动器
文件: 总23页 (文件大小:336K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINT–LVDS LINE DRIVERS AND RECEIVERS  
SLLS463E – SEPTEMBER 2001 – REVISED JUNE 2003  
D
D
D
Low-Voltage Differential 30-Line Drivers  
and Receivers for Signaling Rates up to  
100 Mbps  
D
Type-2 Receivers Provide an Offset  
(100 mV) Threshold to Detect Open-Circuit  
and Idle-Bus Conditions  
Power Dissipation at 100 Mbps  
– Driver: 50 mW Typical  
– Receiver: 30 mW Typical  
D
D
Operates From a Single 3.3-V Supply  
Propagation Delay Times Typically 2.3 ns  
for Drivers and 5 ns for Receivers  
Meets or Exceeds Current Revision of  
M-LVDS Standard TIA/EIA–899 for  
Multipoint Data Interchange  
D
Power-Up/Down Glitch-Free Driver  
D
Driver Handles Operation Into a  
Continuous Short Circuit Without Damage  
D
D
Controlled Driver Output Voltage Transition  
Times for Improved Signal Quality  
D
D
Bus Pins High Impedance When Disabled  
or V  
1.5 V  
CC  
–1-V to 3.4-V Common-Mode Voltage Range  
Allows Data Transfer With up to 2 V of  
Ground Noise  
200-Mbps Devices Available  
(SN65MLVD201, 203, 206, and 207)  
D
Type-1 Receivers Incorporate 25 mV of  
Hysteresis  
SN65MLVD200D (Marked as MF200)  
SN65MLVD204D (Marked as MF204)  
(TOP VIEW)  
SN65MLVD202D (Marked as MLVD202)  
SN65MLVD205D (Marked as MLVD205)  
(TOP VIEW)  
R
RE  
DE  
D
V
B
A
1
2
3
4
8
7
6
5
NC  
R
V
V
A
B
Z
Y
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
CC  
CC  
CC  
RE  
GND  
DE  
D
GND  
GND  
8
NC  
NC – No internal connection  
logic diagram (positive logic)  
SN65MLVD200, SN65MLVD204  
SN65MLVD202, SN65MLVD205  
9
3
Y
DE  
5
D
DE  
RE  
10  
Z
4
D
4
3
2
RE  
R
12  
11  
A
B
6
7
2
A
B
1
R
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
The signaling rate of a line is the number of voltage transitions that are made per second expressed in bps (bits per second) units.  
Copyright 2001–2003, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
description  
This series of SN65MLVD20x devices are low-voltage differential line drivers and receivers complying with the  
proposed multipoint low-voltage differential signaling (M-LVDS) standard (TIA/EIA899). These circuits are  
similar to their TIA/EIA-644 standard compliant LVDS counterparts, with added features to address multipoint  
applications. Driver output current has been increased to support doubly-terminated, 50-load multipoint  
applications. Driver output slew rates are optimized for signaling rates up to 100 Mbps.  
Types 1 and 2 receivers are available. Both types of receivers operate over a common-mode voltage range of  
1 V to 3.4 V to provide increased noise immunity in harsh electrical environments. Type-1 receivers have their  
differential input voltage thresholds near zero volts (±50 mV), and include 25 mV of hysteresis to prevent output  
oscillationsinthepresenceofnoise. Type-2receiversincludeanoffsetthresholdtodetectopen-circuit, idle-bus,  
and other fault conditions, and provide a known output state under these conditions.  
The intended application of these devices is in half-duplex or multipoint baseband data transmission over  
controlled impedance media of approximately 100-characteristic impedance. The transmission media may  
be printed circuit board traces, backplanes, or cables. (Note: The ultimate rate and distance of data transfer is  
dependent upon the attenuation characteristics of the media, the noise coupling to the environment, and other  
application-specific characteristics).  
These devices are characterized for operation from 40°C to 85°C.  
AVAILABLE OPTIONS  
NOMINAL  
SIGNALING RATE,  
Mbps  
FOOTPRINT  
RECEIVER TYPE  
PART NUMBER  
100  
100  
100  
100  
SN75176  
SN75ALS180  
SN75176  
Type 1  
Type 1  
Type 2  
Type 2  
SN65MLVD200D  
SN65MLVD202D  
SN65MLVD204D  
SN65MLVD205D  
SN75ALS180  
The D package is available taped and reeled. Add the R suffix to the device type (e.g., SN65MLVD200DR)  
Function Tables  
TYPE-1 RECEIVER (200, 202)  
INPUTS OUTPUT  
= V V  
TYPE-2 RECEIVER (204, 205)  
INPUTS OUTPUT  
= V V  
RE  
RE  
V
ID  
R
V
ID  
R
A
B
A
B
L
L
H
?
L
Z
Z
L
L
H
?
L
Z
Z
V
50 mV  
V
150 mV  
ID  
50 mV < V < 50 mV  
ID  
50 mV < V < 150 mV  
ID  
ID  
50 mV  
V
ID  
50 mV  
L
V
L
ID  
X
X
H
X
X
H
Open  
Open  
Open Circuit  
?
Open Circuit  
L
L
L
DRIVER  
INPUT ENABLE  
OUTPUTS  
D
DE  
A OR Y  
B OR Z  
L
H
OPEN  
X
X
H
H
H
OPEN  
L
L
H
L
Z
Z
H
L
H
Z
Z
H = high level, L = low level, Z = high impedance, X = Dont care, ? = indeterminate  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
equivalent input and output schematic diagrams  
RECEIVER OUTPUT  
DRIVER INPUT AND DRIVER ENABLE  
RECEIVER ENABLE  
V
CC  
V
CC  
V
CC  
360 kΩ  
400 Ω  
10 Ω  
400 Ω  
D or DE  
7 V  
RE  
7 V  
R
360 kΩ  
10 Ω  
7 V  
RECEIVER INPUT  
DRIVER OUTPUT  
V
CC  
V
CC  
100 kΩ  
250 kΩ  
100 kΩ  
250 kΩ  
A/Y or B/Z  
A
B
200 kΩ  
200 kΩ  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage range, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 4 V  
CC  
Input voltage range: D, DE, RE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 4 V  
A, B (200, 204) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8 V to 4 V  
A, B (202, 205) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 V to 6 V  
Output voltage range: R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to 4 V  
Y, Z, A, or B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8 V to 4 V  
Electrostatic discharge: Human body model (see Note 2)  
A, B, Y, or Z . . . . . . . . . . . . . . . . . . . . . . ±3 kV  
All pins . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 kV  
Charged-device model (see Note 3) All pins . . . . . . . . . . . . . . . . . . . . . . . . . . ±500 V  
Continuous power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (see Dissipation Rating table)  
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65°C to 150°C  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and  
functionaloperationofthedeviceattheseoranyotherconditionsbeyondthoseindicatedunderrecommendedoperatingconditionsisnotimplied.  
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
2. Tested in accordance with JEDEC Standard 22, Test Method A114-A.  
3. Tested in accordance with JEDEC Standard 22, Test Method C101.  
DISSIPATION RATING  
T
25°C  
OPERATING FACTOR  
T = 85°C  
A
POWER RATING  
A
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
A
D(8)  
725 mW  
5.8 mW/°C  
7.6 mW/°C  
377 mW  
D(14)  
950 mW  
494 mW  
recommended operating conditions  
MIN NOM  
MAX  
UNIT  
V
Supply voltage, V  
CC  
3
2
3.3  
3.6  
High-level input voltage, V  
IH  
V
CC  
0.8  
V
Low-level input voltage, V  
0
V
IL  
Magnitude of differential input voltage,  
Voltage at any bus terminal, V , V , V  
V
0.05  
1.4  
1  
V
V
ID  
CC  
3.8  
V
B
V
A
Y
Z, or  
Common-mode input voltage V  
CM  
, (V + V )/2  
3.4  
15  
85  
V
A
B
Receiver load capacitance, C  
5
pF  
°C  
L
Operating free-air temperature, T  
40  
A
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
device electrical characteristics over recommended operating conditions (unless otherwise  
noted)  
MIN  
PARAMETER  
TEST CONDITIONS  
RE and DE at V  
TYP  
MAX  
UNIT  
,
CC  
= 50 , All others open  
Receiver disabled and driver enabled  
13  
1
22  
R
L
RE at V , DE at 0 V,  
CC  
Driver and receiver disabled  
7
26  
11  
R
= No load, All others open  
L
I
Supply current  
mA  
RE at 0 V, DE at V  
,
CC  
CC  
= 50 , All others open,  
Receiver enabled and driver enabled  
Receiver enabled and driver disabled  
R
16  
4
L
No receiver load  
RE at 0 V, DE at 0 V,  
All others open, No receiver load  
The algebraic convention, in which the least positive (most negative) limit is designated as minimum, is used in this data sheet.  
All typical values are at 25°C and with a 3.3-V supply voltage.  
driver electrical characteristics over recommended operating conditions (unless otherwise noted)  
MIN  
TYP  
PARAMETER  
TEST CONDITIONS  
MAX  
UNIT  
V
or  
AB  
Differential output voltage magnitude  
See Figure 2  
480  
650  
mV  
V
YZ  
V  
or  
Change in differential output voltage magnitude  
between logic states  
AB  
V  
See Figure 2  
See Figure 3  
50  
0.8  
50  
1.2  
50  
mV  
V
YZ  
V
Steady-state common-mode output voltage  
OS(SS)  
Change in steady-state common-mode output  
voltage between logic states  
V  
OS(SS)  
50  
mV  
mV  
V
V
Peak-to-peak common-mode output voltage  
150  
2.4  
OS(PP)  
V
or  
or  
A(OC)  
Maximum steady-state open-circuit output voltage  
0
0
V
Y(OC)  
See Figure 7  
See Figure 5  
V
V
B(OC)  
Z(OC)  
Maximum steady-state open-circuit output voltage  
2.4  
V
V
Voltage overshoot, low-to-high level output  
Voltage overshoot, high-to-low level output  
High-level input current  
1.2V  
V
V
P(H)  
P(L)  
SS  
V
0.2V  
SS  
0
I
IH  
V
V
= 2 V  
10  
10  
24  
µA  
µA  
mA  
IH  
I
IL  
Low-level input current  
= 0.8 V  
0
IL  
I
Differential short-circuit output current  
See Figure 4  
OS  
1.4 V (V or V ) 3.8 V,  
Other output at 1.2 V  
Y
Z
I
High-impedance state output current (driver only)  
15  
10  
10  
µA  
OZ  
1.4 V (V or V ) 3.8 V,  
Y
Z
I
Power-off output current (driver only)  
V
1.5 V,  
10  
µA  
O(OFF)  
CC  
Other output at 1.2 V  
The algebraic convention, in which the least positive (most negative) limit is designated as minimum, is used in this data sheet.  
All typical values are at 25°C and with a 3.3-V supply voltage.  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
receiver electrical characteristics over recommended operating conditions (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
50  
UNIT  
Type 1  
Type 2  
Type 1  
Type 2  
Type 1  
Type 2  
V
V
V
Positive-going differential input voltage threshold  
mV  
IT+  
150  
50  
See Figure 8,  
Table 1 and Table 2  
Negative-going differential input voltage threshold  
mV  
mV  
IT–  
50  
25  
0
Differential input voltage hysteresis, V  
V  
IT–  
ID(HYS)  
IT+  
V
V
High-level output voltage  
Low-level output voltage  
High-level input current  
Low-level input current  
I
I
= 8 mA  
= 8 mA  
2.4  
V
OH  
OH  
0.4  
0
V
OL  
OL  
I
I
I
V
V
V
= 2 V  
10  
10  
10  
µA  
µA  
µA  
IH  
IH  
IL  
O
= 0.8 V  
0
IL  
High-impedance output current  
= 0 V or 3.6 V  
15  
OZ  
All typical values are at 25°C and with a 3.3-V supply voltage.  
bus input and output electrical characteritics over recommended operating conditions (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
32  
20  
0
UNIT  
V
= 3.8 V,  
V
V
V
= 1.2 V  
= 1.2 V  
= 1.2 V  
= 1.2 V  
= 1.2 V  
= 1.2 V  
0
20  
32  
0
A
B
B
B
Receiver input or transceiver input/output  
current  
V
A
= 0 V or 2.4 V,  
= 1.4 V,  
I
A
µA  
V
A
V
B
V
B
V
B
= 3.8 V,  
V
A
32  
20  
0
Receiver input or transceiver input/output  
current  
= 0 V or 2.4 V,  
= 1.4 V,  
V
A
20  
32  
I
I
µA  
µA  
B
V
A
Receiver input or transceiver input/output  
V
A
= V ,  
B
1.4 V 3.8 V  
4  
4
AB  
A
differential current (I I )  
A
B
V
= 3.8 V,  
V
V
V
= 1.2 V,  
= 1.2 V,  
= 1.2 V,  
= 1.2 V,  
= 1.2 V,  
= 1.2 V,  
V
V
V
1.5 V  
1.5 V  
1.5 V  
1.5 V  
1.5 V  
1.5 V  
0
20  
32  
0
32  
20  
0
A
B
B
B
CC  
CC  
CC  
CC  
CC  
CC  
Receiver input or transceiver input/output  
power-off current  
V
A
= 0 V or 2.4 V,  
= 1.4 V,  
I
µA  
A(OFF)  
V
A
V
= 3.8 V,  
V
A
V
V
V
32  
20  
0
B
B
B
Receiver input or transceiver input/output  
power-off current  
V
V
= 0 V or 2.4 V,  
= 1.4 V,  
V
A
20  
32  
I
I
µA  
µA  
B(OFF)  
V
A
Receiver input or transceiver input/output  
V
A
= V ,  
B
1.4 V 3.8 V,  
V 1.5 V  
CC  
4  
4
AB(OFF)  
A
power-off differential current (I I )  
A
B
Receiver input, driver high-impedance  
output, or transceiver input/output  
capacitance  
C
C
V
= 0.4 sin(2E8πt) +0.5,  
= 0.4 sin(2E8πt) +0.5,  
V
= 1.2 V  
V = 1.2 V  
A
3
3
pF  
pF  
A
B
A
B
V
B
All typical values are at 25°C and with a 3.3-V supply voltage.  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
driver switching characteristics over recommended operating conditions (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
1.6  
1.6  
1.5  
1.5  
TYP  
MAX  
4.1  
4.1  
3
UNIT  
ns  
t
t
t
t
t
t
t
t
t
t
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
Differential output signal rise time  
2.3  
2.3  
2
PLH  
PHL  
r
ns  
ns  
See Figure 5  
Differential output signal fall time  
2
3
ns  
f
Pulse skew (|t  
- t |)  
PLH  
30  
ps  
sk(p)  
sk(pp)  
PZH  
PZL  
PHZ  
PLZ  
PHL  
Part-to-part skew (see Note 4)  
900  
6.5  
6.5  
6.8  
6.1  
ps  
Propagation delay time, high-impedance-to-high-level output  
Propagation delay time, high-impedance-to-low-level output  
Propagation delay time, high-level-to-high-impedance output  
Propagation delay time, low-level-to-high-impedance output  
1.5  
1.5  
1.3  
1.8  
3.7  
3.7  
3.5  
3.5  
ns  
ns  
See Figure 6  
ns  
ns  
50-MHz clock input  
(see Figure 8)  
t
t
t
Period jitter, rms (1 standard deviation) (see Notes 5 and 6)  
Cycle-to-cycle jitter, peak (see Notes 5 and 6)  
Peak-to-peak jitter, (see Notes 5, 7, and 8)  
23  
180  
210  
ps  
ps  
ps  
jit(per)  
jit(cc)  
jit(pp)  
50-MHz clock input  
(see Figure 8)  
15  
100 Mbps 2 1 PRBS  
input (see Figure 8)  
All typical values are at 25°C and with a 3.3-V supply voltage.  
NOTES: 4. t is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both  
sk(pp)  
devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
5. Jitterparametersarebasedondesignandcharacterization. Stimulussystemjitterof11 ps t , 43 ps t , or 54 ps t have  
jit(pp)  
jit(per)  
jit(cc)  
been subtracted from the values.  
6. Input voltage = 0 V to V , t = t 1 ns (20% to 80%), measured over 30k samples.  
CC  
r
f
7. Input voltage = 0 V to V , t = t 1 ns (20% to 80%), measured over 100k samples.  
CC  
r
f
8. Peak-to-peak jitter includes jitter due to pulse skew (t  
).  
sk(p)  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
receiver switching characteristics over recommended operating conditions (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
6.7  
UNIT  
ns  
ns  
ps  
ns  
ns  
ns  
ns  
ns  
ps  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
t
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
3
5
PLH  
PHL  
sk(p)  
sk(pp)  
r
3
4.6  
6.7  
Pulse skew (|t  
- t  
|)  
PLH  
400  
PHL  
C
= 5 pF, See Figure 10  
L
Part-to-part skew (see Note 9)  
1.5  
2
Output signal rise time  
0.8  
0.8  
3.4  
3.4  
1.4  
1.5  
5.8  
5.4  
400  
Output signal fall time  
2
f
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
9
PLH  
PHL  
sk(p)  
sk(pp)  
r
9
Pulse skew (|t  
- t  
|)  
PLH  
PHL  
C
= 15 pF, See Figure 10  
L
Part-to-part skew (see Note 9)  
Output signal rise time  
2.5  
2.6  
2.6  
1
1
2
Output signal fall time  
1.4  
f
Propagation delay time, high-level-to-high-impedance  
output  
t
t
t
t
4.5  
2
6
3.4  
9.8  
8.7  
15  
5
ns  
ns  
ns  
ns  
PHZ  
PLZ  
PZH  
PZL  
Propagation delay time, low-level-to-high-impedance  
output  
See Figure 11  
Propagation delay time, high-impedance-to-high-level  
output  
3.5  
4
15  
15  
Propagation delay time, high-impedance-to-low-level  
output  
Type 1  
Type 2  
Type 1  
Type 2  
Type 1  
Type 2  
10  
10  
Period jitter, rms (1 standard deviation)  
(see Notes 10 and 11)  
50-MHz clock input  
(see Figure 12)  
t
t
t
ps  
ps  
ps  
jit(per)  
jit(cc)  
jit(pp)  
93  
50-MHz clock input  
(see Figure 12)  
Cycle-to-cycle jitter, peak (see Notes 10 and 11)  
Peak-to-peak jitter, (see Notes 10, 12, and 13)  
86  
15  
850  
790  
100 Mbps 2 1 PRBS  
input (see Figure 12)  
All typical values are at 25°C and with a 3.3-V supply voltage.  
NOTES: 9. t is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both  
sk(pp)  
devices operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.  
10. Jitterparametersarebasedondesignandcharacterization. Stimulussystemjitterof11 ps t , 43 ps t , or 54 ps t have  
jit(pp)  
jit(per)  
jit(cc)  
been subtracted from the values.  
11. Differential input voltage = 250 mV  
samples.  
12. Differential input voltage = 250 mV  
samples.  
(Type 1) or 500 mV  
(Type 2), V = 1 V, t = t 1 ns (20% to 80%), measured over 30k  
CM r f  
pp  
pp  
pp  
pp  
(Type 1) or 500 mV  
(Type 2), V = 1 V, t = t 1 ns (20% to 80%), measured over 100k  
CM r f  
13. Peak-to-peak jitter includes jitter due to pulse skew (t  
).  
sk(p)  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
PARAMETER MEASUREMENT INFORMATION  
V
CC  
I
A
or I  
Y
A/Y  
I
I
D
V
or V  
or V  
I
B
or I  
AB  
YZ  
Z
V
A
or V  
Y
B/Z  
V
I
V
OS  
V
B
Z
V
A
+ V  
2
V
Y
+ V  
2
B
Z
or  
Figure 1. Driver Voltage and Current Definitions  
3.32 kΩ  
A/Y  
+
1 V V  
3.4 V  
V
AB  
or V  
YZ  
49.9 Ω  
D
test  
_
B/Z  
3.32 kΩ  
NOTE: All resistors are 1% tolerance.  
Figure 2. Differential Output Voltage Test Circuit  
A/Y  
B/Z  
1.3 V  
0.7 V  
24.9 Ω ±1%  
A/Y  
B/Z  
D
V
V
OS(SS)  
OS(PP)  
C
L
V
OS  
2 pF  
V
OS  
24.9 Ω ±1%  
NOTE: All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 0.25 Mpps,  
r
f
pulse width = 500 ±10 ns. C includes instrumentation and fixture capacitance within 0,06 m of the D.U.T. The measurement of V  
is made on test equipment with a 3-dB bandwidth of at least 1 GHz.  
L
OS(PP)  
Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage  
I
OS  
A/Y  
B/Z  
0 V or V  
CC  
+
V
Test  
1 V or 3.4 V  
Figure 4. Driver Short-Circuit Test Circuit  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
PARAMETER MEASUREMENT INFORMATION  
A/Y  
C
L
0.5 pF  
Output  
49.9 Ω ±1%  
D
(Metal Film Surface Mount)  
B/Z  
V
V
CC  
/2  
Input  
CC  
0 V  
t
t
PHL  
PLH  
V
SS  
0.9V  
SS  
V
P(H)  
0 V  
Output  
V
P(L)  
0.1V  
SS  
0 V  
SS  
t
t
r
f
NOTE: All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 1 Mpps,  
r
f
pulse width = 0.5 ±0.05 µs. C includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.  
L
Figure 5. Driver Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal  
24.9 Ω ±1%  
(2 Places)  
A/Y  
C
L
0.5 pF  
0 V or V  
Output  
CC  
B/Z  
+
1 V  
DE  
V
CC  
V
CC  
/2  
DE  
0 V  
t
t
t
PZH  
PHZ  
PLZ  
0.6 V  
0.1 V  
Output With  
D at V  
0 V  
CC  
t
PZL  
Output With  
D at 0 V  
0 V  
0.1 V  
0.6 V  
NOTE: All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 0.25 Mpps,  
r
f
pulse width = 500 ±10 ns. C includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.  
L
Figure 6. Driver Enable and DIsable Time Circuit and Definitions  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
PARAMETER MEASUREMENT INFORMATION  
A/Y  
0 V or V  
CC  
B/Z  
V , V , V or V  
Z
1.62 kΩ  
A
B
Y
C
Figure 7. Maximum Steady-State Output Voltage Test Circuit  
OUTPUT  
0 V DIFF  
V
CC  
CLOCK  
INPUT  
V
/2  
CC  
V
A
V or V V  
B Y Z  
0 V  
t
t
c(n+1)  
c(n)  
1/f0  
t
= | t  
t |  
c(n) c(n+1)  
jit(cc)  
Period Jitter  
IDEAL  
V
V
CC  
0 V  
OUTPUT  
V or V V  
Z
PRBS INPUT  
/2  
CC  
V
A
1/f0  
0 V  
B
Y
Peak to Peak Jitter  
ACTUAL  
OUTPUT  
0 V  
V
A
V or V V  
Z
B
Y
OUTPUT 0 V Diff  
V
A
V or V V  
B Y Z  
t
c(n)  
t
= t  
1/f0  
c(n)  
jit(per)  
t
jit(pp)  
NOTES: A. All input pulses are supplied by an Agilent 8304A Stimulus System.  
B. The measurement is made on a TEK TDS6604 running TDSJIT3 application software  
C. Period jitter is measured using a 100 MHz 50 ±1% duty cycle clock input.  
15  
D. Peak-to-peak jitter is measured using a 200Mbps 2 1 PRBS input.  
Figure 8. Driver Jitter Measurement Waveforms  
I
A
A
B
I
O
R
V
ID  
I
B
V
O
V
CM  
V
A
(V + V )/2  
A
B
V
B
Figure 9. Receiver Voltage and Current Definitions  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
PARAMETER MEASUREMENT INFORMATION  
Table 1. Type-1 Receiver Input Threshold Test Voltages  
RESULTING DIFFERENTIAL  
INPUT VOLTAGE  
RESULTING COMMON-  
MODE INPUT VOLTAGE  
APPLIED VOLTAGES  
RECEIVER OUTPUT  
V
A
V
B
V
ID  
V
CM  
V
O
3.425 V  
3.375 V  
0.975 V  
1.025 V  
3.800 V  
3.000 V  
0.600 V  
1.400 V  
3.375 V  
3.425 V  
1.025 V  
0.975 V  
3.000 V  
3.800 V  
1.400 V  
0.600 V  
50 mV  
50 mV  
50 mV  
3.4 V  
3.4 V  
H
L
H
L
1.0 V  
1.0 V  
3.4 V  
50 mV  
800 mV  
800 mV  
800 mV  
800 mV  
H
L
3.4 V  
1.0 V  
1.0 V  
H
L
NOTE: H= high level, L = low level. Output state assumes receiver is enabled (RE is Low).  
Table 2. Type-2 Receiver Input Threshold Test Voltages  
RESULTING DIFFERENTIAL  
INPUT VOLTAGE  
RESULTING COMMON–  
MODE INPUT VOLTAGE  
APPLIED VOLTAGES  
RECEIVER OUTPUT  
V
A
V
B
V
ID  
V
CM  
V
O
3.475 V  
3.425 V  
0.925 V  
0.975 V  
3.800 V  
3.000 V  
0.600 V  
1.400 V  
3.325 V  
3.375 V  
1.075 V  
1.025 V  
3.000 V  
3.800 V  
1.400 V  
0.600 V  
150 mV  
50 mV  
3.4 V  
3.4 V  
H
L
H
L
150 mV  
50 mV  
1.0 V  
1.0 V  
3.4 V  
800 mV  
800 mV  
800 mV  
800 mV  
H
L
3.4 V  
1.0 V  
1.0 V  
H
L
NOTE: H= high level, L = low level. Output state assumes receiver is enabled (RE is Low).  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
PARAMETER MEASUREMENT INFORMATION  
R1  
453 Ω  
V
ID  
R2  
49.9 Ω  
C
V
O
L
V
A
V
B
V
1.1 V  
0.9 V  
V
1.2 V  
0.8 V  
A
A
V
B
V
B
0.2 V  
0 V  
0.4 V  
0.1 V  
V
ID  
V
ID  
0.2 V  
0.4 V  
t
t
t
t
PLH  
pHL  
pLH  
PHL  
0.1 V  
0.1 V  
OH  
OH  
90%  
10%  
90%  
10%  
0.1 V /2  
CC  
0.1 V  
0.1 V /2  
V
O
V
O
CC  
0.1 V  
OL  
OL  
t
t
t
t
r
f
r
f
Type 1  
Type 2  
NOTES: A. All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 1 Mpps,  
r
f
pulse width = 0.5 ±0.05 µs.  
B. Resistors are 1% tolerance, metal film, and surface mount.  
C.  
C is 20% tolerance, low-loss ceramic, and surface mount.  
L
D. R1 and C are located within 2 cm of the D.U.T.  
E. R2 is located within 15 cm of the D.U.T.  
L
Figure 10. Receiver Timing Test Circuit and Waveforms  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
PARAMETER MEASUREMENT INFORMATION  
B
A
500 Ω ±1%  
1.2 V  
R
C
L
+
_
V
test  
Output  
Inputs  
5 pF  
RE  
V
CC  
V
TEST  
1 V  
A
Inputs  
V
V
CC  
RE  
/2  
/2  
CC  
0 V  
t
t
PLZ  
PZL  
V
CC  
V
CC  
Output  
R
V
OL  
V
OL  
+0.5 V  
V
0 V  
1.4 V  
TEST  
A
Inputs  
V
V
CC  
RE  
/2  
CC  
0 V  
t
t
PHZ  
PZH  
V
V
V
OH  
OH  
CC  
0.5 V  
/2  
Output  
R
0 V  
NOTE: All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 0.25 Mpps,  
r
f
pulse width = 500 ±10 ns. C includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.  
L
Figure 11. Receiver Enable/Disable Time Test Circuit and Waveforms  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
PARAMETER MEASUREMENT INFORMATION  
V
OH  
OUTPUT  
/2  
INPUTS  
V  
0.25 V Type 1 1 V  
0.5 V Type 2  
CLOCK INPUT  
V
A
V
IC  
B
V
CC  
V
A
V  
B
V
1/f0  
OL  
t
t
c(n+1)  
c(n)  
Period Jitter  
t
= | t  
t |  
c(n) c(n+1)  
jit(cc)  
V
IDEAL  
OUTPUT  
OH  
V
A
V
CC  
/2  
PRBS INPUT  
V
OL  
1/f0  
V
B
V
OH  
Peak to Peak Jitter  
ACTUAL  
OUTPUT  
V
CC  
/2  
V
OH  
V
OL  
OUTPUT  
V
/2  
CC  
t
c(n)  
= t  
V
OL  
t
1/f0  
c(n)  
jit(per)  
t
jit(pp)  
NOTES: A. All input pulses are supplied by an Agilent 8304A Stimulus System.  
B. The measurement is made on a TEK TDS6604 running TDSJIT3 application software  
C. Period jitter is measured using a 100 MHz 50 ±1% duty cycle clock input.  
15  
D. Peak-to-peak jitter is measured using a 200Mbps 2 1 PRBS input.  
Figure 12. Receiver Jitter Measurement Waveforms  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
TYPICAL CHARACTERISTICS  
DRIVER LOW-TO-HIGH PROPAGATION DELAY  
DRIVER HIGH-TO-LOW PROPAGATION DELAY  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
2.5  
2.5  
See Figure 5  
See Figure 5  
V
CC  
= 3 V  
V
CC  
= 3 V  
2.4  
2.3  
2.4  
2.3  
V
CC  
= 3.3 V  
V
CC  
= 3.3 V  
V
CC  
= 3.6 V  
V
CC  
= 3.6 V  
2.2  
2.1  
2.2  
2.1  
50  
0
50  
100  
50  
0
50  
100  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 13  
Figure 14  
RECEIVER LOW-TO-HIGH PROPAGATION DELAY  
RECEIVER HIGH-TO-LOW PROPAGATION DELAY  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
5.5  
5.5  
C
= 5 pF  
L
C = 5 pF  
L
See Figure 9  
V
CC  
= 3 V  
See Figure 9  
V
CC  
= 3 V  
V
CC  
= 3.3 V  
5
4.5  
4
5
V
CC  
= 3.3 V  
V
= 3.6 V  
CC  
4.5  
V
= 3.6 V  
CC  
4
50  
50  
0
50  
100  
0
50  
100  
T
A
Free-Air Temperature °C  
T
A
Free-Air Temperature °C  
Figure 15  
Figure 16  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
TYPICAL CHARACTERISTICS  
DRIVER LOW-LEVEL OUTPUT CURRENT  
DRIVER HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
5
0
15  
10  
5
T
= 25 °C  
A
T
= 25 °C  
A
V
CC  
= 3.3 V  
V
CC  
= 3.3 V  
5  
10  
0
5  
15  
1  
0
1
2
3
4
1  
0
1
2
3
4
V
OL  
Low-Level Output Voltage V  
V
OH  
High-Level Output Voltage V  
Figure 17  
Figure 18  
RECEIVER LOW-LEVEL OUTPUT CURRENT  
RECEIVER HIGH-LEVEL OUTPUT CURRENT  
vs  
vs  
LOW-LEVEL OUTPUT VOLTAGE  
HIGH-LEVEL OUTPUT VOLTAGE  
20  
0
120  
100  
T
= 25 °C  
T
= 25 °C  
A
A
V
CC  
= 3.3 V  
V
CC  
= 3.3 V  
80  
60  
40  
20  
0
20  
40  
60  
80  
0
0.5  
V
1
1.5  
2
2.5  
3
3.5  
4
0
0.5  
V
1
1.5  
2
2.5  
3
3.5  
4
High-Level Output Voltage V  
Low-Level Output Voltage V  
OH  
OL  
Figure 19  
Figure 20  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
TYPICAL CHARACTERISTICS  
AVERAGE DRIVER SUPPLY CURRENT  
DIFFERENTIAL OUTPUT VOLTAGE  
vs  
vs  
FREQUENCY  
OUTPUT CURRENT  
2
17  
16  
15  
14  
50% Duty Cycle  
R
= 50 Ω  
= 25°C  
L
T
A
V
CC  
= 3.6 V  
See Figure 5  
1.6  
1.2  
V
CC  
= 3.3 V  
V
CC  
= 3 V  
0.8  
0.4  
0
13  
12  
V
T
A
= 3.3 V  
2
CC  
= 25°C  
Note: 100 MHz = 200 Mbps  
25 50  
0
75  
100  
0
4
6
8
10  
12  
f Frequency MHz  
I
O
Output Current mA  
Figure 21  
Figure 22  
AVERAGE RECEIVER SUPPLY CURRENT  
ADDED DRIVER PERIOD JITTER (1 SIGMA)  
vs  
vs  
FREQUENCY  
CLOCK FREQUENCY  
20  
15  
10  
50  
50% Duty Cycle  
R
C
T
= 500 Ω  
= 5 pF  
= 25°C  
V
T
A
= 3.3 V,  
CC  
= 25°C,  
Input = Clock  
L
L
A
40  
V
= 3.6 V  
CC  
CC  
See Figure 9  
V
CC  
= 3.3 V  
30  
20  
10  
0
V
= 3 V  
5
0
Note: 100 MHz = 200 Mbps  
25 50  
0
75  
100  
10  
20  
30  
40  
50  
f Frequency MHz  
f Clock Frequency MHz  
Figure 23  
Figure 24  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
TYPICAL CHARACTERISTICS  
ADDED TYPE 1 RECEIVER PERIOD JITTER (1 SIGMA)  
ADDED TYPE 2 RECEIVER PERIOD JITTER (1 SIGMA)  
vs  
vs  
CLOCK FREQUENCY  
25  
CLOCK FREQUENCY  
25  
V
= 3.3 V,  
CC  
= 25°C,  
V
= 3.3 V,  
CC  
T = 25°C,  
A
T
A
Input = Clock,  
= 250 mV  
20  
15  
10  
20  
15  
Input = Clock,  
V = 500 mV  
ID  
V
ID  
V
IC  
= 0.5 V  
V
IC  
= 3 V  
V
IC  
= 1 V  
10  
V
IC  
= 3 V  
V
= 0.5 V  
V
= 1 V  
IC  
IC  
5
0
5
0
10  
10  
20  
30  
40  
50  
20  
30  
40  
50  
f Clock Frequency MHz  
f Clock Frequency MHz  
Figure 25  
Figure 26  
ADDED TYPE 1 RECEIVER CYCLE-TO-CYCLE  
JITTER (PEAK)  
vs  
ADDED DRIVER CYCLE-TO-CYCLE JITTER (PEAK)  
vs  
CLOCK FREQUENCY  
CLOCK FREQUENCY  
250  
200  
150  
250  
200  
150  
100  
50  
V
= 3.3 V,  
CC  
= 25°C,  
V
= 3.3 V,  
CC  
= 25°C,  
T
A
T
A
Input = Clock,  
= 250 mV  
Input = Clock  
V
ID  
V
IC  
= 0.5 V  
V
= 3 V  
IC  
100  
50  
0
V
IC  
= 1 V  
0
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
f Clock Frequency MHz  
f Clock Frequency MHz  
Figure 27  
Figure 28  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
TYPICAL CHARACTERISTICS  
ADDED TYPE 2 RECEIVER CYCLE-TO-CYCLE  
ADDED DRIVER PEAK-TO-PEAK JITTER  
JITTER (PEAK)  
vs  
CLOCK FREQUENCY  
vs  
DATA RATE  
250  
200  
150  
100  
50  
250  
200  
150  
V
= 3.3 V,  
CC  
T = 25°C,  
A
V
= 3.3 V,  
CC  
= 25°C,  
T
15  
Input = PRBS(2 1)  
A
Input = Clock,  
= 500 mV  
V
ID  
V
IC  
= 1 V  
V
= 0.5 V  
IC  
100  
50  
0
V
= 3 V  
IC  
0
20  
40  
60  
80  
100  
10  
20  
30  
40  
50  
Data Rate Mbps  
f Clock Frequency MHz  
Figure 29  
Figure 30  
ADDED TYPE 2 RECEIVER PEAK-TO-PEAK JITTER  
ADDED TYPE 1 RECEIVER PEAK-TO-PEAK JITTER  
vs  
vs  
DATA RATE  
DATA RATE  
2000  
1600  
1200  
800  
2000  
1600  
1200  
800  
V
= 3.3 V,  
CC  
= 25°C,  
V
= 3.3 V,  
CC  
= 25°C,  
T
A
T
A
15  
Input = PRBS(2 1),  
15  
Input = PRBS(2 1),  
V
ID  
= 500 mV  
V
ID  
= 250 mV  
400  
0
400  
0
20  
40  
60  
80  
100  
20  
40  
60  
80  
100  
Data Rate Mbps  
Data Rate Mbps  
Figure 31  
Figure 32  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
APPLICATION INFORMATION  
Type-1 and Type-2 receivers  
The M-LVDS standard defines Type-1 and Type-2 receivers. Type-1 receivers include no provisions for failsafe  
and have their differential input voltage thresholds near zero volts. Type-2 receivers have their differential input  
voltage thresholds offset from zero volts to detect the absence of a voltage difference. Type-1 receivers  
maximize the differential noise margin and are intended for maximum signaling rates. Type-2 receivers are  
intended for control signals and slower signaling rates. The impact on receiver output by the offset input can  
be seen in Table 3 and Figure 33.  
Table 3. M-LVDS Receiver Input Voltage Threshold Requirements  
Receiver Type  
Output Low  
Output High  
0.05 V V 2.4 V  
1
2
2.4 V V 0.05 V  
ID  
2.4 V V 0.05 V  
ID  
0.15 V V 2.4 V  
ID  
ID  
Type 1  
Type 2  
High  
200  
150  
100  
50  
High  
0
Low  
50  
100  
Low  
Transition Regions  
Figure 33. Receiver Differential Input Voltage Showing Transition Region  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN65MLVD200, SN65MLVD202  
SN65MLVD204, SN65MLVD205  
MULTIPOINTLVDS LINE DRIVERS AND RECEIVERS  
SLLS463E SEPTEMBER 2001 REVISED JUNE 2003  
APPLICATION INFORMATION  
comparison of M-LVDS with RS-485  
RS-485 applications are similar to M-LVDS. The two standards define balanced multipoint systems with some  
basic architecture changes due to the different applications. Table 4 gives a high-level comparison of the two  
different technologies.  
Table 4. Comparison Between M-LVDS and RS-485 Standards  
Differential Voltage  
Range  
Common-Mode  
Voltage Range  
Maximum Signaling Receiver Minimum  
Number of Loads  
Rate (Mbps)  
Threshold  
±200 mV  
±50 mV  
RS-485  
M-LVDS  
32  
32  
1.5 V to 5 V  
7 V to 12 V  
1 V to 3.4 V  
50 Mbps  
480 mV to 650 mV  
500 Mbps  
It can be seen that with the greater differential output voltage and common-mode voltage range of the  
RS-485-type device, it can handle longer signaling distances where M-LVDS offers ten times the signaling rate  
of RS-485.  
SN65MLVD200  
SN65MLVD200  
R
R
T
T
Up to 32  
Transceivers  
NOTE A: The line should be terminated at both ends in its characteristic impedance (R = Z ). Stub lengths off the main line should be kept  
T
O
as short as possible.  
Figure 34. Typical Application Circuit  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, maskworkright, orotherTIintellectualpropertyrightrelatingtoanycombination, machine, orprocess  
in which TI products or services are used. Information published by TI regarding third–party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products & application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2003, Texas Instruments Incorporated  

相关型号:

SN65MLVD205DRG4

LINE TRANSCEIVER, PDSO14, GREEN, PLASTIC, MS-012AB, SOIC-14
TI

SN65MLVD206

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD206B

高噪声抗扰度 200Mbps M-LVDS 收发器
TI

SN65MLVD206BD

High Noise Immunity 200Mbps M-LVDS Transceiver 8-SOIC -40 to 85
TI

SN65MLVD206BDR

High Noise Immunity 200Mbps M-LVDS Transceiver 8-SOIC -40 to 85
TI

SN65MLVD206D

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD206DG4

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD206DR

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD206DRE4

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD207

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD207D

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI

SN65MLVD207DG4

MULTIPOINT-LVDS LINE DRIVER AND RECEIVER
TI