SN74AVC24T245NMUR [TI]

24-Bit Dual-Supply Bus Transceiver with Configurable Voltage Translation And 3-State Outputs;
SN74AVC24T245NMUR
型号: SN74AVC24T245NMUR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

24-Bit Dual-Supply Bus Transceiver with Configurable Voltage Translation And 3-State Outputs

文件: 总29页 (文件大小:1768K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN74AVC24T245  
SCES552E – FEBRUARY 2004 – REVISED AUGUST 2020  
24-Bit Dual-Supply Bus Transceiver with Configurable Voltage Translation And 3-  
State Outputs  
direction-control (DIR) input. The output-enable ( OE)  
input can be used to disable the outputs so the buses  
1 Features  
Control Inputs VIH/VIL Levels Are Referenced to  
VCCA Voltage  
are effectively isolated.  
The SN74AVC24T245 is designed so that the control  
pins (1DIR, 2DIR, 3DIR, 4DIR, 5DIR, 6DIR, 1 OE, 2  
OE, 3 OE, 4 OE, 5 OE, and 6 OE) are supplied by  
VCC Isolation Feature – If Either VCC Input Is at  
GND, All Outputs Are in the High-Impedance State  
Overvoltage-Tolerant Inputs/Outputs Allow Mixed-  
Voltage-Mode Data Communications  
Fully Configurable Dual-Rail Design Allows Each  
Port to Operate Over Full 1.2-V to 3.6-V Power-  
Supply Range  
Ioff Supports Partial-Power-Down Mode Operation  
I/Os Are 4.6-V Tolerant  
Max Data Rates  
– 380 Mbps (1.8-V to 3.3-V Translation)  
– 200 Mbps (<1.8-V to 3.3-V Translation)  
– 200 Mbps (Translate to 2.5 V or 1.8 V)  
– 150 Mbps (Translate to 1.5 V)  
– 100 Mbps (Translate to 1.2 V)  
Latch-Up Performance Exceeds 100 mA Per JESD  
78, Class II  
VCCA  
.
This device is fully specified for partial-power-down  
applications using Ioff. The Ioff circuitry disables the  
outputs, preventing damaging current backflow  
through the device when it is powered down.  
The VCC isolation feature ensures that if either VCC  
input is at GND, then both ports are in the high-  
impedance state.  
To ensure the high-impedance state during power up  
or power down, OE should be tied to VCCA through a  
pullup resistor; the minimum value of the resistor is  
determined by the current-sinking capability of the  
driver.  
Device Information  
PART NUMBER  
PACKAGE(1) BODY SIZE (NOM)  
ESD Protection Exceeds JESD 22  
– 8000-V Human-Body Model (A114-A)  
– 200-V Machine Model (A115-A)  
– 1000-V Charged-Device Model (C101)  
10.00 mm × 4.50  
mm  
SN74AVC24T245GRG/ZRG LFBGA  
SN74AVC24T245NMU nFBGA  
10.00 mm × 4.50  
mm  
2 Applications  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
Personal Electronics  
Industrial  
Enterprise  
P5  
P6  
2DIR  
1DIR  
A6  
A5  
1OE  
2OE  
D6  
B6  
1A1  
2A1  
Telecom  
D1  
B1  
1B1  
2B1  
3 Description  
To Three Other Channels  
To Three Other Channels  
To Three Other Channels  
To Three Other Channels  
To Three Other Channels  
To Three Other Channels  
P3  
P4  
4DIR  
3DIR  
This 24-bit noninverting bus transceiver uses two  
separate configurable power-supply rails. The  
SN74AVC24T245 is optimized to operate with VCCA  
VCCB set at 1.4 V to 3.6 V. It is operational with  
VCCA/VCCB as low as 1.2 V. The A port is designed to  
track VCCA. VCCA accepts any supply voltage from 1.2  
V to 3.6 V. The B port is designed to track VCCB. VCCB  
accepts any supply voltage from 1.2 V to 3.6 V. This  
allows for universal low-voltage bidirectional  
translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-  
V, and 3.3-V voltage nodes.  
A4  
A3  
3OE  
4OE  
H6  
F6  
3A1  
4A1  
/
H1  
F1  
4B1  
3B1  
P1  
P2  
6DIR  
5DIR  
A2  
A1  
5OE  
6OE  
M6  
K6  
6A1  
5A1  
M1  
K1  
6B1  
5B1  
Figure 3-1. Logic Diagram  
The SN74AVC24T245 is designed for asynchronous  
communication between data buses. The device  
transmits data from the A bus to the B bus or from the  
B bus to the A bus, depending on the logic level at the  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
SN74AVC24T245  
SCES552E – FEBRUARY 2004 – REVISED AUGUST 2020  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................7  
6.4 Thermal Information....................................................8  
6.5 Electrical Characteristics.............................................9  
6.6 Switching Characteristics..........................................10  
6.7 Switching Characteristics..........................................10  
6.8 Switching Characteristics..........................................11  
6.9 Switching Characteristics..........................................11  
6.10 Switching Charactertistics.......................................12  
6.11 Operating Characteristics........................................12  
6.12 Typical Characteristics............................................13  
7 Parameter Measurement Information..........................15  
8 Detailed Description......................................................16  
8.1 Overview...................................................................16  
8.2 Functional Block Diagram.........................................16  
8.3 Feature Description...................................................17  
8.4 Device Functional Modes..........................................17  
9 Application and Implementation..................................18  
9.1 Application Information............................................. 18  
9.2 EnableTimes............................................................. 18  
9.3 Typical Application.................................................... 19  
10 Power Supply Recommendations..............................21  
11 Layout...........................................................................21  
11.1 Layout Guidelines................................................... 21  
11.2 Layout Example...................................................... 21  
12 Device and Documentation Support..........................22  
12.1 Documentation Support.......................................... 22  
12.2 Related Documentation.......................................... 22  
12.3 Trademarks.............................................................22  
12.4 Electrostatic Discharge Caution..............................22  
12.5 Glossary..................................................................22  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 22  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision D (August 2005) to Revision E (August 2020)  
Page  
Updated document to current TI data sheet format............................................................................................1  
Removed Ordering Information table..................................................................................................................1  
Added Applications list, Device Information table...............................................................................................1  
Added NMU package option to Device Information table...................................................................................1  
Added NMU package to pinout drawing............................................................................................................. 3  
Added ESD Ratings table...................................................................................................................................6  
Added Thermal Information table....................................................................................................................... 8  
Added NMU package to Thermal Information table............................................................................................8  
Added Typical Characteristics section..............................................................................................................13  
Added Detailed Description section..................................................................................................................16  
Added Application and Implementation section................................................................................................18  
Added Power Supply Recommendations section.............................................................................................21  
Added Layout section....................................................................................................................................... 21  
Added Device and Documentation Support section......................................................................................... 22  
Added Mechanical, Packaging, and Orderable Information section.................................................................22  
Copyright © 2020 Texas Instruments Incorporated  
2
Submit Document Feedback  
 
SN74AVC24T245  
SCES552E – FEBRUARY 2004 – REVISED AUGUST 2020  
www.ti.com  
5 Pin Configuration and Functions  
1
2
3
4
5
6
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Figure 5-1. GRG/ZRG, NMU Package 83-Pin LFBGA, nFBGA Top View  
Table 5-1. Pin Assignments  
1
2
3
4
5
6
A
B
C
D
E
F
6 OE  
1B1  
1B3  
2B1  
2B3  
3B1  
3B3  
4B1  
4B3  
5B1  
5B3  
6B1  
6B3  
6DIR  
5 OE  
1B2  
1B4  
2B2  
2B4  
3B2  
3B4  
4B2  
4B4  
5B2  
5B4  
6B2  
6B4  
5DIR  
4 OE  
VCCB  
GND  
VCCB  
GND  
GND  
3 OE  
VCCA  
GND  
VCCA  
GND  
GND  
GND  
VCCA  
GND  
GND  
VCCA  
GND  
VCCA  
3DIR  
2 OE  
1A2  
1A4  
2A2  
2A4  
3A2  
3A4  
4A2  
4A4  
5A2  
5A4  
6A2  
6A4  
2DIR  
1 OE  
1A1  
1A3  
2A1  
2A3  
3A1  
3A3  
4A1  
4A3  
5A1  
5A3  
6A1  
6A3  
1DIR  
G
H
J
VCCB  
GND  
GND  
VCCB  
GND  
VCCB  
4DIR  
K
L
M
N
P
Table 5-2. Pin Functions  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
Tri-State output-mode enables. Pull OE high to place all outputs in Tri-State  
A1  
A2  
A3  
A4  
6 OE  
5 OE  
4 OE  
3 OE  
Input  
Input  
Input  
Input  
mode. Referenced to VCCA  
Tri-State output-mode enables. Pull OE high to place all outputs in Tri-State  
mode. Referenced to VCCA  
Tri-State output-mode enables. Pull OE high to place all outputs in Tri-State  
mode. Referenced to VCCA  
.
.
.
Tri-State output-mode enables. Pull OE high to place all outputs in Tri-State  
mode. Referenced to VCCA  
.
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
3
 
SN74AVC24T245  
SCES552E – FEBRUARY 2004 – REVISED AUGUST 2020  
www.ti.com  
Table 5-2. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NO.  
NAME  
Tri-State output-mode enables. Pull OE high to place all outputs in Tri-State  
A5  
2 OE  
Input  
Input  
mode. Referenced to VCCA  
.
Tri-State output-mode enables. Pull OE high to place all outputs in Tri-State  
mode. Referenced to VCCA  
A6  
1 OE  
.
B1  
B2  
B3  
B4  
B5  
B6  
C1  
C2  
C3  
C4  
C5  
C6  
D1  
D2  
D3  
D4  
D5  
D6  
E1  
E2  
E3  
E4  
E5  
E6  
F1  
F2  
F3  
F4  
F5  
F6  
G1  
G2  
G4  
G5  
G6  
H1  
H2  
H3  
H4  
H5  
H6  
1B1  
1B2  
VCCB  
VCCA  
1A2  
1A1  
1B3  
1B4  
GND  
GND  
1A4  
1A3  
2B1  
2B2  
VCCB  
VCCA  
2A2  
2A1  
2B3  
2B4  
GND  
GND  
2A4  
2A3  
3B1  
3B2  
GND  
GND  
3A2  
3A1  
3B3  
3B4  
GND  
3A4  
3A3  
4B1  
4B2  
VCCB  
VCCA  
4A2  
4A1  
Input/Output  
Input/Output  
Referenced to VCCB  
Referenced to VCCB  
.
.
B-port supply voltage. 1.2 V ≤ VCCB ≤ 3.6 V.  
A-port supply voltage. 1.2 V ≤ VCCA ≤ 3.6 V.  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Referenced to VCCA  
Referenced to VCCA  
Referenced to VCCB  
Referenced to VCCB  
Ground.  
.
.
.
.
Ground.  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Referenced to VCCA  
Referenced to VCCA  
Referenced to VCCB  
Referenced to VCCB  
.
.
.
B-port supply voltage. 1.2 V ≤ VCCB ≤ 3.6 V.  
A-port supply voltage. 1.2 V ≤ VCCA ≤ 3.6 V.  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Referenced to VCCA  
Referenced to VCCA  
Referenced to VCCB  
Referenced to VCCB  
Ground.  
.
.
.
.
Ground.  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Referenced to VCCA  
Referenced to VCCA  
Referenced to VCCB  
Referenced to VCCB  
Ground.  
.
.
.
Ground.  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Referenced to VCCA  
Referenced to VCCA  
Referenced to VCCB  
Referenced to VCCB  
Ground.  
.
.
.
.
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Referenced to VCCA  
Referenced to VCCA  
Referenced to VCCB  
Referenced to VCCB  
.
.
.
.
B-port supply voltage. 1.2 V ≤ VCCB ≤ 3.6 V.  
A-port supply voltage. 1.2 V ≤ VCCA ≤ 3.6 V.  
Input/Output  
Input/Output  
Referenced to VCCA  
Referenced to VCCA  
.
.
Copyright © 2020 Texas Instruments Incorporated  
4
Submit Document Feedback  
SN74AVC24T245  
SCES552E – FEBRUARY 2004 – REVISED AUGUST 2020  
www.ti.com  
Table 5-2. Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NO.  
J1  
NAME  
4B3  
Input/Output  
Input/Output  
Referenced to VCCB  
Referenced to VCCB  
Ground.  
.
.
J2  
4B4  
J3  
GND  
GND  
4A4  
J4  
Ground.  
J5  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Referenced to VCCA  
Referenced to VCCA  
Referenced to VCCB  
Referenced to VCCB  
Ground.  
.
.
.
.
J6  
4A3  
K1  
K2  
K3  
K4  
K5  
K6  
L1  
5B1  
5B2  
GND  
GND  
5A2  
Ground.  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Referenced to VCCA  
Referenced to VCCA  
Referenced to VCCB  
Referenced to VCCB  
.
.
.
.
5A1  
5B3  
L2  
5B4  
L3  
VCCB  
VCCA  
5A4  
B-port supply voltage. 1.2 V ≤ VCCB ≤ 3.6 V.  
A-port supply voltage. 1.2 V ≤ VCCA ≤ 3.6 V.  
L4  
L5  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Referenced to VCCA  
Referenced to VCCA  
Referenced to VCCB  
Referenced to VCCB  
Ground.  
.
.
.
.
L6  
5A3  
M1  
M2  
M3  
M4  
M5  
M6  
N1  
N2  
N3  
N4  
N5  
N6  
P1  
P2  
P3  
P4  
P5  
P6  
6B1  
6B2  
GND  
GND  
6A2  
Ground.  
Input/Output  
Input/Output  
Input/Output  
Input/Output  
Referenced to VCCA  
Referenced to VCCA  
Referenced to VCCB  
Referenced to VCCB  
.
.
.
.
6A1  
6B3  
6B4  
VCCB  
VCCA  
6A4  
B-port supply voltage. 1.2 V ≤ VCCB ≤ 3.6 V.  
A-port supply voltage. 1.2 V ≤ VCCA ≤ 3.6 V.  
Input/Output  
Input/Output  
Input  
Referenced to VCCA  
Referenced to VCCA  
.
.
6A3  
6DIR  
5DIR  
4DIR  
3DIR  
2DIR  
1DIR  
Direction-control signal. Referenced to VCCA  
Direction-control signal. Referenced to VCCA  
Direction-control signal. Referenced to VCCA  
Direction-control signal. Referenced to VCCA  
Direction-control signal. Referenced to VCCA  
.
.
.
.
.
Input  
Input  
Input  
Input  
Input  
Direction-control signal. Referenced to VCCA.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
5
SN74AVC24T245  
SCES552E – FEBRUARY 2004 – REVISED AUGUST 2020  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX UNIT  
VCCA  
Supply voltage range  
VCCB  
–0.5  
4.6  
V
I/O ports (A port)  
I/O ports (B port)  
Control inputs  
A port  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
4.6  
4.6  
4.6  
4.6  
4.6  
VI  
Input voltge range(2)  
V
Voltage range applied to any output  
VO  
VO  
V
V
in the high-impedance or power-off state(2)  
B port  
A port  
–0.5 VCCA + 0.5  
Voltage range applied to any output in the high or low state(2) (3)  
B port  
–0.5 VCCB + 0.5  
IIK  
IOK  
IO  
Input clamp current  
VI < 0  
–50  
–50  
mA  
mA  
mA  
mA  
°C  
Output clamp current  
VO < 0  
Continuous output current  
±50  
Continuous current through each VCCA, VCCB, and GND  
Storage temperature range  
±100  
Tstg  
–65  
150  
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating  
conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.  
(3) The output positive-voltage rating may be exceeded up to 4.6-V maximum if the output current rating is observed.  
6.2 ESD Ratings  
VALUE  
±8000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-0011  
V (ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per JEDEC specification JESD22-C1012  
Copyright © 2020 Texas Instruments Incorporated  
6
Submit Document Feedback  
 
 
 
 
 
 
SN74AVC24T245  
SCES552E – FEBRUARY 2004 – REVISED AUGUST 2020  
www.ti.com  
6.3 Recommended Operating Conditions  
(1) (2) (3)  
VCCI  
VCCO  
MIN  
MAX UNIT  
VCCA  
VCCB  
Supply voltage  
Supply voltage  
1.2  
3.6  
3.6  
V
V
1.2  
1.2 V to 1.95 V  
1.95 V to 2.7 V  
2.7 V to 3.6 V  
1.2 V to 1.95 V  
1.95 V to 2.7 V  
2.7 V to 3.6 V  
1.2 V to 1.95 V  
1.95 V to 2.7 V  
2.7 V to 3.6 V  
1.2 V to 1.95 V  
1.95 V to 2.7 V  
2.7 V to 3.6 V  
VCCI × 0.65  
High-level  
input voltage  
VIH  
VIL  
VIH  
VIL  
Data inputs(4)  
Data inputs(4)  
1.6  
2
V
V
V
V
VCCI × 0.35  
Low-level  
input voltage  
0.7  
0.8  
VCCA × 0.65  
High-level  
input voltage  
DIR  
1.6  
2
(5)  
(5)  
(referenced to VCCA  
)
VCCA × 0.35  
Low-level  
input voltage  
DIR  
0.7  
0.8  
3.6  
VCCO  
3.6  
–3  
–6  
–8  
–9  
–12  
3
(referenced to VCCA  
)
VI  
Input voltage  
0
0
0
V
V
Active state  
3-state  
VO  
Output voltage  
1.2 V  
1.4 V to 1.6 V  
1.65 V to 1.95 V  
2.3 V to 2.7 V  
3 V to 3.6 V  
1.2 V  
IOH  
High-level output current  
Low-level output current  
mA  
mA  
1.4 V to 1.6 V  
1.65 V to 1.95 V  
2.3 V to 2.7 V  
3 V to 3.6 V  
6
IOL  
8
9
12  
5
Δt/Δv  
TA  
Input transition rise or fall rate  
Operating free-air temperature  
ns/V  
°C  
–40  
85  
(1) VCCI is the VCC associated with the data input port.  
(2) VCCO is the VCC associated with the output port.  
(3) All unused data inputs of the device must be held at VCCI or GND to ensure proper device operation. Refer to the TI application report,  
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.  
(4) For VCCI values not specified in the data sheet, VIH min = VCCI × 0.7 V, VIL max = VCCI × 0.3 V.  
(5) For VCCI values not specified in the data sheet, VIH min = VCCA × 0.7 V, VIL max = VCCA × 0.3 V.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
7
 
 
 
 
 
 
SN74AVC24T245  
SCES552E – FEBRUARY 2004 – REVISED AUGUST 2020  
www.ti.com  
6.4 Thermal Information  
SN74AVC24T245  
THERMAL METRIC(1)  
GRG  
83  
ZRG  
83  
NMU  
83  
UNIT  
R θJA  
Junction-to-ambient thermal resistance  
38.1  
38.1  
44.3  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal  
resistance  
R θJC(top)  
R θJB  
22.8  
17.0  
0.44  
22.8  
17.0  
0.44  
24.5  
29.1  
0.5  
Junction-to-board thermal resistance  
Junction-to-top characterization  
parameter  
ψ JT  
Junction-to-board characterization  
parameter  
ψ JB  
16.9  
16.9  
29.2  
°C/W  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application  
report.  
Copyright © 2020 Texas Instruments Incorporated  
8
Submit Document Feedback  
 
 
SN74AVC24T245  
SCES552E – FEBRUARY 2004 – REVISED AUGUST 2020  
www.ti.com  
6.5 Electrical Characteristics  
over recommended operating free-air temperature range (unless otherwise noted)(2) (3)  
TA = 25°C  
–40°C to 85°C  
PARAMETER  
TEST CONDITIONS  
VCCA  
VCCB  
UNIT  
MIN  
TYP  
MAX  
MIN  
MAX  
IOH = –100 μA  
1.2 V to 3.6 V 1.2 V to 3.6 V  
VCCO – 0.2  
IOH = –3 mA  
IOH = –6 mA  
IOH = –8 mA  
IOH = –9 mA  
IOH = –12 m  
IOL = 100 μA  
IOL = 3 mA  
IOL = 6 mA  
IOL = 8 mA  
IOL = 9 mA  
IOL = 12 mA  
1.2 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
1.2 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
0.95  
1.05  
1.2  
VOH  
VI = VIH  
V
1.75  
2.3  
1.2 V to 3.6 V 1.2 V to 3.6 V  
0.2  
1.2 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
1.2 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
0.15  
0.35  
0.45  
0.55  
0.7  
VOL  
VI = VIL  
V
Control  
inputs  
II  
VI = VCCA or GND  
1.2 V to 3.6 V 1.2 V to 3.6 V  
±0.025 ±0.25  
±1  
±5  
±5  
μA  
μA  
A or B  
port  
0 V  
0 to 3.6 V  
0 V  
±0.1  
±0.1  
±2.5  
±2.5  
Ioff  
VI or VO = 0 to 3.6 V  
A or B  
port  
0 to 3.6 V  
VO = VCCO or GND,  
VI = VCCI or GND,  
OE = VIH  
A or B  
port  
(1)  
IOZ  
3.6 V  
3.6 V  
±0.5  
±2.5  
±5  
μA  
μA  
1.2 V to 3.6 V 1.2 V to 3.6 V  
40  
–5  
40  
40  
40  
–5  
VI = VCCI or GND,  
IO = 0  
ICCA  
0 V  
3.6 V  
0 V  
3.6 V  
1.2 V to 3.6 V 1.2 V to 3.6 V  
VI = VCCI or GND,  
IO = 0  
ICCB  
0 V  
3.6 V  
0 V  
μA  
3.6 V  
VI = VCCI or GND,  
IO = 0  
ICCA + ICCB  
1.2 V to 3.6 V 1.2 V to 3.6 V  
75  
μA  
pF  
pF  
Control  
inputs  
Ci  
VI = 3.3 V or GND  
VO = 3.3 V or GND  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
3.5  
7
A or B  
port  
Cio  
(1) For I/O ports, the parameter IOZ includes the input leakage current.  
(2) VCCO is the VCC associated with the output port.  
(3) VCCI is the VCC associated with the input port.  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
9
 
 
 
 
SN74AVC24T245  
SCES552E – FEBRUARY 2004 – REVISED AUGUST 2020  
www.ti.com  
6.6 Switching Characteristics  
over recommended operating free-air temperature range, VCCA = 1.2 V (see Figure 7-1)  
VCCB = 1.2 V  
VCCB = 1.5 V  
VCCB = 1.8 V  
VCCB = 2.5 V  
TYP  
2.8  
VCCB = 3.3 V  
TYP  
3.2  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
UNIT  
ns  
TYP  
4.1  
4.1  
4.4  
4.4  
6.4  
6.4  
6
TYP  
3.3  
3.3  
4
TYP  
3
tPLH  
tPHL  
tPLH  
tPHL  
tPZH  
tPZL  
tPZH  
tPZL  
tPHZ  
tPLZ  
tPHZ  
tPLZ  
A
B
A
A
B
A
B
3
2.8  
3.2  
3.8  
3.8  
6.4  
6.4  
4
3.6  
3.5  
B
ns  
4
3.6  
3.5  
6.4  
6.4  
4.6  
4.6  
6.6  
6.6  
4.9  
4.9  
6.4  
6.4  
OE  
OE  
OE  
OE  
ns  
6.4  
6.4  
3.4  
3.2  
ns  
6
4
3.4  
3.2  
6.6  
6.6  
6
6.6  
6.6  
4.9  
4.9  
6.6  
6.8  
ns  
6.6  
6.8  
4.2  
5.3  
ns  
6
4.2  
5.3  
6.7 Switching Characteristics  
over recommended operating free-air temperature range, VCCA = 1.5 V ± 0.1 V (see Figure 7-1)  
VCCB = 1.5 V VCCB = 1.8 V VCCB = 2.5 V VCCB = 3.3 V  
VCCB = 1.2 V  
FROM  
(INPUT)  
TO  
(OUTPUT)  
± 0.1 V  
± 0.15 V  
± 0.2 V  
± 0.3 V  
PARAMETER  
UNIT  
TYP  
3.6  
3.6  
3.3  
3.3  
4.3  
4.3  
5.6  
5.6  
4.5  
4.5  
5.5  
5.5  
MIN MAX  
MIN MAX  
MIN MAX  
MIN MAX  
tPLH  
tPHL  
tPLH  
tPHL  
tPZH  
tPZL  
tPZH  
tPZL  
tPHZ  
tPLZ  
tPHZ  
tPLZ  
0.5  
0.5  
0.5  
0.5  
1
6.2  
6.2  
0.5  
0.5  
0.5  
0.5  
1
5.2  
5.2  
0.5  
0.5  
0.5  
0.5  
1
4.1  
4.1  
0.5  
0.5  
0.5  
0.5  
1
3.7  
3.7  
A
B
A
A
B
A
B
ns  
ns  
ns  
ns  
ns  
ns  
6.2  
5.9  
5.6  
5.5  
B
6.2  
5.9  
5.6  
5.5  
10.1  
10.1  
10.1  
10.1  
9.1  
10.1  
10.1  
8.1  
10.1  
10.1  
5.9  
10.1  
10.1  
5.2  
OE  
OE  
OE  
OE  
1
1
1
1
1
0.5  
0.5  
1.5  
1.5  
1.5  
1.5  
0.5  
0.5  
1.5  
1.5  
1
0.5  
0.5  
1.5  
1.5  
1
1
8.1  
5.9  
5.2  
1.5  
1.5  
1.5  
1.5  
9.1  
9.1  
9.1  
9.1  
9.1  
9.1  
9.1  
8.7  
7.5  
6.5  
6.3  
8.7  
7.5  
1
6.5  
1
6.3  
Copyright © 2020 Texas Instruments Incorporated  
10  
Submit Document Feedback  
 
 
SN74AVC24T245  
SCES552E – FEBRUARY 2004 – REVISED AUGUST 2020  
www.ti.com  
6.8 Switching Characteristics  
over recommended operating free-air temperature range, VCCA = 1.8 V ± 0.15 V (see Figure 7-1)  
VCCB = 1.5 V VCCB = 1.8 V VCCB = 2.5 V VCCB = 3.3 V  
VCCB = 1.2 V  
FROM  
(INPUT)  
TO  
(OUTPUT)  
± 0.1 V  
± 0.15 V  
± 0.2 V  
± 0.3 V  
PARAMETER  
UNIT  
TYP  
3.4  
3.4  
3
MIN MAX  
MIN MAX  
MIN MAX  
MIN MAX  
tPLH  
tPHL  
tPLH  
tPHL  
tPZH  
tPZL  
tPZH  
tPZL  
tPHZ  
tPLZ  
tPHZ  
tPLZ  
0.5  
0.5  
0.5  
0.5  
1
5.9  
5.9  
5.2  
5.2  
7.8  
7.8  
9.2  
9.2  
7.7  
7.7  
8.4  
8.4  
0.5  
0.5  
0.5  
0.5  
1
4.8  
4.8  
4.8  
4.8  
7.8  
7.8  
7.4  
7.4  
7.7  
7.7  
7.1  
7.1  
0.5  
0.5  
0.5  
0.5  
1
3.7  
3.7  
4.5  
4.5  
7.8  
7.8  
5.3  
5.3  
7.7  
7.7  
5.9  
5.9  
0.5  
0.5  
0.5  
0.5  
1
3.3  
3.3  
4.4  
4.4  
7.8  
7.8  
4.5  
4.5  
7.7  
7.7  
5.7  
5.7  
A
B
A
A
B
A
B
ns  
ns  
ns  
ns  
ns  
ns  
B
3
3.4  
3.4  
5.4  
5.4  
4.2  
4.2  
5.2  
5.2  
OE  
OE  
OE  
OE  
1
1
1
1
1
0.5  
0.5  
1.5  
1.5  
1.5  
1.5  
0.5  
0.5  
1.5  
1.5  
1
0.5  
0.5  
1.5  
1.5  
1
1
1.5  
1.5  
1.5  
1.5  
1
1
6.9 Switching Characteristics  
over recommended operating free-air temperature range, VCCA = 2.5 V ± 0.2 V (see Figure 7-1)  
VCCB = 1.5 V VCCB = 1.8 V VCCB = 2.5 V VCCB = 3.3 V  
VCCB = 1.2 V  
FROM  
(INPUT)  
TO  
(OUTPUT)  
± 0.1 V  
± 0.15 V  
± 0.2 V  
± 0.3 V  
PARAMETER  
UNIT  
TYP  
3.2  
3.2  
2.6  
2.6  
2.5  
2.5  
5.2  
5.2  
3
MIN MAX  
MIN MAX  
MIN MAX  
MIN MAX  
tPLH  
tPHL  
tPLH  
tPHL  
tPZH  
tPZL  
tPZH  
tPZL  
tPHZ  
tPLZ  
tPHZ  
tPLZ  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1
5.6  
5.6  
4.1  
4.1  
5.3  
5.3  
9.4  
9.4  
6.1  
6.1  
7.9  
7.9  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1
4.5  
4.5  
3.7  
3.7  
5.3  
5.3  
7.3  
7.3  
6.1  
6.1  
6.6  
6.6  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1
3.3  
3.3  
3.3  
3.3  
5.3  
5.3  
5.1  
5.1  
6.1  
6.1  
6.1  
6.1  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1
2.8  
2.8  
3.2  
3.2  
5.3  
5.3  
4.5  
4.5  
6.1  
6.1  
5.2  
5.2  
A
B
A
A
B
A
B
ns  
ns  
ns  
ns  
ns  
ns  
B
OE  
OE  
OE  
OE  
3
1
1
1
1
5
1
1
1
1
5
1
1
1
1
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
11  
 
 
SN74AVC24T245  
SCES552E – FEBRUARY 2004 – REVISED AUGUST 2020  
www.ti.com  
6.10 Switching Charactertistics  
over recommended operating free-air temperature range, VCCA = 3.3 V ± 0.3 V (see Figure 7-1)  
VCCB = 1.5 V VCCB = 1.8 V VCCB = 2.5 V VCCB = 3.3 V  
VCCB = 1.2 V  
FROM  
(INPUT)  
TO  
(OUTPUT)  
± 0.1 V  
± 0.15 V  
± 0.2 V  
± 0.3 V  
PARAMETER  
UNIT  
TYP  
3.2  
3.2  
2.8  
2.8  
2.2  
2.2  
5.1  
5.1  
3.4  
3.4  
4.9  
4.9  
MIN MAX  
MIN MAX  
MIN MAX  
MIN MAX  
tPLH  
tPHL  
tPLH  
tPHL  
tPZH  
tPZL  
tPZH  
tPZL  
tPHZ  
tPLZ  
tPHZ  
tPLZ  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1
5.5  
5.5  
3.7  
3.7  
4.3  
4.3  
9.3  
9.3  
5
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1
4.4  
4.4  
3.3  
3.3  
4.2  
4.2  
7.2  
7.2  
5
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
1
3.2  
3.2  
2.8  
2.8  
4.1  
4.1  
4.9  
4.9  
5
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
2.7  
2.7  
2.7  
2.7  
4
A
B
A
A
B
A
B
ns  
ns  
ns  
ns  
ns  
ns  
B
OE  
OE  
OE  
OE  
4
4
4
5
5
5
5
5
7.7  
7.7  
6.5  
6.5  
5.2  
5.2  
5
1
1
1
5
6.11 Operating Characteristics  
VCCA and VCCB = 3.3 V, TA = 25°C  
VCCA  
=
VCCA  
=
VCCA  
=
VCCA  
=
VCCA =  
TEST  
CONDITIONS  
VCCB = 1.5 V VCCB = 1.2 V VCCB = 1.8 V VCCB = 2.5 V VCCB = 3.3 V  
PARAMETER  
UNIT  
TYP  
TYP  
TYP  
TYP  
TYP  
Outputs  
enabled  
1
1
1
2
2
A to B  
B to A  
A to B  
B to A  
Outputs  
disabled  
1
19  
1
1
19  
1
1
20  
1
1
21  
1
2
22  
1
CL = 0,  
f = 10 MHz,  
tr = tf = 1 ns  
(1)  
CpdA  
pF  
Outputs  
enabled  
Outputs  
disabled  
Outputs  
enabled  
19  
1
19  
1
20  
1
21  
1
22  
1
Outputs  
disabled  
CL = 0,  
f = 10 MHz,  
tr = tf = 1 ns  
(1)  
CpdB  
pF  
Outputs  
enabled  
1
1
1
2
2
Outputs  
disabled  
1
1
1
1
2
(1) Power dissipation capacitance per transceiver  
Copyright © 2020 Texas Instruments Incorporated  
12  
Submit Document Feedback  
 
 
 
SN74AVC24T245  
SCES552E – FEBRUARY 2004 – REVISED AUGUST 2020  
www.ti.com  
6.12 Typical Characteristics  
6
6
5
4
3
2
1
0
T
= 25°C  
T
A
= 25°C  
A
V
= 1.2 V  
V
CCA  
= 1.2 V  
CCA  
5
4
3
2
1
0
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
= 2.5 V  
= 3.3 V  
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
= 2.5 V  
= 3.3 V  
CCB  
CCB  
V
V
V
V
V
V
V
V
CCB  
CCB  
CCB  
CCB  
CCB  
CCB  
CCB  
CCB  
0
10  
20  
30  
40  
− Load Capacitance − pF  
50  
60  
0
10  
20  
30  
40  
50  
60  
C
L
C
L
− Load Capacitance − pF  
Figure 6-1. Propagation Delay vs Load  
Capacitance  
Figure 6-2. Propagation Delay vs Load  
Capacitance  
6
6
T = 25°C  
A
T
A
= 25°C  
V = 1.5 V  
CCA  
V
CCA  
= 1.5 V  
5
4
3
2
1
0
5
4
3
2
1
0
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
= 2.5 V  
= 3.3 V  
CCB  
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
= 2.5 V  
= 3.3 V  
CCB  
V
V
V
V
CCB  
CCB  
CCB  
CCB  
V
V
V
V
CCB  
CCB  
CCB  
CCB  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
C
L
− Load Capacitance − pF  
C
L
− Load Capacitance − pF  
Figure 6-3. Typical Propagation Delay tPLH (A to B)  
vs Load Capacitance  
Figure 6-4. Typical Propagation Delay tPLH (A to B)  
vs Load Capacitance  
6
6
T
A
= 25°C  
T
A
= 25°C  
V
CCA  
= 1.8 V  
V
CCA  
= 1.8 V  
5
4
3
2
1
0
5
4
3
2
1
0
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
= 2.5 V  
= 3.3 V  
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
= 2.5 V  
= 3.3 V  
CCB  
CCB  
V
V
V
V
V
V
V
V
CCB  
CCB  
CCB  
CCB  
CCB  
CCB  
CCB  
CCB  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
C
L
− Load Capacitance − pF  
C
L
− Load Capacitance − pF  
Figure 6-6. Typical Propagation Delay tPLH (A to B)  
vs Load Capacitance  
Figure 6-5. Typical Propagation Delay tPLH (A to B)  
vs Load Capacitance  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
13  
 
SN74AVC24T245  
SCES552E – FEBRUARY 2004 – REVISED AUGUST 2020  
www.ti.com  
6
6
5
T
= 25°C  
T
= 25°C  
A
A
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
= 2.5 V  
= 3.3 V  
CCB  
V
= 2.5 V  
V
= 2.5 V  
CCA  
CCA  
V
V
V
V
CCB  
CCB  
CCB  
CCB  
5
4
3
2
1
0
4
3
2
1
0
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
= 2.5 V  
= 3.3 V  
CCB  
V
V
V
V
CCB  
CCB  
CCB  
CCB  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
C
L
− Load Capacitance − pF  
C
L
− Load Capacitance − pF  
Figure 6-8. Typical Propagation Delay tPLH (A to B)  
vs Load Capacitance  
Figure 6-7. Typical Propagation Delay tPLH (A to B)  
vs Load Capacitance  
6
6
T
A
= 25°C  
T
= 25°C  
A
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
= 2.5 V  
= 3.3 V  
CCB  
V
CCA  
= 3.3 V  
V
= 3.3 V  
CCA  
V
V
V
V
CCB  
CCB  
CCB  
CCB  
5
4
3
2
1
0
5
4
3
2
1
0
V
= 1.2 V  
= 1.5 V  
= 1.8 V  
= 2.5 V  
= 3.3 V  
CCB  
V
V
V
V
CCB  
CCB  
CCB  
CCB  
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
C
L
− Load Capacitance − pF  
C
L
− Load Capacitance − pF  
Figure 6-9. Typical Propagation Delay tPLH (A to B)  
vs Load Capacitance  
Figure 6-10. Propagation Delay vs Load  
Capacitance  
Copyright © 2020 Texas Instruments Incorporated  
14  
Submit Document Feedback  
SN74AVC24T245  
SCES552E – FEBRUARY 2004 – REVISED AUGUST 2020  
www.ti.com  
7 Parameter Measurement Information  
2 × V  
CCO  
TEST  
S1  
S1  
R
L
Open  
GND  
t
Open  
pd  
From Output  
Under Test  
t
/t  
PLZ PZL  
2 × V  
CCO  
t /t  
PHZ PZH  
GND  
C
L
(see Note A)  
R
L
t
w
LOAD CIRCUIT  
V
CCI  
V
CCI  
/2  
V
CCI  
/2  
Input  
C
L
V
TP  
R
L
V
CCO  
0 V  
1.5 V 0.1 V  
2 kΩ  
2 kΩ  
2 kΩ  
2 kΩ  
0.1 V  
0.15 V  
0.15 V  
0.3 V  
15 pF  
15 pF  
15 pF  
15 pF  
VOLTAGE WAVEFORMS  
PULSE DURATION  
1.8 V 0.15 V  
2.5 V 0.2 V  
3.3 V 0.3 V  
V
CCA  
Output  
Control  
(low-level  
enabling)  
V /2  
CCA  
V
CCA  
/2  
t
0 V  
t
PZL  
PLZ  
V
V
CCO  
Output  
V
CCI  
V
/2  
/2  
Waveform 1  
S1 at 2 × V  
CCO  
Input  
V
CCI  
/2  
V
CCI  
/2  
V
+ V  
OL  
TP  
CCO  
(see Note B)  
OL  
0 V  
t
t
PZH  
PHZ  
t
t
PHL  
PLH  
Output  
Waveform 2  
S1 at GND  
V
OH  
V
OH  
V
OH  
− V  
TP  
V
CCO  
Output  
V /2  
CCO  
V
CCO  
/2  
(see Note B)  
0 V  
V
OL  
VOLTAGE WAVEFORMS  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
PROPAGATION DELAY TIMES  
NOTES: A. C includes probe and jig capacitance.  
L
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.  
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.  
C. All input pulses are supplied by generators having the following characteristics: PRRv10 MHz, Z = 50 , dv/dt 1 V/ns.  
O
D. The outputs are measured one at a time, with one transition per measurement.  
E.  
F.  
G.  
H.  
I.  
t
t
t
and t  
and t  
are the same as t  
.
dis  
PLZ  
PZL  
PLH  
PHZ  
are the same as t  
.
PZH  
en  
and t  
are the same as t .  
pd  
PHL  
V
V
is the V associated with the input port.  
CC  
is the V associated with the output port.  
CCI  
CCO  
CC  
Figure 7-1. Load Circuit and Voltage Waveforms  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
15  
 
 
SN74AVC24T245  
SCES552E – FEBRUARY 2004 – REVISED AUGUST 2020  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The SN74AVC24T245 is a 16-bit, dual-supply noninverting bidirectional voltage level translation. Pins A and  
control pins (DIR and OE) are supported by VCCA and pins B are supported by VCCB. The A port can accept I/O  
voltages ranging from 1.2 V to 3.6 V, while the B port can accept I/O voltages from 1.2 V to 3.6 V. A high on DIR  
allows data transmission from A to B and a low on DIR allows data transmission from B to A when OE is set to  
low. When OE is set to high, both A and B are in the high-impedance state.  
This device is fully specified for partial-power-down applications using off output current (Ioff).  
The VCC isolation feature ensures that if either VCC input is at GND, both ports are put in a high-impedance  
state.  
8.2 Functional Block Diagram  
P5  
P6  
2DIR  
1DIR  
A6  
A5  
1OE  
2OE  
D6  
B6  
1A1  
2A1  
D1  
B1  
2B1  
1B1  
To Three Other Channels  
To Three Other Channels  
To Three Other Channels  
To Three Other Channels  
To Three Other Channels  
To Three Other Channels  
P3  
P4  
4DIR  
3DIR  
A4  
A3  
3OE  
4OE  
H6  
F6  
4A1  
3A1  
H1  
F1  
4B1  
3B1  
P1  
P2  
6DIR  
5DIR  
A2  
A1  
5OE  
6OE  
M6  
K6  
6A1  
5A1  
M1  
K1  
6B1  
5B1  
Copyright © 2020 Texas Instruments Incorporated  
16  
Submit Document Feedback  
 
 
 
SN74AVC24T245  
SCES552E – FEBRUARY 2004 – REVISED AUGUST 2020  
www.ti.com  
8.3 Feature Description  
8.3.1 Fully Configurable Dual-Rail Design Allows Each Port to Operate Over the Full 1.2-V to 3.6-V Power-  
Supply Range  
Both VCCA and VCCB can be supplied at any voltage from 1.2 V to 3.6 V which makes the device suitable for  
translating between any of the low voltage nodes (1.2 V, 1.8 V, 2.5 V, and 3.3 V).  
8.3.2 Partial-Power-Down Mode Operation  
This device is fully specified for partial-power-down applications using off output current (Ioff). The Ioff circuitry will  
prevent backflow current by disabling I/O output circuits when device is in partial power-down mode.  
8.3.3 VCC Isolation  
The VCC isolation feature ensures that if either VCCA or VCCB are at GND, both ports will be in a high-impedance  
state (IOZ). This prevents false logic levels from being presented to either bus.  
8.4 Device Functional Modes  
The SN74AVC24T245 is a voltage level translator that can operate from 1.2 V to 3.6 V (VCCA) and 1.2 V to 3.6 V  
(VCCB). The signal translation between 1.2 V and 3.6 V requires direction control and output enable control.  
When OE is low and DIR is high, data transmission is from A to B. When OE is low and DIR is low, data  
transmission is from B to A. When OE is high, both output ports will be high-impedance.  
Table 8-1. Function Table  
(Each 4-Bit Section)  
INPUTS  
OPERATION  
OE  
DIR  
B data to A  
bus  
L
L
A data to B  
bus  
L
H
X
H
Isolation  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
17  
 
 
SN74AVC24T245  
SCES552E – FEBRUARY 2004 – REVISED AUGUST 2020  
www.ti.com  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TI’s customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
The SN74AVC24T245 device can be used in level-shifting applications for interfacing devices and addressing  
mixed voltage incompatibility. The SN74AVC24T245 device is ideal for data transmission where direction is  
different for each channel.  
9.2 EnableTimes  
Calculate the enable times for the SN74AVC24T245 using the following formulas:  
tPZH (DIR to A) = tPLZ (DIR to B) + tPLH (B to A)  
tPZL (DIR to A) = tPHZ (DIR to B) + tPHL (B to A)  
tPZH (DIR to B) = tPLZ (DIR to A) + tPLH (A to B)  
tPZL (DIR to B) = tPHZ (DIR to A) + tPHL (A to B)  
(1)  
(2)  
(3)  
(4)  
In a bidirectional application, these enable times provide the maximum delay from the time the DIR bit is  
switched until an output is expected. For example, if the SN74AVC24T245 initially is transmitting from A to B,  
then the DIR bit is switched; the B port of the device must be disabled before presenting it with an input. After the  
B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified  
propagation delay.  
Copyright © 2020 Texas Instruments Incorporated  
18  
Submit Document Feedback  
 
 
 
SN74AVC24T245  
SCES552E – FEBRUARY 2004 – REVISED AUGUST 2020  
www.ti.com  
9.3 Typical Application  
1.8 V  
3.3 V  
0.1 µF  
0.1 µF  
V
V
CCB  
CCA  
1DIR/2DIR/3DIR/  
4DIR/5DIR/6DIR  
1OE/2OE/3OE/  
4OE/5OE/6OE  
1.8-V  
Controller  
3.3-V  
System  
SN74AVC(H)24T245  
1B1/1B2/1B3/1B4  
1A1/1A2/1A3/1A4  
2A1/2A2/2A3/2A4  
3A1/3A2/3A3/3A4  
4A1/4A2/4A3/4A4  
5A1/5A2/5A3/5A4  
6A1/6A2/6A3/6A4  
2B1/2B2/2B3/2B4  
3B1/3B2/3B3/3B4  
4B1/4B2/4B3/4B4  
5B1/5B2/5B3/5B4  
Data  
Data  
6B1/6B2/6B3/6B4  
GND  
GND  
GND  
Figure 9-1. Application Schematic  
9.3.1 Design Requirements  
This device uses drivers which are enabled depending on the state of the DIR pin. The designer must know the  
intended flow of data and take care not to violate any of the high or low logic levels. Unused data inputs must not  
be floating, as this can cause excessive internal leakage on the input CMOS structure. Tie any unused input and  
output ports directly to ground.  
For this design example, use the parameters listed in the Electrical Characteristics.  
Table 9-1. Design Parameters  
DESIGN PARAMETER  
EXAMPLE VALUE  
Input voltage range  
1.2 V to 3.6 V  
Output voltage range  
1.2 V to 3.6 V  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
19  
 
SN74AVC24T245  
SCES552E – FEBRUARY 2004 – REVISED AUGUST 2020  
www.ti.com  
9.3.2 Detailed Design Procedure  
To begin the design process, determine the following:  
9.3.2.1 Input Voltage Ranges  
Use the supply voltage of the device that is driving the SN74AVC24T245 device to determine the input voltage  
range. For a valid logic high the value must exceed the VIH of the input port. For a valid logic low the value must  
be less than the VIL of the input port.  
9.3.2.2 Output Voltage Range  
Use the supply voltage of the device that the SN74AVC24T245 device is driving to determine the output voltage  
range.  
9.3.3 Application Curve  
Input (1.2 V)  
Output (3.3 V)  
Figure 9-2. Translation Up (1.2 V to 3.3 V) at 2.5 MHz  
Copyright © 2020 Texas Instruments Incorporated  
20  
Submit Document Feedback  
SN74AVC24T245  
SCES552E – FEBRUARY 2004 – REVISED AUGUST 2020  
www.ti.com  
10 Power Supply Recommendations  
The SN74AVC24T245 device uses two separate configurable power-supply rails, VCCA and VCCB. VCCA accepts  
any supply voltage from 1.2 V to 3.6 V and VCCB accepts any supply voltage from 1.2 V to 3.6 V. The A port and  
B port are designed to track VCCA and VCCB, respectively, allowing for low-voltage bidirectional translation  
between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V and 3.3-V voltage nodes.  
The output-enable OE input circuit is designed so that it is supplied by VCCA and when the OE input is high, all  
outputs are placed in the high-impedance state. To ensure the high-impedance state of the outputs during power  
up or power down, the OE input pin must be tied to VCCA through a pullup resistor and must not be enabled until  
VCCA and VCCB are fully ramped and stable. The minimum value of the pullup resistor to VCCA is determined by  
the current-sinking capability of the driver.  
11 Layout  
11.1 Layout Guidelines  
To ensure reliability of the device, following common printed-circuit-board layout guidelines is recommended.  
Bypass capacitors must be used on power supplies.  
Short trace lengths must be used to avoid excessive loading.  
Place pads on the signal paths for loading capacitors or pullup resistors to help adjust rise and fall times of  
signals, depending on the system requirements.  
11.2 Layout Example  
0.8mm  
pitch  
0.50mm dia.  
solder mask  
opening  
0.350mm  
Dia. Pad  
0.254mm  
dia. hole  
0.125mm  
Trace  
Figure 11-1. BGA Layout Example  
Copyright © 2020 Texas Instruments Incorporated  
Submit Document Feedback  
21  
 
 
 
 
SN74AVC24T245  
SCES552E – FEBRUARY 2004 – REVISED AUGUST 2020  
www.ti.com  
12 Device and Documentation Support  
12.1 Documentation Support  
12.2 Related Documentation  
For related documentation, see the following:  
http://www.ti.com/lit/an/scea014/scea014.pdf  
12.3 Trademarks  
All other trademarks are the property of their respective owners.  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.5 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2020 Texas Instruments Incorporated  
22  
Submit Document Feedback  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Aug-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN74AVC24T245GRGR  
LIFEBUY  
BGA  
GRG  
83  
1000  
TBD  
SNPB  
Level-1-240C-UNLIM  
-40 to 85  
WH245  
MICROSTAR  
JUNIOR  
SN74AVC24T245NMUR  
SN74AVC24T245ZRGR  
ACTIVE  
ACTIVE  
NFBGA  
NMU  
ZRG  
83  
83  
1000  
1000  
Green (RoHS  
& no Sb/Br)  
SNAGCU  
SNAGCU  
Level-3-260C-168 HR  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
2CPW  
BGA  
MICROSTAR  
JUNIOR  
Green (RoHS  
& no Sb/Br)  
WH245  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Aug-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Aug-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN74AVC24T245GRGR BGA MI  
GRG  
83  
1000  
330.0  
24.4  
4.8  
10.3  
1.8  
8.0  
24.0  
Q1  
CROSTA  
R JUNI  
OR  
SN74AVC24T245ZRGR BGA MI  
ZRG  
83  
1000  
330.0  
24.4  
4.8  
10.3  
1.8  
8.0  
24.0  
Q1  
CROSTA  
R JUNI  
OR  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
29-Aug-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN74AVC24T245GRGR BGA MICROSTAR  
JUNIOR  
GRG  
83  
1000  
350.0  
350.0  
43.0  
SN74AVC24T245ZRGR BGA MICROSTAR  
JUNIOR  
ZRG  
83  
1000  
350.0  
350.0  
43.0  
Pack Materials-Page 2  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you  
permission to use these resources only for development of an application that uses the TI products described in the resource. Other  
reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third  
party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims,  
damages, costs, losses, and liabilities arising out of your use of these resources.  
TI’s products are provided subject to TI’s Terms of Sale (www.ti.com/legal/termsofsale.html) or other applicable terms available either on  
ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable  
warranties or warranty disclaimers for TI products.  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2020, Texas Instruments Incorporated  

相关型号:

SN74AVC24T245ZRG

24-Bit Dual-Supply Bus Transceiver with Configurable Voltage Translation And 3-State Outputs
TI

SN74AVC24T245ZRGR

24-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74AVC24T245_06

24-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74AVC24T245_V01

24-Bit Dual-Supply Bus Transceiver with Configurable Voltage Translation And 3-State Outputs
TI

SN74AVC2T244

2-BIT UNDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR
TI

SN74AVC2T244DQER

2-BIT UNDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR
TI

SN74AVC2T244DQMR

2-BIT UNDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR
TI

SN74AVC2T245

DUAL-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74AVC2T245RSWR

DUAL-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74AVC2T245_09

DUAL-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74AVC2T245_10

DUAL-BIT DUAL-SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3-STATE OUTPUTS
TI

SN74AVC2T45

DUAL BIT DUAL SUPPLY BUS TRANSCEIVER WITH CONFIGURABLE VOLTAGE TRANSLATION AND 3 STATE OUTPUTS
TI