SN74AXC4T245BQB-Q1 [TI]

SN74AXC4T245-Q1 Automotive 4-Bit Dual-Supply Bus Transceiver With Configurable Voltage Translation and Tri-State Outputs;
SN74AXC4T245BQB-Q1
型号: SN74AXC4T245BQB-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SN74AXC4T245-Q1 Automotive 4-Bit Dual-Supply Bus Transceiver With Configurable Voltage Translation and Tri-State Outputs

文件: 总44页 (文件大小:3028K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
SN74AXC4T245-Q1 Automotive 4-Bit Dual-Supply Bus Transceiver With Configurable  
Voltage Translation and Tri-State Outputs  
The SN74AXC4T245-Q1 device is designed for  
asynchronous communication between data buses.  
1 Features  
AEC-Q100 qualified for automotive applications  
Available in wettable flank QFN (WBQB) package  
Fully-configurable dual-rail design allows each port  
to operate with a power supply range from 0.65 V  
to 3.6 V  
Operating temperature from –40°C to +125°C  
Multiple direction control pins to allow  
simultaneous up and down translation  
Glitch-free power supply sequencing  
Up to 380 Mbps support when translating from 1.8  
V to 3.3 V  
The device transmits data from the A bus to the B bus  
or from the B bus to the A bus, depending on the logic  
level of the direction-control inputs (1DIR and 2DIR).  
The output-enable inputs (1 OE and 2 OE) are used  
to disable the outputs so the buses are effectively  
isolated. The SN74AXC4T245-Q1 device is designed  
so the control pins (xDIR and x OE) are referenced to  
VCCA  
.
To ensure the high-impedance state of the level shifter  
I/Os during power up or power down, the x OE pins  
should be tied to VCCA through a pull-up resistor.  
VCC isolation feature:  
This device is fully specified for partial-power-down  
applications using the Ioff current. The Ioff protection  
circuitry ensures that no excessive current is drawn  
from or to an input, output, or combined I/O that  
is biased to a specific voltage while the device is  
powered down.  
– If either VCC input is below 100 mV, all  
I/O outputs are disabled and become high  
impedance  
Ioff supports partial-power-down mode operation  
Compatible with AVC-family level shifters  
Latch-up performance exceeds 100 mA per JESD  
78, class II  
ESD protection exceeds JEDEC JS-001  
– 8000-V human-body model  
– 1000-V charged-device model  
The VCC isolation feature ensures that if either VCCA  
or VCCB is less than 100 mV, both I/O ports enter a  
high-impedance state by disabling their outputs.  
Glitch-Free power supply sequencing allows either  
supply rail to be powered on or off in any order while  
providing robust power sequencing performance.  
2 Applications  
Infotainment head unit  
ADAS fusion  
ADAS front camera  
Hybrid electric vehicles and electric vehicles  
battery management system  
Telematics control unit  
Device Information  
PART NUMBER  
SN74AXC4T245PW-Q1  
SN74AXC4T245BQB-Q1  
PACKAGE(1) BODY SIZE (NOM)  
TSSOP (16)  
WQFN (16)  
5.00 mm × 4.40 mm  
2.50 mm × 3.50 mm  
2.50 mm × 3.50 mm  
2.60 mm × 1.80 mm  
SN74AXC4T245WBQB-Q1 WQFN (16)  
SN74AXC4T245RSV-Q1 UQFN (16)  
3 Description  
The SN74AXC4T245-Q1 AEC-Q100 qualified device  
is a four-bit non-inverting bus transceiver that uses  
two individually configurable power-supply rails. The  
device is operational with both VCCA and VCCB  
supplies as low as 0.65 V. The A port is designed  
to track VCCA, which accepts any supply voltage from  
0.65 V to 3.6 V. The B port is designed to track  
VCCB, which also accepts any supply voltage from  
0.65 V to 3.6 V. Additionally the SN74AXC4T245-Q1  
is compatible with a single-supply system.  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
One of Two Transceiver Pairs  
VCCA  
VCCB  
xDIR  
xOE  
xB1  
xB2  
xA1  
xA2  
Functional Block Diagram  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
 
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Switching Characteristics, VCCA = 0.7 V ± 0.05 V.......7  
6.7 Switching Characteristics, VCCA = 0.8 V ± 0.04 V.......8  
6.8 Switching Characteristics, VCCA = 0.9 V ± 0.045 V.....9  
6.9 Switching Characteristics, VCCA = 1.2 V ± 0.1 V.......10  
6.10 Switching Characteristics, VCCA = 1.5 V ± 0.1 V..... 11  
6.11 Switching Characteristics, VCCA = 1.8 V ± 0.15 V... 12  
6.12 Switching Characteristics, VCCA = 2.5 V ± 0.2 V.....13  
6.13 Switching Characteristics, VCCA = 3.3 V ± 0.3 V.....14  
6.14 Operating Characteristics: TA = 25°C..................... 15  
6.15 Typical Characteristics............................................17  
7 Parameter Measurement Information..........................18  
7.1 Load Circuit and Voltage Waveforms........................18  
8 Detailed Description......................................................20  
8.1 Overview...................................................................20  
8.2 Functional Block Diagram.........................................20  
8.3 Feature Description...................................................20  
8.4 Device Functional Modes..........................................22  
9 Application and Implementation..................................23  
9.1 Application Information............................................. 23  
9.2 Typical Application.................................................... 23  
10 Power Supply Recommendations..............................25  
11 Layout...........................................................................25  
11.1 Layout Guidelines................................................... 25  
11.2 Layout Example...................................................... 25  
12 Device and Documentation Support..........................26  
12.1 Documentation Support.......................................... 26  
12.2 Receiving Notification of Documentation Updates..26  
12.3 Support Resources................................................. 26  
12.4 Trademarks.............................................................26  
12.5 Electrostatic Discharge Caution..............................26  
12.6 Glossary..................................................................26  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 26  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision D (September 2021) to Revision E (December 2021)  
Page  
Changed the status of the WBQB package from: Product Preview to: Production ........................................... 1  
Changes from Revision C (March 2021) to Revision D (September 2021)  
Page  
Added BQB (WQFN) package for APL...............................................................................................................1  
Changes from Revision B (July 2020) to Revision C (March 2021)  
Page  
Changed the status fo the BQB (WQFN) package option from preview to production ......................................1  
Changes from Revision A (December 2019) to Revision B (July 2020)  
Page  
Updated the numbering format for tables, figures and cross-references throughout the document...................1  
Added BQB (WQFN) package option to Device Information table .................................................................... 1  
Changes from Revision * (July 2019) to Revision A (December 2019)  
Page  
Changed from Advance Information to Production Data ................................................................................... 1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: SN74AXC4T245-Q1  
 
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
5 Pin Configuration and Functions  
VCCA  
1DIR  
2DIR  
1A1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VCCB  
1OE  
2OE  
1B1  
1B2  
2B1  
2B2  
GND  
2
3
4
5
6
7
1DIR  
2DIR  
1A1  
1A2  
2A1  
2A2  
1OE  
2OE  
15  
14  
13 1B1  
12 1B2  
11 2B1  
10 2B2  
Thermal  
Pad  
1A2  
2A1  
2A2  
GND  
Figure 5-1. PW Package 16-Pin TSSOP Top View  
Figure 5-2. BQB/WBQB Package 16-Pin WQFN  
Transparent Top View  
16 15 14 13  
1
2
3
4
12  
2B2  
1OE  
VCCB  
11  
GND  
10  
VCCA  
GND  
9
2A2  
1DIR  
5
6
7
8
Figure 5-3. RSV Package 16-Pin UQFN Transparent Top View  
Table 5-1. Pin Functions  
PIN  
NAME  
NO.  
TYPE  
DESCRIPTION  
PW  
4
RSV  
6
BQB  
4
1A1  
1A2  
1B1  
1B2  
1DIR  
I/O  
I/O  
I/O  
I/O  
I
Input/output 1A1. Referenced to VCCA  
5
7
5
Input/output 1A2. Referenced to VCCA  
13  
12  
2
15  
14  
4
13  
12  
2
Input/output 1B1. Referenced to VCCB  
Input/output 1B2. Referenced to VCCB  
Direction-control input for ‘1’ ports. Referenced to VCCA  
Tri-state output-mode enable. Pull OE high to place ‘1’ outputs in  
tri-state mode. Referenced to VCCA  
1 OE  
15  
1
15  
I
2A1  
2A2  
2B1  
2B2  
2DIR  
6
7
8
9
6
7
I/O  
I/O  
I/O  
I/O  
I
Input/output 2A1. Referenced to VCCA  
Input/output 2A2. Referenced to VCCA  
Input/output 2B1. Referenced to VCCB  
Input/output 2B2. Referenced to VCCB  
Direction-control input for ‘2’ ports. Referenced to VCCA  
11  
10  
3
13  
12  
5
11  
10  
3
Tri-state output-mode enable. Pull OE high to place ‘2’ outputs in  
tri-state mode. Referenced to VCCA  
2 OE  
14  
16  
14  
I
GND  
VCCA  
VCCB  
8, 9  
1
10, 11  
8, 9  
1
Ground  
3
2
A-port power supply voltage. 0.65 V ≤ VCCA ≤ 3.6 V  
B-port power supply voltage. 0.65 V ≤ VCCB ≤ 3.6 V  
16  
16  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN74AXC4T245-Q1  
 
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
MAX UNIT  
VCCA Supply voltage A  
VCCB Supply voltage B  
4.2  
4.2  
4.2  
4.2  
4.2  
4.2  
4.2  
V
V
I/O Ports (A Port)  
I/O Ports (B Port)  
Control Inputs  
A Port  
VI  
Input Voltage(2)  
V
VO  
VO  
Voltage applied to any output in the high-impedance or power-off state(2)  
Voltage applied to any output in the high or low state(2) (3)  
V
V
B Port  
A Port  
–0.5 VCCA + 0.2  
–0.5 VCCB + 0.2  
–50  
B Port  
IIK  
IOK  
IO  
Input clamp current  
VI < 0  
mA  
mA  
Output clamp current  
VO < 0  
–50  
Continuous output current  
Continuous current through VCC or GND  
Junction Temperature  
–50  
50 mA  
100 mA  
150 °C  
150 °C  
–100  
Tj  
Tstg  
Storage temperature  
–65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.  
(3) The output positive-voltage rating may be exceeded up to 4.2 V maximum if the output current rating is observed.  
6.2 ESD Ratings  
VALUE  
±8000  
±1000  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
Charged device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: SN74AXC4T245-Q1  
 
 
 
 
 
 
 
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
0.65  
MAX UNIT  
VCCA  
VCCB  
Supply voltage A  
Supply voltage B  
3.6  
3.6  
V
V
0.65  
VCCI = 0.65 V - 0.75 V  
VCCI = 0.76 V - 1 V  
VCCI = 1.1 V - 1.95 V  
VCCI = 2.3 V - 2.7 V  
VCCI = 3 V - 3.6 V  
VCCI x 0.70  
VCCI x 0.70  
VCCI x 0.65  
1.6  
Data Inputs  
2
VIH  
High-level input voltage  
V
VCCA = 0.65 V - 0.75 V  
VCCA = 0.76 V - 1 V  
VCCA = 1.1 V - 1.95 V  
VCCA = 2.3 V - 2.7 V  
VCCA = 3 V - 3.6 V  
VCCI = 0.65 V - 0.75 V  
VCCI = 0.76 V - 1 V  
VCCI = 1.1 V - 1.95 V  
VCCI = 2.3 V - 2.7 V  
VCCI = 3 V - 3.6 V  
VCCA x 0.70  
VCCA x 0.70  
VCCA x 0.65  
1.6  
Control Inputs(xDIR, x OE)  
Referenced to VCCA  
2
VCCI x 0.30  
VCCI x 0.30  
VCCI x 0.35  
0.7  
Data Inputs  
0.8  
VIL  
Low-level input voltage  
V
VCCA = 0.65 V - 0.75 V  
VCCA = 0.76 V - 1 V  
VCCA = 1.1 V - 1.95 V  
VCCA = 2.3 V - 2.7 V  
VCCA = 3 V - 3.6 V  
VCCA x 0.30  
VCCA x 0.30  
VCCA x 0.35  
0.7  
Control Inputs(xDIR, x OE)  
Referenced to VCCA  
0.8  
VI  
Input voltage (2)  
Output voltage  
0
0
0
3.6  
V
V
Active State  
Tri-State  
VCCO  
VO  
3.6  
Δt/Δv(2) Input transition rate  
10 ns/V  
125 °C  
TA Operating free-air temperature  
–40  
(1) VCCI is the VCC associated with the input port. VCCO is the VCC associated with the output port.  
(2) All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,  
Implications of Slow or Floating CMOS Inputs.  
6.4 Thermal Information  
SN74AXC4T245-Q1  
BQB  
(WQFN)  
WBQB  
(WQFN)  
THERMAL METRIC(1)  
PW (TSSOP) RSV (UQFN)  
UNIT  
16 PINS  
126.9  
49.3  
74.3  
8.1  
16 PINS  
130.1  
70.3  
57.4  
4.6  
16 PINS  
73.0  
35.1  
42.8  
4.6  
16 PINS  
72.9  
69.6  
41.9  
4.6  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
73.4  
NA  
55.8  
NA  
42.8  
10.2  
41.9  
19.9  
RθJC(bottom)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN74AXC4T245-Q1  
 
 
 
 
 
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted) (1) (2)  
Operating free-air temperature (TA)  
PARAMETER  
TEST CONDITIONS  
VCCA  
VCCB  
–40°C to 85°C  
MIN TYP(4)  
–40°C to 125°C  
MIN TYP(4)  
UNIT  
MAX  
MAX  
VCCO  
VCCO  
IOH = –100 µA  
0.7 V - 3.6 V  
0.7 V - 3.6 V  
0.1  
0.1  
IOH = –50 µA  
IOH = –200 µA  
IOH = –500 µA  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
0.55  
0.58  
0.65  
0.85  
1.05  
1.2  
0.55  
0.58  
0.65  
0.85  
1.05  
1.2  
High-level output  
voltage  
VOH  
VI = VIH  
V
IOH = –3 mA  
IOH = –6 mA  
IOH = –8 mA  
IOH = –9 mA  
IOH = –12 mA  
IOL = 100 µA  
IOL = 50 µA  
IOL = 200 µA  
IOL = 500 µA  
IOL = 3 mA  
1.4 V  
1.4 V  
1.65 V  
2.3 V  
1.65 V  
2.3 V  
1.75  
2.3  
1.75  
2.3  
3 V  
3 V  
0.7 V - 3.6 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
0.7 V - 3.6 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
0.1  
0.1  
0.1  
0.1  
0.18  
0.2  
0.18  
0.2  
Low-level output  
voltage  
VOL  
VI = VIL  
0.25  
0.35  
0.45  
0.55  
0.7  
0.25  
0.35  
0.45  
0.55  
0.7  
V
IOL = 6 mA  
1.4 V  
1.4 V  
IOL = 8 mA  
1.65 V  
2.3 V  
1.65 V  
2.3 V  
IOL = 9 mA  
IOL = 12 mA  
3 V  
3 V  
Control inputs (xDIR, x OE): VI  
= VCCA or GND  
0.65 V- 3.6 V  
0.65 V- 3.6 V  
0.65 V- 3.6 V  
0.65 V- 3.6 V  
–0.5  
–4  
0.5  
4
–1  
–8  
1
8
µA  
µA  
Input leakage  
current  
II  
Data Inputs (xAx, xBx)  
VI = VCCI or GND  
0 V  
0 V - 3.6 V  
0 V  
–4  
–4  
4
4
–8  
–8  
8
8
Partial power  
down current  
A or B Port  
VI or VO = 0 V - 3.6 V  
Ioff  
µA  
µA  
0 V - 3.6 V  
A or B Port  
Tri-state output  
current (3)  
IOZ  
VI = VCCI or GND, VO = VCCO 3.6 V  
or GND, OE = VIH  
3.6 V  
–4  
–2  
4
–8  
8
0.65 V- 3.6 V  
0.65 V- 3.6 V  
3.6 V  
13  
26  
VCCA supply  
current  
VI = VCCI  
or GND  
ICCA  
IO = 0  
0 V  
–12  
µA  
µA  
3.6 V  
0 V  
8
13  
8
16  
26  
16  
0.65 V- 3.6 V  
0 V  
0.65 V- 3.6 V  
3.6 V  
VCCB supply  
current  
VI = VCCI  
or GND  
ICCB  
IO = 0  
IO = 0  
3.6 V  
0 V  
–2  
–12  
ICCA  
ICCB  
+
Combined  
supply current  
VI = VCCI  
or GND  
0.65 V- 3.6 V  
3.3 V  
0.65 V- 3.6 V  
3.3 V  
20  
40  
µA  
pF  
pF  
Control input  
capacitance  
Ci  
VI = 3.3 V or GND  
4.5  
6.6  
4.5  
6.6  
Data I/O  
capacitance  
OE = VCCA, VO = 1.65V DC +1  
MHz -16 dBm sine wave  
Cio  
3.3 V  
3.3 V  
(1) VCCI is the VCC associated with the input port.  
(2) VCCO is the VCC associated with the output port.  
(3) For I/O ports, the parameter IOZ includes the input leakage current.  
(4) All typical data is taken at 25°C.  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN74AXC4T245-Q1  
 
 
 
 
 
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
6.6 Switching Characteristics, VCCA = 0.7 V ± 0.05 V  
See Figure 1 and Table 1 for test circuit and loading. See Figure 2, Figure 3, and Figure 4 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
)
PARAMETER  
FROM  
TO  
Test Conditions 0.7 ± 0.05 V 0.8 ± 0.04 V 0.9 ± 0.045 V 1.2 ± 0.1 V  
MIN MAX MIN MAX MIN MAX MIN MAX  
1.5 ± 0.1 V  
MIN MAX  
1.8 ± 0.15 V  
MIN MAX  
2.5 ± 0.2 V  
MIN MAX  
3.3 ± 0.3 V  
MIN MAX  
UNIT  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
155  
155  
156  
156  
156  
156  
154  
154  
238  
238  
286  
286  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
108  
108  
128  
128  
156  
156  
121  
121  
238  
238  
194  
194  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
76  
76  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
40  
40  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
37  
37  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
40  
40  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
67  
67  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
185  
185  
10  
A
B
B
A
A
B
A
B
Propagation  
delay  
tpd  
ns  
106  
106  
156  
156  
101  
101  
238  
238  
146  
146  
55  
21  
15  
11  
55  
21  
15  
11  
10  
156  
156  
55  
156  
156  
54  
156  
156  
56  
156  
156  
65  
156  
156  
125  
125  
238  
238  
146  
146  
OE  
OE  
OE  
OE  
tdis Disable time  
ns  
ns  
55  
54  
56  
65  
238  
238  
94  
238  
238  
76  
238  
238  
70  
238  
238  
69  
ten Enable time  
94  
76  
70  
69  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN74AXC4T245-Q1  
 
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
6.7 Switching Characteristics, VCCA = 0.8 V ± 0.04 V  
See Figure 1 and Table 1 for test circuit and loading. See Figure 2, Figure 3, and Figure 4 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
)
PARAMETER  
FROM  
TO  
Test Conditions 0.7 ± 0.05 V 0.8 ± 0.04 V 0.9 ± 0.045 V 1.2 ± 0.1 V  
MIN MAX MIN MAX MIN MAX MIN MAX  
1.5 ± 0.1 V  
MIN MAX  
1.8 ± 0.15 V  
MIN MAX  
2.5 ± 0.2 V  
MIN MAX  
3.3 ± 0.3 V  
MIN MAX  
UNIT  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
128  
128  
108  
108  
103  
103  
143  
143  
143  
143  
243  
243  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
88  
88  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
63  
63  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
29  
29  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
24  
24  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
23  
23  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
24  
24  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
34  
34  
A
B
B
A
A
B
A
B
Propagation  
delay  
tpd  
ns  
88  
70  
38  
21  
15  
11  
10  
88  
70  
38  
21  
15  
11  
10  
103  
103  
110  
110  
143  
143  
172  
172  
103  
103  
90  
103  
103  
42  
103  
103  
36  
103  
103  
36  
103  
103  
37  
103  
103  
47  
OE  
OE  
OE  
OE  
tdis Disable time  
ns  
ns  
90  
42  
36  
36  
37  
47  
143  
143  
129  
129  
143  
143  
79  
143  
143  
60  
143  
143  
54  
143  
143  
48  
143  
143  
53  
ten Enable time  
79  
60  
54  
48  
53  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: SN74AXC4T245-Q1  
 
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
6.8 Switching Characteristics, VCCA = 0.9 V ± 0.045 V  
See Figure 1 and Table 1 for test circuit and loading. See Figure 2, Figure 3, and Figure 4 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
)
PARAMETER  
FROM  
TO  
Test Conditions 0.7 ± 0.05 V 0.8 ± 0.04 V 0.9 ± 0.045 V 1.2 ± 0.1 V  
MIN MAX MIN MAX MIN MAX MIN MAX  
1.5 ± 0.1 V  
MIN MAX  
1.8 ± 0.15 V  
MIN MAX  
2.5 ± 0.2 V  
MIN MAX  
3.3 ± 0.3 V  
MIN MAX  
UNIT  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
106  
106  
76  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
70  
70  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
53  
53  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
24  
24  
27  
27  
81  
81  
37  
37  
95  
95  
71  
71  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
18  
18  
18  
18  
81  
81  
30  
30  
95  
95  
52  
52  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
17  
17  
13  
13  
81  
81  
28  
28  
95  
95  
46  
46  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
16  
16  
10  
10  
81  
81  
26  
26  
95  
95  
39  
39  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
19  
19  
9
A
B
B
A
A
B
A
B
Propagation  
delay  
tpd  
ns  
63  
53  
76  
63  
53  
9
81  
81  
81  
81  
81  
30  
30  
95  
95  
39  
39  
OE  
OE  
OE  
OE  
81  
81  
81  
tdis Disable time  
ns  
ns  
138  
138  
95  
105  
105  
95  
84  
84  
95  
95  
95  
95  
ten Enable time  
222  
222  
148  
148  
116  
116  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN74AXC4T245-Q1  
 
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
6.9 Switching Characteristics, VCCA = 1.2 V ± 0.1 V  
See Figure 1 and Table 1 for test circuit and loading. See Figure 2, Figure 3, and Figure 4 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
)
PARAMETER  
FROM  
TO  
Test Conditions 0.7 ± 0.05 V 0.8 ± 0.04 V 0.9 ± 0.045 V 1.2 ± 0.1 V  
MIN MAX MIN MAX MIN MAX MIN MAX  
1.5 ± 0.1 V  
MIN MAX  
1.8 ± 0.15 V  
MIN MAX  
2.5 ± 0.2 V  
MIN MAX  
3.3 ± 0.3 V  
MIN MAX  
UNIT  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
55  
55  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
37  
37  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
27  
27  
24  
24  
30  
30  
79  
79  
45  
45  
79  
79  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
15  
15  
15  
15  
30  
30  
31  
31  
45  
45  
58  
58  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
11  
11  
10  
10  
30  
30  
24  
24  
45  
45  
41  
41  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
10  
10  
9
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
8
8
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
9
9
A
B
B
A
A
B
A
B
Propagation  
delay  
tpd  
ns  
41  
29  
7
6
41  
29  
9
7
6
30  
30  
30  
30  
21  
21  
45  
45  
35  
35  
30  
30  
18  
18  
45  
45  
27  
27  
30  
30  
18  
18  
45  
45  
24  
24  
OE  
OE  
OE  
OE  
30  
30  
tdis Disable time  
ns  
ns  
132  
132  
45  
99  
99  
45  
45  
45  
ten Enable time  
164  
164  
108  
108  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: SN74AXC4T245-Q1  
 
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
6.10 Switching Characteristics, VCCA = 1.5 V ± 0.1 V  
See Figure 1 and Table 1 for test circuit and loading. See Figure 2, Figure 3, and Figure 4 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
)
PARAMETER  
FROM  
TO  
Test Conditions 0.7 ± 0.05 V 0.8 ± 0.04 V 0.9 ± 0.045 V 1.2 ± 0.1 V  
MIN MAX MIN MAX MIN MAX MIN MAX  
1.5 ± 0.1 V  
MIN MAX  
1.8 ± 0.15 V  
MIN MAX  
2.5 ± 0.2 V  
MIN MAX  
3.3 ± 0.3 V  
MIN MAX  
UNIT  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
21  
21  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
21  
21  
24  
24  
21  
21  
97  
97  
26  
26  
84  
84  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
18  
18  
18  
18  
21  
21  
77  
77  
26  
26  
68  
68  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
11  
11  
11  
11  
21  
21  
29  
29  
26  
26  
47  
47  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
9
9
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
8
8
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
7
7
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
6
6
A
B
B
A
A
B
A
B
Propagation  
delay  
tpd  
ns  
37  
9
8
5
5
37  
9
8
5
5
21  
21  
21  
21  
21  
26  
26  
35  
35  
21  
21  
19  
19  
26  
26  
29  
29  
21  
21  
15  
15  
26  
26  
22  
22  
21  
21  
15  
15  
26  
26  
20  
20  
OE  
OE  
OE  
OE  
21  
tdis Disable time  
ns  
ns  
131  
131  
26  
26  
ten Enable time  
109  
109  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN74AXC4T245-Q1  
 
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
6.11 Switching Characteristics, VCCA = 1.8 V ± 0.15 V  
See Figure 1 and Table 1 for test circuit and loading. See Figure 2, Figure 3, and Figure 4 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
)
PARAMETER  
FROM  
TO  
Test Conditions 0.7 ± 0.05 V 0.8 ± 0.04 V 0.9 ± 0.045 V 1.2 ± 0.1 V  
MIN MAX MIN MAX MIN MAX MIN MAX  
1.5 ± 0.1 V  
MIN MAX  
1.8 ± 0.15 V  
MIN MAX  
2.5 ± 0.2 V  
MIN MAX  
3.3 ± 0.3 V  
MIN MAX  
UNIT  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
15  
15  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
15  
15  
23  
23  
18  
18  
96  
96  
20  
20  
75  
75  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
13  
13  
17  
17  
18  
18  
76  
76  
20  
20  
62  
62  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
9
9
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
8
8
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
7
7
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
6
6
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
6
6
A
B
B
A
A
B
A
B
Propagation  
delay  
tpd  
ns  
40  
10  
10  
18  
18  
28  
28  
20  
20  
41  
41  
8
7
5
4
40  
8
7
5
4
18  
18  
18  
21  
21  
20  
20  
32  
32  
18  
18  
18  
18  
20  
20  
27  
27  
18  
18  
15  
15  
20  
20  
20  
20  
18  
18  
14  
14  
20  
20  
18  
18  
OE  
OE  
OE  
OE  
18  
tdis Disable time  
ns  
ns  
130  
130  
20  
20  
ten Enable time  
102  
102  
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: SN74AXC4T245-Q1  
 
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
6.12 Switching Characteristics, VCCA = 2.5 V ± 0.2 V  
See Figure 1 and Table 1 for test circuit and loading. See Figure 2, Figure 3, and Figure 4 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
)
PARAMETER  
FROM  
TO  
Test Conditions 0.7 ± 0.05 V 0.8 ± 0.04 V 0.9 ± 0.045 V 1.2 ± 0.1 V  
MIN MAX MIN MAX MIN MAX MIN MAX  
1.5 ± 0.1 V  
MIN MAX  
1.8 ± 0.15 V  
MIN MAX  
2.5 ± 0.2 V  
MIN MAX  
3.3 ± 0.3 V  
MIN MAX  
UNIT  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
11  
11  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
11  
11  
24  
24  
13  
13  
95  
95  
13  
13  
70  
70  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
10  
11  
16  
16  
13  
13  
76  
76  
13  
13  
56  
56  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
7
7
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
5
5
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
5
5
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
5
5
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
5
5
A
B
B
A
A
B
A
B
Propagation  
delay  
tpd  
ns  
67  
8
7
6
5
4
67  
8
7
6
5
4
13  
13  
13  
27  
27  
13  
13  
36  
36  
13  
13  
20  
20  
13  
13  
26  
26  
13  
13  
17  
17  
13  
13  
22  
22  
13  
13  
13  
13  
13  
13  
18  
18  
13  
13  
13  
13  
13  
13  
16  
16  
OE  
OE  
OE  
OE  
13  
tdis Disable time  
ns  
ns  
128  
128  
13  
13  
ten Enable time  
120  
120  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN74AXC4T245-Q1  
 
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
6.13 Switching Characteristics, VCCA = 3.3 V ± 0.3 V  
See Figure 1 and Table 1 for test circuit and loading. See Figure 2, Figure 3, and Figure 4 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
)
PARAMETER  
FROM  
TO  
Test Conditions 0.7 ± 0.05 V 0.8 ± 0.04 V 0.9 ± 0.045 V 1.2 ± 0.1 V  
MIN MAX MIN MAX MIN MAX MIN MAX  
1.5 ± 0.1 V  
MIN MAX  
1.8 ± 0.15 V  
MIN MAX  
2.5 ± 0.2 V  
MIN MAX  
3.3 ± 0.3 V  
MIN MAX  
UNIT  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
10  
10  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
10  
10  
34  
34  
12  
12  
95  
95  
11  
11  
82  
82  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
9
9
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
6
6
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
5
5
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
4
4
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
4
4
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
4
4
A
B
B
A
A
B
A
B
Propagation  
delay  
tpd  
ns  
185  
185  
12  
19  
19  
12  
12  
75  
75  
11  
11  
59  
59  
9
6
6
5
4
9
6
6
5
4
12  
12  
27  
27  
11  
11  
35  
35  
12  
12  
19  
19  
11  
11  
24  
24  
12  
12  
17  
17  
11  
11  
20  
20  
12  
12  
13  
13  
11  
11  
16  
16  
12  
12  
12  
12  
11  
11  
14  
14  
OE  
OE  
OE  
OE  
12  
tdis Disable time  
ns  
ns  
141  
141  
11  
11  
ten Enable time  
189  
189  
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: SN74AXC4T245-Q1  
 
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
6.14 Operating Characteristics: TA = 25°C  
PARAMETER  
TEST CONDITIONS  
VCCA  
0.7 V  
VCCB  
0.7 V  
MIN  
TYP  
2.2  
MAX UNIT  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
2.1  
2.1  
Power Dissipation Capacitance  
per transceiver (A to B: outputs  
enabled)  
2.1  
CL = 0, RL = Open f = 1  
MHz, tr = tf = 1 ns  
pF  
2.0  
2.0  
2.1  
2.3  
1.5  
1.5  
1.5  
Power Dissipation Capacitance  
per transceiver (A to B: outputs  
disabled)  
1.4  
CL = 0, RL = Open f = 1  
MHz, tr = tf = 1 ns  
pF  
pF  
pF  
1.4  
1.4  
1.4  
1.6  
CpdA  
12.1  
12.1  
12.1  
12.4  
13.0  
14.2  
17.4  
20.1  
1.1  
Power Dissipation Capacitance  
per transceiver (B to A: outputs  
enabled)  
CL = 0, RL = Open f = 1  
MHz, tr = tf = 1 ns  
1.1  
1.1  
Power Dissipation Capacitance  
per transceiver (B to A: outputs  
disabled)  
1.1  
CL = 0, RL = Open f = 1  
MHz, tr = tf = 1 ns  
1.1  
1.1  
1.1  
1.1  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: SN74AXC4T245-Q1  
 
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
6.14 Operating Characteristics: TA = 25°C (continued)  
PARAMETER  
TEST CONDITIONS  
VCCA  
VCCB  
0.7 V  
MIN  
TYP  
12.1  
12.1  
12.1  
12.4  
12.9  
14.1  
17.2  
20.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.2  
1.8  
1.8  
1.7  
1.7  
1.7  
2
MAX UNIT  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
0.7 V  
0.8 V  
0.9 V  
1.2 V  
1.5 V  
1.8 V  
2.5 V  
3.3 V  
Power Dissipation Capacitance  
per transceiver (A to B: outputs  
enabled)  
CL = 0, RL = Open f = 1  
MHz, tr = tf = 1 ns  
pF  
pF  
pF  
pF  
Power Dissipation Capacitance  
per transceiver (A to B: outputs  
disabled)  
CL = 0, RL = Open f = 1  
MHz, tr = tf = 1 ns  
CpdB  
Power Dissipation Capacitance  
per transceiver (B to A: outputs  
enabled)  
CL = 0, RL = Open f = 1  
MHz, tr = tf = 1 ns  
2.5  
1.1  
1.8  
1.8  
1.7  
1.7  
1.7  
2
Power Dissipation Capacitance  
per transceiver (B to A: outputs  
disabled)  
CL = 0, RL = Open f = 1  
MHz, tr = tf = 1 ns  
2.1  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: SN74AXC4T245-Q1  
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
6.15 Typical Characteristics  
3.4  
3.2  
3
1.25  
1.2  
VCC = 1.8V  
VCC = 2.5V  
VCC = 3.3V  
1.15  
1.1  
1.05  
1
2.8  
2.6  
2.4  
2.2  
2
0.95  
0.9  
0.85  
0.8  
0.75  
0.7  
1.8  
1.6  
1.4  
0.65  
0.6  
VCC = 0.7V  
VCC = 1.2V  
0.55  
0
0.5  
1
1.5  
2
2.5  
IOH (mA)  
3
3.5  
4
4.5  
5
0
2
4
6
8
10  
IOH (mA)  
12  
14  
16  
18  
20  
D001  
D001  
Figure 6-2. Typical (TA=25°C) Output High Voltage  
(VOH) vs Source Current (IOH  
Figure 6-1. Typical (TA=25°C) Output High Voltage  
(VOH) vs Source Current (IOH  
)
)
700  
650  
600  
550  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
220  
200  
180  
160  
140  
120  
100  
80  
60  
40  
VCC = 1.8V  
VCC = 2.5V  
VCC = 3.3V  
VCC = 0.7V  
VCC = 1.2V  
20  
0
-50  
0
0
2
4
6
8
10  
IOL (mA)  
12  
14  
16  
18  
20  
0
0.5  
1
1.5  
2
2.5  
IOL (mA)  
3
3.5  
4
4.5  
5
D001  
D001  
Figure 6-3. Typical (TA=25°C) Output High Voltage Figure 6-4. Typical (TA=25°C) Output High Voltage  
(VOL) vs Sink Current (IOL (VOL) vs Sink Current (IOL  
)
)
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: SN74AXC4T245-Q1  
 
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
7 Parameter Measurement Information  
7.1 Load Circuit and Voltage Waveforms  
Unless otherwise noted, all input pulses are supplied by generators having the following characteristics:  
f = 1 MHz  
ZO = 50 Ω  
dv/dt ≤ 1 ns/V  
Measurement Point  
2 x VCCO  
Open  
S1  
RL  
Output Pin  
Under Test  
GND  
(1)  
CL  
RL  
A. CL includes probe and jig capacitance.  
Figure 7-1. Load Circuit  
Table 7-1. Load Circuit Conditions  
Parameter  
VCCO  
RL  
CL  
S1  
VTP  
N/A  
Δt/Δv Input transition rise or fall rate  
0.65 V – 3.6 V  
1.1 V – 3.6 V  
0.65 V – 0.95 V  
3 V – 3.6 V  
1 MΩ  
2 kΩ  
20 kΩ  
2 kΩ  
2 kΩ  
2 kΩ  
20 kΩ  
2 kΩ  
2 kΩ  
2 kΩ  
20 kΩ  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
Open  
Open  
N/A  
tpd  
Propagation (delay) time  
Open  
N/A  
2 × VCCO  
2 × VCCO  
2 × VCCO  
2 × VCCO  
GND  
0.3 V  
0.15 V  
0.1 V  
0.1 V  
0.3 V  
0.15 V  
0.1 V  
0.1 V  
1.65 V – 2.7 V  
1.1 V – 1.6 V  
0.65 V – 0.95 V  
3 V – 3.6 V  
ten, tdis Enable time, disable time  
ten, tdis Enable time, disable time  
1.65 V – 2.7 V  
1.1 V – 1.6 V  
0.65 V – 0.95 V  
GND  
GND  
GND  
(1)  
VCCI  
(1)  
VCCI  
Input A, B  
100 kHz  
VCCI / 2  
VCCI / 2  
Input A, B  
500 ps/V œ 100 ns/V  
0 V  
0 V  
VOH  
(2)  
VOH  
tpd  
tpd  
(2)  
Output B, A  
Ensure Monotonic  
Rising and Falling Edge  
(2)  
VOL  
Output B, A  
VCCI / 2  
VCCI / 2  
(2)  
1. VCCI is the supply pin associated with the input port.  
2. VOH and VOL are typical output voltage levels that occur  
with specified RL, CL, and S1  
VOL  
1. VCCI is the supply pin associated with the input port.  
2. VOH and VOL are typical output voltage levels that occur  
with specified RL, CL, and S1  
Figure 7-3. Input Transition Rise or Fall Rate  
Figure 7-2. Propagation Delay  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: SN74AXC4T245-Q1  
 
 
 
 
 
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
VCCA  
OE  
VCCA / 2  
VCCA / 2  
GND  
tdis  
ten  
(3)  
VCCO  
Output(1)  
VCCO / 2  
VOL + VTP  
(4)  
VOL  
(4)  
VOH  
VOH - VTP  
Output(2)  
VCCO / 2  
GND  
A. Output waveform on the condition that input is driven to a valid Logic Low.  
B. Output waveform on the condition that input is driven to a valid Logic High.  
C. VCCO is the supply pin associated with the output port.  
D. VOH and VOL are typical output voltage levels with specified RL, CL, and S1.  
Figure 7-4. Enable Time And Disable Time  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: SN74AXC4T245-Q1  
 
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The SN74AXC4T245-Q1 AEC-Q100 qualified device is a 4-bit, dual-supply noninverting bidirectional voltage  
level translation device. Ax pins and control pins (1DIR, 2DIR,1 OE, and 2 OE) are referenced to VCCA logic  
levels, and Bx pins are referenced to VCCB logic levels. The A port is able to accept I/O voltages ranging from  
0.65 V to 3.6 V, while the B port can accept I/O voltages from 0.65 V to 3.6 V. A high on DIR allows data  
transmission from A to B and a low on DIR allows data transmission from B to A when OE is set to low. When  
OE is set to high, both Ax and Bx pins are in the high-impedance state. See Device Functional Modes for a  
summary of the operation of the control logic.  
8.2 Functional Block Diagram  
One of Two Transceiver Pairs  
VCCA  
VCCB  
xDIR  
xOE  
xB1  
xB2  
xA1  
xA2  
8.3 Feature Description  
8.3.1 Standard CMOS Inputs  
Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input  
capacitance given in the Electrical Characteristics. The worst case resistance is calculated with the maximum  
input voltage, given in the Absolute Maximum Ratings, and the maximum input leakage current, given in the  
Electrical Characteristics, using ohm's law (R = V ÷ I).  
Signals applied to the inputs need to have fast edge rates, as defined by Δt/Δv in Recommended Operating  
Conditions to avoid excessive current consumption and oscillations. If a slow or noisy input signal is required, a  
device with a Schmitt-trigger input should be used to condition the input signal prior to the standard CMOS input.  
8.3.2 Balanced High-Drive CMOS Push-Pull Outputs  
A balanced output allows the device to sink and source similar currents. The high drive capability of this device  
creates fast edges into light loads so routing and load conditions should be considered to prevent ringing.  
Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without  
being damaged. The electrical and thermal limits defined in the Absolute Maximum Ratings must be followed at  
all times.  
8.3.3 Partial Power Down (Ioff)  
The inputs and outputs for this device enter a high-impedance state when the device is powered down, inhibiting  
current backflow into the device. The maximum leakage into or out of any input or output pin on the device is  
specified by Ioff in the Electrical Characteristics.  
8.3.4 VCC Isolation  
The inputs and outputs for this device enter a high-impedance state when either supply is <100 mV.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: SN74AXC4T245-Q1  
 
 
 
 
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
8.3.5 Over-Voltage Tolerant Inputs  
Input signals to this device can be driven above the supply voltage so long as they remain below the maximum  
input voltage value specified in the Recommended Operating Conditions.  
8.3.6 Glitch-Free Power Supply Sequencing  
Either supply rail may be powered on or off in any order without producing a glitch on the I/Os (that is,  
where the output erroneously transitions to VCC when it should be held low). Glitches of this nature can be  
misinterpreted by a peripheral as a valid data bit, which could trigger a false device reset of the peripheral,  
a false device configuration of the peripheral, or even a false data initialization by the peripheral. For more  
information regarding the power up glitch performance of the AXC family of level translators, see Glitch Free  
Power Sequencing With AXC Level Translators.  
8.3.7 Negative Clamping Diodes  
The inputs and outputs to this device have negative clamping diodes as depicted in Figure 8-1.  
CAUTION  
Voltages beyond the values specified in the Absolute Maximum Ratings table can cause damage to  
the device. The input negative-voltage and output voltage ratings may be exceeded if the input and  
output clamp-current ratings are observed.  
VCC  
Device  
Input  
Output  
Logic  
GND  
-IIK  
-IOK  
Figure 8-1. Electrical Placement of Clamping Diodes for Each Input and Output  
8.3.8 Fully Configurable Dual-Rail Design  
Both the VCCA and VCCB pins can be supplied at any voltage from 0.65 V to 3.6 V, making the device suitable for  
translating between any of the voltage nodes (0.7 V, 0.8 V, 0.9 V, 1.2 V, 1.8 V, 2.5 V, and 3.3 V).  
8.3.9 Supports High-Speed Translation  
The SN74AXC4T245-Q1 device can support high data-rate applications. The translated signal data rate can be  
up to 380 Mbps when the signal is translated from 1.8 V to 3.3 V.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: SN74AXC4T245-Q1  
 
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
8.3.10 Wettable Flanks  
This device includes wettable flanks for at least one package. See the Features section on the front page of the  
data sheet for which packages include this feature.  
Package  
Package  
Solder  
Standard Lead  
We able Flank Lead  
Pad  
PCB  
Figure 8-2. Simplified Cutaway View of Wettable-Flank QFN Package and Standard QFN Package After  
Soldering  
Wettable flanks help improve side wetting after soldering which makes QFN packages easier to inspect with  
automatic optical inspection (AOI). A wettable flank can be dimpled or step-cut to provide additional surface  
area for solder adhesion which assists in reliably creating a side fillet as shown in Figure 8-2. Please see the  
mechanical drawing for additional details.  
8.4 Device Functional Modes  
Table 8-1. Function Table (Each 2-Bit Section)  
CONTROL INPUTS(1) (2)  
PORT STATUS  
OPERATION  
OE DIR  
A PORT  
B PORT  
Input (Hi-Z)  
L
L
L
H
X
Output (Enabled)  
Input (Hi-Z)  
B data to A bus  
A data to B bus  
Isolation  
Output (Enabled)  
Input (Hi-Z)  
H
Input (Hi-Z)  
(1) Input circuits of the data I/Os are always active.  
(2) Pins configured as inputs should not be left floating.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: SN74AXC4T245-Q1  
 
 
 
 
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The AEC-Q100 qualified SN74AXC4T245-Q1 device can be used in level-translation applications for interfacing  
devices or systems operating at different interface voltages with one another. The SN74AXC4T245-Q1 device is  
ideal for use in applications where a push-pull driver is connected to the data I/Os. The maximum data rate can  
be up to 380 Mbps when device translates a signal from 1.8 V to 3.3 V.  
Figure 9-1 shows an example application where the SN74AXC4T245-Q1 device is used to translate a low  
voltage UART signal from an SoC to a higher voltage signal which properly drives the inputs of the Bluetooth®  
module, and vice versa.  
9.2 Typical Application  
Pullup Resistors keep device disabled  
during power up. OE inputs may also  
be tied to GND to keep device enabled  
0.7 V  
3.3 V  
0.1 µF  
0.1 µF  
VCCA  
VCCB  
1DIR  
2DIR  
1OE  
GPIO1  
Bluetooth  
Module  
SN74AXC4T245-Q1  
GPIO2  
SoC  
2OE  
1A1  
1A2  
2A1  
2A2  
RX  
TX  
RTS  
RX  
1B1  
CTS  
TX  
1B2  
2B1  
2B2  
RTS  
CTS  
GND  
Figure 9-1. UART Interface Application  
9.2.1 Design Requirements  
For this design example, use the parameters listed in Table 9-1.  
Table 9-1. Design Parameters  
DESIGN PARAMETERS  
Input voltage range  
EXAMPLE VALUES  
0.65 V to 3.6 V  
0.65 V to 3.6 V  
Output voltage range  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: SN74AXC4T245-Q1  
 
 
 
 
 
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
9.2.2 Detailed Design Procedure  
To begin the design process, determine the following:  
Input voltage range:  
– Use the supply voltage of the device that is driving the SN74AXC4T245-Q1 device to determine the input  
voltage range. For a valid logic-high, the value must exceed the high-level input voltage (VIH) of the input  
port. For a valid logic low the value must be less than the low-level input voltage (VIL) of the input port.  
Output voltage range:  
– Use the supply voltage of the device that the SN74AXC4T245-Q1 device is driving to determine the output  
voltage range.  
9.2.3 Application Curve  
Figure 9-2. Up Translation at 2.5 MHz (0.7 V to 3.3 V)  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: SN74AXC4T245-Q1  
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
10 Power Supply Recommendations  
Always apply a ground reference to the GND pins first. This device is designed for glitch free power sequencing  
without any supply sequencing requirements such as ramp order or ramp rate.  
This device was designed with various power supply sequencing methods in mind to help prevent unintended  
triggering of downstream devices. For more information regarding the power up glitch performance of the AXC  
family of level translators, see Glitch Free Power Sequencing With AXC Level Translators.  
11 Layout  
11.1 Layout Guidelines  
To ensure reliability of the device, following common printed-circuit board layout guidelines are recommended:  
Use bypass capacitors on the power supply pins and place them as close to the device as possible.  
Use short trace lengths to avoid excessive loading.  
11.2 Layout Example  
Legend  
Via to VCCA  
Via to VCCB  
A
B
G
Via to GND  
Copper Traces  
SN74AXC4T245-Q1PW  
0.1µF  
0.1µF  
A
G
B
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VCCA  
VCCB  
1DIR  
2DIR  
1A1  
1OE  
2OE  
1B1  
1B2  
2B1  
2B2  
GND  
RX to Module  
TX from SoC  
RTS from SoC  
RX to SoC  
G
G
CTS to Module  
TX from Module  
RTS from Module  
1A2  
2A1  
CTS to SoC  
2A2  
GND  
G
G
Figure 11-1. Layout Example  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: SN74AXC4T245-Q1  
 
 
 
 
SN74AXC4T245-Q1  
SCES905E – JULY 2019 – REVISED DECEMBER 2021  
www.ti.com  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, Glitch Free Power Sequencing With AXC Level Translators application report  
Texas Instruments, Implications of Slow or Floating CMOS Inputs application report  
Texas Instruments, Low Voltage Translation For Standard Interfaces application report  
Texas Instruments, Power Sequencing for AXC Family of Devices application report  
Texas Instruments, SN74AXC4T245RSV EVM evaluation module user's guide  
Texas Instruments, UART Interface Using SN74AXC4T245 video  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.3 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
Bluetooth® is a registered trademark of Bluetooth Special Interest Group (SIG).  
All trademarks are the property of their respective owners.  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: SN74AXC4T245-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Dec-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
CAXC4T245QBQBRQ1  
CAXC4T245QRSVRQ1  
CAXC4T245QWBQBRQ1  
PCAXC4T245QWBQBRQ1  
SN74AXC4T245QPWRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
UQFN  
WQFN  
WQFN  
TSSOP  
BQB  
RSV  
BQB  
BQB  
PW  
16  
16  
16  
16  
16  
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
4T245Q  
NIPDAUAG  
NIPDAU  
Call TI  
1ZDR  
4T245Q  
3000  
TBD  
2000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
4T245Q  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Dec-2021  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF SN74AXC4T245-Q1 :  
Catalog : SN74AXC4T245  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Dec-2021  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
CAXC4T245QBQBRQ1  
CAXC4T245QRSVRQ1  
WQFN  
UQFN  
BQB  
RSV  
BQB  
PW  
16  
16  
16  
16  
3000  
3000  
3000  
2000  
180.0  
178.0  
180.0  
330.0  
12.4  
13.5  
12.4  
12.4  
2.8  
2.1  
2.8  
6.9  
3.8  
2.9  
3.8  
5.6  
1.2  
0.75  
1.2  
4.0  
4.0  
4.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
CAXC4T245QWBQBRQ1 WQFN  
SN74AXC4T245QPWRQ1 TSSOP  
1.6  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
19-Dec-2021  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
CAXC4T245QBQBRQ1  
CAXC4T245QRSVRQ1  
CAXC4T245QWBQBRQ1  
SN74AXC4T245QPWRQ1  
WQFN  
UQFN  
BQB  
RSV  
BQB  
PW  
16  
16  
16  
16  
3000  
3000  
3000  
2000  
210.0  
189.0  
210.0  
853.0  
185.0  
185.0  
185.0  
449.0  
35.0  
36.0  
35.0  
35.0  
WQFN  
TSSOP  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RSV0016A  
UQFN - 0.55 mm max height  
S
C
A
L
E
5
.
0
0
0
ULTRA THIN QUAD FLATPACK - NO LEAD  
1.85  
1.75  
A
B
PIN 1 INDEX AREA  
2.65  
2.55  
C
0.55  
0.45  
SEATING PLANE  
0.05 C  
0.05  
0.00  
2X 1.2  
SYMM  
(0.13) TYP  
5
8
0.45  
0.35  
15X  
4
9
SYMM  
2X 1.2  
12X 0.4  
1
0.25  
16X  
12  
0.15  
0.07  
0.05  
C A B  
13  
16  
0.55  
0.45  
PIN 1 ID  
(45° X 0.1)  
4220314/C 02/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSV0016A  
UQFN - 0.55 mm max height  
ULTRA THIN QUAD FLATPACK - NO LEAD  
SYMM  
(0.7)  
16  
SEE SOLDER MASK  
DETAIL  
13  
12  
16X (0.2)  
1
SYMM  
12X (0.4)  
(2.4)  
(R0.05) TYP  
9
4
15X (0.6)  
5
8
(1.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 25X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4220314/C 02/2020  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSV0016A  
UQFN - 0.55 mm max height  
ULTRA THIN QUAD FLATPACK - NO LEAD  
(0.7)  
16  
13  
16X (0.2)  
1
12  
SYMM  
12X (0.4)  
(2.4)  
(R0.05) TYP  
4
9
15X (0.6)  
5
8
SYMM  
(1.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 25X  
4220314/C 02/2020  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
PW0016A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
NOTE 4  
1.2 MAX  
0.19  
B
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220204/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
16X (1.5)  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220204/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0016A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
16X (1.5)  
SYMM  
(R0.05) TYP  
16  
1
16X (0.45)  
SYMM  
14X (0.65)  
8
9
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220204/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
GENERIC PACKAGE VIEW  
BQB 16  
2.5 x 3.5, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226161/A  
www.ti.com  
PACKAGE OUTLINE  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLAT PACK-NO LEAD  
BQB0016A  
A
2.6  
2.4  
B
3.6  
3.4  
PIN 1 INDEX AREA  
C
0.8  
0.7  
SEATING PLANE  
0.08 C  
1.1  
0.9  
0.05  
0.00  
(0.2) TYP  
2X 0.5  
8
9
10X 0.5  
7
10  
SYMM  
2X  
2.5  
2.1  
1.9  
15  
2
0.30  
0.18  
16X  
0.5  
0.3  
16  
1
PIN 1 ID  
(OPTIONAL)  
SYMM  
16X  
0.1  
C A B  
0.05  
C
4224640/A 11/2018  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WQFN - 0.8 mm max height  
BQB0016A  
PLASTIC QUAD FLAT PACK-NO LEAD  
(2.3)  
(1)  
2X (0.5)  
1
16  
10X (0.5)  
2
15  
SYMM  
2X  
(2.5)  
(2)  
(3.3)  
2X  
(0.75)  
10  
7
16X (0.24)  
16X (0.6)  
(Ø0.2) VIA  
TYP  
9
8
SYMM  
(R0.05) TYP  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
0.07 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
0.07 MIN  
ALL AROUND  
METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
EXPOSED METAL  
NON-SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
4224640/A 11/2018  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271)  
.
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WQFN - 0.8 mm max height  
BQB0016A  
PLASTIC QUAD FLAT PACK-NO LEAD  
(2.3)  
(0.95)  
2X (0.5)  
1
16  
10X (0.5)  
2
15  
SYMM  
2X  
(2.5)  
(1.79) (3.3)  
10  
7
16X (0.24)  
16X (0.6)  
EXPOSED METAL  
9
8
SYMM  
(R0.05) TYP  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
85% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4224640/A 11/2018  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
WQFN - 0.8 mm max height  
INDSTNAME  
BQB0016B  
A
2.6  
2.4  
B
PIN 1 INDEX AREA  
3.6  
3.4  
0.1 MIN  
(0.13)  
SECTION A-A  
TYPICAL  
C
0.8 MAX  
SEATING PLANE  
0.05  
0.00  
0.08 C  
1.1  
0.9  
2X 0.5  
(0.2) TYP  
9
8
10X 0.5  
7
10  
(0.16)  
SYMM  
SYMM  
2X  
2.5  
17  
2.1  
1.9  
0.3  
16X  
0.2  
0.1  
0.05  
C A B  
C
15  
2
PIN 1 ID  
(OPTIONAL)  
1
16  
0.5  
0.3  
16X  
SYMM  
4226135/A 08/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WQFN - 0.8 mm max height  
INDSTNAME  
BQB0016B  
(2.3)  
(1)  
1
16  
16X (0.6)  
16X (0.25)  
2
15  
10X (0.5)  
SYMM  
17  
(2)  
(3.3)  
2X (0.75)  
10  
7
(R0.05) TYP  
(Ø 0.2) VIA  
TYP  
8
9
2X (0.5)  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
4226135/A 08/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271)  
.
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WQFN - 0.8 mm max height  
INDSTNAME  
BQB0016B  
(2.3)  
(0.95)  
1
16  
16X (0.6)  
16X (0.25)  
2
15  
17  
10X (0.5)  
SYMM  
(1.79)  
(3.3)  
2X (0.75)  
10  
7
(R0.05) TYP  
METAL TYP  
8
9
2X (0.5)  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
85% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4226135/A 08/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX