SN74AXCH8T245PWR [TI]

8 位双电源总线收发器 | PW | 24 | -40 to 125;
SN74AXCH8T245PWR
型号: SN74AXCH8T245PWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

8 位双电源总线收发器 | PW | 24 | -40 to 125

总线收发器
文件: 总37页 (文件大小:1038K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
SN74AXCH8T245  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
具有可配置电压转换、三态输出和总线保持电路的  
SN74AXCH8T245 8 位双电源总线收发器  
1 特性  
SN74AXCH8T245 器件旨在实现数据总线间的异步通  
1
信。根据方向控制输入(DIR1 DIR2)的逻辑电  
平,此器件将数据从 A 总线传输至 B 总线,或者将数  
据从 B 总线传输至 A 总线。输出使能 (OE) 输入可用  
于禁用输出,从而有效隔离总线。  
通过认证且完全可配置的双电源轨设计可允许各个  
端口在 0.65V 3.6V 的电源电压范围内运行  
工作温度范围 -40°C +125°C  
总线保持数据输入消除了对外部上拉或下拉电阻的  
需求  
SN74AXCH8T245 器件旨在使控制引脚(DIR 和  
OE)以 VCCA 为基准。  
多向控制引脚,支持同步升降转换  
1.8V 转换到 3.3V 时,支持高达 380Mbps 的转  
换速率  
有源总线保持电路会将未使用或未驱动的输入保持在有  
效逻辑状态。不建议在总线保持电路上使用上拉或下拉  
电阻器。如果 VCCA VCCB 连上电源,则总线保持电  
路在所有 A 端口和 B 端口上均始终保持工作状态,与  
方向控制或输出使能无关。  
VCC 隔离功能可在断电情况下有效隔离两条总线  
局部断电模式可在断电情况下限制回流电流  
兼容 SN74AVCH8T245 74AVCH8T245 电平转  
换器  
闩锁性能超出 JESD 78 II 类规范要求的 100mA  
该器件完全 适用于 使用 Ioff 的不完全断电应用。当器  
件断电时,Ioff 电路将会禁用输出。这会抑制电流反流  
到器件中,从而防止损坏器件。  
静电放电 (ESD) 保护性能超过 JESD 22 规范的要  
8000V 人体放电模型  
1000V 充电器件模型  
VCC 隔离功能可确保当任一 VCC 输入电源低于 100mV  
时,所有电平转换器输出都将禁用并处于高阻抗状态。  
为了确保电平转换器 I/O 在上电或掉电期间处于高阻抗  
状态,应将 OE 通过上拉电阻器接到 VCCA;该电阻器  
的最小值取决于驱动器的灌电流能力。  
2 应用  
企业与通信  
无线基础设施  
楼宇自动化  
器件信息(1)  
数据中心交换机  
企业级固态硬盘  
机架式服务器  
器件编号  
封装  
封装尺寸(标称值)  
7.80mm × 4.40mm  
5.50mm × 3.50mm  
SN74AXCH8T245PW  
SN74AXCH8T245RHL  
TSSOP (24)  
VQFN (24)  
电子销售点 (EPOS)  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
3 说明  
SN74AXCH8T245 器件是一款 8 位同相总线收发器,  
可用于解决在最新电压节点(0.7V0.8V0.9V)上  
运行的器件与在行业标准电压节点(1.8V2.5V、  
3.3V)上运行的器件之间的电压电平不匹配问题。  
典型应用原理图  
3.3 V  
1.5 V  
Processor  
VCCA DIR1 DIR2  
VCCB  
B1  
Power Management  
A1  
A2  
A3  
A4  
Control Block  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
该器件通过两条独立电源轨(VCCA VCCB)。数据引  
A1 A8 均用于跟踪 VCCA,可承受 0.65V-3.6V 范  
围内的任何电源电压。数据引脚 B1 B8 均用于跟踪  
SN74AXCH8T245  
Data Block  
Interrupts  
Register Map  
Sensor Block  
A5  
A6  
A7  
A8  
GND  
GND  
VCCB,可承受 0.65V-3.6V 范围内的任何电源电压。此  
外,SN74AXCH8T245 还与单电源系统兼容。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SCES876  
 
 
 
 
 
SN74AXCH8T245  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Switching Characteristics, VCCA = 0.7 V ................... 8  
6.7 Switching Characteristics, VCCA = 0.8 V ................... 9  
6.8 Switching Characteristics, VCCA = 0.9 V ................. 10  
6.9 Switching Characteristics, VCCA = 1.2 V ................. 11  
6.10 Switching Characteristics, VCCA = 1.5 V ............... 12  
6.11 Switching Characteristics, VCCA = 1.8 V ............... 13  
6.12 Switching Characteristics, VCCA = 2.5 V ............... 14  
6.13 Switching Characteristics, VCCA = 3.3 V ............... 15  
6.14 Operating Characteristics: TA = 25°C ................... 16  
Parameter Measurement Information ................ 18  
8
9
Detailed Description ............................................ 20  
8.1 Overview ................................................................. 20  
8.2 Functional Block Diagram ....................................... 20  
8.3 Feature Description................................................. 21  
8.4 Device Functional Modes........................................ 21  
Application and Implementation ........................ 22  
9.1 Application Information............................................ 22  
9.2 Typical Application ................................................. 22  
10 Power Supply Recommendations ..................... 24  
11 Layout................................................................... 24  
11.1 Layout Guidelines ................................................. 24  
11.2 Layout Example .................................................... 24  
12 器件和文档支持 ..................................................... 25  
12.1 文档支持 ............................................................... 25  
12.2 接收文档更新通知 ................................................. 25  
12.3 社区资源................................................................ 25  
12.4 ....................................................................... 25  
12.5 静电放电警告......................................................... 25  
12.6 术语表 ................................................................... 25  
13 机械、封装和可订购信息....................................... 26  
7
4 修订历史记录  
Changes from Original (August 2018) to Revision A  
Page  
已添加 向器件信息表添加了 RHL ................................................................................................................................... 1  
Added RHL package pinout ................................................................................................................................................... 3  
Added RHL package to Thermal Information table ............................................................................................................... 5  
2
Copyright © 2018–2019, Texas Instruments Incorporated  
 
SN74AXCH8T245  
www.ti.com.cn  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
5 Pin Configuration and Functions  
PW Package  
24-Pin TSSOP  
Top View  
RHL Package(1)  
24-Pin VQFN  
Top View  
VCCA  
DIR1  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
1
2
3
4
5
6
7
8
24  
23  
22  
21  
20  
19  
18  
17  
VCCB  
VCCB  
OE  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
2
3
23  
DIR1  
A1  
VCCB  
22 OE  
4
21  
20  
19  
18  
17  
16  
15  
14  
A2  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
5
A3  
6
A4  
PAD  
7
A5  
9
16  
15  
14  
13  
8
A6  
A8  
DIR2  
GND  
10  
11  
12  
9
A7  
B8  
GND  
10  
11  
A8  
DIR2  
(1) PAD - may be grounded (recommended) or left floating.  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
A1  
PW, RHL  
3
4
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
Input/output A1. Referenced to VCCA  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
A2  
Input/output A2. Referenced to VCCA  
Input/output A3. Referenced to VCCA  
Input/output A4. Referenced to VCCA  
Input/output A5. Referenced to VCCA  
Input/output A6. Referenced to VCCA  
Input/output A7. Referenced to VCCA  
Input/output A8. Referenced to VCCA  
Input/output B1. Referenced to VCCB  
Input/output B2. Referenced to VCCB  
Input/output B3. Referenced to VCCB  
Input/output B4. Referenced to VCCB  
Input/output B5. Referenced to VCCB  
Input/output B6. Referenced to VCCB  
Input/output B7. Referenced to VCCB  
Input/output B8. Referenced to VCCB  
A3  
5
A4  
6
A5  
7
A6  
8
A7  
9
A8  
10  
21  
20  
19  
18  
17  
16  
15  
14  
2
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
DIR1  
Direction-control signal. Referenced to VCCA.  
Direction-control signal. Referenced to VCCA. See Multiple Direction Control Pins for  
additional details. Tie to GND to maintain backwards compatibility with the SN74AVCH8T245  
device.  
DIR2  
GND  
11  
I
12  
13  
Ground  
Ground  
Output Enable. Pull to GND to enable all outputs. Pull to VCCA to place all outputs in high-  
OE  
22  
I
impedance mode. Referenced to VCCA  
.
VCCA  
1
A-port supply voltage. 0.65 V VCCA 3.6 V  
B-port supply voltage. 0.65 V VCCB 3.6 V  
B-port supply voltage. 0.65 V VCCB 3.6 V  
23  
24  
VCCB  
Copyright © 2018–2019, Texas Instruments Incorporated  
3
SN74AXCH8T245  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–50  
MAX  
4.2  
4.2  
4.2  
4.2  
4.2  
4.2  
4.2  
UNIT  
V
Supply voltage, VCCA  
Supply voltage, VCCB  
V
I/O ports (A port)  
I/O ports (B port)  
Control inputs  
A port  
Input voltage, VI(2)  
V
V
Voltage applied to any output  
in the high-impedance or power-off state, VO  
(2)  
B port  
A port  
VCCA + 0.2  
VCCB + 0.2  
(2) (3)  
Voltage applied to any output in the high or low state, VO  
V
B port  
Input clamp current, IIK  
VI < 0  
mA  
mA  
mA  
mA  
°C  
Output clamp current, IOK  
VO < 0  
–50  
Continuous output current, IO  
Continuous current through VCCA, VCCB, or GND  
Junction Temperature, TJ  
–50  
50  
–100  
100  
150  
150  
Storage temperature, Tstg  
–65  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.  
(3) The output positive-voltage rating may be exceeded up to 4.2 V maximum if the output current rating is observed.  
6.2 ESD Ratings  
VALUE  
±8000  
±1000  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
4
Copyright © 2018–2019, Texas Instruments Incorporated  
SN74AXCH8T245  
www.ti.com.cn  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
(1)(2)(3)  
MIN  
0.65  
MAX  
3.6  
UNIT  
V
VCCA  
VCCB  
Supply voltage  
Supply voltage  
0.65  
3.6  
V
VCCI = 0.65 V - 0.75 V  
VCCI = 0.76 V - 1 V  
VCCI = 1.1 V - 1.95 V  
VCCI = 2.3 V - 2.7 V  
VCCI = 3 V - 3.6 V  
VCCI × 0.70  
VCCI × 0.70  
VCCI × 0.65  
1.6  
Data inputs  
2
VIH  
High-level input voltage  
V
VCCA = 0.65 V - 0.75 V  
VCCA = 0.76 V - 1 V  
VCCA = 1.1 V - 1.95 V  
VCCA = 2.3 V - 2.7 V  
VCCA = 3 V - 3.6 V  
VCCI = 0.65 V - 0.75 V  
VCCI = 0.76 V - 1 V  
VCCI = 1.1 V - 1.95 V  
VCCI = 2.3 V - 2.7 V  
VCCI = 3 V - 3.6 V  
VCCA × 0.70  
VCCA × 0.70  
VCCA × 0.65  
1.6  
Control inputs  
(DIR, OE)  
Referenced to VCCA  
2
VCCI × 0.30  
VCCI × 0.30  
VCCI × 0.35  
0.7  
Data inputs  
0.8  
VIL  
Low-level input voltage  
V
VCCA = 0.65 V - 0.75 V  
VCCA = 0.76 V - 1 V  
VCCA = 1.1 V - 1.95 V  
VCCA = 2.3 V - 2.7 V  
VCCA = 3 V - 3.6 V  
VCCA × 0.30  
VCCA × 0.30  
VCCA × 0.35  
0.7  
Control inputs  
(DIR, OE)  
Referenced to VCCA  
0.8  
VI  
Input voltage(3)  
Output voltage  
0
0
0
3.6  
V
V
(2)  
Active state  
Tri-state  
VCCO  
VO  
3.6  
10  
Δt/Δv  
Input transition rise or fall rate  
Operating free-air temperature  
ns/V  
°C  
TA  
–40  
125  
(1) VCCI is the VCC associated with the input port.  
(2) VCCO is the VCC associated with the output port.  
(3) All unused data inputs of the device must be held at VCCI or GND to ensure proper device operation. See the Implications of Slow or  
Floating CMOS Inputs application report.  
6.4 Thermal Information  
SN74AXCH8T245  
THERMAL METRIC(1)  
PW (TSSOP)  
24 PINS  
101.7  
45.4  
RHL (VQFN)  
24 PINS  
35  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
39.9  
56.9  
13.8  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
7.0  
0.3  
ψJB  
56.4  
13.8  
RθJC(bot)  
N/A  
1.4  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2018–2019, Texas Instruments Incorporated  
5
SN74AXCH8T245  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
www.ti.com.cn  
6.5 Electrical Characteristics  
Over recommended operating free-air temperature range (unless otherwise noted)(1)  
–40°C to 85°C  
MIN TYP(2) MAX  
–40°C to 125°C  
MIN TYP(2) MAX  
VCCO – 0.1  
PARAMETER  
TEST CONDITIONS  
VCCA  
VCCB  
UNIT  
IOH = –100 µA  
IOH = –50 µA  
IOH = –200 µA  
IOH = –500 µA  
0.7 V - 3.6 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
0.7 V - 3.6 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
VCCO – 0.1  
0.55  
0.58  
0.65  
0.85  
1.05  
1.2  
0.55  
0.58  
0.65  
0.85  
1.05  
1.2  
High-level  
VOH  
output  
VI = VIH  
IOH = -3 mA  
IOH = -6 mA  
IOH = -8 mA  
IOH = -9 mA  
IOH = -12 mA  
IOL = 100 µA  
IOL = 50 µA  
IOL = 200 µA  
IOL = 500 µA  
IOL = 3 mA  
IOL = 6 mA  
IOL = 8 mA  
IOL = 9 mA  
IOL = 12 mA  
V
voltage  
1.4 V  
1.4 V  
1.65 V  
2.3 V  
1.65 V  
2.3 V  
1.75  
2.3  
1.75  
2.3  
3 V  
3 V  
0.7 V - 3.6 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
0.7 V - 3.6 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
0.1  
0.1  
0.1  
0.1  
0.18  
0.2  
0.18  
0.2  
Low-level  
output  
VOL  
VI = VIL  
0.25  
0.35  
0.45  
0.55  
0.7  
0.25  
0.35  
0.45  
0.55  
0.7  
V
voltage  
1.4 V  
1.4 V  
1.65 V  
2.3 V  
1.65 V  
2.3 V  
3 V  
3 V  
VI= 0.20 V  
VI= 0.23 V  
VI= 0.26 V  
VI= 0.39 V  
VI= 0.49 V  
VI= 0.58 V  
VI= 0.7 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
4
8
4
7
10  
10  
Bus-hold  
low  
20  
20  
IBHL  
µA  
µA  
µA  
sustaining  
1.4 V  
1.4 V  
40  
30  
(3)  
current  
1.65 V  
2.3 V  
1.65 V  
2.3 V  
55  
45  
90  
80  
VI= 0.8 V  
3 V  
3 V  
145  
–4  
135  
–4  
VI= 0.45 V  
VI= 0.53 V  
VI= 0.59 V  
VI= 0.71 V  
VI= 0.91 V  
VI= 1.07 V  
VI= 1.6 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
0.65 V  
0.76 V  
0.85 V  
1.1 V  
–8  
–7  
–10  
–20  
–40  
–55  
–90  
–145  
40  
–10  
–20  
–30  
–45  
–80  
–135  
40  
Bus-hold  
high  
IBHH  
sustaining  
1.4 V  
1.4 V  
(4)  
current  
1.65 V  
2.3 V  
1.65 V  
2.3 V  
VI= 2.0 V  
3 V  
3 V  
0.75 V  
0.84 V  
0.95 V  
1.3 V  
0.75 V  
0.84 V  
0.95 V  
1.3 V  
50  
50  
65  
65  
Bus-hold  
low  
105  
150  
205  
335  
480  
105  
150  
205  
335  
480  
IBHLO  
VI= 0 to VCC  
overdrive  
1.6 V  
1.6 V  
(5)  
current  
1.95 V  
2.7 V  
1.95 V  
2.7 V  
3.6V  
3.6V  
(1) VCCO is the VCC associated with the output port.  
(2) All typical values are for TA = 25°C.  
(3) The bus-hold circuit can sink at least the minimum low sustaining current at VIL(MAX). IBHL should be measured after lowering VI to  
GND and then raising it to VIL(MAX).  
(4) The bus-hold circuit can source at least the minimum high sustaining current at VIH(MIN). IBHH should be measured after raising VI to  
VCC and then lowering it to VIH(MIN).  
(5) An external driver must source at least IBHLO to switch this node from low to high.  
6
Copyright © 2018–2019, Texas Instruments Incorporated  
 
SN74AXCH8T245  
www.ti.com.cn  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
Electrical Characteristics (continued)  
Over recommended operating free-air temperature range (unless otherwise noted)(1)  
–40°C to 85°C  
MIN TYP(2) MAX  
–40°C to 125°C  
MIN TYP(2) MAX  
PARAMETER  
TEST CONDITIONS  
VCCA  
VCCB  
UNIT  
0.75 V  
0.84 V  
0.95 V  
1.3 V  
0.75 V  
0.84 V  
0.95 V  
1.3 V  
–40  
–50  
–40  
–50  
–65  
–65  
Bus-hold  
high  
–105  
–150  
–205  
–335  
–480  
–105  
–150  
–205  
–335  
–480  
IBHHO  
VI= 0 to VCC  
µA  
overdrive  
1.6 V  
1.6 V  
(6)  
current  
1.95 V  
2.7 V  
1.95 V  
2.7 V  
3.6V  
3.6V  
Input  
leakage  
current  
Control Inputs (DIR, OE):  
VI = VCCA or GND  
0.65 V - 3.6  
V
II  
0.65 V - 3.6 V  
–0.5  
0.5  
–1  
1
µA  
µA  
A Port:  
VI or VO = 0 V - 3.6 V  
Partial  
power  
down  
0 V  
0 V - 3.6 V  
0 V  
–8  
–8  
8
8
–12  
–12  
12  
12  
Ioff  
B Port:  
VI or VO = 0 V - 3.6 V  
0 V - 3.6 V  
current  
A Port:  
VO = VCCO or GND, VI = VCCI  
or GND, OE = VIH  
3.6 V  
3.6 V  
3.6 V  
–8  
–8  
8
–12  
–12  
12  
High-  
impedance  
state output  
current  
IOZ  
µA  
B Port:  
VO = VCCO or GND, VI = VCCI  
or GND, OE = VIH  
3.6 V  
8
12  
42  
0.65 V - 3.6  
V
0.65 V - 3.6 V  
20  
VCCA supply  
current  
ICCA  
VI = VCCI or GND, IO = 0 mA  
µA  
µA  
0 V  
3.6 V  
0 V  
–2  
–2  
–12  
–12  
3.6 V  
13  
20  
13  
27  
40  
27  
0.65 V - 3.6  
V
0.65 V - 3.6 V  
VCCB supply  
current  
ICCB  
VI = VCCI or GND, IO = 0 mA  
0 V  
3.6 V  
0 V  
3.6 V  
Combined  
supply  
current  
ICCA  
ICCB  
+
0.65 V - 3.6  
V
VI = VCCI or GND, IO = 0 mA  
Control Inputs (DIR, OE):  
0.65 V - 3.6 V  
3.3 V  
30  
60  
µA  
pF  
pF  
Input  
Ci  
3.3 V  
3.3 V  
4.5  
7.3  
4.5  
7.3  
capacitance VI = 3.3 V or GND  
Ports A and B:  
Data I/O  
capacitance  
Cio  
OE = VCCA, VO = 1.65V DC +  
1 MHz -16 dBm sine wave  
3.3 V  
(6) An external driver must sink at least IBHHO to switch this node from high to low.  
Copyright © 2018–2019, Texas Instruments Incorporated  
7
 
SN74AXCH8T245  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
www.ti.com.cn  
6.6 Switching Characteristics, VCCA = 0.7 V  
See Figure 1 and Figure 2 for test circuit and loading conditions. See Figure 3 and Figure 4 for measurement waveforms.  
B-PORT SUPPLY VOLTAGE (VCCB  
)
TEST  
CONDITION  
PARAMETER  
0.7 V ± 0.05 V  
0.8 V ± 0.04 V 0.9 V ± 0.045 V  
1.2 V ± 0.1 V  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
178  
178  
178  
178  
194  
194  
216  
216  
240  
240  
292  
292  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
115  
115  
159  
159  
194  
194  
179  
179  
240  
240  
180  
180  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
83  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
49  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
A input to  
B output  
83  
49  
Propagation  
delay  
tpd  
ns  
132  
132  
194  
194  
158  
158  
240  
240  
125  
125  
94  
B input to  
A output  
94  
194  
194  
78  
OE input to  
A output  
Disable  
time  
tdis  
ns  
ns  
OE input to  
B output  
78  
240  
240  
76  
OE input to  
A output  
ten Enable time  
OE input to  
B output  
76  
B-PORT SUPPLY VOLTAGE (VCCB  
)
TEST  
CONDITION  
PARAMETER  
1.5 V ± 0.1 V  
1.8 V ± 0.15 V 2.5 V ± 0.2 V  
3.3 V ± 0.3 V  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
47  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
50  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
62  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
151  
151  
86  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
A input to  
B output  
47  
50  
62  
Propagation  
delay  
tpd  
ns  
89  
88  
87  
B input to  
A output  
89  
88  
87  
86  
194  
194  
70  
194  
194  
69  
194  
194  
67  
194  
194  
101  
101  
240  
240  
552  
552  
OE input to  
A output  
tdis Disable time  
ns  
ns  
OE input to  
B output  
70  
69  
67  
240  
240  
69  
240  
240  
69  
240  
240  
84  
OE input to  
A output  
ten Enable time  
OE input to  
B output  
69  
69  
84  
8
Copyright © 2018–2019, Texas Instruments Incorporated  
SN74AXCH8T245  
www.ti.com.cn  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
6.7 Switching Characteristics, VCCA = 0.8 V  
See Figure 1 and Figure 2 for test circuit and loading conditions. See Figure 3 and Figure 4 for measurement waveforms.  
B-PORT SUPPLY VOLTAGE (VCCB  
)
TEST  
CONDITION  
PARAMETER  
0.7 V ± 0.05 V  
0.8 V ± 0.04 V 0.9 V ± 0.045 V  
1.2 V ± 0.1 V  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
159  
159  
117  
117  
154  
154  
202  
202  
137  
137  
270  
270  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
96  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
64  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
33  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
A input to  
B output  
96  
64  
33  
Propagation  
delay  
tpd  
ns  
97  
79  
54  
B input to  
A output  
97  
79  
54  
154  
154  
165  
165  
137  
137  
160  
160  
154  
154  
144  
144  
137  
137  
104  
104  
154  
154  
65  
OE input  
to A output  
Disable  
time  
tdis  
ns  
ns  
OE input  
to B output  
65  
137  
137  
55  
OE input  
to A output  
ten Enable time  
OE input  
to B output  
55  
B-PORT SUPPLY VOLTAGE (VCCB  
1.8 V ± 0.15 V 2.5 V ± 0.2 V  
)
TEST  
CONDITION  
PARAMETER  
1.5 V ± 0.1 V  
3.3 V ± 0.3 V  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
27  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
26  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
26  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
35  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
A input to  
B output  
27  
26  
26  
35  
Propagation  
delay  
tpd  
ns  
44  
43  
42  
41  
B input to  
A output  
44  
43  
42  
41  
154  
154  
57  
154  
154  
55  
154  
154  
50  
154  
154  
52  
OE input to  
A output  
tdis Disable time  
ns  
ns  
OE input to  
B output  
57  
55  
50  
52  
137  
137  
46  
137  
137  
44  
137  
137  
46  
137  
137  
59  
OE input to  
A output  
ten Enable time  
OE input to  
B output  
46  
44  
46  
59  
Copyright © 2018–2019, Texas Instruments Incorporated  
9
SN74AXCH8T245  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
www.ti.com.cn  
6.8 Switching Characteristics, VCCA = 0.9 V  
See Figure 1 and Figure 2 for test circuit and loading conditions. See Figure 3 and Figure 4 for measurement waveforms.  
B-PORT SUPPLY VOLTAGE (VCCB  
)
TEST  
CONDITION  
PARAMETER  
0.7 V ± 0.05 V  
0.8 V ± 0.04 V 0.9 V ± 0.045 V  
1.2 V ± 0.1 V  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
133  
133  
84  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
79  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
53  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
23  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
A input to  
output  
79  
53  
23  
Propagation  
delay  
tpd  
ns  
64  
53  
41  
B input to  
A output  
84  
64  
53  
41  
130  
130  
193  
193  
128  
128  
257  
257  
130  
130  
157  
157  
128  
128  
149  
149  
130  
130  
137  
137  
128  
128  
94  
130  
130  
57  
OE input to  
A output  
Disable  
time  
tdis  
ns  
ns  
OE input to  
B output  
57  
128  
128  
45  
OE input to  
A output  
ten Enable time  
OE input to  
B output  
94  
45  
B-PORT SUPPLY VOLTAGE (VCCB  
1.8 V ± 0.15 V 2.5 V ± 0.2 V  
)
TEST  
CONDITION  
PARAMETER  
1.5 V ± 0.1 V  
3.3 V ± 0.3 V  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
18  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
16  
MIN  
MAX  
15  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
18  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
A input to  
B output  
18  
16  
15  
18  
Propagation  
delay  
tpd  
ns  
29  
25  
23  
22  
B input to  
A output  
29  
25  
23  
22  
130  
130  
50  
130  
130  
48  
130  
130  
42  
130  
130  
43  
OE input to  
A output  
tdis Disable time  
ns  
ns  
OE input to  
B output  
50  
48  
42  
43  
128  
128  
37  
128  
128  
34  
128  
128  
32  
128  
128  
36  
OE input to  
A output  
ten Enable time  
OE input to  
B output  
37  
34  
32  
36  
10  
Copyright © 2018–2019, Texas Instruments Incorporated  
SN74AXCH8T245  
www.ti.com.cn  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
6.9 Switching Characteristics, VCCA = 1.2 V  
See Figure 1 and Figure 2 for test circuit and loading conditions. See Figure 3 and Figure 4 for measurement waveforms.  
B-PORT SUPPLY VOLTAGE (VCCB  
)
TEST  
CONDITION  
PARAMETER  
0.7 V ± 0.05 V  
0.8 V ± 0.04 V 0.9 V ± 0.045 V  
1.2 V ± 0.1 V  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
95  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
54  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
40  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
15  
15  
15  
15  
47  
47  
49  
49  
40  
40  
34  
34  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
A input to  
B output  
95  
54  
40  
Propagation  
delay  
tpd  
ns  
49  
33  
23  
B input to  
A output  
49  
33  
23  
47  
47  
47  
OE input to  
A output  
47  
47  
47  
tdis Disable time  
ns  
ns  
181  
181  
40  
147  
147  
40  
127  
127  
40  
OE input to  
B output  
OE input to  
A output  
40  
40  
40  
ten Enable time  
221  
221  
132  
132  
81  
OE input to  
B output  
81  
B-PORT SUPPLY VOLTAGE (VCCB  
1.8 V ± 0.15 V 2.5 V ± 0.2 V  
MAX  
)
TEST  
CONDITION  
PARAMETER  
1.5 V ± 0.1 V  
MIN  
3.3 V ± 0.3 V  
UNIT  
MAX  
11  
11  
12  
12  
47  
47  
42  
42  
39  
39  
25  
25  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
9
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
8
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
8
A input to  
B output  
9
8
8
Propagation  
tpd  
ns  
delay  
10  
10  
47  
47  
40  
40  
40  
40  
22  
22  
8
8
B input to  
A output  
8
8
47  
47  
34  
34  
40  
40  
20  
20  
47  
47  
34  
34  
40  
40  
19  
19  
OE input to  
A output  
tdis Disable time  
ns  
ns  
OE input to  
B output  
OE input to  
A output  
ten Enable time  
OE input to  
B output  
Copyright © 2018–2019, Texas Instruments Incorporated  
11  
SN74AXCH8T245  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
www.ti.com.cn  
6.10 Switching Characteristics, VCCA = 1.5 V  
See Figure 1 and Figure 2 for test circuit and loading conditions. See Figure 3 and Figure 4 for measurement waveforms.  
B-PORT SUPPLY VOLTAGE (VCCB  
)
TEST  
CONDITION  
PARAMETER  
0.7 V ± 0.05 V  
0.8 V ± 0.04 V 0.9 V ± 0.045 V  
1.2 V ± 0.1 V  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
90  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
44  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
29  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
12  
12  
11  
11  
37  
37  
44  
44  
25  
25  
29  
29  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
A input to  
B output  
90  
44  
29  
Propagation  
delay  
tpd  
ns  
47  
27  
18  
B input to  
A output  
47  
27  
18  
37  
37  
37  
OE input to  
A output  
37  
37  
37  
tdis Disable time  
ns  
ns  
176  
176  
25  
142  
142  
25  
122  
122  
25  
OE input to  
B output  
OE input to  
A output  
25  
25  
25  
ten Enable time  
214  
214  
114  
114  
71  
OE input to  
B output  
71  
B-PORT SUPPLY VOLTAGE (VCCB  
)
TEST  
CONDITION  
PARAMETER  
1.5 V ± 0.1 V  
1.8 V ± 0.15 V 2.5 V ± 0.2 V  
3.3 V ± 0.3 V  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
9
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
8
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
6
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
6
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
A input to  
B output  
9
8
6
6
Propagation  
delay  
tpd  
ns  
9
8
6
5
B input to  
A output  
9
8
6
5
37  
37  
38  
38  
25  
25  
21  
21  
37  
37  
37  
37  
25  
25  
18  
18  
37  
37  
31  
31  
25  
25  
15  
15  
37  
37  
31  
31  
25  
25  
13  
13  
OE input to  
A output  
tdis Disable time  
ns  
ns  
OE input to  
B output  
OE input to  
A output  
ten Enable time  
OE input to  
B output  
12  
Copyright © 2018–2019, Texas Instruments Incorporated  
SN74AXCH8T245  
www.ti.com.cn  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
6.11 Switching Characteristics, VCCA = 1.8 V  
See Figure 1 and Figure 2 for test circuit and loading conditions. See Figure 3 and Figure 4 for measurement waveforms.  
B-PORT SUPPLY VOLTAGE (VCCB  
)
TEST  
CONDITION  
PARAMETER  
0.7 V ± 0.05 V  
0.8 V ± 0.04 V 0.9 V ± 0.045 V  
1.2 V ± 0.1 V  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
88  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
43  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
10  
10  
9
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
25  
25  
A input to  
B output  
88  
43  
Propagation  
delay  
tpd  
ns  
50  
26  
16  
B input to  
A output  
50  
26  
16  
9
35  
35  
35  
35  
35  
42  
42  
20  
20  
27  
27  
OE input to  
A output  
35  
35  
35  
tdis Disable time  
ns  
ns  
174  
174  
20  
139  
139  
20  
119  
119  
20  
OE input to  
B output  
OE input to  
A output  
20  
20  
20  
ten Enable time  
213  
213  
111  
111  
67  
OE input to  
B output  
67  
B-PORT SUPPLY VOLTAGE (VCCB  
1.8 V ± 0.15 V 2.5 V ± 0.2 V  
)
TEST  
CONDITION  
PARAMETER  
1.5 V ± 0.1 V  
3.3 V ± 0.3 V  
UNIT  
MIN  
MAX  
8
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
7
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
6
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
5
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
A input to  
B output  
8
7
6
5
Propagation  
delay  
tpd  
ns  
7
6
5
4
B input to  
A output  
7
7
5
4
35  
35  
36  
36  
20  
20  
19  
19  
35  
35  
35  
35  
20  
20  
16  
16  
35  
35  
30  
30  
20  
20  
13  
13  
35  
35  
29  
29  
20  
20  
11  
11  
OE input to  
A output  
Disable  
time  
tdis  
ns  
ns  
OE input to  
B output  
OE input to  
A output  
ten Enable time  
OE input to  
B output  
Copyright © 2018–2019, Texas Instruments Incorporated  
13  
SN74AXCH8T245  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
www.ti.com.cn  
6.12 Switching Characteristics, VCCA = 2.5 V  
See Figure 1 and Figure 2 for test circuit and loading conditions. See Figure 3 and Figure 4 for measurement waveforms.  
B-PORT SUPPLY VOLTAGE (VCCB  
)
TEST  
CONDITION  
PARAMETER  
0.7 V ± 0.05 V  
0.8 V ± 0.04 V 0.9 V ± 0.045 V  
1.2 V ± 0.1 V  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
87  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
42  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
23  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
8
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
A input to  
B output  
87  
42  
23  
8
Propagation  
delay  
tpd  
ns  
62  
26  
15  
8
B input to  
A output  
62  
26  
15  
8
28  
28  
28  
28  
28  
40  
40  
13  
13  
24  
24  
OE input to  
A output  
28  
28  
28  
Disable  
time  
tdis  
ns  
ns  
173  
173  
13  
137  
137  
13  
117  
117  
13  
OE input to  
B output  
OE input to  
A output  
13  
13  
13  
ten Enable time  
211  
211  
107  
107  
63  
OE input to  
B output  
63  
B-PORT SUPPLY VOLTAGE (VCCB  
1.8 V ± 0.15 V 2.5 V ± 0.2 V  
MAX  
)
TEST  
CONDITION  
PARAMETER  
1.5 V ± 0.1 V  
3.3 V ± 0.3 V  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
6
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
6
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
5
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
5
A input to  
B output  
6
6
5
5
Propagation  
tpd  
ns  
delay  
6
6
5
4
B input to  
A output  
6
6
5
4
28  
28  
34  
34  
13  
13  
16  
16  
28  
28  
33  
33  
13  
13  
14  
14  
28  
28  
28  
28  
13  
13  
10  
10  
28  
28  
28  
28  
13  
13  
9
OE input to  
A output  
tdis Disable time  
ns  
ns  
OE input to  
B output  
OE input to  
A output  
ten Enable time  
OE input to  
B output  
9
14  
Copyright © 2018–2019, Texas Instruments Incorporated  
SN74AXCH8T245  
www.ti.com.cn  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
6.13 Switching Characteristics, VCCA = 3.3 V  
See Figure 1 and Figure 2 for test circuit and loading conditions. See Figure 3 and Figure 4 for measurement waveforms.  
B-PORT SUPPLY VOLTAGE (VCCB  
)
TEST  
CONDITION  
PARAMETER  
0.7 V ± 0.05 V  
0.8 V ± 0.04 V 0.9 V ± 0.045 V  
1.2 V ± 0.1 V  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
87  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
41  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
8
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
22  
22  
A input to  
B output  
87  
41  
8
Propagation  
delay  
tpd  
ns  
151  
151  
27  
36  
18  
8
B input to  
A output  
36  
18  
8
27  
27  
27  
27  
39  
39  
11  
11  
23  
23  
OE input to  
A output  
27  
27  
27  
tdis Disable time  
ns  
ns  
172  
172  
11  
136  
136  
11  
116  
116  
11  
OE input to  
B output  
OE input to  
A output  
11  
11  
11  
ten Enable time  
210  
210  
106  
106  
62  
OE input to  
B output  
62  
B-PORT SUPPLY VOLTAGE (VCCB  
)
TEST  
CONDITION  
PARAMETER  
1.5 V ± 0.1 V  
MAX  
1.8 V ± 0.15 V 2.5 V ± 0.2 V  
3.3 V ± 0.3 V  
UNIT  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
5
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
4
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
4
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
–40°C to 85°C  
–40°C to 125°C  
5
A input to  
B output  
5
5
4
4
Propagation  
delay  
tpd  
ns  
6
5
5
4
B input to  
A output  
6
5
5
4
27  
27  
33  
33  
11  
11  
15  
15  
27  
27  
32  
32  
11  
11  
13  
13  
27  
27  
27  
27  
11  
11  
10  
10  
27  
27  
27  
27  
11  
11  
8
OE input to  
A output  
tdis Disable time  
ns  
ns  
OE input to  
B output  
OE input to  
A output  
ten Enable time  
OE input to  
B output  
8
Copyright © 2018–2019, Texas Instruments Incorporated  
15  
SN74AXCH8T245  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
www.ti.com.cn  
6.14 Operating Characteristics: TA = 25°C  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
UNIT  
VCCA = VCCB = 0.7 V  
3.0  
3.0  
VCCA = VCCB = 0.8 V  
VCCA = VCCB = 0.9 V  
VCCA = VCCB = 1.2 V  
VCCA = VCCB = 1.5 V  
VCCA = VCCB = 1.8 V  
VCCA = VCCB = 2.5 V  
VCCA = VCCB = 3.3 V  
VCCA = VCCB = 0.7 V  
VCCA = VCCB = 0.8 V  
VCCA = VCCB = 0.9 V  
VCCA = VCCB = 1.2 V  
VCCA = VCCB = 1.5 V  
VCCA = VCCB = 1.8 V  
VCCA = VCCB = 2.5 V  
VCCA = VCCB = 3.3 V  
VCCA = VCCB = 0.7 V  
VCCA = VCCB = 0.8 V  
VCCA = VCCB = 0.9 V  
VCCA = VCCB = 1.2 V  
VCCA = VCCB = 1.5 V  
VCCA = VCCB = 1.8 V  
VCCA = VCCB = 2.5 V  
VCCA = VCCB = 3.3 V  
VCCA = VCCB = 0.7 V  
VCCA = VCCB = 0.8 V  
VCCA = VCCB = 0.9 V  
VCCA = VCCB = 1.2 V  
VCCA = VCCB = 1.5 V  
VCCA = VCCB = 1.8 V  
VCCA = VCCB = 2.5 V  
VCCA = VCCB = 3.3 V  
3.0  
Power dissipation  
CL = 0, RL = Open  
3.1  
CpdA capacitance per transceiver  
f = 1 MHz, tr = tf = 1 ns  
(A to B: outputs enabled)  
pF  
3.0  
3.2  
3.7  
4.4  
2.5  
2.5  
2.6  
Power dissipation  
CL = 0, RL = Open  
2.6  
CpdA capacitance per transceiver  
f = 1 MHz, tr = tf = 1 ns  
pF  
pF  
pF  
2.6  
(A to B: outputs disabled)  
2.7  
3.2  
3.9  
12.6  
12.3  
12.4  
12.4  
12.7  
13.6  
17.4  
20.9  
1.2  
Power dissipation  
CL = 0, RL = Open  
CpdA capacitance per transceiver  
f = 1 MHz, tr = tf = 1 ns  
(B to A: outputs enabled)  
1.1  
1.1  
Power dissipation  
CL = 0, RL = Open  
1.0  
CpdA capacitance per transceiver  
f = 1 MHz, tr = tf = 1 ns  
1.0  
(B to A: outputs disabled)  
0.9  
0.9  
0.9  
16  
Copyright © 2018–2019, Texas Instruments Incorporated  
SN74AXCH8T245  
www.ti.com.cn  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
Operating Characteristics: TA = 25°C (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX  
12.6  
12.4  
12.4  
12.4  
12.6  
13.6  
17.2  
20.8  
1.4  
UNIT  
VCCA = VCCB = 0.7 V  
VCCA = VCCB = 0.8 V  
VCCA = VCCB = 0.9 V  
VCCA = VCCB = 1.2 V  
VCCA = VCCB = 1.5 V  
VCCA = VCCB = 1.8 V  
VCCA = VCCB = 2.5 V  
VCCA = VCCB = 3.3 V  
VCCA = VCCB = 0.7 V  
VCCA = VCCB = 0.8 V  
VCCA = VCCB = 0.9 V  
VCCA = VCCB = 1.2 V  
VCCA = VCCB = 1.5 V  
VCCA = VCCB = 1.8 V  
VCCA = VCCB = 2.5 V  
VCCA = VCCB = 3.3 V  
VCCA = VCCB = 0.7 V  
VCCA = VCCB = 0.8 V  
VCCA = VCCB = 0.9 V  
VCCA = VCCB = 1.2 V  
VCCA = VCCB = 1.5 V  
VCCA = VCCB = 1.8 V  
VCCA = VCCB = 2.5 V  
VCCA = VCCB = 3.3 V  
VCCA = VCCB = 0.7 V  
VCCA = VCCB = 0.8 V  
VCCA = VCCB = 0.9 V  
VCCA = VCCB = 1.2 V  
VCCA = VCCB = 1.5 V  
VCCA = VCCB = 1.8 V  
VCCA = VCCB = 2.5 V  
VCCA = VCCB = 3.3 V  
Power dissipation  
CpdB capacitance per transceiver  
(A to B: outputs enabled)  
CL = 0, RL = Open  
f = 1 MHz, tr = tf = 1 ns  
pF  
1.3  
1.3  
Power dissipation  
CpdB capacitance per transceiver  
(A to B: outputs disabled)  
1.2  
CL = 0, RL = Open  
f = 1 MHz, tr = tf = 1 ns  
1.1  
pF  
pF  
pF  
1.1  
1.1  
1.0  
3.3  
3.3  
3.3  
Power dissipation  
CpdB capacitance per transceiver  
(B to A: outputs enabled)  
3.2  
CL = 0, RL = Open  
f = 1 MHz, tr = tf = 1 ns  
3.2  
3.3  
3.6  
4.4  
2.8  
2.8  
2.8  
Power dissipation  
CpdB capacitance per transceiver  
(B to A: outputs disabled)  
2.8  
CL = 0, RL = Open  
f = 1 MHz, tr = tf = 1 ns  
2.7  
2.8  
3.1  
3.9  
版权 © 2018–2019, Texas Instruments Incorporated  
17  
SN74AXCH8T245  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
www.ti.com.cn  
7 Parameter Measurement Information  
Unless otherwise noted, all input pulses are supplied by generators having the following characteristics:  
f =1 MHz  
Z0 = 50 Ω  
dv / dt 1 ns/V  
Measurement Point  
2 X VCCO  
Open  
S1  
RL  
Output Pin  
Under Test  
GND  
(1)  
CL  
RL  
(1) CL includes probe and jig capacitance.  
1. Load Circuit  
VCCO  
RL  
CL  
VTP  
Parameter  
tpd  
S1  
Open  
Open  
1.1 V - 3.6 V  
2 k15 pF  
N/A  
N/A  
0.65 V - 0.95 V 20 k15 pF  
3 V - 3.6 V 2 k15 pF  
1.65 V - 2.7 V 2 k15 pF  
1.1 V - 1.6 V  
0.65 V - 0.95 V 20 k15 pF  
3 V - 3.6 V 2 k15 pF  
1.65V - 2.7 V 2 k15 pF  
1.1 V - 1.6 V 2 k15 pF  
0.65 V - 0.95 V 20 k15 pF  
2 X VCCO  
2 X VCCO  
0.3 V  
0.15 V  
0.1 V  
0.1 V  
(1)  
ten(1), tdis  
2 k15 pF 2 X VCCO  
2 X VCCO  
GND  
0.3 V  
GND  
0.15 V  
(2)  
ten(2), tdis  
GND  
GND  
0.1 V  
0.1 V  
(1) Output waveform on the conditions that input is driven to a valid Logic Low.  
(2) Output waveform on the condition that input is driven to a valid Logic High.  
2. Load Circuit Conditions  
(1)  
VCCI  
VCCI / 2  
VCCI / 2  
An, Bn Input  
GND  
tpd  
tpd  
(2)  
VOH  
VCCO / 2  
VCCO / 2  
Bn, An Output  
(2)  
VOL  
(1) VCCI is the supply pin associated with the input port.  
(2) VOH and VOL are typical output voltage levels with specified RL, CL, and S1.  
3. Propagation Delay  
18  
版权 © 2018–2019, Texas Instruments Incorporated  
SN74AXCH8T245  
www.ti.com.cn  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
Parameter Measurement Information (接下页)  
VCCA  
OE  
VCCA / 2  
VCCA / 2  
GND  
tdis  
ten  
(3)  
VCCO  
Output(1)  
Output(2)  
VCCO / 2  
VOL + VTP  
(4)  
VOL  
(4)  
VOH  
VOH - VTP  
VCCO / 2  
GND  
(1) Output waveform on the condition that input is driven to a valid Logic Low.  
(2) Output waveform on the condition that input is driven to a valid Logic High.  
(3) VCCO is the supply pin associated with the output port.  
(4) VOH and VOL are typical output voltage levels with specified RL, CL, and S1.  
4. Enable Time And Disable Time  
版权 © 2018–2019, Texas Instruments Incorporated  
19  
SN74AXCH8T245  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The SN74AXCH8T245 device is an 8-bit, dual-supply non-inverting transceiver with bidirectional voltage level  
translation. The I/O pins labeled with A and the control pins (DIR1, DIR2, and OE) are supported by VCCA, and  
the I/O pins labeled with B are supported by VCCB. Both the A port and the B port are able to accept I/O voltages  
ranging from 0.65 V to 3.6 V.  
8.2 Functional Block Diagram  
OE  
VCCA  
Control Block To Enable or  
Disable Outputs (Note: Inputs  
on each buffer are always  
DIR1  
VCCB  
enabled)  
DIR2  
GND  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
5. Functional Block Diagram  
20  
版权 © 2018–2019, Texas Instruments Incorporated  
SN74AXCH8T245  
www.ti.com.cn  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
8.3 Feature Description  
8.3.1 Up-Translation and Down-Translation From 0.65 V to 3.6 V  
Both supply pins are configurable over the full 0.65 V to 3.6 V voltage range, which makes the device suitable for  
translating between any of the low voltage nodes (0.7 V, 0.8 V, 0.9 V, 1.2 V, 1.8 V, 2.5 V, and 3.3 V).  
8.3.2 Multiple Direction Control Pins  
Two control pins are used to configure the 8 data I/Os. I/O channels 1 through 4 are grouped together and I/O  
channels 5 through 8 are banked together. The benefit of this is to permit simultaneous up-translation and down-  
translation within one device. This eliminates the need for multiple devices, where each device can only provide  
up-translation or down-translation sequentially. Simultaneous up and down translation is supported when both  
VCCA and VCCB are at least 1.40 V.  
8.3.3 Bus-Hold Circuitry  
Active bus-hold circuitry holds unused or undriven data inputs at a valid logic state, which helps with board space  
savings and reduced component costs. Use of pull-up or pull-down resistors with the bus-hold circuitry is not  
recommended. See the Bus-Hold Circuit application note for more details. (SCLA015).  
Note that the bus-hold circuitry always remains active when the corresponding supply is present (i.e. B port bus-  
hold circuits are active when VCCB is present, and A port bus-hold circuits are active when VCCA is present). The  
bus hold circuitry is also active even when the device is in a partial power down state or when the output enable  
pin is used to place all outputs into high impedance.  
8.3.4 Ioff Supports Partial-Power-Down Mode Operation  
This feature is to limit the leakage current of an I/O pin being driven to a voltage as large as 3.6 V while having  
its corresponding power supply rail powered down. This is represented by the Ioff parameter in the Electrical  
Characteristics table.  
8.4 Device Functional Modes  
All control inputs are referenced to VCCA and must be driven to a valid Logic High or Logic Low (that is, not  
floating) to assure proper device operation and to prevent excessive power consumption. 1 summarizes the  
possible modes of device operation based on the configuration of the control inputs.  
1. Function Table(1)  
CONTROL INPUTS  
Signal Direction  
OE  
H
L
DIR1  
DIR2  
Bits 1:4  
Bits 5:8  
X
L
X
L
Disabled (Hi-Z)  
B to A  
L
L
H
L
B to A  
A to B  
A to B  
B to A  
L
H
H
A to B  
L
H
(1) Input circuits of the data I/Os are always active and must be driven to a valid logic level.  
版权 © 2018–2019, Texas Instruments Incorporated  
21  
 
SN74AXCH8T245  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
www.ti.com.cn  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The SN74AXCH8T245 device can be used in level-translation applications for interfacing devices or systems  
operating at different voltage nodes. 6 depicts an application in which the SN74AXCH8T245 device is up-  
translating a 0.7 V input to a 3.3 V output to interface between a system controller and a peripheral device.  
9.2 Typical Application  
0.7 V  
3.3 V  
0.1 µF  
0.1 µF  
10  
kΩ  
10  
kΩ  
VCCA  
VCCB  
OE  
DIR1  
DIR2  
GND  
10  
kΩ  
Controller  
SN74AXCH8T245  
Peripheral  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
B1  
B2  
B3  
B4  
B5  
B6  
B7  
B8  
6. Typical Application Schematic  
22  
版权 © 2018–2019, Texas Instruments Incorporated  
 
SN74AXCH8T245  
www.ti.com.cn  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
Typical Application (接下页)  
9.2.1 Design Requirements  
For this design example, use the parameters listed in 2.  
2. Design Parameters  
DESIGN PARAMETERS  
Input voltage range  
EXAMPLE VALUE  
0.65 V to 3.6 V  
0.65 V to 3.6 V  
Output voltage range  
9.2.2 Detailed Design Procedure  
To begin the design process, determine the following:  
Input voltage range  
Use the supply voltage of the device that is driving the SN74AXCH8T245 device to determine the input  
voltage range. For a valid logic high the value must exceed the VIH of the input port. For a valid logic low  
the value must be less than the VIL of the input port.  
Output voltage range  
Use the supply voltage of the device that the SN74AXCH8T245 device is driving to determine the output  
voltage range.  
9.2.3 Application Curve  
7. Translation Up (0.7 V to 3.3 V) at 2.5 MHz  
版权 © 2018–2019, Texas Instruments Incorporated  
23  
 
SN74AXCH8T245  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
Always apply a ground reference to the GND pins first. However, there are no additional requirements for power  
supply sequencing.  
This device was designed with various power supply sequencing methods in mind to help prevent unintended  
triggering of downstream devices. For more information regarding the power up glitch performance of the AXC  
family of level translators, see the Power Sequencing for AXC Family of Devices application report.  
11 Layout  
11.1 Layout Guidelines  
To assure reliability of the device, follow common printed-circuit board layout guidelines.  
Use bypass capacitors on power supplies.  
Use short trace lengths to avoid excessive loading.  
Place pads on the signal paths for loading capacitors or pullup resistors to help adjust rise and fall times of  
signals depending on the system requirements.  
11.2 Layout Example  
LEGEND  
Polygonal Copper Pour  
VIA to Power Plane (Inner Layer)  
VIA to GND Plane (Inner Layer)  
Bypass Capacitor  
VCCA  
Bypass  
Capacitor  
1
2
3
4
5
6
7
8
9
VCCA  
DIR1  
A1  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VCCB  
VCCB  
OE  
B1  
From Source  
From Source  
From Source  
From Source  
From Source  
From Source  
From Source  
From Source  
To Destination  
A2  
To Destination  
To Destination  
A3  
B2  
A4  
B3  
SN74AXCH8T245  
(PW Package)  
To Destination  
To Destination  
A5  
B4  
A6  
B5  
To Destination  
To Destination  
A7  
B6  
10  
11  
12  
A8  
B7  
To Destination  
DIR2  
GND  
B8  
GND  
8. SN74AXCH8T245 Device Layout Example  
24  
版权 © 2018–2019, Texas Instruments Incorporated  
SN74AXCH8T245  
www.ti.com.cn  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
德州仪器 (TI)《慢速或浮点 CMOS 输入的影响》应用报告  
德州仪器 (TI)AXC 系列器件电源定序》 应用报告  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
版权 © 2018–2019, Texas Instruments Incorporated  
25  
SN74AXCH8T245  
ZHCSIL3A AUGUST 2018REVISED JANUARY 2019  
www.ti.com.cn  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查阅左侧的导航栏。  
26  
版权 © 2018–2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN74AXCH8T245PWR  
SN74AXCH8T245RHLR  
ACTIVE  
ACTIVE  
TSSOP  
VQFN  
PW  
24  
24  
2000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
AH8T245  
AH8T245  
RHL  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN74AXCH8T245PWR TSSOP  
SN74AXCH8T245RHLR VQFN  
PW  
24  
24  
2000  
3000  
330.0  
330.0  
16.4  
12.4  
6.95  
3.8  
8.3  
5.8  
1.6  
1.2  
8.0  
8.0  
16.0  
12.0  
Q1  
Q1  
RHL  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN74AXCH8T245PWR  
SN74AXCH8T245RHLR  
TSSOP  
VQFN  
PW  
24  
24  
2000  
3000  
356.0  
367.0  
356.0  
367.0  
35.0  
35.0  
RHL  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PW0024A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
0
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
22X 0.65  
24  
1
2X  
7.15  
7.9  
7.7  
NOTE 3  
12  
B
13  
0.30  
24X  
4.5  
4.3  
NOTE 4  
0.19  
1.2 MAX  
0.1  
C A B  
0.25  
GAGE PLANE  
0.15  
0.05  
(0.15) TYP  
SEE DETAIL A  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
4220208/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0024A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
24X (1.5)  
(R0.05) TYP  
24  
1
24X (0.45)  
22X (0.65)  
SYMM  
12  
13  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220208/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0024A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
24X (1.5)  
SYMM  
(R0.05) TYP  
24  
1
24X (0.45)  
22X (0.65)  
SYMM  
12  
13  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220208/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
VQFN - 1 mm max height  
RHL0024A  
PLASTIC QUAD FLATPACK- NO LEAD  
A
3.6  
3.4  
B
PIN 1 INDEX AREA  
5.6  
5.4  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.05±0.1  
2X 1.5  
SYMM  
0.5  
0.3  
24X  
(0.1) TYP  
13  
12  
18X 0.5  
11  
14  
21  
SYMM  
2X  
4.05±0.1  
4.5  
23  
2
0.30  
24X  
0.18  
0.1  
0.05  
24  
1
PIN 1 ID  
(OPTIONAL)  
C A B  
C
4X (0.2)  
2X (0.55)  
4225250/A 09/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN - 1 mm max height  
RHL0024A  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.3)  
(2.05)  
2X (1.5)  
SYMM  
1
24  
24X (0.6)  
24X (0.24)  
2X (0.4)  
23  
2
18X (0.5)  
2X (1.105)  
6X (0.67)  
(4.05)  
25  
SYMM  
4.6  
4.4  
(5.3)  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
(Ø 0.2) VIA  
TYP  
(R0.05) TYP  
11  
14  
13  
12  
4X  
(0.775)  
4X (0.2)  
2X (0.55)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 18X  
SOLDER MASK  
OPENING  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
METAL  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225250/A 09/2019  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN - 1 mm max height  
RHL0024A  
PLASTIC QUAD FLATPACK- NO LEAD  
(3.3)  
(2.05)  
2X (1.5)  
SYMM  
SOLDER MASK EDGE  
TYP  
1
24  
24X (0.6)  
24X (0.24)  
23  
2
18X (0.5)  
25  
SYMM  
4.6  
4.4  
(5.3)  
4X  
(1.34)  
METAL TYP  
(R0.05) TYP  
11  
14  
13  
12  
2X (0.84)  
6X (0.56)  
4X (0.2)  
2X (0.55)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
80% PRINTED COVERAGE BY AREA  
SCALE: 18X  
4225250/A 09/2019  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SN74AXCH8T245RHLR

8 位双电源总线收发器 | RHL | 24 | -40 to 125
TI

SN74BC646NT

IC,BUS TRANSCEIVER,SINGLE,8-BIT,BICMOS,DIP,24PIN,PLASTIC
TI

SN74BCT

Pocket Data Book
TI

SN74BCT125A

QUADRUPLE BUS BUFFER GATES WITH 3-STATE OUTPUTS
TI

SN74BCT125AD

QUADRUPLE BUS BUFFER GATES WITH 3-STATE OUTPUTS
TI

SN74BCT125ADE4

QUADRUPLE BUS BUFFER GATES WITH 3-STATE OUTPUTS
TI

SN74BCT125ADG4

QUADRUPLE BUS BUFFER GATES WITH 3-STATE OUTPUTS
TI

SN74BCT125ADR

QUADRUPLE BUS BUFFER GATES WITH 3-STATE OUTPUTS
TI

SN74BCT125ADRE4

QUADRUPLE BUS BUFFER GATES WITH 3-STATE OUTPUTS
TI

SN74BCT125ADRG4

BCT/FBT SERIES, QUAD 1-BIT DRIVER, TRUE OUTPUT, PDSO14, GREEN, PLASTIC, MS-012AB, SOIC-14
TI

SN74BCT125AN

QUADRUPLE BUS BUFFER GATES WITH 3-STATE OUTPUTS
TI

SN74BCT125ANE4

QUADRUPLE BUS BUFFER GATES WITH 3-STATE OUTPUTS
TI