SN74HCS126PWR [TI]

具有三态输出的施密特触发输入四路总线缓冲门 | PW | 14 | -40 to 125;
SN74HCS126PWR
型号: SN74HCS126PWR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有三态输出的施密特触发输入四路总线缓冲门 | PW | 14 | -40 to 125

文件: 总24页 (文件大小:1176K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN74HCS126  
ZHCSNK7B JUNE 2020 REVISED MAY 2023  
具有三态输出和施密特触发器输入SN74HCS126 四路缓冲器  
1 特性  
2 应用  
• 宽工作电压范围2V 6V  
• 施密特触发输入可实现慢速或高噪声输入信号  
• 低功耗  
启用或禁用数字信号  
控制指示LED  
对开关进行去抖  
消除缓慢或嘈杂输入信号  
ICC 典型值100nA  
– 输入泄漏电流典型值±100nA  
• 电压6V 输出驱动±7.8mA  
• 工作环境温度范围40°C +125°CTA  
3 说明  
该器件包含四个具有三态输出和施密特触发输入的独立  
缓冲器。每个逻辑门以正逻辑执行布尔函数 Y = A。通  
OE 引脚施加低电平可以将输出置于高阻态  
封装信息  
封装(1)  
TSSOP (14)  
SOIC (14)  
封装尺寸标称值)  
5.00mm × 4.40mm  
9.90mm × 3.90mm  
器件型号  
SN74HCS126PW  
SN74HCS126D  
(1) 要了解所有可用封装请参见数据表末尾的可订购产品附录。  
Supports Slow Inputs  
Low Power  
Noise Rejection  
Input Voltage  
Waveforms  
Time  
Input Voltage  
Time  
Standard  
CMOS Input  
Response  
Waveforms  
Time  
Time  
Input Voltage  
Schmitt-trigger  
CMOS Input  
Response  
Waveforms  
Time  
Time  
Input Voltage  
施密特触发输入的优势  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCLS798  
 
 
 
 
SN74HCS126  
ZHCSNK7B JUNE 2020 REVISED MAY 2023  
www.ti.com.cn  
Table of Contents  
8.3 Feature Description.....................................................8  
8.4 Device Functional Modes............................................9  
9 Application and Implementation..................................10  
9.1 Application Information............................................. 10  
9.2 Typical Application.................................................... 10  
10 Power Supply Recommendations..............................13  
11 Layout...........................................................................13  
11.1 Layout Guidelines................................................... 13  
11.2 Layout Example...................................................... 13  
12 Device and Documentation Support..........................14  
12.1 Documentation Support.......................................... 14  
12.2 接收文档更新通知................................................... 14  
12.3 支持资源..................................................................14  
12.4 Trademarks.............................................................14  
12.5 静电放电警告.......................................................... 14  
12.6 术语表..................................................................... 14  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings ....................................... 4  
6.2 ESD Ratings .............................................................. 4  
6.3 Recommended Operating Conditions ........................4  
6.4 Thermal Information ...................................................4  
6.5 Electrical Characteristics ............................................5  
6.6 Switching Characteristics ...........................................5  
6.7 Operating Characteristics .......................................... 6  
6.8 Typical Characteristics................................................6  
7 Parameter Measurement Information............................7  
8 Detailed Description........................................................8  
8.1 Overview.....................................................................8  
8.2 Functional Block Diagram...........................................8  
Information.................................................................... 15  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (March 2021) to Revision B (May 2023)  
Page  
• 将封装信息 表中的引脚计数16 更新为 14......................................................................................................1  
Changes from Revision * (June 2020) to Revision A (March 2021)  
Page  
Changed the unit of II from µA to nA...................................................................................................................5  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCLS798  
2
Submit Document Feedback  
Product Folder Links: SN74HCS126  
 
SN74HCS126  
ZHCSNK7B JUNE 2020 REVISED MAY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
1OE  
1A  
VCC  
4OE  
4A  
1Y  
2OE  
2A  
4Y  
3OE  
3A  
2Y  
GND  
3Y  
5-1. PW or D Package 14-Pin TSSOP or SOIC Top View  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
1OE  
1A  
NO.  
1
Input  
Input  
Channel 1, Output Enable, Active High  
Channel 1, Input A  
2
1Y  
3
Output  
Input  
Channel 1, Output Y  
2OE  
2A  
4
Channel 2, Output Enable, Active High  
Channel 2, Input A  
5
Input  
2Y  
6
Output  
Channel 2, Output Y  
GND  
3Y  
7
Ground  
8
Output  
Input  
Input  
Output  
Input  
Input  
Channel 3, Output Y  
3A  
9
Channel 3, Input A  
3OE  
4Y  
10  
11  
12  
13  
14  
Channel 3, Output Enable, Active High  
Channel 4, Output Y  
4A  
Channel 4, Input A  
4OE  
VCC  
Channel 4, Output Enable, Active High  
Positive Supply  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN74HCS126  
English Data Sheet: SCLS798  
 
 
SN74HCS126  
ZHCSNK7B JUNE 2020 REVISED MAY 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
VCC  
IIK  
Supply voltage  
7
±20  
±20  
±35  
±70  
150  
150  
0.5  
Input clamp current(2)  
VI < 0 or VI > VCC  
VO < 0 or VO > VCC  
VO = 0 to VCC  
mA  
mA  
mA  
mA  
°C  
IOK  
IO  
Output clamp current(2)  
Continuous output current  
Continuous current through VCC or GND  
Junction temperature  
ICC  
TJ  
Tstg  
Storage temperature  
°C  
65  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 2  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per AEC  
Q100-011  
±1500  
CDM ESD Classification Level C4B  
(1) AEC Q100-002 indicate that HBM stressing shall be in accordrance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2
NOM  
MAX  
6
UNIT  
V
VCC  
VI  
Supply voltage  
Input voltage  
5
0
VCC  
VCC  
125  
V
VO  
TA  
Output voltage  
Ambient temperature  
0
V
°C  
40  
6.4 Thermal Information  
SN74HCS126  
THERMAL METRIC(1)  
D (SOIC)  
14 PINS  
133.6  
89  
PW (TSSOP)  
14 PINS  
151.7  
79.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
89.5  
94.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
45.5  
25.2  
ΨJT  
89.1  
94.1  
ΨJB  
RθJC(bot)  
N/A  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCLS798  
4
Submit Document Feedback  
Product Folder Links: SN74HCS126  
 
 
 
 
 
 
 
 
 
SN74HCS126  
ZHCSNK7B JUNE 2020 REVISED MAY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0.7  
1.7  
2.1  
0.3  
0.9  
1.2  
0.2  
0.4  
0.6  
TYP(1)  
MAX UNIT  
2 V  
1.5  
VT+  
Positive switching threshold  
4.5 V  
6 V  
3.15  
4.2  
1
V
V
V
V
V
2 V  
VT-  
Negative switching threshold  
Hysteresis (VT+ - VT-)  
4.5 V  
6 V  
2.2  
3
2 V  
1
4.5 V  
6 V  
1.4  
1.6  
ΔVT  
VOH  
VOL  
IOH = -20 µA  
2 V to 6 V  
4.5 V  
6 V  
VCC 0.1 VCC 0.002  
High-level output voltage  
VI = VIH or VIL  
IOH = -6 mA  
IOH = -7.8 mA  
4
4.3  
5.75  
5.4  
IOL = 20 µA  
2 V to 6 V  
4.5 V  
6 V  
0.002  
0.18  
0.1  
0.3  
Low-level output voltage  
Input leakage current  
VI = VIH or VIL IOL = 6 mA  
IOL = 7.8 mA  
0.22  
0.33  
II  
VI = VCC or 0  
6 V  
±100  
±1000 nA  
Off-state (high-impedance  
state) output current  
IOZ  
VO = VCC or 0  
6 V  
0.01  
0.1  
2
µA  
ICC  
Ci  
Supply current  
VI = VCC or 0, IO = 0  
6 V  
2
5
µA  
pF  
Input capacitance  
2 V to 6 V  
(1) TA = 25°C  
6.6 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
FROM (INPUT)  
TO (OUTPUT)  
VCC  
2 V  
MIN  
TYP(1)  
MAX UNIT  
15  
8
50  
tpd  
ten  
tdis  
tt  
Propagation delay  
A
Y
Y
Y
4.5 V  
6 V  
30  
26  
36  
14  
12  
27  
17  
14  
16  
9
ns  
ns  
ns  
ns  
7
2 V  
18  
9
Enable time  
Disable time  
Transition-time  
OE  
OE  
4.5 V  
6 V  
7
2 V  
15  
10  
9
4.5 V  
6 V  
2 V  
9
Any  
4.5 V  
6 V  
5
4
8
(1) TA = 25°C  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN74HCS126  
English Data Sheet: SCLS798  
 
 
 
 
 
SN74HCS126  
ZHCSNK7B JUNE 2020 REVISED MAY 2023  
www.ti.com.cn  
6.7 Operating Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX  
UNIT  
Cpd  
Power dissipation capacitance per gate  
No load  
10  
pF  
(1) TA = 25°C  
6.8 Typical Characteristics  
TA = 25°C  
46  
44  
42  
40  
38  
36  
34  
32  
30  
28  
26  
70  
65  
60  
55  
50  
45  
40  
35  
30  
VCC = 2 V  
VCC = 2 V  
VCC = 3.3 V  
VCC = 4.5 V  
VCC = 6 V  
VCC = 3.3 V  
VCC = 4.5 V  
VCC = 6 V  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Output Sink Current (mA)  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Output Source Current (mA)  
6-1. Output driver resistance in LOW state.  
6-2. Output driver resistance in HIGH state.  
0.2  
0.65  
VCC = 2 V  
VCC = 2.5 V  
VCC = 3.3 V  
VCC = 4.5 V  
0.6  
0.18  
0.16  
0.55  
VCC = 5 V  
0.5  
VCC = 6 V  
0.14  
0.12  
0.1  
0.45  
0.4  
0.35  
0.3  
0.08  
0.06  
0.04  
0.02  
0
0.25  
0.2  
0.15  
0.1  
0.05  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VI œ Input Voltage (V)  
VI œ Input Voltage (V)  
6-3. Supply current across input voltage, 2-,  
6-4. Supply current across input voltage, 4.5-,  
2.5-, and 3.3-V supply  
5-, and 6-V supply  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN74HCS126  
English Data Sheet: SCLS798  
 
 
 
SN74HCS126  
ZHCSNK7B JUNE 2020 REVISED MAY 2023  
www.ti.com.cn  
7 Parameter Measurement Information  
Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators  
having the following characteristics: PRR 1 MHz, ZO = 50 , tt < 2.5 ns.  
For clock inputs, fmax is measured when the input duty cycle is 50%.  
The outputs are measured one at a time with one input transition per measurement.  
VCC  
VCC  
0 V  
VOH  
VOL  
VOH  
VOL  
Test  
Point  
Input  
Output  
Output  
50%  
50%  
S1  
S2  
RL  
(1)  
(1)  
From Output  
Under Test  
tPLH  
tPHL  
(1)  
CL  
50%  
50%  
(1)  
(1)  
(1) CL includes probe and test-fixture capacitance.  
tPHL  
tPLH  
7-1. Load Circuit for 3-State Outputs  
50%  
50%  
(1) The greater between tPLH and tPHL is the same as tpd  
.
7-2. Voltage Waveforms Propagation Delays  
VCC  
VCC  
90%  
10%  
90%  
Output  
Control  
50%  
50%  
Input  
10%  
tf(1)  
0 V  
0 V  
VOH  
VOL  
tr(1)  
(3)  
(4)  
tPZL  
tPLZ  
≈ VCC  
90%  
10%  
90%  
Output  
Waveform 1  
(1)  
S1 at VLOAD  
50%  
Output  
10%  
10%  
tf(1)  
VOL  
tr(1)  
(3)  
(4)  
tPZH  
tPHZ  
(1) The greater between tr and tf is the same as tt.  
VOH  
Output  
Waveform 2  
S1 at GND(2)  
7-4. Voltage Waveforms, Input and Output  
90%  
50%  
Transition Times  
0 V  
7-3. Voltage Waveforms Propagation Delays  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN74HCS126  
English Data Sheet: SCLS798  
 
SN74HCS126  
ZHCSNK7B JUNE 2020 REVISED MAY 2023  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
This device contains four independent buffer with 3-state outputs and Schmitt-trigger inputs. Each gate performs  
the Boolean function Y = A in positive logic.  
8.2 Functional Block Diagram  
One of Four Channels  
xOE  
xA  
xY  
8.3 Feature Description  
8.3.1 Balanced CMOS 3-State Outputs  
This device includes balanced CMOS 3-State outputs. The three states that these outputs can be in are driving  
high, driving low, and high impedance. The term "balanced" indicates that the device can sink and source similar  
currents. The drive capability of this device may create fast edges into light loads so routing and load conditions  
should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger  
currents than the device can sustain without being damaged. It is important for the output power of the device to  
be limited to avoid damage due to overcurrent. The electrical and thermal limits defined in the Absolute  
Maximum Ratings must be followed at all times.  
When placed into the high-impedance mode, the output will neither source nor sink current, with the exception of  
minor leakage current as defined in the Electrical Characteristics table. In the high-impedance state, the output  
voltage is not controlled by the device and is dependent on external factors. If no other drivers are connected to  
the node, then this is known as a floating node and the voltage is unknown. A pull-up or pull-down resistor can  
be connected to the output to provide a known voltage at the output while it is in the high-impedance state. The  
value of the resistor will depend on multiple factors, including parasitic capacitance and power consumption  
limitations. Typically, a 10 kΩresistor can be used to meet these requirements.  
Unused 3-state CMOS outputs should be left disconnected.  
8.3.2 CMOS Schmitt-Trigger Inputs  
This device includes inputs with the Schmitt-trigger architecture. These inputs are high impedance and are  
typically modeled as a resistor in parallel with the input capacitance given in the Electrical Characteristics table  
from the input to ground. The worst case resistance is calculated with the maximum input voltage, given in the  
Absolute Maximum Ratings table, and the maximum input leakage current, given in the Electrical Characteristics  
table, using Ohm's law (R = V ÷ I).  
The Schmitt-trigger input architecture provides hysteresis as defined by ΔVT in the Electrical Characteristics  
table, which makes this device extremely tolerant to slow or noisy inputs. While the inputs can be driven much  
slower than standard CMOS inputs, it is still recommended to properly terminate unused inputs. Driving the  
inputs with slow transitioning signals will increase dynamic current consumption of the device. For additional  
information regarding Schmitt-trigger inputs, please see Understanding Schmitt Triggers.  
8.3.3 Clamp Diode Structure  
The inputs and outputs to this device have both positive and negative clamping diodes as depicted in Electrical  
Placement of Clamping Diodes for Each Input and Output.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCLS798  
8
Submit Document Feedback  
Product Folder Links: SN74HCS126  
 
 
 
 
SN74HCS126  
ZHCSNK7B JUNE 2020 REVISED MAY 2023  
www.ti.com.cn  
CAUTION  
Voltages beyond the values specified in the Absolute Maximum Ratings table can cause damage to  
the device. The input and output voltage ratings may be exceeded if the input and output clamp-  
current ratings are observed.  
VCC  
Device  
+IIK  
+IOK  
Input  
Output  
Logic  
GND  
-IIK  
-IOK  
8-1. Electrical Placement of Clamping Diodes for Each Input and Output  
8.4 Device Functional Modes  
8-1. Function Table  
INPUTS  
OUTPUT  
OE  
A
X
L
Y
Z
L
L
H
H
H
H
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN74HCS126  
English Data Sheet: SCLS798  
 
SN74HCS126  
ZHCSNK7B JUNE 2020 REVISED MAY 2023  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
In this application, a buffer with a 3-state output is used to disable a data signal as shown in 9-1. The  
remaining three buffers can be used for signal conditioning in other places in the system, or the inputs can be  
grounded and the channels left unused.  
9.2 Typical Application  
System  
Controller  
OE  
A
Y
Data  
Output  
9-1. Typical application block diagram  
9.2.1 Design Requirements  
9.2.1.1 Power Considerations  
Ensure the desired supply voltage is within the range specified in the Recommended Operating Conditions. The  
supply voltage sets the device's electrical characteristics as described in the Electrical Characteristics.  
The positive voltage supply must be capable of sourcing current equal to the total current to be sourced by all  
outputs of the SN74HCS126 plus the maximum static supply current, ICC, listed in Electrical Characteristics and  
any transient current required for switching. The logic device can only source as much current as is provided by  
the positive supply source. Be sure not to exceed the maximum total current through VCC listed in the Absolute  
Maximum Ratings.  
The ground must be capable of sinking current equal to the total current to be sunk by all outputs of the  
SN74HCS126 plus the maximum supply current, ICC, listed in Electrical Characteristics, and any transient  
current required for switching. The logic device can only sink as much current as can be sunk into its ground  
connection. Be sure not to exceed the maximum total current through GND listed in the Absolute Maximum  
Ratings.  
The SN74HCS126 can drive a load with a total capacitance less than or equal to 50 pF while still meeting all of  
the datasheet specifications. Larger capacitive loads can be applied, however it is not recommended to exceed  
50 pF.  
The SN74HCS126 can drive a load with total resistance described by RL VO / IO, with the output voltage and  
current defined in the Electrical Characteristics table with VOH and VOL. When outputting in the high state, the  
output voltage in the equation is defined as the difference between the measured output voltage and the supply  
voltage at the VCC pin.  
Total power consumption can be calculated using the information provided in CMOS Power Consumption and  
Cpd Calculation.  
Thermal increase can be calculated using the information provided in Thermal Characteristics of Standard Linear  
and Logic (SLL) Packages and Devices.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCLS798  
10  
Submit Document Feedback  
Product Folder Links: SN74HCS126  
 
 
 
 
SN74HCS126  
ZHCSNK7B JUNE 2020 REVISED MAY 2023  
www.ti.com.cn  
CAUTION  
The maximum junction temperature, TJ(max) listed in the Absolute Maximum Ratings, is an additional  
limitation to prevent damage to the device. Do not violate any values listed in the Absolute Maximum  
Ratings. These limits are provided to prevent damage to the device.  
9.2.1.2 Input Considerations  
Input signals must cross Vt-(min) to be considered a logic LOW, and Vt+(max) to be considered a logic HIGH. Do  
not exceed the maximum input voltage range found in the Absolute Maximum Ratings.  
Unused inputs must be terminated to either VCC or ground. These can be directly terminated if the input is  
completely unused, or they can be connected with a pull-up or pull-down resistor if the input is to be used  
sometimes, but not always. A pull-up resistor is used for a default state of HIGH, and a pull-down resistor is used  
for a default state of LOW. The resistor size is limited by drive current of the controller, leakage current into the  
SN74HCS126, as specified in the Electrical Characteristics, and the desired input transition rate. A 10-kΩ  
resistor value is often used due to these factors.  
The SN74HCS126 has no input signal transition rate requirements because it has Schmitt-trigger inputs.  
Another benefit to having Schmitt-trigger inputs is the ability to reject noise. Noise with a large enough amplitude  
can still cause issues. To know how much noise is too much, please refer to the ΔVT(min) in the Electrical  
Characteristics. This hysteresis value will provide the peak-to-peak limit.  
Unlike what happens with standard CMOS inputs, Schmitt-trigger inputs can be held at any valid value without  
causing huge increases in power consumption. The typical additional current caused by holding an input at a  
value other than VCC or ground is plotted in the Typical Characteristics.  
Refer to the Feature Description section for additional information regarding the inputs for this device.  
9.2.1.3 Output Considerations  
The positive supply voltage is used to produce the output HIGH voltage. Drawing current from the output will  
decrease the output voltage as specified by the VOH specification in the Electrical Characteristics. The ground  
voltage is used to produce the output LOW voltage. Sinking current into the output will increase the output  
voltage as specified by the VOL specification in the Electrical Characteristics.  
Push-pull outputs that could be in opposite states, even for a very short time period, should never be connected  
directly together. This can cause excessive current and damage to the device.  
Two channels within the same device with the same input signals can be connected in parallel for additional  
output drive strength.  
Unused outputs can be left floating. Do not connect outputs directly to VCC or ground.  
Refer to Feature Description section for additional information regarding the outputs for this device.  
9.2.2 Detailed Design Procedure  
1. Add a decoupling capacitor from VCC to GND. The capacitor needs to be placed physically close to the  
device and electrically close to both the VCC and GND pins. An example layout is shown in the Layout  
section.  
2. Ensure the capacitive load at the output is 50 pF. This is not a hard limit, however it will ensure optimal  
performance. This can be accomplished by providing short, appropriately sized traces from the  
SN74HCS126 to the receiving device(s).  
3. Ensure the resistive load at the output is larger than (VCC / IO(max)) Ω. This will ensure that the maximum  
output current from the Absolute Maximum Ratings is not violated. Most CMOS inputs have a resistive load  
measured in megaohms; much larger than the minimum calculated above.  
4. Thermal issues are rarely a concern for logic gates, however the power consumption and thermal increase  
can be calculated using the steps provided in the application report, CMOS Power Consumption and Cpd  
Calculation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN74HCS126  
English Data Sheet: SCLS798  
SN74HCS126  
ZHCSNK7B JUNE 2020 REVISED MAY 2023  
www.ti.com.cn  
9.2.3 Application Curves  
Data  
Output  
OE  
9-2. Application timing diagram  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCLS798  
12  
Submit Document Feedback  
Product Folder Links: SN74HCS126  
SN74HCS126  
ZHCSNK7B JUNE 2020 REVISED MAY 2023  
www.ti.com.cn  
10 Power Supply Recommendations  
The power supply can be any voltage between the minimum and maximum supply voltage rating located in the  
Recommended Operating Conditions. Each VCC terminal should have a good bypass capacitor to prevent power  
disturbance. A 0.1-μF capacitor is recommended for this device. It is acceptable to parallel multiple bypass caps  
to reject different frequencies of noise. The 0.1-μF and 1-μF capacitors are commonly used in parallel. The  
bypass capacitor should be installed as close to the power terminal as possible for best results, as shown in  
given example layout image.  
11 Layout  
11.1 Layout Guidelines  
When using multiple-input and multiple-channel logic devices inputs must not ever be left floating. In many  
cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a  
triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left  
unconnected because the undefined voltages at the outside connections result in undefined operational states.  
All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the  
input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular  
unused input depends on the function of the device. Generally, the inputs are tied to GND or VCC, whichever  
makes more sense for the logic function or is more convenient.  
11.2 Layout Example  
GND VCC  
Recommend GND flood fill for  
improved signal isolation, noise  
reduction, and thermal dissipation  
Bypass capacitor  
placed close to  
the device  
0.1 F  
Unused inputs  
tied to VCC  
1OE  
1A  
14  
1
2
3
4
5
6
7
VCC  
13  
12  
11  
10  
9
4OE  
4A  
1Y  
Unused output  
left floating  
2OE  
2A  
4Y  
3OE  
3A  
2Y  
Avoid 90°  
corners for  
signal lines  
GND  
8
3Y  
11-1. Example layout for the SN74HCS126-Q1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN74HCS126  
English Data Sheet: SCLS798  
 
 
 
 
SN74HCS126  
ZHCSNK7B JUNE 2020 REVISED MAY 2023  
www.ti.com.cn  
12 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed below.  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, HCMOS Design Considerations application report (SCLA007)  
Texas Instruments, CMOS Power Consumption and Cpd Calculation application report (SDYA009)  
Texas Instruments, Designing With Logic application report  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SCLS798  
14  
Submit Document Feedback  
Product Folder Links: SN74HCS126  
 
 
 
 
 
 
 
SN74HCS126  
ZHCSNK7B JUNE 2020 REVISED MAY 2023  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: SN74HCS126  
English Data Sheet: SCLS798  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN74HCS126DR  
ACTIVE  
ACTIVE  
SOIC  
D
14  
14  
2500 RoHS & Green  
2000 RoHS & Green  
NIPDAU | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
HCS126  
HCS126  
Samples  
Samples  
SN74HCS126PWR  
TSSOP  
PW  
NIPDAU | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
4-May-2023  
OTHER QUALIFIED VERSIONS OF SN74HCS126 :  
Automotive : SN74HCS126-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-May-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN74HCS126DR  
SN74HCS126DR  
SN74HCS126PWR  
SN74HCS126PWR  
SOIC  
SOIC  
D
D
14  
14  
14  
14  
2500  
2500  
2000  
2000  
330.0  
330.0  
330.0  
330.0  
16.4  
16.4  
12.4  
12.4  
6.6  
6.5  
9.3  
9.0  
2.1  
2.1  
1.6  
1.6  
8.0  
8.0  
8.0  
8.0  
16.0  
16.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
TSSOP  
TSSOP  
PW  
PW  
6.85  
6.9  
5.45  
5.6  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
4-May-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN74HCS126DR  
SN74HCS126DR  
SN74HCS126PWR  
SN74HCS126PWR  
SOIC  
SOIC  
D
D
14  
14  
14  
14  
2500  
2500  
2000  
2000  
366.0  
356.0  
366.0  
356.0  
364.0  
356.0  
364.0  
356.0  
50.0  
35.0  
50.0  
35.0  
TSSOP  
TSSOP  
PW  
PW  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX