SN74HCS21QDRQ1 [TI]

具有施密特触发输入的汽车类双路 4 输入与门 | D | 14 | -40 to 125;
SN74HCS21QDRQ1
型号: SN74HCS21QDRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有施密特触发输入的汽车类双路 4 输入与门 | D | 14 | -40 to 125

文件: 总21页 (文件大小:679K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
SN74HCS21-Q1  
ZHCSKY5 FEBRUARY 2020  
具有施密特触发输入的 SN74HCS21-Q1 汽车类双路 4 输入与门  
1 特性  
2 应用  
1
符合面向汽车 应用的 AEC-Q100 标准:  
将电源正常信号进行结合  
使能数字信号  
器件温度等级 1–40°C +125°CTA  
器件 HBM ESD 分类等级 2  
3 说明  
器件 CDM ESD 分类等级 C6  
此器件包含两个具有施密特触发输入的独立 4 输入与  
门。每个逻辑门以正逻辑执行布尔函数 Y = A B C  
D。  
宽工作电压范围:2V 6V  
施密特触发输入可实现慢速或高噪声输入信号  
低功耗  
I
CC 典型值为 100nA  
器件信息(1)  
输入泄漏电流典型值为 ±100nA  
器件型号  
SN74HCS21QPWRQ1 TSSOP (14)  
SN74HCS21QDRQ1 SOIC (14)  
封装  
封装尺寸(标称值)  
5.00mm × 4.40mm  
8.70mm × 3.90mm  
电压为 5V 时,输出驱动为 ±7.8mA  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
施密特触发输入的优势  
Supports Slow Inputs  
Low Power  
Noise Rejection  
Input Voltage  
Waveforms  
Time  
Input Voltage  
Time  
Standard  
CMOS Input  
Response  
Waveforms  
Time  
Time  
Input Voltage  
Schmitt-trigger  
CMOS Input  
Response  
Waveforms  
Time  
Time  
Input Voltage  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SCLS761  
 
 
 
SN74HCS21-Q1  
ZHCSKY5 FEBRUARY 2020  
www.ti.com.cn  
目录  
8.3 Feature Description................................................... 7  
8.4 Device Functional Modes.......................................... 8  
Application and Implementation .......................... 9  
9.1 Application Information.............................................. 9  
9.2 Typical Application .................................................... 9  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ...................................... 3  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 4  
6.6 Switching Characteristics.......................................... 5  
6.7 Typical Characteristics.............................................. 5  
Parameter Measurement Information .................. 6  
Detailed Description .............................................. 7  
8.1 Overview ................................................................... 7  
8.2 Functional Block Diagram ......................................... 7  
9
10 Power Supply Recommendations ..................... 12  
11 Layout................................................................... 12  
11.1 Layout Guidelines ................................................. 12  
11.2 Layout Example .................................................... 12  
12 器件和文档支持 ..................................................... 13  
12.1 文档支持................................................................ 13  
12.2 相关链接................................................................ 13  
12.3 社区资源................................................................ 13  
12.4 ....................................................................... 13  
12.5 静电放电警告......................................................... 13  
12.6 Glossary................................................................ 13  
13 机械、封装和可订购信息....................................... 13  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2020 2 月  
*
初始发行版。  
2
Copyright © 2020, Texas Instruments Incorporated  
 
SN74HCS21-Q1  
www.ti.com.cn  
ZHCSKY5 FEBRUARY 2020  
5 Pin Configuration and Functions  
D or PW Package  
14-Pin SOIC or TSSOP  
Top View  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1A  
1B  
VCC  
2D  
2C  
NC  
2B  
2A  
2Y  
NC  
1C  
1D  
1Y  
8
GND  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
1A  
NO.  
1
Input  
Input  
Channel 1, Input A  
1B  
2
Channel 1, Input B  
Not internally connected  
Channel 1, Input C  
Channel 1, Input D  
Channel 1, Output Y  
Ground  
NC  
1C  
3, 11  
4
Input  
Input  
Output  
1D  
5
1Y  
6
GND  
2Y  
7
8
Output  
Input  
Input  
Input  
Input  
Channel 2, Output Y  
Channel 2, Input A  
Channel 2, Input B  
Channel 2, Input C  
Channel 2, Input D  
Positive Supply  
2A  
9
2B  
10  
12  
13  
14  
2C  
2D  
VCC  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
VCC  
IIK  
IOK  
IO  
Supply voltage  
–0.5  
7
V
VI < –0.5 or VI > VCC  
0.5  
+
Input clamp current(2)  
±20  
±20  
mA  
mA  
VO < –0.5 or VO > VCC  
0.5  
+
Output clamp current(2)  
Continuous output current  
Continuous current through VCC or GND  
Junction temperature(3)  
VO = 0 to VCC  
±35  
±50  
150  
150  
mA  
mA  
°C  
TJ  
Tstg  
Storage temperature  
–65  
°C  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed. Do not exceed the absolute  
maximum voltage supply rating.  
(3) Guaranteed by design.  
Copyright © 2020, Texas Instruments Incorporated  
3
 
SN74HCS21-Q1  
ZHCSKY5 FEBRUARY 2020  
www.ti.com.cn  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 2  
±4000  
±1500  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per AEC Q100-011  
CDM ESD Classification Level C6  
(1) AEC Q100-002 indicate that HBM stressing shall be in accordrance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2
NOM  
MAX  
6
UNIT  
V
VCC  
VI  
Supply voltage  
Input voltage  
0
VCC  
V
VO  
Output voltage  
0
VCC  
V
Δt/Δv  
TA  
Input transition rise and fall rate  
Ambient temperature  
Unlimited  
125  
ns/V  
°C  
–40  
6.4 Thermal Information  
SN74HCS21-Q1  
PW (TSSOP)  
THERMAL METRIC  
D (SOIC)  
14 PINS  
133.6  
89.0  
UNIT  
14 PINS  
151.7  
79.4  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
94.7  
89.5  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
25.2  
45.5  
ΨJB  
94.1  
89.1  
RθJC(bot)  
N/A  
N/A  
6.5 Electrical Characteristics  
over operating free-air temperature range; typical ratings measured at TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0.7  
TYP  
MAX UNIT  
2 V  
1.5  
VT+  
Positive switching threshold  
4.5 V  
6 V  
1.7  
3.15  
4.2  
1.0  
2.2  
3.0  
1.0  
1.4  
1.6  
V
V
V
V
V
2.1  
2 V  
0.3  
VT-  
Negative switching threshold  
4.5 V  
6 V  
0.9  
1.2  
2 V  
0.2  
ΔVT Hysteresis (VT+ - VT-  
)
4.5 V  
6 V  
0.4  
0.6  
IOH = -20 µA  
VI = VIH or VIL IOH = -6 mA  
IOH = -7.8 mA  
2 V to 6 V  
4.5 V  
6 V  
VCC – 0.1  
4
VCC – 0.002  
4.3  
VOH High-level output voltage  
5.4  
5.75  
IOL = 20 µA  
2 V to 6 V  
4.5 V  
6 V  
0.002  
0.18  
0.1  
0.30  
0.33  
VOL  
Low-level output voltage  
VI = VIH or VIL IOL = 6 mA  
IOL = 7.8 mA  
0.22  
II  
Input leakage current  
Supply current  
VI = VCC or 0  
6 V  
±100  
0.1  
±1000 nA  
ICC  
Ci  
VI = VCC or 0, IO = 0  
6 V  
2
5
µA  
pF  
Input capacitance  
2 V to 6 V  
4
Copyright © 2020, Texas Instruments Incorporated  
 
 
SN74HCS21-Q1  
www.ti.com.cn  
ZHCSKY5 FEBRUARY 2020  
Electrical Characteristics (continued)  
over operating free-air temperature range; typical ratings measured at TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
TYP  
MAX UNIT  
Power dissipation capacitance  
per gate  
Cpd  
No load  
2 V to 6 V  
10  
pF  
6.6 Switching Characteristics  
over operating free-air temperature range; typical ratings measured at TA = 25°C (unless otherwise noted). See the  
Parameter Measurement Information.  
PARAMETER  
FROM (INPUT)  
TO (OUTPUT)  
VCC  
2 V  
MIN  
TYP  
22  
9
MAX UNIT  
52  
tpd  
Propagation delay  
A or B  
Y
Y
4.5 V  
6 V  
22  
16  
17  
8
ns  
ns  
8
2 V  
9
tt  
Transition-time  
4.5 V  
6 V  
5
4
7
6.7 Typical Characteristics  
TA = 25°C  
46  
44  
42  
40  
38  
36  
34  
32  
30  
28  
26  
70  
65  
60  
55  
50  
45  
40  
35  
30  
VCC = 2 V  
VCC = 3.3 V  
VCC = 4.5 V  
VCC = 6 V  
VCC = 2 V  
VCC = 3.3 V  
VCC = 4.5 V  
VCC = 6 V  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Output Sink Current (mA)  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Output Source Current (mA)  
1. Output driver resistance in Low state  
2. Output driver resistance in High state  
0.2  
0.18  
0.16  
0.14  
0.12  
0.1  
0.65  
VCC = 2 V  
VCC = 4.5 V  
VCC = 5 V  
VCC = 6 V  
0.6  
0.55  
0.5  
VCC = 2.5 V  
VCC = 3.3 V  
0.45  
0.4  
0.35  
0.3  
0.08  
0.06  
0.04  
0.02  
0
0.25  
0.2  
0.15  
0.1  
0.05  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VI œ Input Voltage (V)  
VI œ Input Voltage (V)  
3. Typical supply current versus input voltage across  
4. Typical supply current versus input voltage across  
common supply values (2 V to 3.3 V)  
common supply values (4.5 V to 6 V)  
版权 © 2020, Texas Instruments Incorporated  
5
 
SN74HCS21-Q1  
ZHCSKY5 FEBRUARY 2020  
www.ti.com.cn  
7 Parameter Measurement Information  
Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators  
having the following characteristics: PRR 1 MHz, ZO = 50 , tt < 2.5 ns.  
The outputs are measured one at a time, with one input transition per measurement.  
Test  
90%  
Point  
VCC  
0 V  
VOH  
VOL  
90%  
Input  
10%  
tf(1)  
10%  
tr(1)  
From Output  
Under Test  
(1)  
90%  
10%  
CL  
90%  
Output  
10%  
tf(1)  
tr(1)  
CL= 50 pF and includes probe and jig capacitance.  
5. Load Circuit  
6. Voltage Waveforms  
Transition Times  
VCC  
Input  
50%  
50%  
0 V  
VOH  
VOL  
VOH  
VOL  
(1)  
(1)  
tPLH  
tPHL  
Output  
50%  
50%  
(1)  
(1)  
tPHL  
tPLH  
Output  
50%  
50%  
The maximum between tPLH and TPHL is used for tpd  
.
7. Voltage Waveforms  
Propagation Delays  
6
版权 © 2020, Texas Instruments Incorporated  
SN74HCS21-Q1  
www.ti.com.cn  
ZHCSKY5 FEBRUARY 2020  
8 Detailed Description  
8.1 Overview  
This device contains two independent 4-input AND Gates with Schmitt-trigger inputs. Each gate performs the  
Boolean function Y = A B C D in positive logic.  
8.2 Functional Block Diagram  
One of Two Channels  
xA  
xB  
xY  
xC  
xD  
8.3 Feature Description  
8.3.1 Balanced CMOS Push-Pull Outputs  
A balanced output allows the device to sink and source similar currents. The drive capability of this device may  
create fast edges into light loads so routing and load conditions should be considered to prevent ringing.  
Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without  
being damaged. It is important for the output power of the device to be limited to avoid damage due to over-  
current. The electrical and thermal limits defined in the Absolute Maximum Ratings must be followed at all times.  
8.3.2 CMOS Schmitt-Trigger Inputs  
Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input  
capacitance given in the Electrical Characteristics. The worst case resistance is calculated with the maximum  
input voltage, given in the Absolute Maximum Ratings, and the maximum input leakage current, given in the  
Electrical Characteristics, using ohm's law (R = V ÷ I).  
The Schmitt-trigger input architecture provides hysteresis as defined by ΔVT in the Electrical Characteristics,  
which makes this device extremely tolerant to slow or noisy inputs. While the inputs can be driven much slower  
than standard CMOS inputs, it is still recommended to properly terminate unused inputs. Driving the inputs slowly  
will also increase dynamic current consumption of the device. For additional information regarding Schmitt-trigger  
inputs, please see Understanding Schmitt Triggers.  
8.3.3 Clamp Diode Structure  
The inputs and outputs to this device have both positive and negative clamping diodes as depicted in 8.  
CAUTION  
Voltages beyond the values specified in the Absolute Maximum Ratings table can  
cause damage to the device. The input negative-voltage and output voltage ratings  
may be exceeded if the input and output clamp-current ratings are observed.  
版权 © 2020, Texas Instruments Incorporated  
7
 
SN74HCS21-Q1  
ZHCSKY5 FEBRUARY 2020  
www.ti.com.cn  
Feature Description (接下页)  
VCC  
Logic  
GND  
Device  
+IIK  
+IOK  
Input  
Output  
-IIK  
-IOK  
8. Electrical Placement of Clamping Diodes for Each Input and Output  
8.4 Device Functional Modes  
1. Function Table  
INPUTS  
OUTPUT  
Y
A
H
L
B
H
X
L
C
H
X
X
L
D
H
X
X
X
L
H
L
L
L
L
X
X
X
X
X
X
8
版权 © 2020, Texas Instruments Incorporated  
SN74HCS21-Q1  
www.ti.com.cn  
ZHCSKY5 FEBRUARY 2020  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
In this application, one channel of the SN74HCS21-Q1 is used as shown in 9. The additional channel can be  
used individually or the inputs can be grounded and the channel left unused.  
The SN74HCS21-Q1 is used to drive the RESET pin of the system controller. When any of the inputs to the  
gates become LOW, the controller will be disabled. The controller will only operate when all inputs are HIGH,  
indicating normal operation.  
9.2 Typical Application  
Over Current  
Power Supply  
Detection  
Motor Controller  
OC  
PG  
RESET  
ON/OFF  
CASE  
Case Tamper  
On/Off Switch  
Switch  
9. Typical application block diagram  
9.2.1 Design Requirements  
All signals in the system operate at 5 V  
All inputs must be HIGH for normal operation  
Any input switching to LOW will force the output LOW  
9.2.1.1 Power Considerations  
Ensure the desired supply voltage is within the range specified in the Recommended Operating Conditions. The  
supply voltage sets the device's electrical characteristics as described in the Electrical Characteristics.  
The supply must be capable of sourcing current equal to the total current to be sourced by all outputs of the  
SN74HCS21-Q1 plus the maximum supply current, ICC, listed in the Electrical Characteristics. The logic device  
can only source or sink as much current as it is provided at the supply and ground pins, respectively. Be sure not  
to exceed the maximum total current through GND or VCC listed in the Absolute Maximum Ratings.  
The SN74HCS21-Q1 can drive a load with a total capacitance less than or equal to 50 pF connected to a high-  
impedance CMOS input while still meeting all of the datasheet specifications. Larger capacitive loads can be  
applied, however it is not recommended to exceed 70 pF.  
Total power consumption can be calculated using the information provided in CMOS Power Consumption and  
Cpd Calculation.  
Thermal increase can be calculated using the information provided in Thermal Characteristics of Standard Linear  
and Logic (SLL) Packages and Devices.  
版权 © 2020, Texas Instruments Incorporated  
9
 
SN74HCS21-Q1  
ZHCSKY5 FEBRUARY 2020  
www.ti.com.cn  
Typical Application (接下页)  
CAUTION  
The maximum junction temperature, TJ(max) listed in the Absolute Maximum Ratings,  
is an additional limitation to prevent damage to the device. Do not violate any values  
listed in the Absolute Maximum Ratings. These limits are provided to prevent damage  
to the device.  
9.2.1.2 Input Considerations  
Input signals must cross Vt-(min) to be considered a logic LOW, and Vt+(max) to be considered a logic HIGH. Do  
not exceed the maximum input voltage range found in the Absolute Maximum Ratings.  
Unused inputs must be terminated to either VCC or ground. These can be directly terminated if the input is  
completely unused, or they can be connected with a pull-up or pull-down resistor if the input is to be used  
sometimes, but not always. A pull-up resistor is used for a default state of HIGH, and a pull-down resistor is used  
for a default state of LOW. The resistor size is limited by drive current of the controller, leakage current into the  
SN74HCS21-Q1, as specified in the Electrical Characteristics, and the desired input transition rate. A 10-kΩ  
resistor value is often used due to these factors.  
The SN74HCS21-Q1 has no input signal transition rate requirements because it has Schmitt-trigger inputs.  
Another benefit to having Schmitt-trigger inputs is the ability to reject noise. Noise with a large enough amplitude  
can still cause issues. To know how much noise is too much, please refer to the ΔVT(min) in the Electrical  
Characteristics. This hysteresis value will provide the peak-to-peak limit.  
Unlike what happens with standard CMOS inputs, Schmitt-trigger inputs can be held at any valid value without  
causing huge increases in power consumption. The typical additional current caused by holding an input at a  
value other than VCC or ground is plotted in the Typical Characteristics.  
Refer to the Feature Description for additional information regarding the inputs for this device.  
9.2.1.3 Output Considerations  
The positive supply voltage is used to produce the output HIGH voltage. Drawing current from the output will  
decrease the output voltage as specified by the VOH specification in the Electrical Characteristics. Similarly, the  
ground voltage is used to produce the output LOW voltage. Sinking current into the output will increase the  
output voltage as specified by the VOL specification in the Electrical Characteristics. The plots in and provide a  
typical relationship between output voltage and current for this device.  
Unused outputs can be left floating.  
Refer to Feature Description for additional information regarding the outputs for this device.  
9.2.2 Detailed Design Procedure  
1. Add a decoupling capacitor from VCC to GND. The capacitor needs to be placed physically close to the  
device and electrically close to both the VCC and GND pins. An example layout is shown in the Layout.  
2. Ensure the capacitive load at the output is 70 pF. This is not a hard limit, however it will ensure optimal  
performance. This can be accomplished by providing short, appropriately sized traces from the SN74HCS21-  
Q1 to the receiving device.  
3. Ensure the resistive load at the output is larger than (VCC / 25 mA) Ω. This will ensure that the maximum  
output current from the Absolute Maximum Ratings is not violated. Most CMOS inputs have a resistive load  
measured in megaohms; much larger than the minimum calculated above.  
4. Thermal issues are rarely a concern for logic gates, however the power consumption and thermal increase  
can be calculated using the steps provided in the application report, CMOS Power Consumption and Cpd  
Calculation  
10  
版权 © 2020, Texas Instruments Incorporated  
SN74HCS21-Q1  
www.ti.com.cn  
ZHCSKY5 FEBRUARY 2020  
Typical Application (接下页)  
9.2.3 Application Curves  
OC  
PG  
ON/OFF  
OT  
RESET  
10. Application timing diagram  
版权 © 2020, Texas Instruments Incorporated  
11  
SN74HCS21-Q1  
ZHCSKY5 FEBRUARY 2020  
www.ti.com.cn  
10 Power Supply Recommendations  
The power supply can be any voltage between the minimum and maximum supply voltage rating located in the  
Recommended Operating Conditions. Each VCC terminal should have a good bypass capacitor to prevent power  
disturbance. A 0.1-μF capacitor is recommended for this device. It is acceptable to parallel multiple bypass caps  
to reject different frequencies of noise. The 0.1-μF and 1-μF capacitors are commonly used in parallel. The  
bypass capacitor should be installed as close to the power terminal as possible for best results, as shown in 图  
11.  
11 Layout  
11.1 Layout Guidelines  
When using multiple-input and multiple-channel logic devices inputs must not ever be left floating. In many  
cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a  
triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left  
unconnected because the undefined voltages at the outside connections result in undefined operational states.  
All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the  
input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular  
unused input depends on the function of the device. Generally, the inputs are tied to GND or VCC, whichever  
makes more sense for the logic function or is more convenient.  
11.2 Layout Example  
GND VCC  
Recommend GND flood fill for  
improved signal isolation, noise  
reduction, and thermal dissipation  
Bypass capacitor  
placed close to  
the device  
0.1 F  
1A  
1B  
14  
1
2
3
4
5
6
7
VCC  
13  
12  
11  
10  
9
2D  
2C  
NC  
2B  
2A  
2Y  
Unused inputs  
tied to VCC  
NC  
1C  
1D  
1Y  
Avoid 90°  
corners for  
signal lines  
GND  
8
11. Example layout for the SN74HCS21-Q1  
12  
版权 © 2020, Texas Instruments Incorporated  
 
SN74HCS21-Q1  
www.ti.com.cn  
ZHCSKY5 FEBRUARY 2020  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:  
《借助全新的 HCS 逻辑系列降低噪声和功耗》  
CMOS 功耗与 CPD 计算》  
《使用逻辑器件进行设计》  
12.2 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
12.3 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2020, Texas Instruments Incorporated  
13  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN74HCS21QDRQ1  
SN74HCS21QPWRQ1  
ACTIVE  
ACTIVE  
SOIC  
D
14  
14  
2500 RoHS & Green  
2000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
HC21Q1  
HCS21Q1  
TSSOP  
PW  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX