SN74HCS541-Q1 [TI]

具有三态输出和施密特触发输入的汽车类八路缓冲器和线路驱动器;
SN74HCS541-Q1
型号: SN74HCS541-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有三态输出和施密特触发输入的汽车类八路缓冲器和线路驱动器

驱动 驱动器
文件: 总28页 (文件大小:1933K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN74HCS541-Q1  
ZHCSPC4A NOVEMBER 2021 REVISED FEBRUARY 2022  
具有施密特触发输入、三态输出和直通引脚排列SN74HCS541-Q1 汽车类八  
路缓冲器和线路驱动器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
SN74HCS541-Q1 包含三态输出和施密特触发输入的  
八路缓冲器。低电平有效输出能够使引脚OE1、  
OE2控制所有八个通道并配置为必须为低电平以使  
输出有效。  
– 器件温度等1:  
40°C +125°CTA  
– 器HBM ESD 分类等2  
– 器CDM ESD 分类等C6  
• 采用具有可润湿侧翼QFN (WRKS) 封装  
• 宽工作电压范围2V 6V  
施密特触发输入可耐受慢速或高噪声输入信号  
• 低功耗  
器件信息  
封装(1)  
器件型号  
封装尺寸标称值)  
6.50mm × 4.40mm  
4.50mm x 2.50mm  
SN74HCS541PW-Q1  
TSSOP (20)  
SN74HCS541WRKS-Q1 VQFN (20)  
ICC 典型值100nA  
– 输入泄漏电流典型值±100nA  
• 电压6V 输出驱动±7.8mA  
(1) 如需了解所有可用封装请见数据表末尾的可订购产品附录。  
2 应用  
启用或禁用数字信号  
消除慢速或高噪声输入信号  
在控制器复位期间保持信号  
对开关进行去抖  
Supports Slow Inputs  
Low Power  
Noise Rejection  
Input Voltage  
Waveforms  
Time  
Input Voltage  
Time  
Standard  
CMOS Input  
Response  
Waveforms  
Time  
Time  
Input Voltage  
Schmitt-trigger  
CMOS Input  
Response  
Waveforms  
Time  
Time  
Input Voltage  
施密特触发输入的优势  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCLS859  
 
 
 
 
SN74HCS541-Q1  
ZHCSPC4A NOVEMBER 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
Table of Contents  
8.3 Feature Description.....................................................8  
8.4 Device Functional Modes..........................................10  
9 Application and Implementation.................................. 11  
9.1 Application Information..............................................11  
9.2 Typical Application.................................................... 11  
10 Power Supply Recommendations..............................14  
11 Layout...........................................................................14  
11.1 Layout Guidelines................................................... 14  
11.2 Layout Example...................................................... 14  
12 Device and Documentation Support..........................15  
12.1 Documentation Support.......................................... 15  
12.2 接收文档更新通知................................................... 15  
12.3 支持资源..................................................................15  
12.4 Trademarks.............................................................15  
12.5 Electrostatic Discharge Caution..............................15  
12.6 术语表..................................................................... 15  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................4  
6.5 Electrical Characteristics.............................................5  
6.6 Switching Characteristics............................................5  
6.7 Operating Characteristics........................................... 5  
6.8 Typical Characteristics................................................6  
7 Parameter Measurement Information............................7  
8 Detailed Description........................................................8  
8.1 Overview.....................................................................8  
8.2 Functional Block Diagram...........................................8  
Information.................................................................... 16  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (November 2021) to Revision A (February 2022)  
Page  
• 将数据表从“预告信息”更改为“量产数据”....................................................................................................1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: SN74HCS541-Q1  
 
SN74HCS541-Q1  
ZHCSPC4A NOVEMBER 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
OE1 VCC  
OE1  
1
20  
VCC  
1
20  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
2
3
4
5
6
7
8
9
19  
18  
OE2  
Y1  
A1  
A2  
2
3
19  
18  
OE2  
Y1  
A3  
A4  
A5  
A6  
4
5
6
7
17 Y2  
17  
16  
Y2  
Y3  
Y4  
16  
15  
Y3  
Y4  
15  
14  
PAD  
Y5  
14 Y5  
13  
12  
11  
A7  
A8  
8
9
Y6  
Y7  
Y6  
Y7  
13  
12  
GND  
10  
Y8  
10 11  
GND  
Y8  
PW package  
20-Pin TSSOP  
Top View  
WRKS Package  
20-Pin VQFN  
Top View  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
OE1  
A1  
NO.  
1
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output enable input 1, active low  
Input for channel 1  
Input for channel 2  
Input for channel 3  
Input for channel 4  
Input for channel 5  
Input for channel 6  
Input for channel 7  
Input for channel 8  
Ground  
2
A2  
3
A3  
4
A4  
5
A5  
6
A6  
7
A7  
8
A8  
9
GND  
Y8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
Output for channel 8  
Output for channel 7  
Output for channel 6  
Output for channel 5  
Output for channel 4  
Output for channel 3  
Output for channel 2  
Output for channel 1  
Output enable input 2, active low  
Postive supply  
Y7  
Y6  
Y5  
Y4  
Y3  
Y2  
Y1  
OE2  
VCC  
The thermal pad can be connect to GND or left floating. Do not connect to any other signal  
or supply.  
Thermal Pad(1)  
(1) WRKS package only.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN74HCS541-Q1  
 
 
 
SN74HCS541-Q1  
ZHCSPC4A NOVEMBER 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX UNIT  
VCC  
IIK  
Supply voltage  
7
±20  
±20  
±35  
±70  
150  
150  
V
0.5  
Input clamp current(2)  
VI < -0.5 V or VI > VCC + 0.5 V  
VO < -0.5 V or VO > VCC + 0.5 V  
VO = 0 to VCC  
mA  
mA  
mA  
mA  
°C  
IOK  
IO  
Output clamp current(2)  
Continuous output current  
Continuous current through VCC or GND  
Junction temperature(3)  
Storage temperature  
ICC  
TJ  
Tstg  
°C  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality,  
performance, and shorten the device lifetime.  
(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.  
(3) Guaranteed by design.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level 2  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per AEC Q100-011  
CDM ESD Classification Level C4B  
±1000  
(1) AEC Q100-002 indicate that HBM stressing shall be in accordrance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2
NOM  
MAX  
6
UNIT  
V
VCC  
VI  
Supply voltage  
Input voltage  
5
0
VCC  
VCC  
125  
V
VO  
TA  
Output voltage  
Ambient temperature  
0
V
°C  
40  
6.4 Thermal Information  
SN74HCS541-Q1  
THERMAL METRIC(1)  
PW (TSSOP)  
20 PINS  
151.7  
79.4  
WRKS (VQFN)  
20 PINS  
83.2  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
82.6  
94.7  
57.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
25.2  
14.5  
ΨJT  
94.1  
56.4  
ΨJB  
RθJC(bot)  
N/A  
40.0  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: SN74HCS541-Q1  
 
 
 
 
 
 
 
 
 
 
SN74HCS541-Q1  
ZHCSPC4A NOVEMBER 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
over operating free-air temperature range; typical values measured at TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN  
0.7  
1.7  
2.1  
0.3  
0.9  
1.2  
0.2  
0.4  
0.6  
TYP  
MAX UNIT  
2 V  
1.5  
VT+  
Positive switching threshold  
4.5 V  
6 V  
3.15  
4.2  
1
V
V
V
V
V
2 V  
VT-  
Negative switching threshold  
Hysteresis (VT+ - VT-)  
4.5 V  
6 V  
2.2  
3
2 V  
1
4.5 V  
6 V  
1.4  
1.6  
ΔVT  
VOH  
VOL  
IOH = -20 µA  
2 V to 6 V  
4.5 V  
6 V  
VCC 0.1 VCC 0.002  
High-level output voltage  
VI = VIH or VIL  
IOH = -6 mA  
IOH = -7.8 mA  
4
4.3  
5.75  
5.4  
IOL = 20 µA  
2 V to 6 V  
4.5 V  
6 V  
0.002  
0.18  
0.1  
0.3  
Low-level output voltage  
Input leakage current  
VI = VIH or VIL IOL = 6 mA  
IOL = 7.8 mA  
0.22  
0.33  
II  
VI = VCC or 0  
6 V  
±100  
±1000 nA  
±2 µA  
Off-state (high-impedance  
state) output current  
IOZ  
VO = VCC or 0  
6 V  
±0.01  
0.1  
ICC  
Ci  
Supply current  
VI = VCC or 0, IO = 0  
6 V  
2
5
µA  
pF  
Input capacitance  
2 V to 6 V  
6.6 Switching Characteristics  
over operating free-air temperature range; typical values measured at TA = 25°C (unless otherwise noted). See Parameter  
Measurment Information. CL = 50 pF.  
PARAMETER  
FROM (INPUT)  
TO (OUTPUT)  
VCC  
2 V  
MIN  
TYP  
13  
7
MAX UNIT  
45  
tpd  
ten  
tdis  
tt  
Propagation delay  
A
Y
Y
Y
4.5 V  
6 V  
18  
16  
44  
22  
18  
30  
20  
19  
16  
9
ns  
ns  
ns  
ns  
6
2 V  
15  
7
Enable time  
Disable time  
Transition-time  
OE  
OE  
4.5 V  
6 V  
6
2 V  
12  
9
4.5 V  
6 V  
8
2 V  
9
Any  
4.5 V  
6 V  
5
4
8
6.7 Operating Characteristics  
over operating free-air temperature range; typical values measured at TA = 25°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Cpd  
Power dissipation capacitance per gate  
No load  
20  
pF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN74HCS541-Q1  
 
 
 
SN74HCS541-Q1  
ZHCSPC4A NOVEMBER 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
6.8 Typical Characteristics  
TA = 25°C  
46  
70  
65  
60  
55  
50  
45  
40  
35  
30  
VCC = 2 V  
VCC = 2 V  
VCC = 3.3 V  
VCC = 4.5 V  
VCC = 6 V  
44  
42  
40  
38  
36  
34  
32  
30  
28  
26  
VCC = 3.3 V  
VCC = 4.5 V  
VCC = 6 V  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Output Sink Current (mA)  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
Output Source Current (mA)  
6-1. Output Driver Resistance in LOW State  
6-2. Output Driver Resistance in HIGH State  
0.2  
0.65  
VCC = 2 V  
VCC = 2.5 V  
VCC = 3.3 V  
VCC = 4.5 V  
0.6  
0.18  
0.16  
0.55  
VCC = 5 V  
0.5  
VCC = 6 V  
0.14  
0.12  
0.1  
0.45  
0.4  
0.35  
0.3  
0.08  
0.06  
0.04  
0.02  
0
0.25  
0.2  
0.15  
0.1  
0.05  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
VI œ Input Voltage (V)  
VI œ Input Voltage (V)  
6-3. Supply Current Across Input Voltage, 2-,  
6-4. Supply Current Across Input Voltage, 4.5-,  
2.5-, and 3.3-V Supply  
5-, and 6-V Supply  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN74HCS541-Q1  
 
SN74HCS541-Q1  
ZHCSPC4A NOVEMBER 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators  
having the following characteristics: PRR 1 MHz, ZO = 50 , tt < 2.5 ns.  
For clock inputs, fmax is measured when the input duty cycle is 50%.  
The outputs are measured one at a time with one input transition per measurement.  
VCC  
VCC  
0 V  
VOH  
VOL  
VOH  
VOL  
Test  
Point  
Input  
Output  
Output  
50%  
50%  
S1  
S2  
RL  
(1)  
(1)  
From Output  
Under Test  
tPLH  
tPHL  
(1)  
CL  
50%  
50%  
(1)  
(1)  
(1) CL includes probe and test-fixture capacitance.  
tPHL  
tPLH  
7-1. Load Circuit for 3-State Outputs  
50%  
50%  
(1) The greater between tPLH and tPHL is the same as tpd  
.
7-2. Voltage Waveforms Propagation Delays  
VCC  
VCC  
90%  
10%  
90%  
Output  
Control  
50%  
50%  
Input  
10%  
tf(1)  
0 V  
0 V  
VOH  
VOL  
tr(1)  
(3)  
(4)  
tPZL  
tPLZ  
≈ VCC  
90%  
10%  
90%  
Output  
Waveform 1  
(1)  
S1 at VLOAD  
50%  
Output  
10%  
10%  
tf(1)  
VOL  
tr(1)  
(3)  
(4)  
tPZH  
tPHZ  
(1) The greater between tr and tf is the same as tt.  
VOH  
Output  
Waveform 2  
S1 at GND(2)  
7-4. Voltage Waveforms, Input and Output  
90%  
50%  
Transition Times  
0 V  
7-3. Voltage Waveforms Propagation Delays  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN74HCS541-Q1  
 
SN74HCS541-Q1  
ZHCSPC4A NOVEMBER 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The SN74HCS541-Q1 contains eight buffers with 3-state outputs and Schmitt-trigger inputs. The active low  
output enable pins (OE1, OE2) control all eight channels, and are configured such that both must be low for the  
outputs to be active.  
When the outputs are enabled, the outputs are actively driving low or high.  
When the outputs are disabled, the outputs are set into the high-impedance state.  
8.2 Functional Block Diagram  
8.3 Feature Description  
8.3.1 Balanced CMOS 3-State Outputs  
This device includes balanced CMOS 3-State outputs. The three states that these outputs can be in are driving  
high, driving low, and high impedance. The term "balanced" indicates that the device can sink and source similar  
currents. The drive capability of this device may create fast edges into light loads so routing and load conditions  
should be considered to prevent ringing. Additionally, the outputs of this device are capable of driving larger  
currents than the device can sustain without being damaged. It is important for the output power of the device to  
be limited to avoid damage due to overcurrent. The electrical and thermal limits defined in the Absolute  
Maximum Ratings must be followed at all times.  
When placed into the high-impedance mode, the output will neither source nor sink current, with the exception of  
minor leakage current as defined in the Electrical Characteristics table. In the high-impedance state, the output  
voltage is not controlled by the device and is dependent on external factors. If no other drivers are connected to  
the node, then this is known as a floating node and the voltage is unknown. A pull-up or pull-down resistor can  
be connected to the output to provide a known voltage at the output while it is in the high-impedance state. The  
value of the resistor will depend on multiple factors, including parasitic capacitance and power consumption  
limitations. Typically, a 10 kΩresistor can be used to meet these requirements.  
Unused 3-state CMOS outputs should be left disconnected.  
8.3.2 CMOS Schmitt-Trigger Inputs  
This device includes inputs with the Schmitt-trigger architecture. These inputs are high impedance and are  
typically modeled as a resistor in parallel with the input capacitance given in the Electrical Characteristics table  
from the input to ground. The worst case resistance is calculated with the maximum input voltage, given in the  
Absolute Maximum Ratings table, and the maximum input leakage current, given in the Electrical Characteristics  
table, using Ohm's law (R = V ÷ I).  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: SN74HCS541-Q1  
 
 
 
 
 
SN74HCS541-Q1  
ZHCSPC4A NOVEMBER 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
The Schmitt-trigger input architecture provides hysteresis as defined by ΔVT in the Electrical Characteristics  
table, which makes this device extremely tolerant to slow or noisy inputs. While the inputs can be driven much  
slower than standard CMOS inputs, it is still recommended to properly terminate unused inputs. Driving the  
inputs with slow transitioning signals will increase dynamic current consumption of the device. For additional  
information regarding Schmitt-trigger inputs, please see Understanding Schmitt Triggers.  
8.3.3 Clamp Diode Structure  
The inputs and outputs to this device have both positive and negative clamping diodes as depicted in Electrical  
Placement of Clamping Diodes for Each Input and Output.  
CAUTION  
Voltages beyond the values specified in the Absolute Maximum Ratings table can cause damage to  
the device. The input and output voltage ratings may be exceeded if the input and output clamp-  
current ratings are observed.  
VCC  
Device  
+IIK  
+IOK  
Input  
Output  
Logic  
GND  
-IIK  
-IOK  
8-1. Electrical Placement of Clamping Diodes for Each Input and Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN74HCS541-Q1  
 
SN74HCS541-Q1  
ZHCSPC4A NOVEMBER 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
8.3.4 Wettable Flanks  
This device includes wettable flanks for at least one package. See the Features section on the front page of the  
data sheet for which packages include this feature.  
Package  
Package  
Solder  
Standard Lead  
We able Flank Lead  
Pad  
PCB  
8-2. Simplified Cutaway View of Wettable-Flank QFN Package and Standard QFN Package After  
Soldering  
Wettable flanks help improve side wetting after soldering which makes QFN packages easier to inspect with  
automatic optical inspection (AOI). A wettable flank can be dimpled or step-cut to provide additional surface area  
for solder adhesion which assists in reliably creating a side fillet as shown in 8-2. Please see the mechanical  
drawing for additional details.  
8.4 Device Functional Modes  
8-1. Function Table  
INPUTS(1)  
OUTPUT(2)  
OE1  
L
OE2  
L
A
L
Y
L
L
L
H
X
X
H
Z
Z
H
X
X
H
(1) L = input low, H = input high, X = don't care  
(2) L = output low, H = output high, Z = high impedance  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: SN74HCS541-Q1  
 
 
 
 
 
SN74HCS541-Q1  
ZHCSPC4A NOVEMBER 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The SN74HCS541-Q1 can be used to drive signals over relatively long traces or transmission lines. In order to  
reduce ringing caused by impedance mismatches between the driver, transmission line, and receiver, a series  
damping resistor placed in series with the transmitters output can be used. The plot in the Application Curve  
section shows the received signal with three separate resistor values. Just a small amount of resistance can  
make a significant impact on signal integrity in this type of application.  
9.2 Typical Application  
Rd  
1A1  
1Y1  
1A1  
1Y1  
System  
Controller  
Z0  
Peripheral  
L > 12 cm  
Transmitter  
Receiver  
9-1. Typical application block diagram  
9.2.1 Design Requirements  
9.2.1.1 Power Considerations  
Ensure the desired supply voltage is within the range specified in the Recommended Operating Conditions. The  
supply voltage sets the device's electrical characteristics as described in the Electrical Characteristics.  
The positive voltage supply must be capable of sourcing current equal to the total current to be sourced by all  
outputs of the SN74HCS541-Q1 plus the maximum static supply current, ICC, listed in Electrical Characteristics  
and any transient current required for switching. The logic device can only source as much current as is provided  
by the positive supply source. Be sure not to exceed the maximum total current through VCC listed in the  
Absolute Maximum Ratings.  
The ground must be capable of sinking current equal to the total current to be sunk by all outputs of the  
SN74HCS541-Q1 plus the maximum supply current, ICC, listed in Electrical Characteristics, and any transient  
current required for switching. The logic device can only sink as much current as can be sunk into its ground  
connection. Be sure not to exceed the maximum total current through GND listed in the Absolute Maximum  
Ratings.  
The SN74HCS541-Q1 can drive a load with a total capacitance less than or equal to 50 pF while still meeting all  
of the datasheet specifications. Larger capacitive loads can be applied, however it is not recommended to  
exceed 50 pF.  
The SN74HCS541-Q1 can drive a load with total resistance described by RL VO / IO, with the output voltage  
and current defined in the Electrical Characteristics table with VOH and VOL. When outputting in the high state,  
the output voltage in the equation is defined as the difference between the measured output voltage and the  
supply voltage at the VCC pin.  
Total power consumption can be calculated using the information provided in CMOS Power Consumption and  
Cpd Calculation.  
Thermal increase can be calculated using the information provided in Thermal Characteristics of Standard Linear  
and Logic (SLL) Packages and Devices.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN74HCS541-Q1  
 
 
 
SN74HCS541-Q1  
ZHCSPC4A NOVEMBER 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
CAUTION  
The maximum junction temperature, TJ(max) listed in the Absolute Maximum Ratings, is an additional  
limitation to prevent damage to the device. Do not violate any values listed in the Absolute Maximum  
Ratings. These limits are provided to prevent damage to the device.  
9.2.1.2 Input Considerations  
Input signals must cross Vt-(min) to be considered a logic LOW, and Vt+(max) to be considered a logic HIGH. Do  
not exceed the maximum input voltage range found in the Absolute Maximum Ratings.  
Unused inputs must be terminated to either VCC or ground. These can be directly terminated if the input is  
completely unused, or they can be connected with a pull-up or pull-down resistor if the input is to be used  
sometimes, but not always. A pull-up resistor is used for a default state of HIGH, and a pull-down resistor is used  
for a default state of LOW. The resistor size is limited by drive current of the controller, leakage current into the  
SN74HCS541-Q1, as specified in the Electrical Characteristics, and the desired input transition rate. A 10-kΩ  
resistor value is often used due to these factors.  
The SN74HCS541-Q1 has no input signal transition rate requirements because it has Schmitt-trigger inputs.  
Another benefit to having Schmitt-trigger inputs is the ability to reject noise. Noise with a large enough amplitude  
can still cause issues. To know how much noise is too much, please refer to the ΔVT(min) in the Electrical  
Characteristics. This hysteresis value will provide the peak-to-peak limit.  
Unlike what happens with standard CMOS inputs, Schmitt-trigger inputs can be held at any valid value without  
causing huge increases in power consumption. The typical additional current caused by holding an input at a  
value other than VCC or ground is plotted in the Typical Characteristics.  
Refer to the Feature Description section for additional information regarding the inputs for this device.  
9.2.1.3 Output Considerations  
The positive supply voltage is used to produce the output HIGH voltage. Drawing current from the output will  
decrease the output voltage as specified by the VOH specification in the Electrical Characteristics. The ground  
voltage is used to produce the output LOW voltage. Sinking current into the output will increase the output  
voltage as specified by the VOL specification in the Electrical Characteristics.  
Push-pull outputs that could be in opposite states, even for a very short time period, should never be connected  
directly together. This can cause excessive current and damage to the device.  
Two channels within the same device with the same input signals can be connected in parallel for additional  
output drive strength.  
Unused outputs can be left floating. Do not connect outputs directly to VCC or ground.  
Refer to Feature Description section for additional information regarding the outputs for this device.  
9.2.2 Detailed Design Procedure  
1. Add a decoupling capacitor from VCC to GND. The capacitor needs to be placed physically close to the  
device and electrically close to both the VCC and GND pins. An example layout is shown in the Layout  
section.  
2. Ensure the capacitive load at the output is 50 pF. This is not a hard limit, however it will ensure optimal  
performance. This can be accomplished by providing short, appropriately sized traces from the  
SN74HCS541-Q1 to the receiving device(s).  
3. Ensure the resistive load at the output is larger than (VCC / IO(max)) Ω. This will ensure that the maximum  
output current from the Absolute Maximum Ratings is not violated. Most CMOS inputs have a resistive load  
measured in megaohms; much larger than the minimum calculated above.  
4. Thermal issues are rarely a concern for logic gates, however the power consumption and thermal increase  
can be calculated using the steps provided in the application report, CMOS Power Consumption and Cpd  
Calculation.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: SN74HCS541-Q1  
SN74HCS541-Q1  
ZHCSPC4A NOVEMBER 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
9.2.3 Application Curve  
5
0  
22 ꢀ  
50 ꢀ  
4
3.3  
2
1
0
-1  
-2  
0
15  
30  
45  
Time (ns)  
60  
75  
90 100  
9-2. Simulated signal integrity at the reciever with different damping resistor (Rd) values  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN74HCS541-Q1  
SN74HCS541-Q1  
ZHCSPC4A NOVEMBER 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
The power supply can be any voltage between the minimum and maximum supply voltage rating located in the  
Recommended Operating Conditions. Each VCC terminal should have a good bypass capacitor to prevent power  
disturbance. A 0.1-μF capacitor is recommended for this device. It is acceptable to parallel multiple bypass caps  
to reject different frequencies of noise. The 0.1-μF and 1-μF capacitors are commonly used in parallel. The  
bypass capacitor should be installed as close to the power terminal as possible for best results, as shown in  
given example layout image.  
11 Layout  
11.1 Layout Guidelines  
When using multiple-input and multiple-channel logic devices inputs must not ever be left floating. In many  
cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a  
triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left  
unconnected because the undefined voltages at the outside connections result in undefined operational states.  
All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the  
input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular  
unused input depends on the function of the device. Generally, the inputs are tied to GND or VCC, whichever  
makes more sense for the logic function or is more convenient.  
11.2 Layout Example  
VCC  
GND  
F
Recommend GND flood fill for  
improved signal isolation, noise  
reduction, and thermal dissipation  
Bypass capacitor  
placed close to the  
device  
0.1  
1OE  
VCC  
1
20  
19  
1A1  
2Y4  
1A2  
2Y3  
1A3  
2Y2  
1A4  
2Y1  
2
3
4
5
6
7
8
9
2OE  
18  
17  
16  
15  
14  
13  
1Y1  
2A4  
1Y2  
2A3  
1Y3  
2A2  
Unused input  
tied to GND  
Unused output  
left floating  
GND  
12  
11  
1Y4  
10  
Avoid 90°  
corners for  
signal lines  
GND  
2A1  
11-1. Example layout for the SN74HCS541-Q1 in the WRKS Package  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: SN74HCS541-Q1  
 
 
 
 
SN74HCS541-Q1  
ZHCSPC4A NOVEMBER 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
12 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed below.  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation see the following:  
Texas Instruments, HCMOS Design Considerations application report (SCLA007)  
Texas Instruments, CMOS Power Consumption and Cpd Calculation application report (SDYA009)  
Texas Instruments, Designing With Logic application report  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: SN74HCS541-Q1  
 
 
 
 
 
 
 
SN74HCS541-Q1  
ZHCSPC4A NOVEMBER 2021 REVISED FEBRUARY 2022  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: SN74HCS541-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN74HCS541QPWRQ1  
ACTIVE  
ACTIVE  
TSSOP  
VQFN  
PW  
20  
20  
2000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
HCS541Q  
HCS541Q  
Samples  
Samples  
SN74HCS541QWRKSRQ1  
RKS  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2022  
OTHER QUALIFIED VERSIONS OF SN74HCS541-Q1 :  
Catalog : SN74HCS541  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN74HCS541QPWRQ1 TSSOP  
SN74HCS541QWRKSRQ1 VQFN  
PW  
20  
20  
2000  
3000  
330.0  
180.0  
16.4  
12.4  
6.95  
2.8  
7.0  
4.8  
1.4  
1.2  
8.0  
4.0  
16.0  
12.0  
Q1  
Q1  
RKS  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN74HCS541QPWRQ1  
TSSOP  
VQFN  
PW  
20  
20  
2000  
3000  
356.0  
210.0  
356.0  
185.0  
35.0  
35.0  
SN74HCS541QWRKSRQ1  
RKS  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RKS 20  
2.5 x 4.5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226872/A  
www.ti.com  
PACKAGE OUTLINE  
RKS0020B  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
3
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
2.6  
2.4  
B
A
PIN 1 INDEX AREA  
4.6  
4.4  
(0.1) MIN  
(0.13)  
SECTION A-A  
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.05  
0.95  
2X 0.5  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
10  
11  
14X 0.5  
9
12  
A
A
2X  
3.05  
2.95  
3.5  
2
19  
0.3  
20X  
1
20  
0.2  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
0.45  
0.35  
20X  
0.05  
4226762/B 06/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RKS0020B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1)  
2X (0.5)  
1
20  
20X (0.6)  
2
19  
20X (0.25)  
(1.25)  
(3)  
SYMM  
2X (3.5)  
(4.3)  
16X (0.5)  
(R0.05) TYP  
9
12  
(
0.2) VIA  
TYP  
10  
11  
SYMM  
(2.3)  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4226762/B 06/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RKS0020B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
2X (0.95)  
2X (0.5)  
1
20  
20X (0.6)  
2
19  
20X (0.25)  
2X (1.31)  
16X (0.5)  
SYMM  
2X (3.5) (4.3)  
(0.76)  
METAL  
TYP  
9
12  
(R0.05) TYP  
10  
11  
SYMM  
(2.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
83% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4226762/B 06/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
PW0020A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
5
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
18X 0.65  
20  
1
2X  
5.85  
6.6  
6.4  
NOTE 3  
10  
B
11  
0.30  
20X  
4.5  
4.3  
NOTE 4  
0.19  
1.2 MAX  
0.1  
C A B  
(0.15) TYP  
SEE DETAIL A  
0.25  
GAGE PLANE  
0.15  
0.05  
0.75  
0.50  
A
20  
0 -8  
DETAIL A  
TYPICAL  
4220206/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
20X (1.5)  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
11  
10  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
15.000  
(PREFERRED)  
SOLDER MASK DETAILS  
4220206/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PW0020A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
20X (1.5)  
SYMM  
(R0.05) TYP  
20  
1
20X (0.45)  
SYMM  
18X (0.65)  
10  
11  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220206/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX