SN74LV138A-Q1 [TI]

汽车类三线至八线解码器/多路信号分离器;
SN74LV138A-Q1
型号: SN74LV138A-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类三线至八线解码器/多路信号分离器

解码器
文件: 总25页 (文件大小:1861K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN74LV138-Q1  
ZHCSPK2 DECEMBER 2022  
SN74LV138A-Q1 汽车3 线8 线解码器或多路解复用器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准:  
SN74LV138A-Q1 器件是旨在于 2V 5.5V VCC 下运  
3 线8 线解码器/多路解复用器。  
– 器件温度等140°C +125°CTA  
– 器HBM ESD 分类等2  
– 器CDM ESD 分类等C6  
二进制选择输入A0 A1 A2 三个使能输入  
G2G0G1条件可从八条输出线路中选择其中一  
条。两个低电平有效使能输入G0G1和一个高电  
平有效使能输入 (G2) 可在扩展时减少对外部门电路或  
反相器的需求。  
2V 5.5V VCC 下运行  
5V tpd 最大值9.5ns  
VOLP输出接地反弹典型值  
0.8VVCC = 3.3VTA = 25°C )  
VOHVVOH 下冲典型值  
2.3VVCC = 3.3VTA = 25°C )  
• 支持所有端口上的混合模式电压运行  
Ioff 支持局部断电模式运行  
器件信息  
器件型号  
封装(1)  
封装尺寸  
SN74LV138A-Q1  
BQBWQFN163.60mm × 2.60mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• 闩锁性能超250mAJESD 17 规范  
2 应用  
输出扩展  
LED 矩阵控制  
7 段显示控制  
8 位数据存储  
3:8 DECODER  
OUTPUT  
ENABLE  
000  
001  
010  
011  
100  
101  
110  
111  
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
A0  
A1  
A2  
G0  
G1  
G2  
逻辑图正逻辑)  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCLS885  
 
 
 
SN74LV138-Q1  
ZHCSPK2 DECEMBER 2022  
www.ti.com.cn  
Table of Contents  
8.2 Functional Block Diagram...........................................9  
8.3 Feature Description.....................................................9  
8.4 Device Functional Modes..........................................11  
9 Application and Implementation..................................12  
9.1 Application Information............................................. 12  
9.2 Typical Application.................................................... 12  
10 Power Supply Recommendations..............................15  
11 Layout...........................................................................16  
11.1 Layout Guidelines................................................... 16  
11.2 Layout Example...................................................... 16  
12 Device and Documentation Support..........................17  
12.1 接收文档更新通知................................................... 17  
12.2 支持资源..................................................................17  
12.3 Trademarks.............................................................17  
12.4 Electrostatic Discharge Caution..............................17  
12.5 术语表..................................................................... 17  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions(1) .................... 5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Switching Characteristics - VCC = 2.5 V ± 0.25 V....... 6  
6.7 Switching Characteristics - VCC = 3.3 V ± 0.3 V......... 6  
6.8 Switching Characteristics - VCC = 5 V ± 0.5 V............ 7  
6.9 Operating Characteristics........................................... 7  
6.10 Typical Characteristics..............................................7  
7 Parameter Measurement Information............................8  
8 Detailed Description........................................................9  
8.1 Overview.....................................................................9  
Information.................................................................... 18  
4 Revision History  
DATE  
REVISION  
NOTES  
December 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: SN74LV138-Q1  
 
SN74LV138-Q1  
ZHCSPK2 DECEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
A0  
1
VCC  
16  
A1  
2
15 Y0  
A2  
G0  
G1  
G2  
Y7  
3
4
5
6
7
Y1  
Y2  
14  
13  
PAD  
12  
11  
10  
Y3  
Y4  
Y5  
8
9
GND Y6  
5-1. BQB Package 16-Pin (Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
1
A0  
A1  
I
I
Address select 0  
Address select 1  
2
3
A2  
I
Address select 2  
G2  
G0  
G1  
6
4
I
I
Strobe input  
Strobe input, active low  
Strobe input, active low  
Ground  
5
I
GND  
VCC  
8
G
P
16  
Positive supply  
15  
Y0  
Y1  
Y2  
O
O
O
Output 0  
Output 1  
Output 2  
14  
13  
12  
11  
10  
Y3  
Y4  
Y5  
Y6  
O
O
O
O
Output 3  
Output 4  
Output 5  
Output 6  
9
7
Y7  
O
-
Output 7  
Thermal Pad  
Thermal Pad(2)  
(1) Signal Types: I = Input, O = Output, I/O = Input or Output, G = Ground, P = Power  
(2) BQB package only  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN74LV138-Q1  
 
 
 
SN74LV138-Q1  
ZHCSPK2 DECEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
0.5  
0.5  
0.5  
0.5  
MAX UNIT  
VCC  
VI  
Supply voltage range  
7
V
V
Input voltage range(2)  
7
7
VO  
VO  
IIK  
Voltage range applied to any output in the high-impedance or power-off state(2)  
Output voltage range(2) (3)  
V
VCC + 0.5  
V
Input clamp current  
VI < 0  
mA  
mA  
mA  
mA  
°C  
20  
50  
±25  
IOK  
IO  
Output clamp current  
VO < 0  
Continuous output current  
Continuous current through VCC or GND  
Storage temperature range  
VO = 0 to VCC  
±50  
Tstg  
150  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality,  
performance, and shorten the device lifetime.  
(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.  
(3) This value is limited to 5.5 V maximum.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002 HBM ESD Classification Level 2(1)  
±2000  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per AEC Q100-011 CDM ESD Classification Level  
C4B  
±1000  
(1) AEC Q100-002 indicate that HBM stressing shall be in accordrance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: SN74LV138-Q1  
 
 
 
 
 
 
 
SN74LV138-Q1  
ZHCSPK2 DECEMBER 2022  
www.ti.com.cn  
6.3 Recommended Operating Conditions(1)  
SN74LV138A-Q1  
UNIT  
MIN  
2
MAX  
VCC  
Supply voltage  
5.5  
V
VCC = 2 V  
1.5  
VCC = 2.3 V to 2.7 V  
VCC = 3 V to 3.6 V  
VCC = 4.5 V to 5.5 V  
VCC = 2 V  
VCC × 0.7  
VCC × 0.7  
VCC × 0.7  
VIH  
High-level input voltage  
V
V
0.5  
VCC × 0.3  
VCC × 0.3  
VCC × 0.3  
5.5  
VCC = 2.3 V to 2.7 V  
VCC = 3 V to 3.6 V  
VCC = 4.5 V to 5.5 V  
VIL  
Low-level input voltage  
VI  
Input voltage  
0
0
V
V
VO  
Output voltage  
VCC  
VCC = 2 V  
50 μA  
2  
VCC = 2.3 V to 2.7 V  
VCC = 3 V to 3.6 V  
VCC = 4.5 V to 5.5 V  
VCC = 2 V  
IOH  
High-level output current  
Low-level output current  
mA  
6  
12  
50  
μA  
VCC = 2.3 V to 2.7 V  
VCC = 3 V to 3.6 V  
VCC = 4.5 V to 5.5 V  
VCC = 2.3 V to 2.7 V  
VCC = 3 V to 3.6 V  
VCC = 4.5 V to 5.5 V  
2
IOL  
6
mA  
12  
200  
Input transition rise or fall rate  
Operating free-air temperature  
100 ns/V  
20  
Δt/Δv  
TA  
125 °C  
40  
(1) All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,  
Implications of Slow or Floating CMOS Inputs.  
6.4 Thermal Information  
SN74LV138A-Q1  
THERMAL METRIC(1)  
UNIT  
WBQB (WQFN)  
16 PINS  
86  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
82.6  
54.9  
9.5  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJT  
54.9  
32.5  
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see IC Package Thermal Metrics.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN74LV138-Q1  
 
 
 
 
SN74LV138-Q1  
ZHCSPK2 DECEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
over recommended operating free-air temperature range (unless otherwise noted)  
SN74LV138A-Q1  
PARAMETER  
TEST CONDITIONS  
VCC  
UNIT  
MAX  
MIN  
TYP  
2 V to 5.5 V  
2.3 V  
IOH = 50 μA  
IOH = 2 mA  
IOH = 6 mA  
IOH = 12 mA  
IOL = 50 μA  
VCC 0.1  
2
VOH High-Level Output Voltage  
V
3 V  
2.48  
3.8  
4.5 V  
2 V to 5.5 V  
2.3 V  
0.1  
IOL = 2 mA  
0.4  
V
VOL Low-Level Output Voltage  
IOL = 6 mA  
3 V  
0.44  
IOL = 12 mA  
4.5 V  
0.55  
VI = 5.5 V or GND  
VI = VCC or GND, IO = 0  
II  
Input Current  
0 to 5.5 V  
5.5 V  
±1  
20  
5
μA  
μA  
μA  
pF  
ICC Supply Current  
Ioff  
Ci  
Input/Output Power-Off Leakage Current  
Input Capacitance  
VI or VO = 0 to 5.5 V  
VI = VCC or GND  
0
3.3 V  
2.1  
6.6 Switching Characteristics - VCC = 2.5 V ± 0.25 V  
over recommended operating free-air temperature range (unless otherwise noted) (see 7-1)  
SN74LV138A-  
Q1  
TA = 25°C  
FROM  
(INPUT)  
TO  
(OUTPUT)  
LOAD  
CAPACITANCE  
PARAMETER  
UNIT  
MIN  
TYP  
11.7  
12.3  
11.4  
14.9  
15.7  
14.8  
MAX  
17.6  
19.2  
18.2  
21.4  
22.6  
22  
MIN  
1
MAX  
A0, A1, A2  
G2  
21  
22  
21  
25  
26  
25  
tpd  
Y
Y
CL = 15 pF  
CL = 50 pF  
1
ns  
G0 or G1  
A0, A1, A2  
G2  
1
1
tpd  
1
ns  
G0 or G1  
1
6.7 Switching Characteristics - VCC = 3.3 V ± 0.3 V  
over recommended operating free-air temperature range (unless otherwise noted) (see 7-1)  
SN74LV138A-  
Q1  
TA = 25°C  
FROM  
(INPUT)  
TO  
(OUTPUT)  
LOAD  
CAPACITANCE  
PARAMETER  
UNIT  
MIN  
TYP  
8.1  
MAX  
11.4  
12.8  
11.4  
15.8  
16.3  
14.9  
MIN  
1
MAX  
A0, A1, A2  
G2  
13.5  
15  
tpd  
Y
Y
CL = 15 pF  
CL = 50 pF  
8.4  
1
ns  
G0 or G1  
A0, A1, A2  
G2  
7.8  
1
13.5  
18  
10.3  
10.6  
10  
1
tpd  
1
18.5  
17  
ns  
G0 or G1  
1
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN74LV138-Q1  
 
 
 
SN74LV138-Q1  
ZHCSPK2 DECEMBER 2022  
www.ti.com.cn  
6.8 Switching Characteristics - VCC = 5 V ± 0.5 V  
over recommended operating free-air temperature range (unless otherwise noted) (see 7-1)  
SN74LV138A-  
TA = 25°C  
FROM  
(INPUT)  
TO  
(OUTPUT)  
LOAD  
CAPACITANCE  
Q1  
PARAMETER  
UNIT  
MIN  
TYP  
5.6  
5.7  
5.4  
7
MAX  
8.1  
MIN  
1
MAX  
9.5  
A0, A1, A2  
G2  
tpd  
Y
Y
CL = 15 pF  
CL = 50 pF  
8.1  
1
9.5  
ns  
G0 or G1  
A0, A1, A2  
G2  
8.1  
1
9.5  
10.1  
10.1  
10.1  
1
11.5  
11.5  
11.5  
tpd  
7.1  
6.8  
1
ns  
G0 or G1  
1
6.9 Operating Characteristics  
TA = 25°C  
PARAMETER  
TEST CONDITIONS  
VCC  
TYP UNIT  
3.3 V  
5 V  
16.8  
pF  
19.1  
Cpd  
Power dissipation capacitance  
CL = 50 pF, f = 10 MHz  
6.10 Typical Characteristics  
80  
5.5  
5
-40°C  
125°C  
72  
25°C  
64  
4.5  
4
56  
48  
40  
32  
24  
16  
8
3.5  
3
2.5  
2
2.5 V  
3.3 V  
5 V  
1.5  
1
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
-16  
-14  
-12  
-10  
-8  
-6  
-4  
-2  
0
VCC (V)  
IOH (mA)  
6-1. Supply Current (ICC) vs Supply Voltage (VCC  
)
6-2. Output Voltage vs Current in HIGH State  
0.4  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
2.5 V  
3.3 V  
5 V  
0.05  
0
0
2
4
6
8
10  
12  
14  
16  
IOL (mA)  
6-3. Output Voltage vs Current in LOW State  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN74LV138-Q1  
 
 
 
SN74LV138-Q1  
ZHCSPK2 DECEMBER 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
V
CC  
S1  
Open  
R
L
= 1 kΩ  
TEST  
/t  
S1  
From Output  
Under Test  
Test  
From Output  
Under Test  
GND  
Point  
t
t
Open  
PLH PHL  
C
C
L
(see Note A)  
t
/t  
PLZ PZL  
V
CC  
L
(see Note A)  
/t  
PHZ PZH  
GND  
Open Drain  
V
CC  
LOAD CIRCUIT FOR  
LOAD CIRCUIT FOR  
TOTEM-POLE OUTPUTS  
3-STATE AND OPEN-DRAIN OUTPUTS  
V
CC  
50% V  
Timing Input  
CC  
0 V  
t
w
t
h
t
su  
V
CC  
V
CC  
50% V  
50% V  
Input  
CC  
CC  
50% V  
50% V  
CC  
Data Input  
0 V  
CC  
0 V  
VOLTAGE WAVEFORMS  
PULSE DURATION  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
V
V
CC  
CC  
Output  
Control  
50% V  
50% V  
50% V  
50% V  
CC  
Input  
CC  
CC  
CC  
0 V  
0 V  
t
t
PZL  
PLZ  
t
t
t
PHL  
PLH  
Output  
V  
V
CC  
OH  
In-Phase  
Output  
Waveform 1  
S1 at V  
50% V  
50% V  
CC  
50% V  
CC  
CC  
V
V
+ 0.3 V  
OL  
CC  
(see Note B)  
V
OL  
V
OL  
t
t
t
PZH  
PHZ  
PHL  
PLH  
Output  
Waveform 2  
S1 at GND  
V
V
OH  
OL  
OH  
Out-of-Phase  
Output  
− 0.3 V  
OH  
50% V  
50% V  
50% V  
CC  
CC  
CC  
0 V  
V
(see Note B)  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
INVERTING AND NONINVERTING OUTPUTS  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
LOW- AND HIGH-LEVEL ENABLING  
NOTES: A. C includes probe and jig capacitance.  
L
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.  
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.  
C. All input pulses are supplied by generators having the following characteristics: PRR 1 MHz, Z = 50 , t 3 ns, t 3 ns.  
f
O
r
D. The outputs are measured one at a time, with one input transition per measurement.  
E.  
F.  
t
t
t
and t  
and t  
are the same as t  
.
dis  
PLZ  
PZL  
PHL  
PHZ  
are the same as t  
.
PZH  
en  
are the same as t .  
G.  
and t  
PLH pd  
H. All parameters and waveforms are not applicable to all devices.  
7-1. Load Circuits and Voltage Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: SN74LV138-Q1  
 
 
SN74LV138-Q1  
ZHCSPK2 DECEMBER 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The SN74LV138A-Q1 devices are 3-line to 8-line decoders/demultiplexers designed for 2 V to 5.5 V VCC  
operation.  
These devices are designed for high-performance memory-decoding or data-routing applications requiring very  
short propagation delay times. In high-performance memory systems, these decoders can be used to minimize  
the effects of system decoding. When employed with high-speed memories utilizing a fast enable circuit, the  
delay times of these decoders and the enable time of the memory usually are less than the typical access time of  
the memory. This means that the effective system delay introduced by the decoder is negligible.  
The conditions at the binary-select inputs (A0, A1, A2) and the three enable inputs (G2, G0, G1) select one of  
eight output lines. The two active-low (G0, G1) and one active-high (G2) enable inputs reduce the need for  
external gates or inverters when expanding. A 24-line decoder can be implemented without external inverters  
and a 32-line decoder requires only one inverter. An enable input can be used as a data input for demultiplexing  
applications.  
These devices are fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the  
outputs, preventing damaging current backflow through the devices when they are powered down.  
8.2 Functional Block Diagram  
3:8 DECODER  
000  
OUTPUT  
ENABLE  
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
A0  
A1  
A2  
G0  
G1  
G2  
001  
010  
011  
100  
101  
110  
111  
8-1. Logic Diagram (Positive Logic)  
8.3 Feature Description  
8.3.1 Standard CMOS Inputs  
This device includes standard CMOS inputs. Standard CMOS inputs are high impedance and are typically  
modeled as a resistor in parallel with the input capacitance given in the Electrical Characteristics. The worst case  
resistance is calculated with the maximum input voltage, given in the Absolute Maximum Ratings, and the  
maximum input leakage current, given in the Electrical Characteristics, using Ohm's law (R = V ÷ I).  
Standard CMOS inputs require that input signals transition between valid logic states quickly, as defined by the  
input transition time or rate in the Recommended Operating Conditions table. Failing to meet this specification  
will result in excessive power consumption and could cause oscillations. More details can be found in  
Implications of Slow or Floating CMOS Inputs.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN74LV138-Q1  
 
 
 
 
SN74LV138-Q1  
ZHCSPK2 DECEMBER 2022  
www.ti.com.cn  
Do not leave standard CMOS inputs floating at any time during operation. Unused inputs must be terminated at  
VCC or GND. If a system will not be actively driving an input at all times, then a pull-up or pull-down resistor can  
be added to provide a valid input voltage during these times. The resistor value will depend on multiple factors; a  
10-kΩresistor, however, is recommended and will typically meet all requirements.  
8.3.2 Balanced CMOS Push-Pull Outputs  
This device includes balanced CMOS push-pull outputs. The term balanced indicates that the device can sink  
and source similar currents. The drive capability of this device may create fast edges into light loads, so routing  
and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable  
of driving larger currents than the device can sustain without being damaged. It is important for the output power  
of the device to be limited to avoid damage due to overcurrent. The electrical and thermal limits defined in the  
Absolute Maximum Ratings must be followed at all times.  
Unused push-pull CMOS outputs should be left disconnected.  
8.3.3 Partial Power Down (Ioff)  
This device includes circuitry to disable all outputs when the supply pin is held at 0 V. When disabled, the  
outputs will neither source nor sink current, regardless of the input voltages applied. The amount of leakage  
current at each output is defined by the Ioff specification in the Electrical Characteristics table.  
8.3.4 Wettable Flanks  
This device includes wettable flanks for at least one package. See the Features section on the front page of the  
data sheet for which packages include this feature.  
Package  
Package  
Solder  
Standard Lead  
We able Flank Lead  
Pad  
PCB  
8-2. Simplified Cutaway View of Wettable-Flank QFN Package and Standard QFN Package After  
Soldering  
Wettable flanks help improve side wetting after soldering, which makes QFN packages easier to inspect with  
automatic optical inspection (AOI). As shown in 8-2, a wettable flank can be dimpled or step-cut to provide  
additional surface area for solder adhesion which assists in reliably creating a side fillet. See the mechanical  
drawing for additional details.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: SN74LV138-Q1  
 
SN74LV138-Q1  
ZHCSPK2 DECEMBER 2022  
www.ti.com.cn  
8.3.5 Clamp Diode Structure  
8-3 shows the inputs and outputs to this device have negative clamping diodes only.  
CAUTION  
Voltages beyond the values specified in the Absolute Maximum Ratings table can cause damage to  
the device. The input and output voltage ratings may be exceeded if the input and output clamp-  
current ratings are observed.  
VCC  
Device  
Input  
Output  
Logic  
GND  
-IIK  
-IOK  
8-3. Electrical Placement of Clamping Diodes for Each Input and Output  
8.4 Device Functional Modes  
Function Table  
ENABLE INPUTS(1) SELECT INPUTS  
G2 G0 G1 A0  
OUTPUTS(2)  
A2  
A1  
Y0  
Y1  
Y20  
Y3  
Y4  
Y5  
Y6  
Y7  
X
H
X
X
X
X
H
H
H
H
H
H
H
L
H
H
H
H
H
X
L
X
X
L
L
L
L
L
L
L
L
H
X
L
L
L
L
L
L
L
L
X
X
L
X
X
L
X
X
L
H
H
L
H
H
H
L
H
H
H
H
H
L
H
H
H
H
H
H
L
H
H
H
H
H
H
H
L
H
H
H
H
H
H
H
H
L
H
H
H
H
H
H
H
H
H
L
H
H
H
H
H
H
H
H
L
L
H
L
H
H
H
H
H
H
H
L
H
H
L
H
H
H
H
H
H
L
H
L
H
H
H
H
H
H
H
H
H
H
H
H
H
L
H
L
H
H
H
H
H
H
H
H
H
(1) H = High Voltage Level, L = Low Voltage Level, X = Dont Care  
(2) H = Driving High, L = Driving Low, Z = High Impedance State  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN74LV138-Q1  
 
 
 
 
SN74LV138-Q1  
ZHCSPK2 DECEMBER 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
The SN74LV138A-Q1 is a low drive CMOS device that can be used for a multitude of output expansion  
applications where output ringing is a concern. The low-drive and slow-edge rates minimize overshoot and  
undershoot on the outputs.  
9.2 Typical Application  
Y0  
Device 1  
A0  
A1  
A2  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
Device 2  
Device 3  
Device 4  
Device 5  
Device 6  
Device 7  
Device 8  
System  
Controller  
G2  
G1  
G0  
CONTROL  
LOGIC  
Data Bus  
9-1. Output Exapnsion with Multiplexer  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: SN74LV138-Q1  
 
 
 
SN74LV138-Q1  
ZHCSPK2 DECEMBER 2022  
www.ti.com.cn  
9.2.1 Power Considerations  
Ensure the desired supply voltage is within the range specified in the Recommended Operating Conditions. The  
supply voltage sets the device's electrical characteristics as described in the Electrical Characteristics section.  
The positive voltage supply must be capable of sourcing current equal to the total current to be sourced by all  
outputs of the SN74LV138A-Q1 plus the maximum static supply current, ICC, listed in the Electrical  
Characteristics, and any transient current required for switching. The logic device can only source as much  
current that is provided by the positive supply source. Be sure to not exceed the maximum total current through  
VCC listed in the Absolute Maximum Ratings.  
The ground must be capable of sinking current equal to the total current to be sunk by all outputs of the  
SN74LV138A-Q1 plus the maximum supply current, ICC, listed in the Electrical Characteristics, and any transient  
current required for switching. The logic device can only sink as much current that can be sunk into its ground  
connection. Be sure to not exceed the maximum total current through GND listed in the Absolute Maximum  
Ratings.  
The SN74LV138A-Q1 can drive a load with a total capacitance less than or equal to 50 pF while still meeting all  
of the data sheet specifications. Larger capacitive loads can be applied; however, it is not recommended to  
exceed 50 pF.  
The SN74LV138A-Q1 can drive a load with total resistance described by RL VO / IO, with the output voltage  
and current defined in the Electrical Characteristics table with VOH and VOL. When outputting in the HIGH state,  
the output voltage in the equation is defined as the difference between the measured output voltage and the  
supply voltage at the VCC pin.  
Total power consumption can be calculated using the information provided in CMOS Power Consumption and  
Cpd Calculation.  
Thermal increase can be calculated using the information provided in Thermal Characteristics of Standard Linear  
and Logic (SLL) Packages and Devices.  
CAUTION  
The maximum junction temperature, TJ(max) listed in the Absolute Maximum Ratings, is an additional  
limitation to prevent damage to the device. Do not violate any values listed in the Absolute Maximum  
Ratings. These limits are provided to prevent damage to the device.  
9.2.2 Input Considerations  
Input signals must cross VIL(max) to be considered a logic LOW, and VIH(min) to be considered a logic HIGH. Do  
not exceed the maximum input voltage range found in the Absolute Maximum Ratings.  
Unused inputs must be terminated to either VCC or ground. The unused inputs can be directly terminated if the  
input is completely unused, or they can be connected with a pull-up or pull-down resistor if the input will be used  
sometimes, but not always. A pull-up resistor is used for a default state of HIGH, and a pull-down resistor is used  
for a default state of LOW. The drive current of the controller, leakage current into the SN74LV138A-Q1 (as  
specified in the Electrical Characteristics), and the desired input transition rate limits the resistor size. A 10-kΩ  
resistor value is often used due to these factors.  
The SN74LV138A-Q1 has CMOS inputs and thus requires fast input transitions to operate correctly, as defined  
in the Recommended Operating Conditions table. Slow input transitions can cause oscillations, additional power  
consumption, and reduction in device reliability.  
Refer to the Feature Description section for additional information regarding the inputs for this device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN74LV138-Q1  
SN74LV138-Q1  
ZHCSPK2 DECEMBER 2022  
www.ti.com.cn  
9.2.3 Output Considerations  
The positive supply voltage is used to produce the output HIGH voltage. Drawing current from the output will  
decrease the output voltage as specified by the VOH specification in the Electrical Characteristics. The ground  
voltage is used to produce the output LOW voltage. Sinking current into the output will increase the output  
voltage as specified by the VOL specification in the Electrical Characteristics.  
Push-pull outputs that could be in opposite states, even for a very short time period, should never be connected  
directly together. This can cause excessive current and damage to the device.  
Two channels within the same device with the same input signals can be connected in parallel for additional  
output drive strength.  
Unused outputs can be left floating. Do not connect outputs directly to VCC or ground.  
Refer to the Feature Description section for additional information regarding the outputs for this device.  
9.2.4 Detailed Design Procedure  
1. Add a decoupling capacitor from VCC to GND. The capacitor needs to be placed physically close to the  
device and electrically close to both the VCC and GND pins. An example layout is shown in the Layout  
section.  
2. Ensure the capacitive load at the output is 50 pF. This is not a hard limit; it will, however, ensure optimal  
performance. This can be accomplished by providing short, appropriately sized traces from the  
SN74LV138A-Q1 to one or more of the receiving devices.  
3. Ensure the resistive load at the output is larger than (VCC / IO(max)) Ω. This will ensure that the maximum  
output current from the Absolute Maximum Ratings is not violated. Most CMOS inputs have a resistive load  
measured in MΩ; much larger than the minimum calculated previously.  
4. Thermal issues are rarely a concern for logic gates; the power consumption and thermal increase, however,  
can be calculated using the steps provided in the application report, CMOS Power Consumption and Cpd  
Calculation.  
9.2.5 Application Curves  
G2  
A2  
A1  
A0  
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
Y7  
9-2. Application Timing Diagram  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: SN74LV138-Q1  
SN74LV138-Q1  
ZHCSPK2 DECEMBER 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
The power supply can be any voltage between the minimum and maximum supply voltage rating located in the  
Absolute Maximum Ratings section. Each VCC terminal must have a good bypass capacitor to prevent power  
disturbance. For devices with a single supply, TI recommends a 0.1-μF capacitor; if there are multiple VCC  
terminals, then TI recommends a 0.01-μF or 0.022-μF capacitor for each power terminal. Multiple bypass  
capacitors can be paralleled to reject different frequencies of noise. Frequencies of 0.1 μF and 1 μF are  
commonly used in parallel. The bypass capacitor must be installed as close as possible to the power terminal for  
best results.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: SN74LV138-Q1  
 
SN74LV138-Q1  
ZHCSPK2 DECEMBER 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of  
digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used,  
or when only 3 of the 4-buffer gates are used. Such unused input pins must not be left unconnected because the  
undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital  
logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage  
specifications, to prevent them from floating. The logic level that must be applied to any particular unused input  
depends on the function of the device. Generally, the inputs are tied to GND or VCC, whichever makes more  
sense for the logic function or is more convenient.  
11.2 Layout Example  
GND VCC  
Recommend GND flood fill for  
improved signal isolation, noise  
reduction, and thermal dissipation  
Bypass capacitor  
placed close to the  
device  
0.1 F  
16  
Unused  
inputs tied to  
VCC  
A0  
1
VCC  
A1  
A2  
2
3
4
5
6
7
8
15  
14  
13  
12  
11  
10  
9
Y0  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
G0  
Unused input  
tied to GND  
G1  
G2  
Avoid 90°  
corners for  
signal lines  
Y7  
GND  
Unused  
output left  
floating  
11-1. Layout Example for the SN74LV138A-Q1  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: SN74LV138-Q1  
 
 
 
SN74LV138-Q1  
ZHCSPK2 DECEMBER 2022  
www.ti.com.cn  
12 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed below.  
12.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: SN74LV138-Q1  
 
 
 
 
 
 
SN74LV138-Q1  
ZHCSPK2 DECEMBER 2022  
www.ti.com.cn  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: SN74LV138-Q1  
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Jan-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN74LV138AQWBQBRQ1  
ACTIVE  
WQFN  
BQB  
16  
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
LV138Q  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF SN74LV138A-Q1 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
31-Jan-2023  
Catalog : SN74LV138A  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
BQB 16  
2.5 x 3.5, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226161/A  
www.ti.com  
PACKAGE OUTLINE  
WQFN - 0.8 mm max height  
INDSTNAME  
BQB0016B  
A
2.6  
2.4  
B
PIN 1 INDEX AREA  
3.6  
3.4  
0.1 MIN  
(0.13)  
SECTION A-A  
TYPICAL  
C
0.8 MAX  
SEATING PLANE  
0.05  
0.00  
0.08 C  
1.1  
0.9  
2X 0.5  
(0.2) TYP  
9
8
10X 0.5  
7
10  
(0.16)  
SYMM  
SYMM  
2X  
2.5  
17  
2.1  
1.9  
0.3  
16X  
0.2  
0.1  
0.05  
C A B  
C
15  
2
PIN 1 ID  
(OPTIONAL)  
1
16  
0.5  
0.3  
16X  
SYMM  
4226135/A 08/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for optimal thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
WQFN - 0.8 mm max height  
INDSTNAME  
BQB0016B  
(2.3)  
(1)  
1
16  
16X (0.6)  
16X (0.25)  
2
15  
10X (0.5)  
SYMM  
17  
(2)  
(3.3)  
2X (0.75)  
10  
7
(R0.05) TYP  
(Ø 0.2) VIA  
TYP  
8
9
2X (0.5)  
SYMM  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 20X  
4226135/A 08/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271)  
.
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
WQFN - 0.8 mm max height  
INDSTNAME  
BQB0016B  
(2.3)  
(0.95)  
1
16  
16X (0.6)  
16X (0.25)  
2
15  
17  
10X (0.5)  
SYMM  
(1.79)  
(3.3)  
2X (0.75)  
10  
7
(R0.05) TYP  
METAL TYP  
8
9
2X (0.5)  
SYMM  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
85% PRINTED COVERAGE BY AREA  
SCALE: 20X  
4226135/A 08/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SN74LV138ABQBR

3 线至 8 线解码器/多路解复用器 | BQB | 16 | -40 to 125
TI

SN74LV138AD

3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS
TI

SN74LV138ADB

3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS
TI

SN74LV138ADBLE

LV/LV-A/LVX/H SERIES, OTHER DECODER/DRIVER, INVERTED OUTPUT, PDSO16, PLASTIC, SSOP-16
TI

SN74LV138ADBR

3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS
TI

SN74LV138ADBRE4

3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS
TI

SN74LV138ADBRG4

3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS
TI

SN74LV138ADE4

3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS
TI

SN74LV138ADG4

3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS
TI

SN74LV138ADGV

3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS
TI

SN74LV138ADGVR

3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS
TI

SN74LV138ADGVRE4

3-LINE TO 8-LINE DECODERS/DEMULTIPLEXERS
TI