SN74LV1T32DBVR [TI]

具有逻辑电平转换器的单电源 2 输入正或门 | DBV | 5 | -40 to 125;
SN74LV1T32DBVR
型号: SN74LV1T32DBVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有逻辑电平转换器的单电源 2 输入正或门 | DBV | 5 | -40 to 125

栅 输入元件 光电二极管 逻辑集成电路 触发器 转换器 电平转换器
文件: 总25页 (文件大小:1435K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN74LV1T32  
ZHCSBS7B NOVEMBER 2013 REVISED JUNE 2022  
SN74LV1T32 单电2 输入正或门  
CMOS 逻辑电平转换器  
2mm x 2.1mm x 0.65mm1.1mm)  
1 特性  
• 闩锁性能超250mA符合  
JESD 17 规范  
• 支持标准逻辑引脚排列  
AUP1G LVC1G 系列兼容CMOS B1  
VCC 5V3.3V2.5V 1.8V 的单电源电压转换  
• 工作电压范围1.8V 5.5V  
• 升压转换:  
1.8V VCC 1.2V(1) 1.8V  
2.5V VCC 1.5V(1) 2.5V  
3.3V VCC 1.8V(1) 3.3V  
5.0V VCC 3.3V 5.0V  
• 降压转换:  
2 应用  
电信  
便携式应用  
服务器  
PC 和笔记本电脑  
1.8V VCC 3.3V 1.8V  
2.5V VCC 3.3V 2.5V  
3.3V VCC 5.0 V 3.3V  
• 逻辑输出VCC 为基准  
3 说明  
SN74LV1T32 是一款具有较低输入阈值的单路 2 输入  
或门可支持电压转换应用。  
器件信息(1)  
• 输出驱动:  
封装尺寸标称值)  
器件型号  
封装  
– 电压5V 输出驱动8mA  
– 电压3.3V 输出驱动7mA  
– 电压1.8V 输出驱动3mA  
VCC 3.3V 频率高50MHz  
• 输入引脚可耐5V 电压  
DBVSOT-235)  
DCKSC705)  
2.90mm × 1.60mm  
2.00mm × 1.25mm  
SN74LV1T32  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
• –40°C 125°C 工作温度范围  
• 可提供无铅封装SC-70 (DCK)  
VIH = 2.0V  
Vcc = 5.0V  
VIL = 0.8V  
VIH = 0.99V  
Vcc = 1.8V  
VIL = 0.55V  
5.0V, 3.3V  
5.0V  
3.3V  
System  
5.0V  
System  
2.5V, 1.8V  
1.5V, 1.2V  
System  
1.8V  
System  
LV1Txx Logic  
LV1Txx Logic  
Vcc = 3.3V  
5.0V, 3.3V  
2.5V, 1.8V  
System  
3.3V  
System  
LV1Txx Logic  
VOH min = 2.4V  
VIH min = 1.36V  
VOL max = 0.4V  
VIL min = 0.8V  
1.8V 3.3V 转换的开关阈值  
1
请参考较VCC 条件下VIH/VIL 和输出驱动。  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCLS741  
 
 
 
 
 
 
 
SN74LV1T32  
ZHCSBS7B NOVEMBER 2013 REVISED JUNE 2022  
www.ti.com.cn  
Table of Contents  
9 Detailed Description......................................................10  
9.1 Overview...................................................................10  
9.2 Functional Block Diagram.........................................10  
9.3 Feature Description...................................................10  
9.4 Device Functional Modes..........................................12  
10 Power Supply Recommendations..............................13  
11 Layout...........................................................................13  
11.1 Layout Guidelines................................................... 13  
12 Device and Documentation Support..........................14  
12.1 接收文档更新通知................................................... 14  
12.2 支持资源..................................................................14  
12.3 Trademarks.............................................................14  
12.4 Electrostatic Discharge Caution..............................14  
12.5 术语表..................................................................... 14  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Related Products.............................................................3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 5  
7.1 Absolute Maximum Ratings........................................ 5  
7.2 ESD Ratings............................................................... 5  
7.3 Recommended Operating Conditions.........................6  
7.4 Thermal Information....................................................6  
7.5 Electrical Characteristics.............................................6  
7.6 Switching Characteristics............................................7  
7.7 Operating Characteristics........................................... 8  
7.8 Typical Characteristics................................................8  
8 Parameter Measurement Information............................9  
Information.................................................................... 14  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (February 2014) to Revision B (June 2022)  
Page  
• 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1  
Added ESD Ratings table, Thermal Information table, Typical Characteristics section, Pin Configuration and  
Functions section, Detailed Description section, Power Supply Recommendations section, Layout section,  
Receiving Notification of Documentation Updates section, and Community Resources section....................... 5  
Updated Electrical characteristics table..............................................................................................................6  
Removed Ioh test condition for Voh parameter ................................................................................................... 6  
Removed Ioh = -2.3mA for Vol parameter ...........................................................................................................6  
Changes from Revision * (December 2013) to Revision A (February 2014)  
Page  
• 更新了文档格式...................................................................................................................................................1  
Updated VCC values for VIH parameter in the Electrical Characteristics table....................................................6  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: SN74LV1T32  
 
SN74LV1T32  
ZHCSBS7B NOVEMBER 2013 REVISED JUNE 2022  
www.ti.com.cn  
5 Related Products  
DEVICE  
PACKAGE  
DCK, DBV  
DCK, DBV  
DCK, DBV  
DCK, DBV  
DCK, DBV  
DCK, DBV  
DCK, DBV  
DCK, DBV  
DCK, DBV  
DCK, DBV  
DCK, DBV  
RGY, PW  
DESCRIPTION  
SN74LV1T00  
SN74LV1T02  
SN74LV1T04  
SN74LV1T08  
SN74LV1T17  
SN74LV1T14  
SN74LV1T32  
SN74LV1T34  
SN74LV1T86  
SN74LV1T125  
SN74LV1T126  
SN74LV4T125  
2-Input Positive-NAND Gate  
2-Input Positive-NOR Gate  
Inverter Gate  
2-Input Positive-AND Gate  
Single Schmitt-Trigger Buffer Gate  
Single Schmitt-Trigger Inverter Gate  
2-Input Positive-OR Gate  
Single Buffer Gate  
Single 2-Input Exclusive-Or Gate  
Single Buffer Gate with 3-state Output  
Single Buffer Gate with 3-state Output  
Quadruple Bus Buffer Gate With 3-State Outputs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN74LV1T32  
 
SN74LV1T32  
ZHCSBS7B NOVEMBER 2013 REVISED JUNE 2022  
www.ti.com.cn  
6 Pin Configuration and Functions  
VCC  
1
2
3
5
A
B
GND  
Y
4
6-1. DCK or DBV Package, 5-Pin SC70 or SOT-23 (Top View)  
6-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
A
NO.  
1
I
Input A  
B
2
I
Input B  
GND  
Y
3
G
O
P
Ground  
4
Output Y  
Positive supply  
VCC  
5
(1) I = Input, O = Output, I/O = Input or Output, G = Ground, P = Power.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: SN74LV1T32  
 
 
SN74LV1T32  
ZHCSBS7B NOVEMBER 2013 REVISED JUNE 2022  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.5  
0.5  
0.5  
0.5  
MAX UNIT  
VCC  
VI  
Supply voltage range  
7.0  
7.0  
V
V
Input voltage range(2)  
Voltage range applied to any output in the high-impedance or power-off state(2)  
Voltage range applied to any output in the high or low state(2)  
4.6  
V
VO  
VCC + 0.5  
V
IIK  
IOK  
IO  
Input clamp current  
VI < 0  
mA  
mA  
mA  
mA  
°C  
°C  
20  
±20  
±25  
±50  
150  
150  
Output clamp current  
Continuous output current  
VO < 0 or VO > VCC  
Continuous current through VCC or GND  
Junction temperature  
TJ  
Tstg  
Storage temperature  
65  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.  
7.2 ESD Ratings  
VALUE  
±2000  
±200  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Machine Model (MM), per JEDEC specification  
V(ESD) Electrostatic discharge  
V
Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN74LV1T32  
 
 
 
 
 
 
 
SN74LV1T32  
ZHCSBS7B NOVEMBER 2013 REVISED JUNE 2022  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
1.6  
0
MAX  
UNIT  
VCC  
VI  
Supply voltage  
Input voltage  
Output voltage  
5.5  
5.5  
VCC  
3  
5  
7  
8  
3
V
V
V
VO  
0
VCC = 1.8 V  
VCC = 2.5 V  
VCC = 3.3 V  
VCC = 5.0 V  
VCC = 1.8 V  
VCC = 2.5 V  
VCC = 3.3 V  
VCC = 5.0 V  
VCC = 1.8 V  
VCC = 3.3 V or 2.5 V  
VCC = 5.0 V  
IOH  
High-level output current  
Low-level output current  
mA  
mA  
5
IOL  
7
8
20  
20  
20  
125  
Input transition rise or fall rate  
Operating free-air temperature  
ns/V  
°C  
Δt/Δv  
TA  
40  
(1) All unused inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report,  
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.  
7.4 Thermal Information  
DBV  
5 PINS  
206  
DCK  
5 PINS  
252  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.  
7.5 Electrical Characteristics  
over recommended operating free-air temperature range (unless otherwise noted)  
TA = 25°C  
TA = 40°C to +125°C  
PARAMETER  
TEST CONDITIONS  
VCC  
UNIT  
MIN TYP  
MAX  
MIN  
1.0  
TYP  
MAX  
VCC = 1.65 V to 1.8 V  
VCC = 2.0 V  
0.94  
0.99  
1.135  
1.21  
1.35  
1.47  
2.02  
2.1  
1.03  
1.18  
1.23  
1.37  
1.48  
2.03  
2.11  
VCC = 2.25 V to 2.5 V  
VCC = 2.75 V  
High-level  
input voltage  
VIH  
V
VCC = 3 V to 3.3 V  
VCC = 3.6 V  
VCC = 4.5 V to 5.0 V  
VCC = 5.5 V  
VCC = 1.65 V to 2.0 V  
VCC = 2.25 V to 2.75 V  
VCC = 3 V to 3.6 V  
VCC = 4.5 V to 5.5 V  
0.58  
0.75  
0.8  
0.55  
0.71  
0.65  
0.8  
Low-level  
input voltage  
VIL  
V
0.8  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN74LV1T32  
 
 
 
 
 
SN74LV1T32  
ZHCSBS7B NOVEMBER 2013 REVISED JUNE 2022  
www.ti.com.cn  
over recommended operating free-air temperature range (unless otherwise noted)  
TA = 25°C  
TA = 40°C to +125°C  
PARAMETER  
TEST CONDITIONS  
IOH = 20 µA  
VCC  
UNIT  
MIN  
CC 0.1  
1.28  
1.5  
TYP  
MAX  
MIN  
CC 0.1  
1.21  
1.45  
1.93  
2.15  
2.7  
TYP  
MAX  
1.65 V to 5.5 V  
1.65 V  
V
V
IOH = 2.0 mA  
1.8 V  
2.3 V  
2
IOH = 3 mA  
IOH = 3 mA  
IOH = 3.0 mA  
IOH = 5.5 mA  
IOH = 5.5 mA  
IOH = 4 mA  
IOH = 8 mA  
IOH = 8 mA  
IOL = 20 µA  
2.5 V  
2.25  
2.78  
2.6  
High-level  
VOH  
output  
V
3.0 V  
3.3 V  
4.5 V  
voltage  
2.49  
2.8  
2.9  
4.2  
4.1  
4.1  
3.95  
4.5  
5.0 V  
1.65 V to 5.5 V  
1.65 V  
4.6  
0.1  
0.2  
0.1  
0.25  
0.2  
IOL = 2 mA  
IOL = 3 mA  
2.3 V  
0.15  
0.1  
Low-level  
output  
voltage  
VOL  
IOL = 3 mA  
0.15  
0.252  
0.2  
V
3.0 V  
4.5 V  
IOL = 5.5 mA  
IOL = 4 mA  
0.2  
0.15  
0.3  
IOL = 8 mA  
0.35  
Input  
leakage  
current  
0 V, 1.8 V, 2.5 V,  
3.3 V, 5.5 V  
II  
A input; VI = 0 V or VCC  
0.1  
±1  
μA  
μA  
5.0 V  
3.3 V  
2.5 V  
1.8 V  
1
1
1
1
10  
10  
10  
10  
Static supply VI = 0 V or VCC  
,
ICC  
current  
IO = 0; open on loading  
One input at 0.3 V or 3.4 V,  
Other inputs at 0 or VCC  
IO = 0  
,
5.5 V  
1.8 V  
1.35  
1.5  
mA  
Additional  
static supply  
current  
ΔICC  
One input at 0.3 V or 1.1 V  
Other inputs at 0 or VCC  
IO = 0  
,
10  
10  
10  
10  
μA  
Input  
capacitance  
Ci  
VI = VCC or GND  
VO = VCC or GND  
3.3 V  
3.3 V  
2
2
pF  
pF  
Output  
capacitance  
Co  
2.5  
2.5  
7.6 Switching Characteristics  
over recommended operating free-air temperature range (unless otherwise noted) (see Parameter Measurement Information)  
TA = 25°C  
TA = 65°C to 125°C  
FROM  
(INPUT) (OUTPUT)  
TO  
FREQUENCY  
(TYP)  
PARAMETER  
VCC  
CL  
UNIT  
MIN TYP MAX  
MIN  
TYP  
4
MAX  
5
15 pF  
30 pF  
15 pF  
30 pF  
15 pF  
30 pF  
15 pF  
30 pF  
4
5.5  
4.8  
5
5
7.0  
5
5.0 V  
3.3 V  
2.5 V  
1.8 V  
ns  
5.5  
5
7.0  
5.5  
6.5  
7.5  
8.5  
12  
DC to 50 MHz  
ns  
5.5  
6.5  
7.5  
11  
5.5  
7
tpd  
Any In  
Y
6
DC to 25 MHz  
DC to 15 MHz  
ns  
6.5  
10.5  
12  
7.5  
11  
12  
ns  
13  
14  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN74LV1T32  
 
SN74LV1T32  
ZHCSBS7B NOVEMBER 2013 REVISED JUNE 2022  
www.ti.com.cn  
7.7 Operating Characteristics  
TA = 25°C  
PARAMETER  
TEST CONDITIONS  
VCC  
TYP  
UNIT  
1.8 V ± 0.15 V  
2.5 V ± 0.2 V  
3.3 V ± 0.3 V  
5.5 V ± 0.5 V  
14  
14  
14  
14  
Cpd  
Power dissipation capacitance  
f = 1 MHz and 10 MHz  
pF  
7.8 Typical Characteristics  
7-2. Excellent Signal Integrity  
(3.3 V to 3.3 V at 3.3-V VCC  
)
7-1. Excellent Signal Integrity  
(1.8 V to 3.3 V at 3.3-V VCC  
)
7-3. Excellent Signal Integrity  
(3.3 V to 1.8 V at 1.8-V VCC  
)
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: SN74LV1T32  
 
 
SN74LV1T32  
ZHCSBS7B NOVEMBER 2013 REVISED JUNE 2022  
www.ti.com.cn  
8 Parameter Measurement Information  
From Output  
Under Test  
V
= 2.5 V  
0.2 V  
V
= 3.3 V  
0.3 V  
CC  
CC  
C
L
(see Note A)  
1 M  
C
5, 10, 15, 30 pF 5, 10, 15, 30 pF  
V /2 V /2  
L
V
MI  
I
I
V
MO  
V /2  
CC  
V /2  
CC  
LOAD CIRCUIT  
V
I
V
MI  
V
MI  
Input  
0 V  
t
t
t
PHL  
PLH  
V
V
OH  
V
V
V
Mo  
MO  
Output  
OL  
t
PHL  
PLH  
V
V
OH  
V
Mo  
Mo  
Output  
OL  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
INVERTING AND NONINVERTING OUTPUTS  
NOTES: A. C includes probe and jig capacitance.  
L
B. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z = 50 , slew rate 1 V/ns.  
C. The outputs are measured one at a time, with one transition per measurement.  
O
D.  
t
and t are the same as t .  
PHL pd  
PLH  
8-1. Load Circuit and Voltage Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN74LV1T32  
 
SN74LV1T32  
ZHCSBS7B NOVEMBER 2013 REVISED JUNE 2022  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The SN74LV1T32 device is a low-voltage CMOS gate logic that operates at a wider voltage range for industrial,  
portable, telecom, and automotive applications. The output level is referenced to the supply voltage and is able  
to support 1.8-V, 2.5-V, 3.3-V, and 5-V CMOS levels. The input is designed with a lower threshold circuit to  
match 1.8 V input logic at VCC = 3.3 V and can be used in 1.8 V to 3.3 V level-up translation. In addition, the 5 V  
tolerant input pins enable down translation (that is, 3.3 V to 2.5 V output at VCC = 2.5 V). The wide VCC range of  
1.8 V to 5.5 V allows generation of desired output levels to connect to controllers or processors. The  
SN74LV1T32 device is designed with current-drive capability of 8 mA to reduce line reflections, overshoot, and  
undershoot caused by high-drive outputs.  
9.2 Functional Block Diagram  
1
A
4
Y
2
B
9-1. Logic Diagram  
9.3 Feature Description  
9.3.1 Clamp Diode Structure  
The outputs to this device have both positive and negative clamping diodes, and the inputs to this device have  
negative clamping diodes only as depicted in 9-2.  
CAUTION  
Voltages beyond the values specified in the Absolute Maximum Ratings table can cause damage to  
the device. The input and output voltage ratings may be exceeded if the input and output clamp-  
current ratings are observed.  
VCC  
Device  
+IOK  
Input  
Output  
Logic  
-IIK  
-IOK  
GND  
9-2. Electrical Placement of Clamping Diodes for Each Input and Output  
9.3.2 Balanced CMOS Push-Pull Outputs  
This device includes balanced CMOS push-pull outputs. The term balanced indicates that the device can sink  
and source similar currents. The drive capability of this device may create fast edges into light loads so routing  
and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable  
of driving larger currents than the device can sustain without being damaged. It is important for the output power  
of the device to be limited to avoid damage due to overcurrent. The electrical and thermal limits defined in the  
Absolute Maximum Ratings must be followed at all times.  
Unused push-pull CMOS outputs should be left disconnected.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: SN74LV1T32  
 
 
 
 
 
SN74LV1T32  
ZHCSBS7B NOVEMBER 2013 REVISED JUNE 2022  
www.ti.com.cn  
9.3.3 LVxT Enhanced Input Voltage  
The SN74LV1T32 belongs to TI's LVxT family of Logic devices with integrated voltage level translation. This  
family of devices was designed with reduced input voltage thresholds to support up-translation, and inputs  
tolerant of signals with up to 5.5 V levels to support down-translation. The output voltage will always be  
referenced to the supply voltage (VCC), as described in the Electrical Characteristics table. To ensure proper  
functionality, input signals must remain at or below the specified VIH(MIN) level for a HIGH input state, and at or  
below the specified VIL(MAX) for a LOW input state. 9-3 shows the typical VIH and VIL levels for the LVxT family  
of devices, as well as the voltage levels for standard CMOS devices for comparison.  
The inputs are high impedance and are typically modeled as a resistor in parallel with the input capacitance  
given in the Electrical Characteristics. The worst case resistance is calculated with the maximum input voltage,  
given in the Absolute Maximum Ratings, and the maximum input leakage current, given in the Electrical  
Characteristics, using Ohm's law (R = V ÷ I).  
The inputs require that input signals transition between valid logic states quickly, as defined by the input  
transition time or rate in the Recommended Operating Conditions table. Failing to meet this specification will  
result in excessive power consumption and could cause oscillations. More details can be found in the  
Implications of Slow or Floating CMOS Inputs application report.  
Do not leave inputs floating at any time during operation. Unused inputs must be terminated at VCC or GND. If a  
system will not be actively driving an input at all times, a pull-up or pull-down resistor can be added to provide a  
valid input voltage during these times. The resistor value will depend on multiple factors; however, a 10-kΩ  
resistor is recommended and will typically meet all requirements.  
3.6  
3.4  
3.3-V CMOS  
3.2  
VIH  
3
VIL  
HIGH Input  
LOW Input  
2.8  
2.6  
2.4  
2.2  
2
2.5-V CMOS  
2.4 V (VOH  
)
2 V (VOH  
)
1.8-V CMOS  
1.8  
1.6  
1.4  
1.2  
1
1.45 V (VOH  
)
1.2-V CMOS  
1.1 V (VOH  
)
0.8  
0.6  
0.4  
0.2  
0
0.45 V (VOL  
)
0.4 V (VOL  
)
0.4 V (VOL  
)
0.3 V (VOL  
)
1.6 1.8  
2
2.2 2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
4
4.2 4.4 4.6 4.8  
5
5.2  
5.5  
VCC - Supply Voltage (V)  
9-3. LVxT Input Voltage Levels  
9.3.3.1 Down Translation  
Signals can be translated down using the SN74LV1T32. The voltage applied at the VCC will determine the output  
voltage and the input thresholds as described in the Recommended Operating Conditions and Electrical  
Characteristics tables.  
When connected to a high-impedance input, the output voltage will be approximately VCC in the HIGH state, and  
0 V in the LOW state. Ensure that the input signals in the HIGH state are between VIH(MIN) and 5.5 V, and input  
signals in the LOW state are lower than VIL(MAX) as shown in 9-3.  
For example, standard CMOS inputs for devices operating at 5.0 V, 3.3 V or 2.5 V can be down-translated to  
match 1.8 V CMOS signals when operating from 1.8-V VCC. See 9-4.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN74LV1T32  
 
SN74LV1T32  
ZHCSBS7B NOVEMBER 2013 REVISED JUNE 2022  
www.ti.com.cn  
Down Translation Combinations:  
1.8-V VCC Inputs from 2.5 V, 3.3 V, and 5.0 V  
2.5-V VCC Inputs from 3.3 V and 5.0 V  
3.3-V VCC Inputs from 5.0 V  
9.3.3.2 Up Translation  
Input signals can be up translated using the SN74LV1T32. The voltage applied at VCC will determine the output  
voltage and the input thresholds as described in the Recommended Operating Conditions and Electrical  
Characteristics tables. When connected to a high-impedance input, the output voltage will be approximately VCC  
in the HIGH state, and 0 V in the LOW state.  
The inputs have reduced thresholds that allow for input high-state levels which are much lower than standard  
values. For example, standard CMOS inputs for a device operating at a 5-V supply will have a VIH(MIN) of 3.5 V.  
For the SN74LV1T32, VIH(MIN) with a 5-V supply is only 2 V, which would allow for up-translation from a typical  
2.5-V to 5-V signals.  
Ensure that the input signals in the HIGH state are above VIH(MIN) and input signals in the LOW state are lower  
than VIL(MAX) as shown in 9-4.  
Up Translation Combinations:  
1.8-V VCC Inputs from 1.2 V  
2.5-V VCC Inputs from 1.8 V  
3.3-V VCC Inputs from 1.8 V and 2.5 V  
5.0-V VCC Inputs from 2.5 V and 3.3 V  
VIH = 2.0 V  
VIL = 0.8 V  
VIH = 0.99 V  
VIL = 0.5 V  
Vcc = 5.0 V  
Vcc = 1.8 V  
5.0 V, 3.3 V  
2.5 V, 1.8 V  
1.5 V, 1.2 V  
System  
5.0 V  
3.3 V  
System  
5.0 V  
System  
1.8 V  
System  
LV1Txx Logic  
LV1Txx Logic  
9-4. LVxT Up and Down Translation Example  
9.4 Device Functional Modes  
Function Table  
INPUT(1)  
(LOWER LEVEL INPUT)  
OUTPUT(2)  
(VCC CMOS)  
A
H
X
L
B
Y
H
H
L
X
H
L
SUPPLY VCC = 3.3 V  
A
B
Y
VIH(min) = 1.35 V  
VIL(max) = 0.08 V  
VOH(min) = 2.9 V  
VOL(max) = 0.2 V  
(1) H = High Voltage Level, L = Low Voltage Level, X = Do not  
Care, Z = High Impedance  
(2) H = Driving High, L = Driving Low, Z = High Impedance State  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: SN74LV1T32  
 
 
 
 
SN74LV1T32  
ZHCSBS7B NOVEMBER 2013 REVISED JUNE 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
The power supply can be any voltage between the minimum and maximum supply voltage rating located in the  
Recommended Operating Conditions. Each VCC terminal should have a good bypass capacitor to prevent power  
disturbance. A 0.1-μF capacitor is recommended for this device. It is acceptable to parallel multiple bypass caps  
to reject different frequencies of noise. The 0.1-μF and 1-μF capacitors are commonly used in parallel. The  
bypass capacitor should be installed as close to the power terminal as possible for best results, as shown in the  
following layout example.  
11 Layout  
11.1 Layout Guidelines  
When using multiple-input and multiple-channel logic devices inputs must not ever be left floating. In many  
cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a  
triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left  
unconnected because the undefined voltages at the outside connections result in undefined operational states.  
All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the  
input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular  
unused input depends on the function of the device. Generally, the inputs are tied to GND or VCC, whichever  
makes more sense for the logic function or is more convenient.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN74LV1T32  
 
 
 
SN74LV1T32  
ZHCSBS7B NOVEMBER 2013 REVISED JUNE 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: SN74LV1T32  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Jun-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN74LV1T32DBVR  
ACTIVE  
SOT-23  
DBV  
5
3000 RoHS & Green  
NIPDAU | SN  
Level-1-260C-UNLIM  
-40 to 125  
(NEG3, NEGJ, NEGS)  
Samples  
SN74LV1T32DBVRG4  
SN74LV1T32DCKR  
SN74LV1T32DCKRG4  
ACTIVE  
ACTIVE  
ACTIVE  
SOT-23  
SC70  
DBV  
DCK  
DCK  
5
5
5
3000 RoHS & Green  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
NIPDAU | SN  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
NEG3  
Samples  
Samples  
Samples  
(WG3, WGJ, WGS)  
WG3  
SC70  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Jun-2022  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN74LV1T32DBVR  
SN74LV1T32DBVR  
SN74LV1T32DBVR  
SN74LV1T32DBVRG4  
SN74LV1T32DCKR  
SN74LV1T32DCKR  
SN74LV1T32DCKRG4  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DBV  
DBV  
DCK  
DCK  
DCK  
5
5
5
5
5
5
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
178.0  
180.0  
178.0  
178.0  
178.0  
178.0  
178.0  
9.2  
8.4  
9.0  
9.2  
9.2  
9.0  
9.2  
3.3  
3.23  
3.3  
3.3  
2.4  
2.4  
2.4  
3.23  
3.17  
3.2  
1.55  
1.37  
1.4  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
4.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
Q3  
3.23  
2.4  
1.55  
1.22  
1.2  
SC70  
2.5  
SC70  
2.4  
1.22  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN74LV1T32DBVR  
SN74LV1T32DBVR  
SN74LV1T32DBVR  
SN74LV1T32DBVRG4  
SN74LV1T32DCKR  
SN74LV1T32DCKR  
SN74LV1T32DCKRG4  
SOT-23  
SOT-23  
SOT-23  
SOT-23  
SC70  
DBV  
DBV  
DBV  
DBV  
DCK  
DCK  
DCK  
5
5
5
5
5
5
5
3000  
3000  
3000  
3000  
3000  
3000  
3000  
180.0  
202.0  
180.0  
180.0  
180.0  
180.0  
180.0  
180.0  
201.0  
180.0  
180.0  
180.0  
180.0  
180.0  
18.0  
28.0  
18.0  
18.0  
18.0  
18.0  
18.0  
SC70  
SC70  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DBV0005A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
1.45  
0.90  
B
A
PIN 1  
INDEX AREA  
1
2
5
(0.1)  
2X 0.95  
1.9  
3.05  
2.75  
1.9  
(0.15)  
4
3
0.5  
5X  
0.3  
0.15  
0.00  
(1.1)  
TYP  
0.2  
C A B  
NOTE 5  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
0
TYP  
0.6  
0.3  
TYP  
SEATING PLANE  
4214839/G 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-178.  
4. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.25 mm per side.  
5. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214839/G 03/2023  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0005A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (1.1)  
1
5
5X (0.6)  
SYMM  
(1.9)  
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214839/G 03/2023  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX