SN74LV1T34-Q1 [TI]

汽车单电源缓冲门逻辑电平转换器(无使能端);
SN74LV1T34-Q1
型号: SN74LV1T34-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车单电源缓冲门逻辑电平转换器(无使能端)

转换器 电平转换器
文件: 总19页 (文件大小:1049K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN74LV1T34-Q1  
ZHCSQH1A MAY 2022 REVISED SEPTEMBER 2022  
SN74LV1T34-Q1 汽车类单电源单缓冲器逻辑电平转换器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
SN74LV1T34-Q1 包含支持扩展电压运行的单个缓冲  
可实现电平转换。缓冲器以正逻辑执行布尔函Y  
= A。输出电平以电源电压 (VCC) 为基准并且支持  
1.8V2.5V3.3V 5V CMOS 电平。  
– 器件温度等1-40°C +125°C  
– 器HBM ESD 分类等2  
– 器CDM ESD 分类等C4B  
1.8V 5.5V 的宽工作电压范围  
• 单电源电压转换器LVxT 增强输入电压):  
该输入经设计有较低阈值电路持较低电压  
CMOS 输入的上行转换例如 1.2V 输入转换为 1.8V  
输出或 1.8V 输入转换为 3.3V 输出。此外5V 容限  
输入引脚可实现下行转换3.3V 2.5V 输  
。  
– 上行转换:  
1.2 V 1.8 V  
1.5 V 2.5 V  
1.8V 3.3V  
3.3 V 5.0 V  
– 下行转换:  
封装信息(1)  
器件型号  
封装  
封装尺寸标称值)  
DCKSC70,  
5)  
SN74LV1T34-Q1  
2.00mm × 1.25mm  
5.0V3.3V2.5V 1.8V  
5.0V3.3V 2.5V  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
5.0 V 3.3 V  
5.5V 容限输入引脚  
• 支持标准引脚排列  
• 速率高150 Mbps5V 3.3V VCC  
• 闩锁性能超250mA符合  
JESD 17 规范  
2 应用  
启用或禁用数字信号  
控制指示LED  
通信模块和系统控制器之间的转换  
A
Y
简化逻辑图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCLS903  
 
 
 
 
SN74LV1T34-Q1  
ZHCSQH1A MAY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................11  
9 Application and Implementation..................................12  
9.1 Application Information............................................. 12  
9.2 Typical Application.................................................... 12  
9.3 Design Requirements............................................... 12  
9.4 Detailed Design Procedure.......................................14  
9.5 Application Curves....................................................14  
10 Power Supply Recommendations..............................14  
11 Layout...........................................................................15  
11.1 Layout Guidelines................................................... 15  
11.2 Layout Example...................................................... 15  
12 Device and Documentation Support..........................16  
12.1 Documentation Support.......................................... 16  
12.2 接收文档更新通知................................................... 16  
12.3 支持资源..................................................................16  
12.4 Trademarks.............................................................16  
12.5 Electrostatic Discharge Caution..............................16  
12.6 术语表..................................................................... 16  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Switching Characteristics 1.8-V VCC ..................... 6  
6.7 Switching Characteristics 2.5-V VCC ..................... 6  
6.8 Switching Characteristics 3.3-V VCC ..................... 6  
6.9 Switching Characteristics 5.0-V VCC ..................... 6  
6.10 Typical Characteristics..............................................7  
7 Parameter Measurement Information............................8  
8 Detailed Description........................................................9  
8.1 Overview.....................................................................9  
8.2 Functional Block Diagram...........................................9  
8.3 Feature Description.....................................................9  
Information.................................................................... 16  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (May 2022) to Revision A (September 2022)  
Page  
• 将数据表的状态从预告信更改为量产数..................................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: SN74LV1T34-Q1  
 
SN74LV1T34-Q1  
ZHCSQH1A MAY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
N.C.  
1
2
3
5
4
VCC  
A
GND  
Y
5-1. DCK Package, 5-Pin SC70 (Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
N.C.  
A
NO.  
1
No Connect  
I
2
Channel 1, Input A  
Ground  
GND  
Y
3
G
O
P
4
Channel 1, Output Y  
Positive Supply  
VCC  
5
(1) I = Input, O = Output, I/O = Input or Output, G = Ground, P = Power.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN74LV1T34-Q1  
 
 
SN74LV1T34-Q1  
ZHCSQH1A MAY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.5  
0.5  
0.5  
0.5  
MAX  
UNIT  
V
VCC  
VI  
Supply voltage  
7
7
Input voltage range  
V
Output voltage range  
VCC + 0.5  
4.6  
V
VO  
Voltage range applied to any output in the high-impedance or power-off state  
V
IIK  
Input clamp current(2)  
mA  
mA  
mA  
mA  
°C  
°C  
VI < 0.5 V  
20  
±20  
±25  
±50  
150  
150  
IOK  
Output clamp current(2)  
VO < 0.5 V or VO > VCC + 0.5 V  
Continuous output current  
VO = 0 to VCC  
IO  
Continuous output current through VCC or GND  
Junction temperature  
TJ  
Tstg  
Storage temperature  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality,  
performance, and shorten the device lifetime.  
(2) The input and output voltage ratings may be exceeded if the input and output current ratings are observed.  
6.2 ESD Ratings  
VALUE  
±4000  
±2000  
UNIT  
Human body model (HBM), per AEC Q100-002 HBM ESD Classification Level 2(1)  
Charged device model (CDM), per AEC Q100-011 CDM ESD Classification Level C4B  
Electrostatic  
discharge  
V(ESD)  
V
(1) AEC Q100-002 indicate that HBM stressing shall be in accordrance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Supply voltage  
Input voltage  
CONDITION  
MIN  
1.6  
0
MAX  
5.5  
UNIT  
VCC  
VI  
V
V
5.5  
VO  
Output voltage  
0
VCC  
V
VCC = 1.65 V to 2 V  
1.1  
1.28  
1.45  
2.00  
V
VCC = 2.25 V to 2.75 V  
VCC = 3 V to 3.6 V  
V
VIH  
High-level input voltage  
V
VCC = 4.5 V to 5.5 V  
VCC = 1.65 V to 2 V  
VCC = 2.25 V to 2.75 V  
VCC = 3 V to 3.6 V  
V
0.50  
0.65  
0.75  
0.85  
±3  
V
V
VIL  
Low-Level input voltage  
Output current  
V
VCC = 4.5 V to 5.5 V  
VCC = 1.6 V to 2 V  
V
mA  
mA  
mA  
ns/V  
C
IO  
VCC = 2.25 V to 2.75 V  
VCC = 3.3 V to 5.0 V  
VCC = 1.6 V to 5.0 V  
±7  
±15  
20  
Input transition rise or fall rate  
Operating free-air temperature  
Δt/Δv  
TA  
125  
40  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: SN74LV1T34-Q1  
 
 
 
 
 
 
 
SN74LV1T34-Q1  
ZHCSQH1A MAY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.4 Thermal Information  
SN74LV1T34-Q1  
THERMAL METRIC (1)  
DCK (SC70)  
5 PINS  
293.4  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
208.8  
180.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
120.6  
ΨJT  
179.5  
ΨJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
TA = 25°C  
40°C to 125°C  
PARAMETER  
TEST CONDITIONS  
VCC  
UNIT  
MIN  
TYP  
MAX  
MIN  
VCC-0.1  
1.21  
TYP  
MAX  
IOH = -50 µA  
1.65 V to 5.5 V  
1.65 V  
VCC-0.1  
1.28  
2
IOH = -2 mA  
1.7(1)  
2.4(1)  
VOH  
IOH = -3 mA  
2.25 V  
1.93  
V
IOH = -5.5 mA  
IOH = -8 mA  
3.0 V  
2.6 3.08(1)  
4.1 4.65(1)  
2.49  
4.5 V  
3.95  
IOH = 50 µA  
1.65 V to 5.5 V  
1.65 V  
0.1  
0.2  
0.15  
0.2  
0.3  
1
0.1  
0.25  
0.2  
IOH = 2 mA  
0.1(1)  
0.1(1)  
0.2(1)  
0.3(1)  
VOL  
IOH = 3 mA  
2.25 V  
V
IOH = 5.5 mA  
IOH = 8 mA  
3.0 V  
0.25  
0.35  
10  
4.5 V  
ICC  
VI = VCC or GND, IO = 0  
1.8 V to 5.5 V  
µA  
One input at 0.3 V or 3.4 V, other  
inputs at VCC or GND  
5.5 V  
1.8 V  
1.35  
10  
1.5 mA  
ΔICC  
One input at 0.3 V or 1.1 V, other  
inputs at VCC or GND  
10  
µA  
II  
VI = 0 V to VCC  
0 V to 5.5 V  
3.3 V  
0.12  
10  
±1  
10  
µA  
pF  
pF  
pF  
Ci  
CO  
VI = VCC or GND  
Vo = VCC or GND  
F = 1 Mhz and 10 Mhz  
2
2.5  
14  
2
3.3 V  
2.5  
(2) (3)  
CPD  
1.8 V to 5.5 V  
(1) Typical value at nearest nominal voltage (1.8 V, 2.5 V, 3.3 V, and 5 V).  
(2) CPD is used to determine the dynamic power consumption, per channel.  
(3) PD= VCC 2xFIx(CPD+ CL) where FI= input frequency, CL= output load capacitance, VCC= supply voltage.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN74LV1T34-Q1  
 
 
 
 
 
 
SN74LV1T34-Q1  
ZHCSQH1A MAY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.6 Switching Characteristics 1.8-V VCC  
over operating free-air temperature range (unless otherwise noted)  
TA = 25°C  
TYP  
40°C to 125°C  
FROM  
(INPUT)  
TO  
(OUTPUT)  
LOAD  
CAPACITANCE  
PARAMETER  
UNIT  
MAX  
MIN  
MIN  
MIN  
MIN  
MAX  
12.7  
15.7  
MIN  
TYP  
10.4  
12.7  
CL = 15 pF  
CL = 50 pF  
8.8  
1
1
14.9  
nS  
18.3  
TPD  
A
Y
10.8  
6.7 Switching Characteristics 2.5-V VCC  
over operating free-air temperature range (unless otherwise noted)  
TA = 25°C  
TYP  
40°C to 125°C  
FROM  
(INPUT)  
TO  
(OUTPUT)  
LOAD  
CAPACITANCE  
PARAMETER  
UNIT  
MAX  
MAX  
7.9  
MIN  
TYP  
7.4  
CL = 15 pF  
CL = 50 pF  
6.3  
1
1
9.5  
nS  
11.5  
TPD  
A
Y
7.4  
9.6  
8.9  
6.8 Switching Characteristics 3.3-V VCC  
over operating free-air temperature range (unless otherwise noted)  
TA = 25°C  
TYP  
40°C to 125°C  
FROM  
(INPUT)  
TO  
(OUTPUT)  
LOAD  
CAPACITANCE  
PARAMETER  
UNIT  
MAX  
MAX  
5.9  
MIN  
TYP  
6
CL = 15 pF  
CL = 50 pF  
4.9  
1
1
7.3  
nS  
8.8  
TPD  
A
Y
5.9  
7.2  
7.1  
6.9 Switching Characteristics 5.0-V VCC  
over operating free-air temperature range (unless otherwise noted)  
TA = 25°C  
TYP  
40°C to 125°C  
FROM  
(INPUT)  
TO  
(OUTPUT)  
LOAD  
CAPACITANCE  
PARAMETER  
UNIT  
MAX  
MAX  
4.1  
MIN  
TYP  
4.1  
CL = 15 pF  
CL = 50 pF  
3.4  
1
1
4.7  
nS  
6.3  
TPD  
A
Y
3.9  
5.3  
4.9  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN74LV1T34-Q1  
 
 
 
 
SN74LV1T34-Q1  
ZHCSQH1A MAY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
6.10 Typical Characteristics  
3.5  
3.5  
3
Output  
Input  
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
0
Output  
Input  
-0.5  
-0.5  
0
2
4
6
8
10  
Time (ns)  
12  
14  
16  
18  
20  
0
5
10  
Time (ns)  
15  
20  
D002  
D001  
3.3 V to 3.3 V at 3.3-V VCC  
1.8 V to 3.3 V at 3.3-V VCC  
6-2. Switching Characteristics at 50 MHz  
6-1. Switching Characteristics at 50 MHz  
Excellent Signal Integrity  
Excellent Signal Integrity  
3.5  
3
Output  
Input  
2.5  
2
1.5  
1
0.5  
0
-0.5  
0
12.5  
25  
37.5  
50  
62.5  
75  
87.5  
Time (ns)  
D003  
3.3 V to 1.8 V at 1.8-V VCC  
6-3. Switching Characteristics at 15 MHz  
Excellent Signal Integrity  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN74LV1T34-Q1  
 
SN74LV1T34-Q1  
ZHCSQH1A MAY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators  
having the following characteristics: PRR 1 MHz, ZO = 50 , tt< 2.5 ns.  
For clock inputs, fmax is measured when the input duty cycle is 50%.  
The outputs are measured one at a time with one input transition per measurement.  
Test  
Point  
VCC  
0 V  
VOH  
VOL  
VOH  
VOL  
Input  
Output  
Output  
50%  
50%  
From Output  
Under Test  
(1)  
(1)  
tPLH  
tPHL  
(1)  
CL  
50%  
50%  
(1) CL includes probe and test-fixture capacitance.  
(1)  
(1)  
tPHL  
tPLH  
7-1. Load Circuit for Push-Pull Outputs  
50%  
50%  
(1) The greater between tPLH and tPHL is the same as tpd  
.
7-2. Voltage Waveforms Propagation Delays  
VCC  
90%  
Input  
90%  
10%  
0 V  
10%  
tr(1)  
tf(1)  
VOH  
90%  
10%  
90%  
Output  
10%  
VOL  
tr(1)  
tf(1)  
(1) The greater between tr and tf is the same as tt.  
7-3. Voltage Waveforms, Input and Output Transition Times  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: SN74LV1T34-Q1  
 
SN74LV1T34-Q1  
ZHCSQH1A MAY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The SN74LV1T34-Q1 contains a single buffer with extended voltage operation to allow for level translation. The  
buffer performs the Boolean function Y = A in positive logic. The output level is referenced to the supply voltage  
(VCC) and supports 1.8-V, 2.5-V, 3.3-V, and 5-V CMOS levels.  
8.2 Functional Block Diagram  
A
Y
8.3 Feature Description  
8.3.1 Balanced CMOS Push-Pull Outputs  
This device includes balanced CMOS push-pull outputs. The term balanced indicates that the device can sink  
and source similar currents. The drive capability of this device may create fast edges into light loads so routing  
and load conditions should be considered to prevent ringing. Additionally, the outputs of this device are capable  
of driving larger currents than the device can sustain without being damaged. It is important for the output power  
of the device to be limited to avoid damage due to overcurrent. The electrical and thermal limits defined in the  
Absolute Maximum Ratings must be followed at all times.  
Unused push-pull CMOS outputs should be left disconnected.  
8.3.2 Clamp Diode Structure  
As 8-1 shows, the outputs to this device have both positive and negative clamping diodes, and the inputs to  
this device have negative clamping diodes only.  
CAUTION  
Voltages beyond the values specified in the Absolute Maximum Ratings table can cause damage to  
the device. The input and output voltage ratings may be exceeded if the input and output clamp-  
current ratings are observed.  
VCC  
Device  
+IOK  
Input  
Output  
Logic  
-IIK  
-IOK  
GND  
8-1. Electrical Placement of Clamping Diodes for Each Input and Output  
8.3.3 LVxT Enhanced Input Voltage  
The SN74LV1T34-Q1 belongs to TI's LVxT family of logic devices with integrated voltage level translation. This  
family of devices was designed with reduced input voltage thresholds to support up-translation, and inputs  
tolerant of signals with up to 5.5 V levels to support down-translation. The output voltage will always be  
referenced to the supply voltage (VCC), as described in the Electrical Characteristics table. To ensure proper  
functionality, input signals must remain at or below the specified VIH(MIN) level for a HIGH input state, and at or  
below the specified VIL(MAX) for a LOW input state. 8-2 shows the typical VIH and VIL levels for the LVxT family  
of devices, as well as the voltage levels for standard CMOS devices for comparison.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN74LV1T34-Q1  
 
 
 
 
 
SN74LV1T34-Q1  
ZHCSQH1A MAY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
The inputs are high impedance and are typically modeled as a resistor in parallel with the input capacitance  
given in the Electrical Characteristics. The worst case resistance is calculated with the maximum input voltage,  
given in the Absolute Maximum Ratings, and the maximum input leakage current, given in the Electrical  
Characteristics, using Ohm's law (R = V ÷ I).  
The inputs require the input signals to transition between valid logic states quickly, as defined by the input  
transition time or rate in the Recommended Operating Conditions table. Failing to meet this specification will  
result in excessive power consumption and can cause oscillations. More details can be found in the Implications  
of Slow or Floating CMOS Inputs application report.  
Do not leave inputs floating at any time during operation. Unused inputs must be terminated at VCC or GND. If a  
system will not be actively driving an input at all times, a pull-up or pull-down resistor can be added to provide a  
valid input voltage during these times. The resistor value will depend on multiple factors; however, a 10-kΩ  
resistor is recommended and will typically meet all requirements.  
3.6  
3.4  
3.3-V CMOS  
3.2  
VIH  
3
VIL  
HIGH Input  
LOW Input  
2.8  
2.6  
2.4  
2.2  
2
2.5-V CMOS  
2.4 V (VOH  
)
2 V (VOH  
)
1.8-V CMOS  
1.8  
1.6  
1.4  
1.2  
1
1.45 V (VOH  
)
1.2-V CMOS  
1.1 V (VOH  
)
0.8  
0.6  
0.4  
0.2  
0
0.45 V (VOL  
)
0.4 V (VOL  
)
0.4 V (VOL  
)
0.3 V (VOL  
)
1.6 1.8  
2
2.2 2.4 2.6 2.8  
3
3.2 3.4 3.6 3.8  
4
4.2 4.4 4.6 4.8  
5
5.2  
5.5  
VCC - Supply Voltage (V)  
8-2. LVxT Input Voltage Levels  
8.3.3.1 Down Translation  
Signals can be translated down using the SN74LV1T34-Q1. The voltage applied at the VCC will determine the  
output voltage and the input thresholds as described in the Recommended Operating Conditions and Electrical  
Characteristics tables.  
When connected to a high-impedance input, the output voltage will be approximately VCC in the HIGH state, and  
0 V in the LOW state. Ensure that the input signals in the HIGH state are between VIH(MIN) and 5.5 V, and input  
signals in the LOW state are lower than VIL(MAX) as shown in 8-2.  
For example, standard CMOS inputs for devices operating at 5.0 V, 3.3 V or 2.5 V can be down-translated to  
match 1.8 V CMOS signals when operating from 1.8-V VCC. See 8-3.  
Down Translation Combinations are as follows:  
1.8-V VCC Inputs from 2.5 V, 3.3 V, and 5.0 V  
2.5-V VCC Inputs from 3.3 V and 5.0 V  
3.3-V VCC Inputs from 5.0 V  
8.3.3.2 Up Translation  
Input signals can be up translated using the SN74LV1T34-Q1. The voltage applied at VCC will determine the  
output voltage and the input thresholds as described in the Recommended Operating Conditions and Electrical  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: SN74LV1T34-Q1  
 
SN74LV1T34-Q1  
ZHCSQH1A MAY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
Characteristics tables. When connected to a high-impedance input, the output voltage will be approximately VCC  
in the HIGH state, and 0 V in the LOW state.  
The inputs have reduced thresholds that allow for input HIGH state levels which are much lower than standard  
values. For example, standard CMOS inputs for a device operating at a 5-V supply will have a VIH(MIN) of 3.5 V.  
For the SN74LV1T34-Q1, VIH(MIN) with a 5-V supply is only 2 V, which would allow for up-translation from a  
typical 2.5-V to 5-V signals.  
Ensure that the input signals in the HIGH state are above VIH(MIN) and input signals in the LOW state are lower  
than VIL(MAX) as shown in 8-3.  
Up Translation Combinations are as follows:  
1.8-V VCC Inputs from 1.2 V  
2.5-V VCC Inputs from 1.8 V  
3.3-V VCC Inputs from 1.8 V and 2.5 V  
5.0-V VCC Inputs from 2.5 V and 3.3 V  
VIH = 2.0 V  
VIL = 0.8 V  
VIH = 0.99 V  
VIL = 0.5 V  
Vcc = 5.0 V  
Vcc = 1.8 V  
5.0 V, 3.3 V  
2.5 V, 1.8 V  
1.5 V, 1.2 V  
System  
5.0 V  
3.3 V  
System  
5.0 V  
System  
1.8 V  
System  
LV1Txx Logic  
LV1Txx Logic  
8-3. LVxT Up and Down Translation Example  
8.4 Device Functional Modes  
8-1 is the function table for the SN74LV1T34-Q1.  
8-1. Function Table  
INPUT  
OUTPUT  
(LOWER LEVEL INPUT)  
(VCC CMOS)  
A
H
L
Y
H
L
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN74LV1T34-Q1  
 
 
 
SN74LV1T34-Q1  
ZHCSQH1A MAY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
9-1 shows how the SN74LV1T34-Q1 is used to up-translate a 1.8-V signal to 3.3 V to drive an LED in this  
application. The SN74LV1T34-Q1 does not limit the output current, so an added output resistor is used to  
provide the appropriate current limiting. The resistor value (R) should be determined by the LED's forward  
voltage (VD) and the desired forward current through the LED (ID) using this equation: R = (VCC - VD)/ID.  
9.2 Typical Application  
3.3 V  
0.1 F  
R
SN74LV1T34  
1.8 V  
NC  
VCC  
System  
Controller  
A
Y
+
VD  
ID  
GND  
-
9-1. Typical Application Block Diagram  
9.3 Design Requirements  
9.3.1 Power Considerations  
Ensure the desired supply voltage is within the range specified in the Recommended Operating Conditions. The  
supply voltage sets the device's electrical characteristics as described in the Electrical Characteristics section.  
The positive voltage supply must be capable of sourcing current equal to the total current to be sourced by all  
outputs of the SN74LV1T34-Q1 plus the maximum static supply current, ICC, listed in the Electrical  
Characteristics, and any transient current required for switching. The logic device can only source as much  
current that is provided by the positive supply source. Be sure to not exceed the maximum total current through  
VCC listed in the Absolute Maximum Ratings.  
The ground must be capable of sinking current equal to the total current to be sunk by all outputs of the  
SN74LV1T34-Q1 plus the maximum supply current, ICC, listed in the Electrical Characteristics, and any transient  
current required for switching. The logic device can only sink as much current that can be sunk into its ground  
connection. Be sure to not exceed the maximum total current through GND listed in the Absolute Maximum  
Ratings.  
The SN74LV1T34-Q1 can drive a load with a total capacitance less than or equal to 50 pF while still meeting all  
of the data sheet specifications. Larger capacitive loads can be applied; however, it is not recommended to  
exceed 50 pF.  
The SN74LV1T34-Q1 can drive a load with total resistance described by RL VO / IO, with the output voltage  
and current defined in the Electrical Characteristics table with VOH and VOL. When outputting in the HIGH state,  
the output voltage in the equation is defined as the difference between the measured output voltage and the  
supply voltage at the VCC pin.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: SN74LV1T34-Q1  
 
 
 
 
 
SN74LV1T34-Q1  
ZHCSQH1A MAY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
Total power consumption can be calculated using the information provided in CMOS Power Consumption and  
Cpd Calculation.  
Thermal increase can be calculated using the information provided in Thermal Characteristics of Standard Linear  
and Logic (SLL) Packages and Devices.  
CAUTION  
The maximum junction temperature, TJ(max) listed in the Absolute Maximum Ratings, is an additional  
limitation to prevent damage to the device. Do not violate any values listed in the Absolute Maximum  
Ratings. These limits are provided to prevent damage to the device.  
9.3.2 Input Considerations  
Input signals must cross VIL(max) to be considered a logic LOW, and VIH(min) to be considered a logic HIGH. Do  
not exceed the maximum input voltage range found in the Absolute Maximum Ratings.  
Unused inputs must be terminated to either VCC or ground. The unused inputs can be directly terminated if the  
input is completely unused, or they can be connected with a pull-up or pull-down resistor if the input will be used  
sometimes, but not always. A pull-up resistor is used for a default state of HIGH, and a pull-down resistor is used  
for a default state of LOW. The drive current of the controller, leakage current into the SN74LV1T34-Q1 (as  
specified in the Electrical Characteristics), and the desired input transition rate limits the resistor size. A 10-kΩ  
resistor value is often used due to these factors.  
The SN74LV1T34-Q1 has CMOS inputs and thus requires fast input transitions to operate correctly, as defined  
in the Recommended Operating Conditions table. Slow input transitions can cause oscillations, additional power  
consumption, and reduction in device reliability.  
Refer to the Feature Description section for additional information regarding the inputs for this device.  
9.3.3 Output Considerations  
The positive supply voltage is used to produce the output HIGH voltage. Drawing current from the output will  
decrease the output voltage as specified by the VOH specification in the Electrical Characteristics. The ground  
voltage is used to produce the output LOW voltage. Sinking current into the output will increase the output  
voltage as specified by the VOL specification in the Electrical Characteristics.  
Push-pull outputs that could be in opposite states, even for a very short time period, should never be connected  
directly together. This can cause excessive current and damage to the device.  
Two channels within the same device with the same input signals can be connected in parallel for additional  
output drive strength.  
Unused outputs can be left floating. Do not connect outputs directly to VCC or ground.  
Refer to the Feature Description section for additional information regarding the outputs for this device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN74LV1T34-Q1  
SN74LV1T34-Q1  
ZHCSQH1A MAY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
9.4 Detailed Design Procedure  
1. Add a decoupling capacitor from VCC to GND. The capacitor needs to be placed physically close to the  
device and electrically close to both the VCC and GND pins. An example layout is shown in the Layout  
section.  
2. Ensure the capacitive load at the output is 50 pF. This is not a hard limit; it will, however, ensure optimal  
performance. This can be accomplished by providing short, appropriately sized traces from the  
SN74LV1T34-Q1 to one or more of the receiving devices.  
3. Ensure the resistive load at the output is larger than (VCC / IO(max)) Ω. This will ensure that the maximum  
output current from the Absolute Maximum Ratings is not violated. Most CMOS inputs have a resistive load  
measured in MΩ; much larger than the minimum calculated previously.  
4. Thermal issues are rarely a concern for logic gates; the power consumption and thermal increase, however,  
can be calculated using the steps provided in the application report, CMOS Power Consumption and Cpd  
Calculation.  
9.5 Application Curves  
3.3  
A
Y
3
2.7  
2.4  
2.1  
1.8  
1.5  
1.2  
0.9  
0.6  
0.3  
0
-0.3  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
Time (µs)  
9-2. Application Timing Diagram  
10 Power Supply Recommendations  
The power supply can be any voltage between the minimum and maximum supply voltage rating located in the  
Recommended Operating Conditions. Each VCC terminal should have a good bypass capacitor to prevent power  
disturbance. A 0.1-μF capacitor is recommended for this device. It is acceptable to parallel multiple bypass caps  
to reject different frequencies of noise. The 0.1-μF and 1-μF capacitors are commonly used in parallel. The  
bypass capacitor should be installed as close to the power terminal as possible for best results, as shown in the  
following layout example.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: SN74LV1T34-Q1  
 
 
 
SN74LV1T34-Q1  
ZHCSQH1A MAY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
When using multiple-input and multiple-channel logic devices, inputs must never be left floating. In many cases,  
functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a triple-  
input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left  
unconnected because the undefined voltages at the outside connections result in undefined operational states.  
All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the  
input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular  
unused input depends on the function of the device. Generally, the inputs are tied to GND or VCC, whichever  
makes more sense for the logic function or is more convenient.  
11.2 Layout Example  
GND VCC  
Recommend GND flood fill for  
improved signal isolation, noise  
reduction, and thermal dissipation  
Bypass capacitor  
placed close to the  
device  
0.1  
F
NC  
A
1
2
5
4
VCC  
Avoid 90°  
corners for  
signal lines  
GND  
3
Y
11-1. Example Layout for the SN74LV1T34-Q1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: SN74LV1T34-Q1  
 
 
 
SN74LV1T34-Q1  
ZHCSQH1A MAY 2022 REVISED SEPTEMBER 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Implications of Slow or Floating CMOS Inputs application report  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: SN74LV1T34-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Oct-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN74LV1T34QDCKRQ1  
ACTIVE  
SC70  
DCK  
5
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
1M3  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF SN74LV1T34-Q1 :  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Oct-2022  
Catalog : SN74LV1T34  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

SN74LV1T34DBVR

单电源缓冲门逻辑电平转换器(无使能端) | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74LV1T34DBVRG4

单电源缓冲门逻辑电平转换器(无使能端) | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74LV1T34DCKR

单电源缓冲门逻辑电平转换器(无使能端) | DCK | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74LV1T34DCKRG4

单电源缓冲门逻辑电平转换器(无使能端) | DCK | 5

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74LV1T34QDCKRQ1

汽车单电源缓冲门逻辑电平转换器(无使能端) | DCK | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74LV1T86

单电源 2 输入异或 (XOR) 门逻辑电平转换器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74LV1T86DBVR

单电源 2 输入异或 (XOR) 门逻辑电平转换器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74LV1T86DBVRG4

单电源 2 输入异或 (XOR) 门逻辑电平转换器 | DBV | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74LV1T86DCKR

单电源 2 输入异或 (XOR) 门逻辑电平转换器 | DCK | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74LV1T86DCKRG4

单电源 2 输入异或 (XOR) 门逻辑电平转换器 | DCK | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74LV20A

DUAL 4 INPUT POSITIVE NAND GATE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74LV20AD

DUAL 4 INPUT POSITIVE NAND GATE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI