SN74LV541AQWRKSRQ1 [TI]

具有三态输出的汽车类 8 通道、2V 至 5.5V 缓冲器 | RKS | 20 | -40 to 125;
SN74LV541AQWRKSRQ1
型号: SN74LV541AQWRKSRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有三态输出的汽车类 8 通道、2V 至 5.5V 缓冲器 | RKS | 20 | -40 to 125

文件: 总25页 (文件大小:1659K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN74LV541A-Q1  
ZHCSQX0A AUGUST 2022 REVISED NOVEMBER 2022  
SN74LV541A-Q1 具有三态输出的汽车类八路缓冲器/驱动器  
1 特性  
3 说明  
• 符合面向汽车应用AEC-Q100 标准  
– 器件温度等1:  
SN74LV541A-Q1 器件是一款八路缓冲器/驱动器可  
2V 5.5V VCC 电压下运行。低电平有效输出能够  
使引脚OE1 OE2控制所有八个通道并配置为  
使输出都必须为低电平才能有效。  
40°C + 125°CTA  
– 器HBM ESD 分类等2  
封装信息(1)  
– 器CDM ESD 分类等C6  
• 采用具有可润湿侧翼QFN (WRKS) 封装  
2 V 5.5 V VCC 运行  
• 最tpd6ns5V )  
• 所有端口上均支持以混合模式电压运行  
封装尺寸标称值)  
器件型号  
封装  
4.50mm x 2.50mm  
5.10mm × 3.00mm  
WRKSWQFN20)  
DGSSOT20)  
SN74LV541A-Q1  
Ioff 支持局部断电模式运行  
• 闩锁性能超250mAJESD 17 规范  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
启用或禁用数字信号  
消除缓慢或嘈杂输入信号  
在控制器复位期间保持信号  
对开关进行去抖  
Shared Control Logic  
OE1  
OE2  
Ax  
Yx  
One of Eight 3-State Buffers  
逻辑图正逻辑)  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCLS904  
 
 
 
 
SN74LV541A-Q1  
ZHCSQX0A AUGUST 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
Table of Contents  
8.2 Functional Block Diagram......................................... 11  
8.3 Feature Description...................................................11  
8.4 Device Functional Modes..........................................12  
9 Application and Implementation..................................14  
9.1 Application Information............................................. 14  
9.2 Typical Application.................................................... 14  
10 Power Supply Recommendations..............................16  
11 Layout...........................................................................17  
11.1 Layout Guidelines................................................... 17  
11.2 Layout Example...................................................... 17  
12 Device and Documentation Support..........................18  
12.1 Related Documentation.......................................... 18  
12.2 Receiving Notification of Documentation Updates..18  
12.3 支持资源..................................................................18  
12.4 Trademarks.............................................................18  
12.5 Electrostatic Discharge Caution..............................18  
12.6 术语表..................................................................... 18  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Switching Characteristics, VCC = 2.5 V ± 0.2 V...........6  
6.7 Switching Characteristics, VCC = 3.3 V ± 0.3 V...........6  
6.8 Switching Characteristics, VCC = 5 V ± 0.5 V..............7  
6.9 Noise Characteristics(1) ..............................................7  
6.10 Operating Characteristics......................................... 7  
6.11 Typical Characteristics.............................................. 8  
7 Parameter Measurement Information..........................10  
8 Detailed Description......................................................11  
8.1 Overview................................................................... 11  
Information.................................................................... 18  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (August 2022) to Revision A (November 2022)  
Page  
• 将数据表的状态从预告信更改为量产数..................................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: SN74LV541A-Q1  
 
SN74LV541A-Q1  
ZHCSQX0A AUGUST 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
OE1 VCC  
OE1  
1
20  
VCC  
1
20  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
2
3
4
5
6
7
8
9
19  
18  
OE2  
Y1  
A1  
A2  
2
3
19  
18  
OE2  
Y1  
17 Y2  
A3  
A4  
A5  
A6  
4
5
6
7
17  
16  
Y2  
Y3  
Y4  
16  
15  
Y3  
Y4  
15  
14  
PAD  
Y5  
14 Y5  
13  
12  
11  
A7  
A8  
8
9
Y6  
Y7  
Y6  
Y7  
13  
12  
GND  
10  
Y8  
10 11  
GND  
Y8  
5-2. DGS Package,  
20-Pin SOT  
5-1. WRKS Package,  
20-Pin WQFN  
(Top View)  
(Top View)  
5-1. Pin Functions  
PIN  
TYPE(1)  
NO.  
DESCRIPTION  
NAME  
OE1  
A1  
1
2
I
I
Output enable input 1, active low  
Input for channel 1  
Input for channel 2  
Input for channel 3  
Input for channel 4  
Input for channel 5  
Input for channel 6  
Input for channel 7  
Input for channel 8  
Ground  
A2  
3
I
A3  
4
I
A4  
5
I
A5  
6
I
A6  
7
I
A7  
8
I
A8  
9
I
GND  
Y8  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
G
O
O
O
O
O
O
O
O
I
Output for channel 8  
Output for channel 7  
Output for channel 6  
Output for channel 5  
Output for channel 4  
Output for channel 3  
Output for channel 2  
Output for channel 1  
Output enable input 2, active low  
Postive supply  
Y7  
Y6  
Y5  
Y4  
Y3  
Y2  
Y1  
OE2  
VCC  
P
The thermal pad can be connected to GND or left floating. Do not connect to any other  
signal or supply.  
Thermal Pad(2)  
(1) I = Input, O = Output, I/O = Input or Output, G = Ground, P = Power.  
(2) WRKS package only  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN74LV541A-Q1  
 
 
 
SN74LV541A-Q1  
ZHCSQX0A AUGUST 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
Over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
V
VCC  
VI  
Supply voltage  
7
0.5  
0.5  
0.5  
0.5  
Input voltage(2)  
7
7
V
VO  
VO  
IIK  
Voltage range applied to any output in the high-impedance or power-off state(2)  
Output voltage (2) (3)  
V
VCC + 0.5  
V
Input clamp current  
VI < 0  
mA  
mA  
mA  
mA  
°C  
20  
50  
±25  
IOK  
IO  
Output clamp current  
VO < 0  
Continuous output current  
VO = 0 to VCC  
Continuous current through VCC or GND  
Storage temperature  
±50  
Tstg  
150  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.  
(3) This value is limited to 5.5 V maximum.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per AEC Q100-002 HBM ESD Classification Level 2(1)  
±4000  
Electrostatic  
discharge  
V(ESD)  
V
Charged device model (CDM), per AEC Q100-011 CDM ESD Classification Level  
C4B  
±2000  
(1) AEC Q100-002 indicate that HBM stressing shall be in accordrance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: SN74LV541A-Q1  
 
 
 
 
 
 
 
SN74LV541A-Q1  
ZHCSQX0A AUGUST 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
2
MAX  
UNIT  
VCC  
VIH  
Supply voltage  
5.5  
V
VCC = 2 V  
1.5  
High-level input voltage  
V
VCC = 2.3 V to 5.5 V  
VCC = 2 V  
VCC × 0.7  
0.5  
VCC × 0.3  
5.5  
VIL  
VI  
Low-level input voltage  
Input voltage  
V
V
VCC = 2.3 V to 5.5 V  
0
0
0
High or low state  
3-state  
VCC  
5.5  
VO  
Output voltage  
V
VCC = 2 V  
µA  
50  
2  
8  
16  
50  
VCC = 2.3 V to 2.7 V  
VCC = 3 V to 3.6 V  
VCC = 4.5 V to 5.5 V  
VCC = 2 V  
IOH  
High-level output current  
mA  
µA  
VCC = 2.3 V to 2.7 V  
2
IOL  
Low-level output current  
VCC = 3 V to 3.6 V  
8
mA  
VCC = 4.5 V to 5.5 V  
VCC = 2.3 V to 2.7 V  
VCC = 3 V to 3.6 V  
VCC = 4.5 V to 5.5 V  
16  
200  
100  
20  
Input transition rise or fall rate  
Operating free-air temperature  
ns/V  
°C  
Δt/Δv  
TA  
125  
40  
(1) All unused inputs of the device must be held at VCC or GND to ensure proper device operation. See Implications of Slow or Floating  
CMOS Inputs.  
6.4 Thermal Information  
SN74LV541A-Q1  
THERMAL METRIC(1)  
WRKS (WQFN)  
DGS (SOT)  
20 PINS  
125.5  
80.0  
UNIT  
20 PINS  
86  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
82.6  
54.9  
9.5  
63.8  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
8.4  
ψJT  
54.9  
32.5  
79.9  
ψJB  
RθJC(bot)  
N/A  
(1) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN74LV541A-Q1  
 
 
 
 
SN74LV541A-Q1  
ZHCSQX0A AUGUST 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted).  
PARAMETER  
VCC  
2 V to 5.5 V  
2.3 V  
MIN  
VCC 0.1  
2
TYP  
MAX UNIT  
IOH = 50 mA  
IOH = 2 mA  
VOH  
High level output voltage  
V
3 V  
2.48  
IOH = 8 mA  
IOH = 16 mA  
IOL = 50 mA  
IOL = 2 mA  
4.5 V  
3.8  
2 V to 5.5 V  
2.3 V  
0.1  
0.4  
V
0.44  
VOL  
Low level output voltage  
Input leakage current  
IOL = 8 mA  
3 V  
IOL = 16 mA  
VI = 5.5 V or GND  
4.5 V  
0.55  
II  
0 V to 5.5 V  
±1  
±5  
20  
5
µA  
µA  
µA  
µA  
pF  
Off-state (high- impedance  
state) output current  
IOZ  
ICC  
Ioff  
Ci  
VO = VCC or GND  
5.5 V  
5.5 V  
0 V  
Supply current  
VI = VCC or GND, IO = 0  
VI or VO = 0 to 5.5 V  
VI = VCC or GND  
Input/Output Power-Off  
Leakage Current  
Input Capacitance  
3.3 V  
2
6.6 Switching Characteristics, VCC = 2.5 V ± 0.2 V  
over operating free-air temperature range (unless otherwise noted), (see 7-1)  
25°C  
40°C to 125°C  
MIN TYP MAX  
PARAMETE  
R
FROM  
(INPUT)  
TO  
(OUTPUT)  
LOAD  
CAP  
UNIT  
MIN  
TYP  
6.7  
MAX  
tpd  
A
Y
Y
Y
Y
Y
Y
1
1
1
1
1
1
13.5  
19.5  
15  
ten  
OE  
OE  
A
CL = 15 pF  
CL = 50 pF  
8.5  
8.4  
ns  
tdis  
tpd  
8.7  
18.5  
24  
ten  
OE  
OE  
10.5  
12.3  
ns  
tdis  
tsk(o)  
20  
2
2
6.7 Switching Characteristics, VCC = 3.3 V ± 0.3 V  
over operating free-air temperature range (unless otherwise noted), (see 7-1)  
25°C  
40°C to 125°C  
MIN TYP MAX  
PARAMETE  
R
FROM  
(INPUT)  
TO  
(OUTPUT)  
LOAD  
CAP  
UNIT  
MIN  
TYP  
4.8  
MAX  
tpd  
A
Y
Y
Y
Y
Y
Y
7
1
1
1
1
1
1
8.5  
12.5  
12  
ten  
OE  
OE  
A
CL = 15 pF  
CL = 50 pF  
6.1  
5.8  
6.1  
7.4  
8.8  
10.5  
11  
ns  
tdis  
tpd  
10.5  
14  
12  
ten  
OE  
OE  
16  
ns  
tdis  
tsk(o)  
15.4  
1.5  
17.5  
1.5  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN74LV541A-Q1  
 
 
 
SN74LV541A-Q1  
ZHCSQX0A AUGUST 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.8 Switching Characteristics, VCC = 5 V ± 0.5 V  
over operating free-air temperature range (unless otherwise noted), (see 7-1)  
25°C  
40°C to 125°C  
MIN TYP MAX  
PARAMETE  
R
FROM  
(INPUT)  
TO  
(OUTPUT)  
LOAD  
CAP  
UNIT  
MIN  
TYP  
3.5  
MAX  
tpd  
A
Y
Y
Y
Y
Y
Y
CL = 15 pF  
CL = 15 pF  
CL = 15 pF  
CL = 50 pF  
CL = 50 pF  
CL = 50 pF  
CL = 50 pF  
5
1
1
1
1
1
1
6
8.5  
8
ten  
OE  
OE  
A
4.3  
3.9  
4.3  
5.3  
5.6  
7.2  
7.5  
7
ns  
tdis  
tpd  
8
ten  
OE  
OE  
9.2  
8.8  
1
10.5  
10  
1
ns  
tdis  
tsk(o)  
6.9 Noise Characteristics(1)  
VCC = 3.3 V, CL = 50 pF, TA = 25°C  
SN74LV541A-Q1  
PARAMETER  
UNIT  
MIN  
TYP  
0.5  
MAX  
0.8  
VOL(P)  
VOL(V)  
VOH(V)  
VIH(D)  
VIL(D)  
Quiet output, maximum dynamic VOL  
Quiet output, minimum dynamic VOL  
Quiet output, minimum dynamic VOH  
High-level dynamic input voltage  
Low-level dynamic input voltage  
V
V
V
V
V
0.4  
2.9  
0.8  
2.31  
0.99  
(1) Characteristics are for surface-mount packages only.  
6.10 Operating Characteristics  
TA = 25°C  
PARAMETER  
TEST CONDITIONS  
CL = 50 pF f = 10 MHz  
VCC  
TYP  
UNIT  
3.3 V  
5 V  
16.3  
17.8  
Cpd  
Power dissipation capacitance  
pF  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN74LV541A-Q1  
 
 
 
 
SN74LV541A-Q1  
ZHCSQX0A AUGUST 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.11 Typical Characteristics  
0.16  
0.14  
0.12  
0.1  
0.3  
0.25  
0.2  
0.15  
0.1  
0.08  
0.06  
0.04  
0.02  
0
0.05  
0
VCC = 4.5 V  
VCC = 5.5 V  
VCC = 2.3 V  
VCC = 3 V  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
IOL (mA)  
IOL (mA)  
6-2. Output Voltage in LOW State, 4.5- and 5.5-V Supply  
6-1. Output Voltage in LOW State, 2.3- and 3-V Supply  
3
2.9  
2.8  
2.7  
2.6  
2.5  
2.4  
2.3  
2.2  
5.5  
5.4  
5.3  
5.2  
5.1  
5
4.9  
4.8  
4.7  
4.6  
4.5  
4.4  
4.3  
4.2  
4.1  
4
VCC = 2.3 V  
VCC = 3 V  
VCC = 4.5 V  
VCC = 5.5 V  
2.1  
2
-8  
-6  
-4  
-2  
0
-16  
-14  
-12  
-10  
-8  
-6  
-4  
-2 0  
IOH (mA)  
IOH (mA)  
6-3. Output Voltage in HIGH State, 2.3- and 3-V Supply  
6-4. Output Voltage in HIGH State, 4.5- and 5.5-V Supply  
0.1  
0.6  
VCC = 2.5 V  
VCC = 3.3 V  
VCC = 5 V  
0.09  
0.54  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
0.48  
0.42  
0.36  
0.3  
0.24  
0.18  
0.12  
0.06  
0
0
0.25 0.5 0.75  
1
1.25 1.5 1.75  
2
2.25 2.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
VI - Input Voltage (V)  
VI - Input Voltage (V)  
6-5. Supply Current Across Input Voltage, 2.5-V Supply  
6-6. Supply Current Across Input Voltage, 3.3- and 5-V  
Supply  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: SN74LV541A-Q1  
 
SN74LV541A-Q1  
ZHCSQX0A AUGUST 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
6.11 Typical Characteristics (continued)  
4.5  
4
7
6
5
4
3
2
1
0
TPD in ns  
3.5  
3
2.5  
2
1.5  
1
0.5  
TPD in ns  
100 150  
0
-100  
-50  
0
50  
0
1
2
3
VCC  
4
5
6
Temperature (èC)  
D001  
D002  
6-7. TPD vs Temperature  
6-8. TPD vs VCC at 25°C  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN74LV541A-Q1  
SN74LV541A-Q1  
ZHCSQX0A AUGUST 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
V
CC  
S1  
Open  
R
= 1 kΩ  
L
TEST  
/t  
S1  
From Output  
Under Test  
Test  
From Output  
Under Test  
GND  
Point  
t
t
Open  
PLH PHL  
C
C
L
(see Note A)  
t
/t  
PLZ PZL  
V
L
(see Note A)  
CC  
/t  
PHZ PZH  
GND  
Open Drain  
V
CC  
LOAD CIRCUIT FOR  
LOAD CIRCUIT FOR  
TOTEM-POLE OUTPUTS  
3-STATE AND OPEN-DRAIN OUTPUTS  
V
CC  
50% V  
CC  
Timing Input  
0 V  
t
w
t
h
t
su  
V
CC  
V
CC  
50% V  
50% V  
CC  
Input  
CC  
50% V  
50% V  
CC  
Data Input  
CC  
0 V  
0 V  
VOLTAGE WAVEFORMS  
PULSE DURATION  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
V
V
CC  
CC  
Output  
Control  
50% V  
50% V  
50% V  
50% V  
t
Input  
CC  
CC  
CC  
CC  
0 V  
0 V  
t
t
t
t
PZL  
PLH  
PHL  
PLZ  
Output  
V
V  
OH  
CC  
In-Phase  
Output  
Waveform 1  
50% V  
50% V  
CC  
50% V  
CC  
CC  
V
V
+ 0.3 V  
OL  
S1 at V  
CC  
V
OL  
OL  
(see Note B)  
t
t
t
PHL  
PLH  
PZH  
PHZ  
Output  
Waveform 2  
S1 at GND  
V
V
OH  
50% V  
CC  
OH  
Out-of-Phase  
Output  
V
− 0.3 V  
OH  
50% V  
50% V  
CC  
CC  
V
OL  
0 V  
(see Note B)  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
LOW- AND HIGH-LEVEL ENABLING  
INVERTING AND NONINVERTING OUTPUTS  
A. CL includes probe and jig capacitance.  
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.  
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.  
C. All input pulses are supplied by generators having the following characteristics: PRR 1 MHz, ZO = 50 Ω, tr 3 ns,  
and tf 3 ns.  
D. The outputs are measured one at a time, with one input transition per measurement.  
E. tPLZ and tPHZ are the same as tdis  
.
F. tPZL and tPZH are the same as ten  
.
G. tPHL and tPLH are the same as tpd  
.
H. All parameters and waveforms are not applicable to all devices.  
7-1. Load Circuit and Voltage Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: SN74LV541A-Q1  
 
 
SN74LV541A-Q1  
ZHCSQX0A AUGUST 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The SN74LV541A-Q1 device is an octal buffer/driver designed for 2 V to 5.5 V VCC operation.  
The active low output enable pins (OE1 and OE2) control all eight channels, and are configured so that both  
must be low for the outputs to be active. When the outputs are enabled, the outputs are actively driving low or  
high. When the outputs are disabled, the outputs are set into the high-impedance state.  
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs,  
preventing damaging current backflow through the devices when they are powered down.  
8.2 Functional Block Diagram  
Shared Control Logic  
OE1  
OE2  
Ax  
Yx  
One of Eight 3-State Buffers  
8-1. Logic Diagram (Positive Logic)  
8.3 Feature Description  
8.3.1 Balanced CMOS 3-State Outputs  
This device includes balanced CMOS 3-state outputs. Driving high, driving low, and high impedance are the  
three states that these outputs can be in. The term balanced indicates that the device can sink and source  
similar currents. The drive capability of this device may create fast edges into light loads, so routing and load  
conditions should be considered to prevent ringing. Additionally, the outputs of this device can drive larger  
currents than the device can sustain without being damaged. It is important for the output power of the device to  
be limited to avoid damage due to overcurrent. The electrical and thermal limits defined in the Absolute  
Maximum Ratings must be followed at all times.  
When placed into the high-impedance mode, the output will neither source nor sink current, with the exception of  
minor leakage current as defined in the Electrical Characteristics table. In the high-impedance state, the output  
voltage is not controlled by the device and is dependent on external factors. If no other drivers are connected to  
the node, then this is known as a floating node and the voltage is unknown. A pull-up or pull-down resistor can  
be connected to the output to provide a known voltage at the output while it is in the high-impedance state. The  
value of the resistor will depend on multiple factors, including parasitic capacitance and power consumption  
limitations. Typically, a 10-kΩresistor can be used to meet these requirements.  
Unused 3-state CMOS outputs should be left disconnected.  
8.3.2 Partial Power Down (Ioff)  
This device includes circuitry to disable all outputs when the supply pin is held at 0 V. When disabled, the  
outputs will neither source nor sink current, regardless of the input voltages applied. The amount of leakage  
current at each output is defined by the Ioff specification in the Electrical Characteristics table.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN74LV541A-Q1  
 
 
 
 
SN74LV541A-Q1  
ZHCSQX0A AUGUST 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
8.3.3 Wettable Flanks  
This device includes wettable flanks for at least one package. See the Features section on the front page of the  
data sheet for which packages include this feature.  
Package  
Package  
Solder  
Standard Lead  
We able Flank Lead  
Pad  
PCB  
8-2. Simplified Cutaway View of Wettable-Flank QFN Package and Standard QFN Package After  
Soldering  
Wettable flanks help improve side wetting after soldering, which makes QFN packages easier to inspect with  
automatic optical inspection (AOI). As shown in 8-2, a wettable flank can be dimpled or step-cut to provide  
additional surface area for solder adhesion which assists in reliably creating a side fillet. Please see the  
mechanical drawing for additional details.  
8.3.4 Clamp Diode Structure  
8-3 shows the inputs and outputs to this device have negative clamping diodes only.  
CAUTION  
Voltages beyond the values specified in the Absolute Maximum Ratings table can cause damage to  
the device. The input and output voltage ratings may be exceeded if the input and output clamp-  
current ratings are observed.  
VCC  
Device  
Input  
Output  
Logic  
GND  
-IIK  
-IOK  
8-3. Electrical Placement of Clamping Diodes for Each Input and Output  
8.4 Device Functional Modes  
8-1. Function Table  
INPUTS(1)  
OUTPUT(2)  
OE1  
L
OE2  
L
A
L
Y
L
L
L
H
X
X
H
Z
Z
H
X
X
H
(1) L = input low, H = input high, X = do not care  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: SN74LV541A-Q1  
 
 
 
 
 
SN74LV541A-Q1  
ZHCSQX0A AUGUST 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
(2) L = output low, H = output high, Z = high impedance  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN74LV541A-Q1  
 
SN74LV541A-Q1  
ZHCSQX0A AUGUST 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The SN74LV541A-Q1 can be used to drive signals over relatively long traces or transmission lines. To reduce  
ringing caused by impedance mismatches between the driver, transmission line, and receiver, a series damping  
resistor placed in series with the transmitters output can be used. The figure in the Application Curve section  
shows the received signal with three separate resistor values. Just a small amount of resistance can make a  
significant impact on signal integrity in this type of application.  
9.2 Typical Application  
Rd  
1A1  
1Y1  
1A1  
1Y1  
System  
Controller  
Z0  
Peripheral  
L > 12 cm  
Transmitter  
Receiver  
9-1. Input Expansion with Shift Registers  
9.2.1 Power Considerations  
Ensure the desired supply voltage is within the range specified in the Recommended Operating Conditions. The  
supply voltage sets the device's electrical characteristics as described in the Electrical Characteristics section.  
The positive voltage supply must be capable of sourcing current equal to the total current to be sourced by all  
outputs of the SN74LV541A-Q1 plus the maximum static supply current, ICC, listed in the Electrical  
Characteristics, and any transient current required for switching. The logic device can only source as much  
current that is provided by the positive supply source. Be sure to not exceed the maximum total current through  
VCC listed in the Absolute Maximum Ratings.  
The ground must be capable of sinking current equal to the total current to be sunk by all outputs of the  
SN74LV541A-Q1 plus the maximum supply current, ICC, listed in the Electrical Characteristics, and any transient  
current required for switching. The logic device can only sink as much current that can be sunk into its ground  
connection. Be sure to not exceed the maximum total current through GND listed in the Absolute Maximum  
Ratings.  
The SN74LV541A-Q1 can drive a load with a total capacitance less than or equal to 50 pF while still meeting all  
of the data sheet specifications. Larger capacitive loads can be applied; however, it is not recommended to  
exceed 50 pF.  
The SN74LV541A-Q1 can drive a load with total resistance described by RL VO / IO, with the output voltage  
and current defined in the Electrical Characteristics table with VOH and VOL. When outputting in the HIGH state,  
the output voltage in the equation is defined as the difference between the measured output voltage and the  
supply voltage at the VCC pin.  
Total power consumption can be calculated using the information provided in CMOS Power Consumption and  
Cpd Calculation.  
Thermal increase can be calculated using the information provided in Thermal Characteristics of Standard Linear  
and Logic (SLL) Packages and Devices.  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: SN74LV541A-Q1  
 
 
 
SN74LV541A-Q1  
ZHCSQX0A AUGUST 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
CAUTION  
The maximum junction temperature, TJ(max) listed in the Absolute Maximum Ratings, is an additional  
limitation to prevent damage to the device. Do not violate any values listed in the Absolute Maximum  
Ratings. These limits are provided to prevent damage to the device.  
9.2.2 Input Considerations  
Input signals must cross VIL(max) to be considered a logic LOW, and VIH(min) to be considered a logic HIGH. Do  
not exceed the maximum input voltage range found in the Absolute Maximum Ratings.  
Unused inputs must be terminated to either VCC or ground. The unused inputs can be directly terminated if the  
input is completely unused, or they can be connected with a pull-up or pull-down resistor if the input will be used  
sometimes, but not always. A pull-up resistor is used for a default state of HIGH, and a pull-down resistor is used  
for a default state of LOW. The drive current of the controller, leakage current into the SN74LV541A-Q1 (as  
specified in the Electrical Characteristics), and the desired input transition rate limits the resistor size. A 10-kΩ  
resistor value is often used due to these factors.  
The SN74LV541A-Q1 has CMOS inputs and thus requires fast input transitions to operate correctly, as defined  
in the Recommended Operating Conditions table. Slow input transitions can cause oscillations, additional power  
consumption, and reduction in device reliability.  
Refer to the Feature Description section for additional information regarding the inputs for this device.  
9.2.3 Output Considerations  
The positive supply voltage is used to produce the output HIGH voltage. Drawing current from the output will  
decrease the output voltage as specified by the VOH specification in the Electrical Characteristics. The ground  
voltage is used to produce the output LOW voltage. Sinking current into the output will increase the output  
voltage as specified by the VOL specification in the Electrical Characteristics.  
Push-pull outputs that could be in opposite states, even for a very short time period, should never be connected  
directly together. This can cause excessive current and damage to the device.  
Two channels within the same device with the same input signals can be connected in parallel for additional  
output drive strength.  
Unused outputs can be left floating. Do not connect outputs directly to VCC or ground.  
Refer to the Feature Description section for additional information regarding the outputs for this device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: SN74LV541A-Q1  
SN74LV541A-Q1  
ZHCSQX0A AUGUST 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
9.2.4 Detailed Design Procedure  
1. Add a decoupling capacitor from VCC to GND. The capacitor needs to be placed physically close to the  
device and electrically close to both the VCC and GND pins. An example layout is shown in the Layout  
section.  
2. Ensure the capacitive load at the output is 50 pF. This is not a hard limit; it will, however, ensure optimal  
performance. This can be accomplished by providing short, appropriately sized traces from the  
SN74LV541A-Q1 to one or more of the receiving devices.  
3. Ensure the resistive load at the output is larger than (VCC / IO(max)) Ω. This will ensure that the maximum  
output current from the Absolute Maximum Ratings is not violated. Most CMOS inputs have a resistive load  
measured in MΩ; much larger than the minimum calculated previously.  
4. Thermal issues are rarely a concern for logic gates; the power consumption and thermal increase, however,  
can be calculated using the steps provided in the application report, CMOS Power Consumption and Cpd  
Calculation.  
9.2.5 Application Curves  
5
0  
22 ꢀ  
50 ꢀ  
4
3.3  
2
1
0
-1  
-2  
0
15  
30  
45  
Time (ns)  
60  
75  
90 100  
9-2. Simulated Signal Integrity at the Reciever With Different Damping Resistor (Rd) Values  
10 Power Supply Recommendations  
The power supply can be any voltage between the minimum and maximum supply voltage rating located in the  
Absolute Maximum Ratings section. Each VCC terminal must have a good bypass capacitor to prevent power  
disturbance. For devices with a single supply, TI recommends a 0.1-μF capacitor; if there are multiple VCC  
terminals, then TI recommends a 0.01-μF or 0.022-μF capacitor for each power terminal. Multiple bypass  
capacitors can be paralleled to reject different frequencies of noise. Frequencies of 0.1 μF and 1 μF are  
commonly used in parallel. The bypass capacitor must be installed as close as possible to the power terminal for  
best results.  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: SN74LV541A-Q1  
 
SN74LV541A-Q1  
ZHCSQX0A AUGUST 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
When using multiple bit logic devices, inputs should not float. In many cases, functions or parts of functions of  
digital logic devices are unused. Some examples are when only two inputs of a triple-input AND gate are used,  
or when only 3 of the 4-buffer gates are used. Such unused input pins must not be left unconnected because the  
undefined voltages at the outside connections result in undefined operational states. All unused inputs of digital  
logic devices must be connected to a logic high or logic low voltage, as defined by the input voltage  
specifications, to prevent them from floating. The logic level that must be applied to any particular unused input  
depends on the function of the device. Generally, the inputs are tied to GND or VCC, whichever makes more  
sense for the logic function or is more convenient.  
11.2 Layout Example  
VCC  
GND  
Recommend GND flood fill for  
improved signal isolation, noise  
reduction, and thermal dissipation  
Bypass capacitor  
placed close to the  
device  
0.1 F  
OE1  
VCC  
1
20  
19  
A1  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
2
3
4
5
6
7
8
9
OE2  
Y1  
Y2  
Y3  
Y4  
Y5  
Y6  
18  
17  
16  
15  
14  
13  
Unused input  
tied to GND  
Unused output  
left floating  
GND  
12  
11  
Y7  
10  
Avoid 90°  
corners for  
signal lines  
GND  
Y8  
11-1. Layout Example for the SN74LV541A-Q1 in the WRKS Package  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: SN74LV541A-Q1  
 
 
 
SN74LV541A-Q1  
ZHCSQX0A AUGUST 2022 REVISED NOVEMBER 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, CMOS Power Consumption and Cpd Calculation application report  
Texas Instruments, Introduction to Logic application report  
Texas Instruments, Power-Up Behavior of Clocked Devices application report  
Texas Instruments, Thermal Characteristics of Standard Linear and Logic (SLL) Packages and Devices  
application report  
12.2 Receiving Notification of Documentation Updates  
To receive notification of documentation updatesincluding silicon erratago to the product folder for your  
device on ti.com. In the upper right-hand corner, click the Alert me button. This registers you to receive a weekly  
digest of product information that has changed (if any). For change details, check the revision history of any  
revised document.  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: SN74LV541A-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PCLV541AQDGSRQ1  
PCLV541AQWRKSRQ1  
SN74LV541AQDGSRQ1  
SN74LV541AQWRKSRQ1  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VSSOP  
VQFN  
DGS  
RKS  
DGS  
RKS  
20  
20  
20  
20  
5000  
3000  
TBD  
TBD  
Call TI  
Call TI  
-40 to 125  
-40 to 125  
-40 to 125  
-40 to 125  
Samples  
Samples  
Samples  
Samples  
Call TI  
NIPDAU  
NIPDAU  
Call TI  
VSSOP  
VQFN  
5000 RoHS & Green  
3000 RoHS & Green  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
L541Q  
LV541AQ  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
16-Apr-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF SN74LV541A-Q1 :  
Catalog : SN74LV541A  
NOTE: Qualified Version Definitions:  
Catalog - TI's standard catalog product  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RKS 20  
2.5 x 4.5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226872/A  
www.ti.com  
PACKAGE OUTLINE  
RKS0020B  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
3
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
2.6  
2.4  
B
A
PIN 1 INDEX AREA  
4.6  
4.4  
(0.1) MIN  
(0.13)  
SECTION A-A  
TYPICAL  
1.0  
0.8  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.05  
0.95  
2X 0.5  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
10  
11  
14X 0.5  
9
12  
A
A
2X  
3.05  
2.95  
3.5  
2
19  
0.3  
20X  
1
20  
0.2  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
0.45  
0.35  
20X  
0.05  
4226762/B 06/2022  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RKS0020B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1)  
2X (0.5)  
1
20  
20X (0.6)  
2
19  
20X (0.25)  
(1.25)  
(3)  
SYMM  
2X (3.5)  
(4.3)  
16X (0.5)  
(R0.05) TYP  
9
12  
(
0.2) VIA  
TYP  
10  
11  
SYMM  
(2.3)  
LAND PATTERN EXAMPLE  
SCALE:20X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4226762/B 06/2022  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If some or all are implemented, recommended via locations are shown.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RKS0020B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
2X (0.95)  
2X (0.5)  
1
20  
20X (0.6)  
2
19  
20X (0.25)  
2X (1.31)  
16X (0.5)  
SYMM  
2X (3.5) (4.3)  
(0.76)  
METAL  
TYP  
9
12  
(R0.05) TYP  
10  
11  
SYMM  
(2.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
83% PRINTED SOLDER COVERAGE BY AREA  
SCALE:25X  
4226762/B 06/2022  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SN74LV541ARGYR

OCTAL BUFFERS/DRIVERS WITH 3-STATE OUTPUTS
TI

SN74LV541ARGYRG4

OCTAL BUFFERS/DRIVERS WITH 3-STATE OUTPUTS
TI

SN74LV541ARKSR

具有三态输出的 8 通道、2V 至 5.5V 缓冲器 | RKS | 20 | -40 to 125
TI

SN74LV541AT

OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS
TI

SN74LV541ATDBR

OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS
TI

SN74LV541ATDBRE4

OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS
TI

SN74LV541ATDBRG4

OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS
TI

SN74LV541ATDGVR

OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS
TI

SN74LV541ATDGVRE4

OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS
TI

SN74LV541ATDGVRG4

OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS
TI

SN74LV541ATDW

OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS
TI

SN74LV541ATDWE4

OCTAL BUFFER/DRIVER WITH 3-STATE OUTPUTS
TI