SN74LVC1G79-Q1 [TI]

汽车类单路上升沿触发 D 型触发器;
SN74LVC1G79-Q1
型号: SN74LVC1G79-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类单路上升沿触发 D 型触发器

触发器
文件: 总21页 (文件大小:726K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
SN74LVC1G79-Q1  
ZHCSG59 MARCH 2017  
SN74LVC1G79-Q1 单路正缘触发 D 型触发器  
1 特性  
3 说明  
1
汽车电子 应用认证  
具有符合 AEC-Q100 标准的下列结果:  
SN74LVC1G79-Q1 器件是一种通过汽车 AEC-Q100  
认证的单路正缘触发 D 型触发器,专门为 1.65V 到  
5.5V VCC 操作而设计。  
±4000 V 人体放电模型 (HBM) ESD 分类等级  
3A  
当数据输入 (D) 处的数据满足设置时间要求时,将该数  
据传输到时钟脉冲正向缘上的 Q 输出。时钟触发出现  
在一个特定电压电平上,并且不与时钟脉冲的上升时间  
直接相关。经过保持时间间隔后,可以更改 D 输入处  
的数据而不影响输出处的电平。  
±1000 V 带电器件模型 (CDM) ESD 分类等级  
C5  
支持 5V VCC 运行  
输入接受的电压达到高达 5.5V  
支持向下转换到 VCC  
3.3V 50pF 负载下最大 tpd 6ns  
低功耗,10µA 最大 ICC  
该器件完全 适用于 使用 Ioff 的局部掉电应用。当器件  
断电时,Ioff 电路将会禁用输出。这会抑制电流反流到  
器件中,从而防止损坏器件。  
电压为 3.3V 时,输出驱动为 ±24mA  
Ioff 支持部分断电模式和后驱动保护  
器件信息(1)  
器件型号  
封装  
封装尺寸  
2 应用  
SN74LVC1G79QDCKRQ1 SC70 (5)  
2.00mm × 1.25mm  
车用信息娱乐  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
汽车仪表盘  
汽车 ADAS  
汽车车身电子设备  
HEV/EV 动力传动系统  
逻辑图(正逻辑)  
2
C
CLK  
C
C
4
TG  
Q
C
C
C
C
1
D
TG  
TG  
TG  
C
C
C
Copyright © 2017, Texas Instruments Incorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SCES874  
 
 
 
SN74LVC1G79-Q1  
ZHCSG59 MARCH 2017  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
7
8
Parameter Measurement Information .................. 9  
Detailed Description ............................................ 11  
8.1 Overview ................................................................. 11  
8.2 Functional Block Diagram ....................................... 11  
8.3 Feature Description................................................. 11  
8.4 Device Functional Modes........................................ 12  
Application and Implementation ........................ 13  
9.1 Application Information............................................ 13  
9.2 Typical Application ................................................. 13  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 Timing Requirements: TA = –40°C to +85°C ............ 6  
6.7 Timing Requirements: TA = –40°C to +125°C .......... 6  
9
10 Power Supply Recommendations ..................... 14  
11 Layout................................................................... 14  
11.1 Layout Guidelines ................................................. 14  
11.2 Layout Example .................................................... 14  
12 器件和文档支持 ..................................................... 15  
12.1 文档支持................................................................ 15  
12.2 接收文档更新通知 ................................................. 15  
12.3 社区资源................................................................ 15  
12.4 ....................................................................... 15  
12.5 静电放电警告......................................................... 15  
12.6 Glossary................................................................ 15  
13 机械、封装和可订购信息....................................... 15  
6.8 Switching Characteristics: CL = 15 pF, TA = –40°C to  
+85°C......................................................................... 7  
6.9 Switching Characteristics: CL = 30 or 50 pF, TA  
=
–40°C to +85°C.......................................................... 7  
6.10 Switching Characteristics: CL = 30 pF or 50 pF, TA  
= –40°C to +125°C..................................................... 7  
6.11 Operating Characteristics........................................ 7  
6.12 Typical Characteristics............................................ 8  
4 修订历史记录  
日期  
修订版本  
注释  
2017 3 月  
*
首次发布。  
2
Copyright © 2017, Texas Instruments Incorporated  
 
SN74LVC1G79-Q1  
www.ti.com.cn  
ZHCSG59 MARCH 2017  
5 Pin Configuration and Functions  
DCK Package  
5-Pin SC70  
Top View  
See mechanical drawings for dimensions.  
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
D
DCK  
1
2
3
4
5
I
Data input  
CLK  
GND  
Q
I
Positive-Edge-Triggered Clock input  
Ground  
O
Non-inverted output  
Positive Supply  
VCC  
Copyright © 2017, Texas Instruments Incorporated  
3
SN74LVC1G79-Q1  
ZHCSG59 MARCH 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
MAX  
6.5  
UNIT  
V
VCC  
VI  
Supply voltage  
Input voltage(2)  
6.5  
V
VO  
VO  
IIK  
Voltage range applied to any output in the high-impedance or power-off state(2)  
Voltage range applied to any output in the high or low state(2)(3)  
6.5  
V
VCC + 0.5  
–50  
V
Input clamp current  
VI < 0  
mA  
mA  
mA  
mA  
°C  
°C  
IOK  
IO  
Output clamp current  
VO < 0  
–50  
Continuous output current  
Continuous current through VCC or GND  
Storage temperature  
±50  
±100  
150  
Tstg  
TJ  
–65  
Junction temperature  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.  
(3) The value of VCC is provided in the Recommended Operating Conditions table.  
6.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
4
Copyright © 2017, Texas Instruments Incorporated  
 
SN74LVC1G79-Q1  
www.ti.com.cn  
ZHCSG59 MARCH 2017  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
1.65  
MAX  
UNIT  
Operating  
5.5  
VCC  
Supply voltage  
V
Data retention only  
VCC = 1.65 V to 1.95 V  
VCC = 2.3 V to 2.7 V  
VCC = 3 V to 3.6 V  
1.5  
0.65 × VCC  
1.7  
VIH  
High-level input voltage  
V
V
2
VCC = 4.5 V to 5.5 V  
VCC = 1.65 V to 1.95 V  
VCC = 2.3 V to 2.7 V  
VCC = 3 V to 3.6 V  
0.7 × VCC  
0.35 × VCC  
0.7  
0.8  
0.3 × VCC  
5.5  
VCC  
–4  
VIL  
Low-level input voltage  
VCC = 4.5 V to 5.5 V  
VI  
Input voltage  
0
0
V
V
VO  
Output voltage  
VCC = 1.65 V  
VCC = 2.3 V  
–8  
IOH  
High-level output current  
Low-level output current  
–16  
–24  
–32  
4
mA  
mA  
VCC = 3 V  
VCC = 4.5 V  
VCC = 1.65 V  
VCC = 2.3 V  
8
IOL  
16  
VCC = 3 V  
24  
VCC = 4.5 V  
32  
VCC = 1.8 V ± 0.15 V, 2.5 V ± 0.2 V  
VCC = 3.3 V ± 0.3 V  
VCC = 5 V ± 0.5 V  
20  
Δt/Δv Input transition rise or fall rate  
10  
ns/V  
°C  
5
TA  
Operating free-air temperature  
–40  
125  
(1) All unused inputs of the device must be held at VCC or GND to ensure proper device operation. See Implications of Slow or Floating  
CMOS Inputs, SCBA004.  
6.4 Thermal Information  
SN74LVC1G79-Q1  
THERMAL METRIC(1)  
DCK  
5 PINS  
277.6  
179.5  
75.9  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
49.7  
ψJB  
75.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2017, Texas Instruments Incorporated  
5
 
SN74LVC1G79-Q1  
ZHCSG59 MARCH 2017  
www.ti.com.cn  
6.5 Electrical Characteristics  
over recommended operating free-air temperature range (unless otherwise noted)  
TA = –40°C to +85°C  
TA = –40°C to +125°C  
MIN TYP(1) MAX  
VCC – 0.1  
PARAMETER  
TEST CONDITIONS  
VCC  
UNIT  
MIN TYP(1) MAX  
IOH = –100 µA  
1.65 V to 5.5 V  
1.65 V  
VCC – 0.1  
1.2  
IOH = –4 mA  
IOH = –8 mA  
IOH = –16 mA  
IOH = –24 mA  
IOH = –32 mA  
IOL = 100 µA  
IOL = 4 mA  
1.2  
1.9  
2.4  
2.3  
3.8  
2.3 V  
1.9  
VOH  
V
2.4  
3 V  
2.3  
4.5 V  
1.65 V to 5.5 V  
1.65 V  
3.8  
0.1  
0.1  
0.45  
0.3  
0.45  
0.3  
IOL = 8 mA  
2.3 V  
VOL  
V
IOL = 16 mA  
0.4  
0.4  
3 V  
IOL = 24 mA  
0.55  
0.55  
±10  
±10  
10  
0.55  
0.55  
±5  
IOL = 32 mA  
4.5 V  
0 to 5.5 V  
0
II  
All inputs  
VI = 5.5 V or GND  
VI or VO = 5.5 V  
VI = 5.5 V or GND,  
µA  
µA  
µA  
Ioff  
ICC  
±10  
10  
IO = 0  
1.65 V to 5.5 V  
One input at VCC – 0.6 V,  
Other inputs at VCC or GND  
ΔICC  
3 V to 5.5 V  
3.3 V  
500  
500  
µA  
pF  
Ci  
VI = VCC or GND  
4
4
(1) All typical values are at VCC = 3.3 V, TA = 25°C.  
6.6 Timing Requirements: TA = –40°C to +85°C  
over operating free-air temperature range (unless otherwise noted) (see Figure 3)  
TA = –40°C to +85°C  
VCC = 1.8  
± 0.15 V  
VCC = 2.5  
± 0.2 V  
VCC = 3.3 V  
± 0.3 V  
VCC = 5 V  
± 0.5 V  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
160  
MIN  
MAX  
fclock  
tw  
Clock frequency  
160  
160  
160  
MHz  
ns  
Pulse duration, CLK high or low  
2.5  
2.2  
2.6  
0.3  
2.5  
1.4  
1.4  
0.4  
2.5  
1.3  
1.3  
1
2.5  
1.2  
1.2  
0.5  
Data high  
Data low  
tsu  
th  
Setup time before CLK  
ns  
ns  
Hold time, data after CLK↑  
6.7 Timing Requirements: TA = –40°C to +125°C  
over operating free-air temperature range (unless otherwise noted) (see Figure 3)  
TA = –40°C to +125°C  
VCC = 1.8  
± 0.15 V  
VCC = 2.5  
± 0.2 V  
VCC = 3.3 V  
± 0.3 V  
VCC = 5 V  
± 0.5 V  
PARAMETER  
UNIT  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
fclock  
tw  
Clock frequency  
160  
160  
160  
160  
MHz  
ns  
Pulse duration, CLK high or low  
2.5  
2.2  
2.6  
0.3  
2.5  
1.4  
1.4  
0.4  
2.5  
1.3  
1.3  
1
2.5  
1.2  
1.2  
0.5  
Data high  
Data low  
tsu  
th  
Setup time before CLK↑  
ns  
ns  
Hold time, data after CLK↑  
6
Copyright © 2017, Texas Instruments Incorporated  
 
SN74LVC1G79-Q1  
www.ti.com.cn  
ZHCSG59 MARCH 2017  
6.8 Switching Characteristics: CL = 15 pF, TA = –40°C to +85°C  
over recommended operating free-air temperature range, CL = 15 pF (unless otherwise noted) (see Figure 3)  
TA = –40°C to +85°C  
FROM  
(INPUT)  
TO  
(OUTPUT)  
VCC = 1.8 V  
± 0.15 V  
VCC = 2.5 V  
± 0.2 V  
VCC = 3.3 V  
± 0.3 V  
VCC = 5 V  
± 0.5 V  
PARAMETER  
UNIT  
MIN MAX  
MIN MAX  
MIN MAX  
MIN MAX  
fmax  
tpd  
160  
160  
160  
160  
MHz  
ns  
CLK  
Q
2.5  
9.1  
1.2  
6
1
4
0.8  
3.8  
6.9 Switching Characteristics: CL = 30 or 50 pF, TA = –40°C to +85°C  
over recommended operating free-air temperature range, CL = 30 pF or 50 pF (unless otherwise noted) (see Figure 4)  
TA = –40°C to +85°C  
FROM  
(INPUT)  
TO  
(OUTPUT)  
VCC = 1.8 V  
± 0.15 V  
VCC = 2.5 V  
± 0.2 V  
VCC = 3.3 V  
± 0.3 V  
VCC = 5 V  
± 0.5 V  
PARAMETER  
UNIT  
MIN MAX  
MIN MAX  
MIN MAX  
MIN MAX  
fmax  
tpd  
160  
160  
160  
160  
MHz  
ns  
CLK  
Q
3.9  
9.9  
2
7
1.7  
5
1
4.5  
6.10 Switching Characteristics: CL = 30 pF or 50 pF, TA = –40°C to +125°C  
over recommended operating free-air temperature range, CL = 30 pF or 50 pF (unless otherwise noted) (see Figure 4)  
TA = –40°C to +125°C  
FROM  
(INPUT)  
TO  
(OUTPUT)  
VCC = 1.8 V  
± 0.15 V  
VCC = 2.5 V  
± 0.2 V  
VCC = 3.3 V  
± 0.3 V  
VCC = 5 V  
± 0.5 V  
PARAMETER  
UNIT  
MIN MAX  
MIN MAX  
MIN MAX  
MIN MAX  
fmax  
tpd  
160  
160  
160  
160  
MHz  
ns  
CLK  
Q
3.9  
12  
2
8.5  
1.7  
6
1
5
6.11 Operating Characteristics  
TA = 25°C  
VCC = 1.8 V  
TYP  
VCC = 2.5 V  
TYP  
VCC = 3.3 V  
TYP  
VCC = 5 V  
TYP  
TEST  
CONDITIONS  
PARAMETER  
UNIT  
Cpd  
Power dissipation capacitance  
f = 10 MHz  
26  
26  
27  
30  
pF  
Copyright © 2017, Texas Instruments Incorporated  
7
SN74LVC1G79-Q1  
ZHCSG59 MARCH 2017  
www.ti.com.cn  
6.12 Typical Characteristics  
This plot shows the different ICC values for various voltages on the data input (D). Voltage sweep on the input is from 0 V to  
6.5 V.  
2
1.8  
1.6  
1.4  
1.2  
1
20  
18  
16  
14  
12  
10  
8
VCC = 1.8 V  
VCC = 2.5 V  
VCC = 3.3 V  
VCC = 5.0 V  
0.8  
0.6  
0.4  
0.2  
0
6
4
2
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
Data (D) Input Voltage [V]  
Data (D) Input Voltage [V]  
ICCv  
ICCv  
VCC = 1.8 V  
VCC = 2.5 V  
VCC = 3.3 V  
VCC = 5 V  
Figure 1. Supply Current (ICC) vs Data (D) Input Voltage  
Figure 2. Supply Current (ICC) vs Data (D) Input Voltage  
8
Copyright © 2017, Texas Instruments Incorporated  
SN74LVC1G79-Q1  
www.ti.com.cn  
ZHCSG59 MARCH 2017  
7 Parameter Measurement Information  
VLOAD  
Open  
GND  
S1  
RL  
From Output  
Under Test  
TEST  
tPLH/tPHL  
tPLZ/tPZL  
tPHZ/tPZH  
S1  
Open  
VLOAD  
GND  
CL  
(see Note A)  
RL  
LOAD CIRCUIT  
INPUTS  
VCC  
VM  
VLOAD  
CL  
RL  
V
D
VI  
tr/tf  
VCC  
VCC  
3 V  
VCC  
1.8 V ± 0.15 V  
2.5 V ± 0.2 V  
3.3 V ± 0.3 V  
5 V ± 0.5 V  
£2 ns  
£2 ns  
VCC/2  
VCC/2  
1.5 V  
VCC/2  
2 × VCC  
2 × VCC  
6 V  
15 pF  
15 pF  
15 pF  
15 pF  
1 MW  
0.15 V  
0.15 V  
0.3 V  
1 MW  
1 MW  
1 MW  
£2.5 ns  
£2.5 ns  
2 × VCC  
0.3 V  
VI  
Timing Input  
Data Input  
VM  
0 V  
tW  
tsu  
th  
VI  
VI  
Input  
VM  
VM  
VM  
VM  
0 V  
0 V  
VOLTAGE WAVEFORMS  
PULSE DURATION  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
VI  
VI  
Output  
Control  
VM  
VM  
Input  
VM  
VM  
0 V  
0 V  
tPZL  
tPLZ  
tPLH  
tPHL  
VM  
Output  
Waveform 1  
S1 at VLOAD  
VOH  
VOL  
VLOAD/2  
VOL  
VM  
VM  
Output  
Output  
VOL + V  
D
(see Note B)  
tPHL  
tPLH  
tPZH  
tPHZ  
VOH  
VOL  
Output  
Waveform 2  
S1 at GND  
VOH  
VOH – V  
D
VM  
VM  
VM  
»0 V  
(see Note B)  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
INVERTING AND NONINVERTING OUTPUTS  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
LOW- AND HIGH-LEVEL ENABLING  
NOTES: A. CL includes probe and jig capacitance.  
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.  
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.  
C. All input pulses are supplied by generators having the following characteristics: PRR £ 10 MHz, ZO = 50 W.  
D. The outputs are measured one at a time, with one transition per measurement.  
E. tPLZ and tPHZ are the same as tdis.  
F. tPZL and tPZH are the same as ten.  
G. tPLH and tPHL are the same as tpd.  
H. All parameters and waveforms are not applicable to all devices.  
Figure 3. Load Circuit and Voltage Waveforms  
Copyright © 2017, Texas Instruments Incorporated  
9
SN74LVC1G79-Q1  
ZHCSG59 MARCH 2017  
www.ti.com.cn  
Parameter Measurement Information (continued)  
VLOAD  
Open  
GND  
S1  
RL  
From Output  
Under Test  
TEST  
tPLH/tPHL  
tPLZ/tPZL  
tPHZ/tPZH  
S1  
Open  
VLOAD  
GND  
CL  
(see Note A)  
RL  
LOAD CIRCUIT  
INPUTS  
VCC  
VM  
VLOAD  
CL  
RL  
V
D
VI  
tr/tf  
VCC  
VCC  
3 V  
VCC  
1.8 V ± 0.15 V  
2.5 V ± 0.2 V  
3.3 V ± 0.3 V  
5 V ± 0.5 V  
£2 ns  
£2 ns  
VCC/2  
VCC/2  
1.5 V  
VCC/2  
2 × VCC  
2 × VCC  
6 V  
30 pF  
30 pF  
50 pF  
50 pF  
1 kW  
0.15 V  
0.15 V  
0.3 V  
500 W  
500 W  
500 W  
£2.5 ns  
£2.5 ns  
2 × VCC  
0.3 V  
VI  
Timing Input  
Data Input  
VM  
0 V  
tW  
tsu  
th  
VI  
VI  
Input  
VM  
VM  
VM  
VM  
0 V  
0 V  
VOLTAGE WAVEFORMS  
PULSE DURATION  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
VI  
VI  
Output  
Control  
VM  
VM  
Input  
VM  
VM  
0 V  
0 V  
tPZL  
tPLZ  
tPLH  
tPHL  
VM  
Output  
Waveform 1  
S1 at VLOAD  
VOH  
VOL  
VLOAD/2  
VOL  
VM  
VM  
Output  
Output  
VOL + V  
D
(see Note B)  
tPHL  
tPLH  
tPZH  
tPHZ  
VOH  
VOL  
Output  
Waveform 2  
S1 at GND  
VOH  
VOH – V  
D
VM  
VM  
VM  
»0 V  
(see Note B)  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
INVERTING AND NONINVERTING OUTPUTS  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
LOW- AND HIGH-LEVEL ENABLING  
NOTES: A. CL includes probe and jig capacitance.  
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.  
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.  
C. All input pulses are supplied by generators having the following characteristics: PRR £ 10 MHz, ZO = 50 W.  
D. The outputs are measured one at a time, with one transition per measurement.  
E. tPLZ and tPHZ are the same as tdis.  
F. tPZL and tPZH are the same as ten.  
G. tPLH and tPHL are the same as tpd.  
H. All parameters and waveforms are not applicable to all devices.  
Figure 4. Load Circuit and Voltage Waveforms  
10  
Copyright © 2017, Texas Instruments Incorporated  
SN74LVC1G79-Q1  
www.ti.com.cn  
ZHCSG59 MARCH 2017  
8 Detailed Description  
8.1 Overview  
The SN74LVC1G79-Q1 is a single positive-edge-triggered D-type flip-flop and is AEC-Q100 qualified for  
automotive applications. Data at the input (D) is transferred to the output (Q) on the positive-going edge of the  
clock pulse when the setup time requirement is met. Because the clock triggering occurs at a voltage level, it is  
not directly related to the rise time of the clock pulse. This allows for data at the input to be changed without  
affecting the level at the output, following the hold-time interval.  
8.2 Functional Block Diagram  
2
C
CLK  
C
C
4
TG  
Q
C
C
C
C
1
D
TG  
TG  
TG  
C
C
C
Copyright © 2017, Texas Instruments Incorporated  
Figure 5. Logic Diagram (Positive Logic)  
8.3 Feature Description  
8.3.1 Balanced High-Drive CMOS Push-Pull Outputs  
A balanced output allows the device to sink and source similar currents. The high drive capability of this device  
creates fast edges into light loads so routing and load conditions should be considered to prevent ringing.  
Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without  
being damaged. It is important for the power output of the device to be limited to avoid thermal runaway and  
damage due to over-current. The electrical and thermal limits defined the in the Absolute Maximum Ratings must  
be followed at all times.  
8.3.2 Standard CMOS Inputs  
Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input  
capacitance given in the Electrical Characteristics. The worst case resistance is calculated with the maximum  
input voltage, given in the Recommended Operating Conditions, and the maximum input leakage current, given  
in the Electrical Characteristics, using ohm's law (R = V ÷ I).  
Signals applied to the inputs need to have fast edge rates, as defined by Δt/Δv in Recommended Operating  
Conditions to avoid excessive currents and oscillations. If tolerance to a slow or noisy input signal is required, a  
device with a Schmitt-trigger input should be utilized to condition the input signal prior to the standard CMOS  
input.  
Copyright © 2017, Texas Instruments Incorporated  
11  
SN74LVC1G79-Q1  
ZHCSG59 MARCH 2017  
www.ti.com.cn  
Feature Description (continued)  
8.3.3 Clamp Diodes  
The inputs and outputs to this device have negative clamping diodes.  
CAUTION  
Voltages beyond the values specified in the Absolute Maximum Ratings table can  
cause damage to the device. The input negative-voltage and output voltage ratings  
may be exceeded if the input and output clamp-current ratings are observed.  
VCC  
Device  
Input  
Output  
Logic  
GND  
-IIK  
-IOK  
Figure 6. Electrical Placement of Clamping Diodes for Each Input and Output  
8.3.4 Partial Power Down (Ioff  
)
The inputs and outputs for this device enter a high impedance state when the supply voltage is 0 V. The  
maximum leakage into or out of any input or output pin on the device is specified by Ioff in the Electrical  
Characteristics.  
8.3.5 Over-Voltage Tolerant Inputs  
Input signals to this device can be driven above the supply voltage so long as they remain below the maximum  
input voltage value specified in the Absolute Maximum Ratings.  
8.4 Device Functional Modes  
Table 1 lists the functional modes of SN74LVC1G79-Q1.  
Table 1. Function Table  
INPUTS  
OUTPUT  
Y
CLK  
D
H
L
L
H
L
X
Q0  
12  
Copyright © 2017, Texas Instruments Incorporated  
 
SN74LVC1G79-Q1  
www.ti.com.cn  
ZHCSG59 MARCH 2017  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
A useful application for the SN74LVC1G79-Q1 is using it as a data latch with low-voltage data retention. This  
application implements the use of a microcontroller GPIO pin to act as a clock to set the output state and a  
second GPIO to provide the input data. If the SN74LVC1G79-Q1 is being powered from 1.8 V and there is  
concern that a power glitch could exist as low as 1.5 V, the device will retain the state of the Q output. An  
example of this data retention is shown in Figure 8 where the VCC drops to 1.5 V and the Q output maintains the  
HIGH output state when VCC returns to 1.8 V. If the VCC voltage drops below 1.5 V, data retention is not  
guaranteed.  
9.2 Typical Application  
VCC > 1.65V for Operation  
VCC > 1.50V for Data Retention  
GPIO  
CLK  
VCC  
D
5
4
1
2
3
MCU  
{b74[ë/1D79  
CLK  
GND  
Q
Copyright © 2017, Texas Instruments Incorporated  
Figure 7. Low Voltage Data Retention With SN74LVC1G79-Q1  
9.2.1 Design Requirements  
The SN74LVC1G79-Q1 device uses CMOS technology and has balanced output drive. Take care to avoid bus  
contention because it can drive currents that would exceed maximum limits.  
9.2.2 Detailed Design Procedure  
1. Recommended input conditions:  
For rise time and fall time specifications, see Δt/Δv in Recommended Operating Conditions.  
For specified high and low levels, see VIH and VIL in Recommended Operating Conditions.  
Input voltages are recommended to not go below 0 V and not exceed 5.5 V for any VCC. See  
Recommended Operating Conditions.  
2. Recommended output conditions:  
Load currents should not exceed ±50 mA. See Absolute Maximum Ratings.  
Output voltages are recommended to not go below 0 V and not exceed the VCC voltage. See  
Recommended Operating Conditions.  
Copyright © 2017, Texas Instruments Incorporated  
13  
SN74LVC1G79-Q1  
ZHCSG59 MARCH 2017  
www.ti.com.cn  
Typical Application (continued)  
9.2.3 Application Curve  
ꢁositive {upply ëoltage (ë//)  
bon-inverted hutput (ꢀ)  
Figure 8. Data Retention With VCC Glitch Down to 1.5 V  
10 Power Supply Recommendations  
The power supply can be any voltage between the minimum and maximum supply voltage rating listed in  
Recommended Operating Conditions. A 0.1-µF bypass capacitor is recommended to be connected from the VCC  
terminal to GND to prevent power disturbance. To reject different frequencies of noise, use multiple bypass  
capacitors in parallel. Capacitors with values of 0.1 µF and 1 µF are commonly used in parallel. The bypass  
capacitor must be installed as close to the power terminal as possible for best results.  
11 Layout  
11.1 Layout Guidelines  
When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of  
the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and self–inductance  
of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must  
turn corners. Figure 9 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
11.2 Layout Example  
WORST  
BETTER  
BEST  
1W min.  
W
Figure 9. Trace Example  
14  
版权 © 2017, Texas Instruments Incorporated  
 
SN74LVC1G79-Q1  
www.ti.com.cn  
ZHCSG59 MARCH 2017  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
相关文档请参阅以下部分:  
《慢速或浮点 CMOS 输入的影响》SCBA004  
《了解和解读标准逻辑器件数据表》SZZA036  
《计时器件的加电行为》SCHA005  
12.2 接收文档更新通知  
如需接收文档更新通知,请访问 www.ti.com.cn 网站上的器件产品文件夹。点击右上角的提醒我 (Alert me) 注册  
后,即可每周定期收到已更改的产品信息。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。  
12.3 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页中包括机械封装、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。这些数据会在无通知且  
不对本文档进行修订的情况下发生改变。要获得这份数据表的浏览器版本,请查阅左侧导航栏。  
版权 © 2017, Texas Instruments Incorporated  
15  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN74LVC1G79QDCKRQ1  
SN74LVC1G79QDCKTQ1  
ACTIVE  
ACTIVE  
SC70  
SC70  
DCK  
DCK  
5
5
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
16S  
16S  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX