SN74LVC1G80QDCKTQ1 [TI]

汽车类单路上升沿触发 D 型触发器 | DCK | 5 | -40 to 125;
SN74LVC1G80QDCKTQ1
型号: SN74LVC1G80QDCKTQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类单路上升沿触发 D 型触发器 | DCK | 5 | -40 to 125

光电二极管 逻辑集成电路 触发器
文件: 总24页 (文件大小:1340K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
SN74LVC1G80-Q1  
ZHCSH07 APRIL 2017  
SN74LVC1G80-Q1 单路正缘触发 D 型触发器  
1 特性  
3 说明  
1
符合汽车应用 认证  
具有符合 AEC-Q100 标准的下列结果:  
SN74LVC1G80-Q1 器件是一款通过汽车 AEC-Q100  
认证的单路正缘触发 D 型触发器,专为 1.65V 5.5V  
VCC 操作而设计。  
±4000 V 人体放电模型 (HBM) ESD 分类等级  
3A  
当数据 (D) 输入处的数据满足设置时间要求时,该数据  
将传输到时钟脉冲正向缘上的 Q 输出。时钟触发出现  
在一个特定电压电平上,并且不与时钟脉冲的上升时间  
直接相关。经过保持时间间隔后,可以更改 D 输入处  
的数据而不影响输出处的电平。  
±1000 V 带电器件模型 (CDM) ESD 分类等级  
C5  
支持 5V VCC 运行  
输入接受的电压达到高达 5.5V  
支持向下转换到 VCC  
3.3V tpd 最大值为 4.26ns  
低功耗,10µA 最大 ICC  
该器件完全 适用于 使用 Ioff 的局部掉电应用。当器件  
断电时,Ioff 电路将会禁用输出。这会抑制电流反流到  
器件中,从而防止损坏器件。  
电压为 3.3V 时,输出驱动为 ±24mA  
Ioff 支持部分断电模式和后驱动保护  
器件信息(1)  
器件型号  
封装  
封装尺寸  
2 应用  
SN74LVC1G80-Q1  
SC70 (5)  
2.00mm × 1.25mm  
汽车信息娱乐系统  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
汽车仪表盘  
汽车 ADAS  
汽车车身电子设备  
HEV/EV 动力传动系统  
逻辑图(正逻辑)  
2
C
CLK  
C
C
4
Q
TG  
C
C
C
C
1
D
TG  
TG  
TG  
C
C
C
Copyright © 2017, Texas Instruments Incorporated  
(1) TG - 传输门  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SCES885  
 
 
 
SN74LVC1G80-Q1  
ZHCSH07 APRIL 2017  
www.ti.com.cn  
目录  
1
2
3
4
5
6
特性.......................................................................... 1  
7
8
Parameter Measurement Information .................. 9  
Detailed Description ............................................ 11  
8.1 Overview ................................................................. 11  
8.2 Functional Block Diagram ....................................... 11  
8.3 Feature Description................................................. 11  
8.4 Device Functional Modes........................................ 12  
Application and Implementation ........................ 13  
9.1 Application Information............................................ 13  
9.2 Typical Application ................................................. 13  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 3  
6.1 Absolute Maximum Ratings ..................................... 3  
6.2 ESD Ratings.............................................................. 3  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 4  
6.5 Electrical Characteristics........................................... 5  
6.6 Timing Requirements: TA = –40°C to +85°C ............ 5  
6.7 Timing Requirements: TA = –40°C to +125°C .......... 6  
9
10 Power Supply Recommendations ..................... 15  
11 Layout................................................................... 15  
11.1 Layout Guidelines ................................................. 15  
11.2 Layout Example .................................................... 15  
12 器件和文档支持 ..................................................... 16  
12.1 文档支持................................................................ 16  
12.2 接收文档更新通知 ................................................. 16  
12.3 社区资源................................................................ 16  
12.4 ....................................................................... 16  
12.5 静电放电警告......................................................... 16  
12.6 Glossary................................................................ 16  
13 机械、封装和可订购信息....................................... 16  
6.8 Switching Characteristics: TA = –40°C to +85°C, CL  
15 pF.......................................................................... 6  
6.9 Switching Characteristics: TA = –40°C to +85°C, CL  
=
=
30 pF or 50 pF ........................................................... 6  
6.10 Switching Characteristics: TA = –40°C to +125°C,  
CL = 30 pF or 50 pF................................................... 7  
6.11 Operating Characteristics........................................ 7  
6.12 Typical Characteristics............................................ 8  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
日期  
修订版本  
说明  
2017 4 月  
*
初始发行版  
2
Copyright © 2017, Texas Instruments Incorporated  
 
SN74LVC1G80-Q1  
www.ti.com.cn  
ZHCSH07 APRIL 2017  
5 Pin Configuration and Functions  
DCK Package  
5-Pin SC70  
Top View  
VCC  
1
2
3
5
D
CLK  
4
GND  
Q
Pin Functions(1)  
PIN  
I/O  
DESCRIPTION  
NO.  
1
NAME  
D
I
Data input  
2
CLK  
GND  
Q
I
Positive-Edge-Triggered Clock input  
Ground pin  
3
O
4
Inverted output  
5
VCC  
Positive Supply  
(1) See 机械、封装和可订购信息 for dimensions  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
MAX  
6.5  
UNIT  
V
VCC Supply voltage  
VI  
Input voltage(2)  
6.5  
V
VO  
VO  
IIK  
Voltage applied to any output in the high-impedance or power-off state(2)  
Voltage applied to any output in the high or low state(2)(3)  
6.5  
V
VCC + 0.5  
–50  
V
Input clamp current  
VI < 0  
mA  
mA  
mA  
mA  
°C  
ºC  
IOK  
IO  
Output clamp current  
VO < 0  
–50  
Continuous output current  
Continuous current through VCC or GND  
Junction temperature  
±50  
±100  
150  
TJ  
Tstg  
Storage temperature  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.  
(3) The value of VCC is provided in .  
6.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
Copyright © 2017, Texas Instruments Incorporated  
3
 
SN74LVC1G80-Q1  
ZHCSH07 APRIL 2017  
www.ti.com.cn  
MAX UNIT  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
1.65  
Operating  
5.5  
V
VCC  
Supply voltage  
Data retention only  
VCC = 1.65 V to 1.95 V  
VCC = 2.3 V to 2.7 V  
VCC = 3 V to 3.6 V  
1.5  
0.65 × VCC  
1.7  
VIH  
High-level input voltage  
V
2
VCC = 4.5 V to 5.5 V  
VCC = 1.65 V to 1.95 V  
VCC = 2.3 V to 2.7 V  
VCC = 3 V to 3.6 V  
0.7 × VCC  
0.35 × VCC  
0.7  
VIL  
Low-level input voltage  
V
0.8  
VCC = 4.5 V to 5.5 V  
0.3 × VCC  
5.5  
VCC  
–4  
VI  
Input voltage  
0
0
V
V
VO  
Output voltage  
VCC = 1.65 V  
VCC = 2.3 V  
–8  
IOH  
High-level output current  
Low-level output current  
–16  
–24  
–32  
4
mA  
mA  
VCC = 3 V  
VCC = 4.5 V  
VCC = 1.65 V  
VCC = 2.3 V  
8
IOL  
16  
VCC = 3 V  
24  
VCC = 4.5 V  
32  
VCC = 1.8 V ± 0.15 V, 2.5 V ± 0.2 V  
VCC = 3.3 V ± 0.3 V  
VCC = 5 V ± 0.5 V  
20  
Δt/Δv Input transition rise or fall rate  
10  
ns/V  
°C  
5
TA  
Operating free-air temperature  
–40  
125  
6.4 Thermal Information  
SN74LVC1G80-Q1  
THERMAL METRIC(1)  
DCK (SC70)  
5 PINS  
278.9  
121.3  
65.6  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
7.5  
ψJB  
64.9  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2017, Texas Instruments Incorporated  
 
SN74LVC1G80-Q1  
www.ti.com.cn  
ZHCSH07 APRIL 2017  
6.5 Electrical Characteristics  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
1.65 V to 5.5 V  
1.65 V  
MIN TYP(1)  
VCC – 0.1  
MAX  
UNIT  
IOH = –100 µA  
IOH = –4 mA  
1.2  
1.9  
2.4  
2.3  
3.8  
IOH = –8 mA  
2.3 V  
VOH  
V
IOH = –16 mA  
IOH = –24 mA  
IOH = –32 mA  
IOL = 100 µA  
IOL = 4 mA  
3 V  
4.5 V  
1.65 V to 5.5 V  
1.65 V  
0.1  
0.45  
0.3  
IOL = 8 mA  
2.3 V  
VOL  
V
IOL = 16 mA  
0.4  
3 V  
IOL = 24 mA  
0.55  
0.55  
±10  
±10  
10  
IOL = 32 mA  
4.5 V  
0 to 5.5 V  
0
II  
CLK or D inputs  
VI = 5.5 V or GND  
VI or VO = 5.5 V  
VI = 5.5 V or GND,  
µA  
µA  
µA  
Ioff  
ICC  
IO = 0  
1.65 V to 5.5 V  
One input at VCC – 0.6 V,  
Other inputs at VCC or GND  
ΔICC  
3 V to 5.5 V  
3.3 V  
500  
µA  
pF  
Ci  
VI = VCC or GND  
TA = –40°C to 85°C  
3.5  
(1) All typical values are at VCC = 3.3 V, TA = 25°C.  
6.6 Timing Requirements: TA = –40°C to +85°C  
over recommended operating free-air temperature range, TA = –40°C to +85°C (unless otherwise noted) (see Figure 3)  
VCC  
MIN  
MAX  
UNIT  
VCC = 1.8 V ± 0.15 V  
VCC = 2.5 V ± 0.2 V  
VCC = 3.3 V ± 0.3 V  
VCC = 5.5 V ± 0.5 V  
VCC = 1.8 V ± 0.15 V  
VCC = 2.5 V ± 0.2 V  
VCC = 3.3 V ± 0.3 V  
VCC = 5.5 V ± 0.5 V  
VCC = 1.8 V ± 0.15 V  
VCC = 2.5 V ± 0.2 V  
VCC = 3.3 V ± 0.3 V  
VCC = 5.5 V ± 0.5 V  
VCC = 1.8 V ± 0.15 V  
VCC = 2.5 V ± 0.2 V  
VCC = 3.3 V ± 0.3 V  
VCC = 5.5 V ± 0.5 V  
VCC = 1.8 V ± 0.15 V  
VCC = 2.5 V ± 0.2 V  
VCC = 3.3 V ± 0.3 V  
VCC = 5.5 V ± 0.5 V  
fclock  
Clock frequency  
160  
MHz  
tw  
Pulse duration, CLK high or low  
2.5  
ns  
ns  
ns  
2.3  
1.5  
1.3  
1.1  
2.5  
1.5  
1.3  
1.1  
0
Data high  
Data low  
tsu  
Setup time before CLK  
0.2  
0.9  
0.4  
th  
Hold time, data after CLK↑  
Copyright © 2017, Texas Instruments Incorporated  
5
 
SN74LVC1G80-Q1  
ZHCSH07 APRIL 2017  
www.ti.com.cn  
6.7 Timing Requirements: TA = –40°C to +125°C  
over recommended operating free-air temperature range, TA = –40°C to +125°C (unless otherwise noted) (see Figure 3)  
VCC  
MIN  
MAX  
UNIT  
VCC = 1.8 V ± 0.15 V  
VCC = 2.5 V ± 0.2 V  
VCC = 3.3 V ± 0.3 V  
VCC = 5.5 V ± 0.5 V  
VCC = 1.8 V ± 0.15 V  
VCC = 2.5 V ± 0.2 V  
VCC = 3.3 V ± 0.3 V  
VCC = 5.5 V ± 0.5 V  
VCC = 1.8 V ± 0.15 V  
VCC = 2.5 V ± 0.2 V  
VCC = 3.3 V ± 0.3 V  
VCC = 5.5 V ± 0.5 V  
VCC = 1.8 V ± 0.15 V  
VCC = 2.5 V ± 0.2 V  
VCC = 3.3 V ± 0.3 V  
VCC = 5.5 V ± 0.5 V  
VCC = 1.8 V ± 0.15 V  
VCC = 2.5 V ± 0.2 V  
VCC = 3.3 V ± 0.3 V  
VCC = 5.5 V ± 0.5 V  
fclock  
Clock frequency  
160  
MHz  
tw  
Pulse duration, CLK high or low  
2.5  
ns  
ns  
ns  
2.3  
1.5  
1.3  
1.1  
2.5  
1.5  
1.3  
1.1  
0
Data high  
Data low  
tsu  
Setup time before CLK↑  
0.2  
0.9  
0.4  
th  
Hold time, data after CLK↑  
6.8 Switching Characteristics: TA = –40°C to +85°C, CL = 15 pF  
over recommended operating free-air temperature range, TA = –40°C to +85°C, CL = 15 pF (unless otherwise noted) (see  
Figure 3)  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
VCC  
MIN  
MAX  
UNIT  
VCC = 1.8 V ± 0.15 V  
VCC = 2.5 V ± 0.2 V  
VCC = 3.3 V ± 0.3 V  
VCC = 5 V ± 0.5 V  
VCC = 1.8 V ± 0.15 V  
VCC = 2.5 V ± 0.2 V  
VCC = 3.3 V ± 0.3 V  
VCC = 5 V ± 0.5 V  
fmax  
160  
MHz  
3
9.1  
6
1.5  
1.3  
1.1  
tpd  
CLK  
Q
ns  
4.2  
3.8  
6.9 Switching Characteristics: TA = –40°C to +85°C, CL = 30 pF or 50 pF  
over recommended operating free-air temperature range, TA = –40°C to +85°C, CL = 30 pF or 50 pF (unless otherwise noted)  
(see Figure 4)  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
VCC  
MIN  
MAX  
UNIT  
VCC = 1.8 V ± 0.15 V  
VCC = 2.5 V ± 0.2 V  
VCC = 3.3 V ± 0.3 V  
VCC = 5 V ± 0.5 V  
VCC = 1.8 V ± 0.15 V  
VCC = 2.5 V ± 0.2 V  
VCC = 3.3 V ± 0.3 V  
VCC = 5 V ± 0.5 V  
fmax  
160  
MHz  
4.4  
2.3  
2
9.9  
7
tpd  
CLK  
Q
ns  
5.2  
4.5  
1.3  
6
Copyright © 2017, Texas Instruments Incorporated  
SN74LVC1G80-Q1  
www.ti.com.cn  
ZHCSH07 APRIL 2017  
6.10 Switching Characteristics: TA = –40°C to +125°C, CL = 30 pF or 50 pF  
over recommended operating free-air temperature range, TA = –40°C to +125°C, CL = 30 pF or 50 pF (unless otherwise  
noted) (see Figure 4)  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
VCC  
MIN  
MAX  
UNIT  
VCC = 1.8 V ± 0.15 V  
VCC = 2.5 V ± 0.2 V  
VCC = 3.3 V ± 0.3 V  
VCC = 5 V ± 0.5 V  
VCC = 1.8 V ± 0.15 V  
VCC = 2.5 V ± 0.2 V  
VCC = 3.3 V ± 0.3 V  
VCC = 5 V ± 0.5 V  
fmax  
160  
MHz  
4.4  
2.3  
2
12.5  
8.5  
6
tpd  
CLK  
Q
ns  
1.3  
5.5  
6.11 Operating Characteristics  
TA = 25°C  
PARAMETER  
TEST CONDITIONS  
VCC  
TYP  
UNIT  
VCC = 1.8 V  
VCC = 2.5 V  
VCC = 3.3 V  
VCC = 5 V  
24  
24  
25  
27  
Cpd  
Power dissipation capacitance  
f = 10 MHz  
pF  
Copyright © 2017, Texas Instruments Incorporated  
7
SN74LVC1G80-Q1  
ZHCSH07 APRIL 2017  
www.ti.com.cn  
6.12 Typical Characteristics  
This plot shows the different ICC values for various voltages on the data input (D). Voltage sweep on the input is from 0 V to  
6.5 V.  
20  
18  
16  
14  
12  
10  
8
2
1.8  
1.6  
1.4  
1.2  
1
VCC = 3.3 V  
VCC = 5.0 V  
VCC = 1.8 V  
VCC = 2.5 V  
0.8  
0.6  
0.4  
0.2  
0
6
4
2
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
6.5  
Data (D) Input Voltage [V]  
Data (D) Input Voltage [V]  
VCC = 1.8 V  
VCC = 2.5 V  
VCC = 3.3 V  
VCC = 5 V  
Figure 1. Supply Current (ICC) vs Data (D) Input Voltage  
Figure 2. Supply Current (ICC) vs Data (D) Input Voltage  
8
Copyright © 2017, Texas Instruments Incorporated  
SN74LVC1G80-Q1  
www.ti.com.cn  
ZHCSH07 APRIL 2017  
7 Parameter Measurement Information  
VLOAD  
S1  
Open  
RL  
From Output  
Under Test  
TEST  
tPLH/tPHL  
tPLZ/tPZL  
tPHZ/tPZH  
S1  
GND  
Open  
VLOAD  
CL  
(see Note A)  
RL  
GND  
LOAD CIRCUIT  
INPUTS  
VCC  
VM  
VLOAD  
CL  
RL  
VD  
VI  
tr/tf  
VCC  
VCC  
3 V  
VCC  
1.8 V 0.1ꢀ V  
2.ꢀ V 0.2 V  
3.3 V 0.3 V  
ꢀ V 0.ꢀ V  
£2 ns  
£2 ns  
VCC/2  
VCC/2  
1.ꢀ V  
VCC/2  
2 × VCC  
2 × VCC  
6 V  
1ꢀ pF  
1ꢀ pF  
1ꢀ pF  
1ꢀ pF  
1 MW  
0.1ꢀ V  
0.1ꢀ V  
0.3 V  
1 MW  
1 MW  
1 MW  
£2.ꢀ ns  
£2.ꢀ ns  
2 × VCC  
0.3 V  
VI  
Timing Input  
VM  
0 V  
tW  
tsu  
th  
VI  
VI  
Input  
VM  
VM  
Data Input  
VM  
VM  
0 V  
0 V  
VOLTAGE WAVEFORMS  
PULSE DURATION  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
VI  
VI  
Output  
Control  
VM  
VM  
Input  
VM  
VM  
0 V  
0 V  
tPZL  
tPLZ  
tPLH  
tPHL  
Output  
Waveform 1  
S1 at VLOAD  
VOH  
VOL  
VLOAD/2  
VM  
VM  
VM  
Output  
VOL + VD  
(see Note B)  
VOL  
tPHL  
tPLH  
tPZH  
tPHZ  
VOH  
VOL  
Output  
Waveform 2  
S1 at GND  
VOH  
VOH – VD  
VM  
VM  
Output  
VM  
»0 V  
(see Note B)  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
INVERTING AND NONINVERTING OUTPUTS  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
LOW- AND HIGH-LEVEL ENABLING  
NOTES: A. CL includes probe and jig capacitance.  
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.  
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.  
C. All input pulses are supplied by generators having the following characteristics: PRR £ 10 MHz, ZO = ꢀ0 W.  
D. The outputs are measured one at a time, with one transition per measurement.  
E. tPLZ and tPHZ are the same as tdis.  
F. tPZL and tPZH are the same as ten.  
G. tPLH and tPHL are the same as tpd.  
H. All parameters and waveforms are not applicable to all devices.  
Figure 3. Load Circuit and Voltage Waveforms  
Copyright © 2017, Texas Instruments Incorporated  
9
SN74LVC1G80-Q1  
ZHCSH07 APRIL 2017  
www.ti.com.cn  
Parameter Measurement Information (continued)  
VLOAD  
Open  
S1  
RL  
From Output  
Under Test  
TEST  
tPLH/tPHL  
tPLZ/tPZL  
tPHZ/tPZH  
S1  
GND  
Open  
VLOAD  
GND  
CL  
(see Note A)  
RL  
LOAD CIRCUIT  
INPUTS  
VCC  
VM  
VLOAD  
CL  
RL  
VD  
VI  
tr/tf  
VCC  
VCC  
3 V  
VCC  
1.8 V 0.1ꢀ V  
2.ꢀ V 0.2 V  
3.3 V 0.3 V  
ꢀ V 0.ꢀ V  
£2 ns  
£2 ns  
VCC/2  
VCC/2  
1.ꢀ V  
VCC/2  
2 × VCC  
2 × VCC  
6 V  
30 pF  
30 pF  
ꢀ0 pF  
ꢀ0 pF  
1 kW  
0.1ꢀ V  
0.1ꢀ V  
0.3 V  
ꢀ00 W  
ꢀ00 W  
ꢀ00 W  
£2.ꢀ ns  
£2.ꢀ ns  
2 × VCC  
0.3 V  
VI  
Timing Input  
VM  
0 V  
tW  
tsu  
th  
VI  
VI  
Input  
VM  
VM  
Data Input  
VM  
VM  
0 V  
0 V  
VOLTAGE WAVEFORMS  
PULSE DURATION  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
VI  
VI  
Output  
Control  
VM  
VM  
Input  
VM  
VM  
0 V  
0 V  
tPZL  
tPLZ  
tPLH  
tPHL  
Output  
Waveform 1  
S1 at VLOAD  
VOH  
VOL  
VLOAD/2  
VM  
VM  
VM  
Output  
Output  
VOL + VD  
(see Note B)  
VOL  
tPHL  
tPLH  
tPZH  
tPHZ  
VOH  
VOL  
Output  
Waveform 2  
S1 at GND  
VOH  
VOH – VD  
VM  
VM  
VM  
»0 V  
(see Note B)  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
INVERTING AND NONINVERTING OUTPUTS  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
LOW- AND HIGH-LEVEL ENABLING  
NOTES: A. CL includes probe and jig capacitance.  
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.  
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.  
C. All input pulses are supplied by generators having the following characteristics: PRR £ 10 MHz, ZO = ꢀ0 W.  
D. The outputs are measured one at a time, with one transition per measurement.  
E. tPLZ and tPHZ are the same as tdis.  
F. tPZL and tPZH are the same as ten.  
G. tPLH and tPHL are the same as tpd.  
H. All parameters and waveforms are not applicable to all devices.  
Figure 4. Load Circuit and Voltage Waveforms  
10  
Copyright © 2017, Texas Instruments Incorporated  
SN74LVC1G80-Q1  
www.ti.com.cn  
ZHCSH07 APRIL 2017  
8 Detailed Description  
8.1 Overview  
The SN74LVC1G80-Q1 is a single positive-edge-trigger D-type flip-flop and is AEC-Q100 qualified for automotive  
applications. Data at the input (D) is transferred to the output (Q) on the positive-going edge of the clock pulse  
when the setup time requirement is met. Because the clock triggering occurs at a voltage level, it is not directly  
related to the rise time of the clock pulse. This allows for data at the input to be changed without affecting the  
level at the output, following the hold-time interval.  
8.2 Functional Block Diagram  
2
C
CLK  
C
C
4
Q
TG  
C
C
C
C
1
D
TG  
TG  
TG  
C
C
C
Copyright © 2017, Texas Instruments Incorporated  
Figure 5. Logic Diagram (Positive Logic)  
8.3 Feature Description  
8.3.1 Balanced High-Drive CMOS Push-Pull Outputs  
A balanced output allows the device to sink and source similar currents. The high drive capability of this device  
creates fast edges into light loads so routing and load conditions should be considered to prevent ringing.  
Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without  
being damaged. It is important for the power output of the device to be limited to avoid thermal runaway and  
damage due to over-current. The electrical and thermal limits defined the in the Absolute Maximum Ratings must  
be followed at all times.  
8.3.2 Standard CMOS Inputs  
Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input  
capacitance given in the Electrical Characteristics. The worst case resistance is calculated with the maximum  
input voltage, given in the Recommended Operating Conditions, and the maximum input leakage current, given  
in the Electrical Characteristics, using ohm's law (R = V ÷ I).  
Signals applied to the inputs need to have fast edge rates, as defined by Δt/Δv in Recommended Operating  
Conditions to avoid excessive currents and oscillations. If tolerance to a slow or noisy input signal is required, a  
device with a Schmitt-trigger input should be utilized to condition the input signal prior to the standard CMOS  
input.  
Copyright © 2017, Texas Instruments Incorporated  
11  
SN74LVC1G80-Q1  
ZHCSH07 APRIL 2017  
www.ti.com.cn  
Feature Description (continued)  
8.3.3 Clamp Diodes  
The inputs and outputs to this device have negative clamping diodes.  
CAUTION  
Voltages beyond the values specified in the Absolute Maximum Ratings table can  
cause damage to the device. The input negative-voltage and output voltage ratings  
may be exceeded if the input and output clamp-current ratings are observed.  
VCC  
Device  
Input  
Output  
Logic  
GND  
-IIK  
-IOK  
Figure 6. Electrical Placement of Clamping Diodes for Each Input and Output  
8.3.4 Partial Power Down (Ioff  
)
The inputs and outputs for this device enter a high impedance state when the supply voltage is 0 V. The  
maximum leakage into or out of any input or output pin on the device is specified by Ioff in the Electrical  
Characteristics.  
8.3.5 Over-Voltage Tolerant Inputs  
Input signals to this device can be driven above the supply voltage so long as they remain below the maximum  
input voltage value specified in the Absolute Maximum Ratings .  
8.4 Device Functional Modes  
Table 1 lists the functional modes of the SN74LVC1G80-Q1.  
Table 1. Function Table  
INPUTS  
CLK  
OUTPUT  
Q
D
H
L
L
L
H
X
Q0  
12  
Copyright © 2017, Texas Instruments Incorporated  
 
SN74LVC1G80-Q1  
www.ti.com.cn  
ZHCSH07 APRIL 2017  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
A useful application for the SN74LVC1G80-Q1 is using it as a frequency divider. By feeding back the output (Q)  
to the input (D), the output will toggle on every rising edge of the clock waveform. The output goes HIGH once  
every two clock cycles so essentially the frequency of the clock signal is divided by a factor of two. The  
SN74LVC1G80-Q1 does not have preset or clear functions so the initial state of the output is unknown. This  
application implements the use of a microcontroller GPIO pin to initially set the input HIGH, so the output LOW.  
Initialization is not needed, but should be kept in mind. Post initialization, the GPIO pin is set to a high  
impedance mode. Depending on the microcontroller, the GPIO pin could be set to an input and used to monitor  
the clock division.  
9.2 Typical Application  
10 k  
VCC  
GPIO Output  
CLK  
5
4
1
2
3
D
MCU  
SN74LVC1G80  
CLK  
CLK/2  
Q
Copyright © 2017, Texas Instruments Incorporated  
Figure 7. Clock Frequency Division  
9.2.1 Design Requirements  
For this application, a resistor needs to be placed on the feedback line in order for the initialization voltage from  
the microcontroller to overpower the signal coming from the output (Q). Without it the state at the input would be  
challenged by the GPIO from the microcontroller and from the output of the SN74LVC1G80-Q1.  
The SN74LVC1G80-Q1 device uses CMOS technology and has balanced output drive. Take care to avoid bus  
contention because it can drive currents that would exceed maximum limits.  
Copyright © 2017, Texas Instruments Incorporated  
13  
SN74LVC1G80-Q1  
ZHCSH07 APRIL 2017  
www.ti.com.cn  
Typical Application (continued)  
9.2.2 Detailed Design Procedure  
1. Recommended input conditions:  
For rise time and fall time specifications, see Δt/Δv in Recommended Operating Conditions.  
For specified high and low levels, see VIH and VIL in Recommended Operating Conditions.  
Input voltages are recommended to not go below 0 V and not exceed 5.5 V for any VCC. See  
Recommended Operating Conditions.  
2. Recommended output conditions:  
Load currents should not exceed ±50 mA. See Absolute Maximum Ratings .  
Output voltages are recommended to not go below 0 V and not exceed the VCC voltage. See  
Recommended Operating Conditions.  
3. Feedback resistor:  
A 10-kΩ resistor is chosen here to bias the input so the microcontroller GPIO output can initialize the  
input and output. The resistor value is important because a resistance too high, say at 1 MΩ, would  
cause too much of a voltage drop, causing the output to no longer be able to drive the input. On the other  
hand, a resistor too low, such as a 1 Ω, would not bias enough and might cause current to flow into the  
microcontroller, possibly damaging the device.  
9.2.3 Application Curve  
Figure 8. Frequency Division  
14  
Copyright © 2017, Texas Instruments Incorporated  
SN74LVC1G80-Q1  
www.ti.com.cn  
ZHCSH07 APRIL 2017  
10 Power Supply Recommendations  
The power supply can be any voltage between the minimum and maximum supply voltage rating listed in  
Recommended Operating Conditions. A 0.1-µF bypass capacitor is recommended to be connected from the VCC  
terminal to GND to prevent power disturbance. To reject different frequencies of noise, use multiple bypass  
capacitors in parallel. Capacitors with values of 0.1 µF and 1 µF are commonly used in parallel. The bypass  
capacitor must be installed as close to the power terminal as possible for best results.  
11 Layout  
11.1 Layout Guidelines  
When a PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of  
the change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and self–inductance  
of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must  
turn corners. Figure 9 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
11.2 Layout Example  
WORST  
BETTER  
BEST  
1W min.  
W
Figure 9. Trace Example  
版权 © 2017, Texas Instruments Incorporated  
15  
 
SN74LVC1G80-Q1  
ZHCSH07 APRIL 2017  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
相关文档如下:  
《慢速或浮点 CMOS 输入的影响》SCBA004。  
12.2 接收文档更新通知  
要接收文档更新通知,请转至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品信  
息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此数据表的浏览器版本,请参阅左侧的导航。  
16  
版权 © 2017, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN74LVC1G80QDCKRQ1  
SN74LVC1G80QDCKTQ1  
ACTIVE  
ACTIVE  
SC70  
SC70  
DCK  
DCK  
5
5
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
17U  
17U  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN74LVC1G80QDCKRQ1 SC70  
SN74LVC1G80QDCKTQ1 SC70  
DCK  
DCK  
5
5
3000  
250  
178.0  
178.0  
9.0  
9.0  
2.4  
2.4  
2.5  
2.5  
1.2  
1.2  
4.0  
4.0  
8.0  
8.0  
Q3  
Q3  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Apr-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN74LVC1G80QDCKRQ1  
SN74LVC1G80QDCKTQ1  
SC70  
SC70  
DCK  
DCK  
5
5
3000  
250  
340.0  
340.0  
340.0  
340.0  
38.0  
38.0  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SN74LVC1G80YEAR

SINGLE POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP
TI

SN74LVC1G80YEPR

SINGLE POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP
TI

SN74LVC1G80YZAR

SINGLE POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP
TI

SN74LVC1G80YZPR

SINGLE POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP
TI

SN74LVC1G80_07

SINGLE POSITIVE-EDGE-TRIGGERED D-TYPE FLIP-FLOP
TI

SN74LVC1G86

SINGLE 2-INPUT EXCLUSIVE-OR GATE
TI

SN74LVC1G86-EP

SINGLE 2-INPUT EXCLUSIVE-OR GATE
TI

SN74LVC1G86-Q1

汽车类单路 2 输入、1.65V 至 5.5V XOR(异或)门
TI

SN74LVC1G86ADCK

暂无描述
TI

SN74LVC1G86DBVR

SINGLE 2-INPUT EXCLUSIVE-OR GATE
TI

SN74LVC1G86DBVR

LVC/LCX/Z SERIES, 2-INPUT XOR GATE, PDSO5, GREEN, PLASTIC, SOT-23, 5 PIN
ROCHESTER

SN74LVC1G86DBVRE4

SINGLE 2-INPUT EXCLUSIVE-OR GATE
TI