SN74LVC1G86QDCKRQ1 [TI]

汽车类单路 2 输入、1.65V 至 5.5V XOR(异或)门 | DCK | 5 | -40 to 125;
SN74LVC1G86QDCKRQ1
型号: SN74LVC1G86QDCKRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类单路 2 输入、1.65V 至 5.5V XOR(异或)门 | DCK | 5 | -40 to 125

光电二极管 逻辑集成电路 石英晶振 触发器
文件: 总19页 (文件大小:672K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
SN74LVC1G86-Q1  
ZHCSG58 MARCH 2017  
SN74LVC1G86-Q1 单路 2 输入异或门  
1 特性  
3 说明  
1
符合汽车应用 要求  
具有符合 AEC-Q100 标准的下列结果:  
SN74LVC1G86-Q1 是一款符合汽车要求的器件,并以  
正逻辑执行布尔函数 Y = AB + AB。该单路 2 输入异  
或门适用于 1.65V 5.5V VCC 运行环境。  
±4000 V 人体放电模型 (HBM) ESD 分类等级  
3A  
如果一个输入为低电平,另一个输入则可在输出时重新  
生成真实形态。如果一个输入为高电平,另一个输入的  
信号则可在输出时重新生成反向信号。该器件功耗  
低,3.3V 50pF 电容性负载条件下 tpd 最大值为  
6ns。最大输出驱动为 ±32mA/4.5V ±24mA/3.3V。  
±1000 V 带电器件模型 (CDM) ESD 分类等级  
C5  
支持 5V VCC 运行  
输入为高达 5.5V 过压容差  
支持下行转换到 VCC  
低功耗,ICC 最大值为 15µA  
3.3V 50pF 负载条件下 tpd 最大值为 6ns  
电压为 3.3V 时,输出驱动为 ±24mA  
该器件完全 适用于 使用 Ioff 的局部掉电应用。Ioff 电路  
可禁用输出,以防在器件断电时电流回流对器件造成损  
坏。  
Ioff 支持部分断电模式和后驱动保护  
器件信息(1)  
封装  
锁断性能超过 100mA,符合 JESD 78 II 类规范的  
要求  
器件型号  
封装尺寸(标称值)  
SN74LVC1G86QDCKRQ1  
SC70 (5)  
2.00mm × 1.25mm  
(1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。  
2 应用  
混合动力汽车/电动汽车 (HEV/EV) 和动力总成  
汽车信息娱乐系统与组合仪表  
汽车高级驾驶员辅助系统  
汽车车身电子设备  
功能框图  
EXCLUSIVE OR  
= 1  
Copyright © 2017, Texas Instruments Incorporated  
异或门具有多种 应用,并可用其他逻辑符号更好地表示其中部分应用。  
共有五种等效异或门符号适用于采用正逻辑的 SN74LVC1G86-Q1 门;任意两个端口可能显示否定逻辑。  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SCES873  
 
 
 
SN74LVC1G86-Q1  
ZHCSG58 MARCH 2017  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ......................................... 8  
8.3 Feature Description................................................... 8  
8.4 Function Table .......................................................... 9  
Application and Implementation ........................ 10  
9.1 Application Information............................................ 10  
9.2 Typical Application ................................................. 10  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
6.3 Recommended Operating Conditions....................... 4  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 5  
6.6 Switching Characteristics, CL = 30 pF or 50 pF........ 6  
6.7 Operating Characteristics.......................................... 6  
6.8 Typical Characteristics.............................................. 6  
Parameter Measurement Information .................. 7  
Detailed Description .............................................. 8  
8.1 Overview ................................................................... 8  
9
10 Power Supply Recommendations ..................... 11  
11 Layout................................................................... 12  
11.1 Layout Guidelines ................................................. 12  
11.2 Layout Example .................................................... 12  
12 器件和文档支持 ..................................................... 13  
12.1 接收文档更新通知 ................................................. 13  
12.2 社区资源................................................................ 13  
12.3 ....................................................................... 13  
12.4 静电放电警告......................................................... 13  
12.5 Glossary................................................................ 13  
13 机械、封装和可订购信息....................................... 13  
7
8
4 修订历史记录  
日期  
修订版本  
注释  
2017 3 月  
*
初始发行版。  
2
Copyright © 2017, Texas Instruments Incorporated  
 
SN74LVC1G86-Q1  
www.ti.com.cn  
ZHCSG58 MARCH 2017  
5 Pin Configuration and Functions  
DCK Package  
5-Pin SC70  
Top View  
VCC  
1
2
3
5
A
B
4
GND  
Y
Pin Functions(1)  
PIN  
I/O  
DESCRIPTION  
NO.  
1
NAME  
A
I
Input A  
Input B  
Ground  
Output Y  
2
B
I
3
GND  
Y
O
4
5
VCC  
Positive Supply  
(1) See mechanical drawings for dimensions.  
Copyright © 2017, Texas Instruments Incorporated  
3
SN74LVC1G86-Q1  
ZHCSG58 MARCH 2017  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
MAX  
UNIT  
V
VCC Supply voltage  
6.5  
6.5  
VI  
Input voltage(2)  
V
VO  
VO  
IIK  
Voltage applied to any output in the high-impedance or power-off state(2)  
Voltage applied to any output in the high or low state(2)(3)  
Input clamp current  
6.5  
V
VCC + 0.5  
–50  
V
VI < 0  
mA  
mA  
mA  
mA  
°C  
°C  
IOK  
IO  
Output clamp current  
VO < 0  
–50  
Continuous output current  
±50  
Continuous current through VCC or GND  
Junction temperature  
±100  
150  
TJ  
Tstg  
Storage temperature  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.  
(3) The value of VCC is provided in the Recommended Operating Conditions table.  
6.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
Charged-device model (CDM), per AEC Q100-011  
V(ESD)  
Electrostatic discharge  
V
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
1.65  
MAX  
UNIT  
Operating  
5.5  
VCC Supply voltage  
V
Data retention only  
VCC = 1.65 V to 1.95 V  
VCC = 2.3 V to 2.7 V  
VCC = 3 V to 3.6 V  
VCC = 4.5 V to 5.5 V  
VCC = 1.65 V to 1.95 V  
VCC = 2.3 V to 2.7 V  
VCC = 3 V to 3.6 V  
VCC = 4.5 V to 5.5 V  
1.5  
0.65 × VCC  
1.7  
VIH  
High-level input voltage  
V
2
0.7 × VCC  
0.35 × VCC  
0.7  
VIL  
Low-level input voltage  
V
0.8  
0.3 × VCC  
5.5  
VI  
Input voltage  
0
0
V
V
VO  
Output voltage  
VCC  
VCC = 1.65 V  
VCC = 2.3 V  
–4  
–8  
IOH  
High-level output current  
–16  
mA  
VCC = 3 V  
–24  
VCC = 4.5 V  
–32  
(1) All unused inputs of the device must be held at VCC or GND to ensure proper device operation. See Implications of Slow or Floating  
CMOS Inputs, SCBA004.  
4
Copyright © 2017, Texas Instruments Incorporated  
 
 
SN74LVC1G86-Q1  
www.ti.com.cn  
ZHCSG58 MARCH 2017  
Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
4
UNIT  
VCC = 1.65 V  
VCC = 2.3 V  
8
IOL  
Low-level output current  
16  
24  
32  
20  
10  
5
mA  
VCC = 3 V  
VCC = 4.5 V  
VCC = 1.8 V ± 0.15 V, 2.5 V ± 0.2 V  
VCC = 3.3 V ± 0.3 V  
VCC = 5 V ± 0.5 V  
Δt/Δv Input transition rise or fall rate  
ns/V  
°C  
TA  
Operating free-air temperature  
DCK package  
–40  
125  
6.4 Thermal Information  
SN74LVC1G86-Q1  
DCK (SC70)  
5 PINS  
THERMAL METRIC(1)  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ψJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
277.6  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
179.5  
75.9  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
49.7  
ψJB  
75.1  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
1.65 V to 5.5 V  
1.65 V  
MIN  
VCC – 0.1  
1.2  
TYP(1)  
MAX UNIT  
IOH = –100 µA  
IOH = –4 mA  
IOH = –8 mA  
IOH = –16 mA  
IOH = –24 mA  
IOH = –32 mA  
IOL = 100 µA  
IOL = 4 mA  
2.3 V  
1.9  
VOH  
V
2.4  
3 V  
2.3  
4.5 V  
1.65 V to 5.5 V  
1.65 V  
3.8  
0.1  
0.45  
IOL = 8 mA  
2.3 V  
0.3  
V
VOL  
IOL = 16 mA  
IOL = 24 mA  
IOL = 32 mA  
0.4  
3 V  
0.55  
0.55  
4.5 V  
0 to 5.5 V  
0
II A or B input VI = 5.5 V or GND  
±5  
±10  
15  
µA  
µA  
µA  
Ioff  
VI or VO = 5.5 V  
ICC  
VI = VCC or GND, IO = 0  
1.65 V to 5.5 V  
One input at VCC – 0.6 V,  
Other inputs at VCC or GND  
ΔICC  
3 V to 5.5 V  
3.3 V  
500  
µA  
pF  
Ci  
VI = VCC or GND  
6
(1) All typical values are at VCC = 3.3 V, TA = 25°C.  
Copyright © 2017, Texas Instruments Incorporated  
5
 
 
SN74LVC1G86-Q1  
ZHCSG58 MARCH 2017  
www.ti.com.cn  
6.6 Switching Characteristics, CL = 30 pF or 50 pF  
over recommended operating free-air temperature range (unless otherwise noted)  
VCC = 1.8 V  
± 0.15 V  
VCC = 2.5 V  
± 0.2 V  
VCC = 3.3 V  
± 0.3 V  
VCC = 5 V  
± 0.5 V  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN MAX  
MIN MAX  
MIN MAX  
MIN MAX  
–40°C to 125°C temperature  
range, see Figure 2  
tpd  
A or B  
Y
3.5  
12  
1.8  
7
1.3  
6
1
5
ns  
6.7 Operating Characteristics  
TA = 25°C  
VCC = 1.8 V  
VCC = 2.5 V  
VCC = 3.3 V  
VCC = 5 V  
PARAMETER  
TEST CONDITIONS  
UNIT  
TYP  
TYP  
TYP  
TYP  
Cpd  
Power dissipation capacitance  
f = 10 MHz  
22  
22  
22  
24  
pF  
6.8 Typical Characteristics  
ëhI(ë)  
5
4.5  
4
3.5  
3
ë// =4.5 ë  
ëLI =3.1 ë  
ëL[ =1.35 ë  
2.5  
2
1.5  
85o  
25o  
/
/
1
0.5  
-40o  
/
0
-0.5  
-1  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
LhI(m!)  
Figure 1. Voh vs Ioh at 4.5 V  
6
Copyright © 2017, Texas Instruments Incorporated  
SN74LVC1G86-Q1  
www.ti.com.cn  
ZHCSG58 MARCH 2017  
7 Parameter Measurement Information  
VLOAD  
Open  
GND  
S1  
RL  
From Output  
Under Test  
TEST  
tPLH/tPHL  
tPLZ/tPZL  
tPHZ/tPZH  
S1  
Open  
VLOAD  
GND  
CL  
(see Note A)  
RL  
LOAD CIRCUIT  
INPUTS  
VCC  
VM  
VLOAD  
CL  
RL  
VD  
VI  
tr/tf  
VCC  
VCC  
3 V  
VCC  
1.8 V 0.15 V  
2.5 V 0.2 V  
3.3 V 0.3 V  
5 V 0.5 V  
2 ns  
2 ns  
VCC/2  
VCC/2  
1.5 V  
VCC/2  
2 × VCC  
2 × VCC  
6 V  
15 pF  
15 pF  
15 pF  
15 pF  
1 MΩ  
0.15 V  
0.15 V  
0.3 V  
1 MΩ  
1 MΩ  
1 MΩ  
2.5 ns  
2.5 ns  
2 × VCC  
0.3 V  
VI  
Timing Input  
Data Input  
VM  
0 V  
tW  
tsu  
th  
VI  
VI  
Input  
VM  
VM  
VM  
VM  
0 V  
0 V  
VOLTAGE WAVEFORMS  
PULSE DURATION  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
VI  
VI  
Output  
Control  
VM  
VM  
Input  
VM  
VM  
0 V  
0 V  
tPZL  
tPLZ  
tPLH  
tPHL  
VM  
Output  
Waveform 1  
S1 at VLOAD  
VOH  
VOL  
VLOAD/2  
VOL  
VM  
VM  
Output  
Output  
VOL + VD  
(see Note B)  
tPHL  
tPLH  
tPZH  
tPHZ  
VOH  
VOL  
Output  
Waveform 2  
S1 at GND  
VOH  
VOH – VD  
VM  
VM  
VM  
»0 V  
(see Note B)  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
INVERTING AND NONINVERTING OUTPUTS  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
LOW- AND HIGH-LEVEL ENABLING  
NOTES: A. CL includes probe and jig capacitance.  
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.  
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.  
C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 Ω.  
D. The outputs are measured one at a time, with one transition per measurement.  
E. tPLZ and tPHZ are the same as tdis.  
F. tPZL and tPZH are the same as ten.  
G. tPLH and tPHL are the same as tpd.  
H. All parameters and waveforms are not applicable to all devices.  
Figure 2. Load Circuit and Voltage Waveforms  
Copyright © 2017, Texas Instruments Incorporated  
7
SN74LVC1G86-Q1  
ZHCSG58 MARCH 2017  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The SN74LVC1G86-Q1 is an automotive qualified device that performs the Boolean function Y = AB + AB in  
positive logic. This single 2-input exclusive-OR gate is designed for 1.65-V to 5.5-V VCC operation.  
A common application is as a true and complement element. If the input is low, the other input is reproduced in  
true form at the output. If the input is high, the signal on the other input is reproduced inverted at the output.  
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs,  
preventing damaging current backflow through the device when it is powered down.  
8.2 Functional Block Diagram  
EXCLUSIVE OR  
= 1  
Copyright © 2017, Texas Instruments Incorporated  
These are five equivalent exclusive-OR symbols valid for an SN74LVC1G86-Q1 gate in positive logic; negation may  
be shown at any two ports.  
8.3 Feature Description  
8.3.1 Balanced High-Drive CMOS Push-Pull Outputs  
A balanced output allows the device to sink and source similar currents. The high drive capability of this device  
creates fast edges into light loads so routing and load conditions should be considered to prevent ringing.  
Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without  
being damaged. It is important for the power output of the device to be limited to avoid thermal runaway and  
damage due to over-current. The electrical and thermal limits defined the in the Absolute Maximum Ratings must  
be followed at all times.  
8.3.2 Standard CMOS Inputs  
Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input  
capacitance given in the Electrical Characteristics. The worst case resistance is calculated with the maximum  
input voltage, given in the Recommended Operating Conditions, and the maximum input leakage current, given  
in the Electrical Characteristics, using ohm's law (R = V ÷ I).  
Signals applied to the inputs need to have fast edge rates, as defined by Δt/Δv in Recommended Operating  
Conditions to avoid excessive currents and oscillations. If tolerance to a slow or noisy input signal is required, a  
device with a Schmitt-trigger input should be utilized to condition the input signal prior to the standard CMOS  
input.  
8
Copyright © 2017, Texas Instruments Incorporated  
SN74LVC1G86-Q1  
www.ti.com.cn  
ZHCSG58 MARCH 2017  
Feature Description (continued)  
8.3.3 Clamp Diodes  
The inputs and outputs to this device have negative clamping diodes.  
CAUTION  
Avoid any voltage below or above the input or output voltage specified in the Absolute  
Maximum Ratings. In this event, the current must be limited to the maximum input or  
output clamp current value indicated in the Absolute Maximum Ratings to avoid  
damage to the device.  
VCC  
Device  
Input  
Output  
Logic  
GND  
-IIK  
-IOK  
Figure 3. Electrical Placement of Clamping Diodes for Each Input and Output  
8.3.4 Partial Power Down (Ioff  
)
The inputs and outputs for this device enter a high impedance state when the supply voltage is 0 V. The  
maximum leakage into or out of any input or output pin on the device is specified by Ioff in the Electrical  
Characteristics.  
8.3.5 Over-voltage Tolerant Inputs  
Input signals to this device can be driven above the supply voltage so long as they remain below the maximum  
input voltage value specified in the Recommended Operating Conditions.  
8.4 Function Table  
Table 1 lists the functional modes of the SN74LVC1G86-Q1 device.  
Table 1. Function Table  
INPUTS  
OUTPUT  
Y
A
L
B
L
L
H
H
L
L
H
L
H
H
H
Copyright © 2017, Texas Instruments Incorporated  
9
 
SN74LVC1G86-Q1  
ZHCSG58 MARCH 2017  
www.ti.com.cn  
9 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The SN74LVC1G86-Q1 device can accept input voltages up to 5.5 V at any valid VCC which makes the device  
suitable for down translation. This feature of the SN74LVC1G86-Q1 makes it ideal for various bus interface  
applications.  
9.2 Typical Application  
3.3-V or 5-V regulated  
0.1 µF  
5-V accessory  
µC or  
System  
Logic  
5-V  
System  
Logic  
Figure 4. Typical Application Schematic  
9.2.1 Design Requirements  
This device uses CMOS technology and has balanced output drive. Take care to avoid bus contention because it  
can drive currents that would exceed maximum limits. The high drive will also create fast edges into light loads,  
so routing and load conditions should be considered to prevent ringing.  
9.2.2 Detailed Design Procedure  
1. Recommended Input Conditions  
For rise time and fall time specifications, see Δt/ΔV in the Recommended Operating Conditions table.  
For specified High and low levels, see VIH and VIL in the Recommended Operating Conditions table.  
Inputs are overvoltage tolerant allowing them to go as high as 5.5 V at any valid VCC  
.
2. Recommended Output Conditions  
Load currents should not exceed 32 mA per output and 50 mA total for the part.  
Outputs should not be pulled above VCC  
.
10  
Copyright © 2017, Texas Instruments Incorporated  
SN74LVC1G86-Q1  
www.ti.com.cn  
ZHCSG58 MARCH 2017  
Typical Application (continued)  
9.2.3 Application Curve  
100  
90  
80  
70  
60  
ëLI = 4.5ë  
ëL[= 0ë  
ë// = 5.5ë  
Çemp =25o /  
50  
40  
[ow->Iigh  
Iigh->[ow  
30  
20  
10  
0
0
0.5  
1
1.5  
6
2
2.5  
3
3.5  
4
4.5  
5
5.5  
ëLb (ë)  
Figure 5. ICC vs. VIN  
10 Power Supply Recommendations  
The power supply can be any voltage between the minimum and maximum supply voltage rating located in the  
Recommended Operating Conditions table.  
Each VCC pin must have a good bypass capacitor to prevent power disturbance. For devices with a single supply,  
0.1 µF is recommended. If there are multiple VCC pins, 0.01 µF or 0.022 µF is recommended for each power pin.  
It is acceptable to parallel multiple bypass caps to reject different frequencies of noise. A 0.1-µF and 1-µF are  
commonly used in parallel. The bypass capacitor must be installed as close to the power pin as possible for best  
results.  
Copyright © 2017, Texas Instruments Incorporated  
11  
SN74LVC1G86-Q1  
ZHCSG58 MARCH 2017  
www.ti.com.cn  
11 Layout  
11.1 Layout Guidelines  
Even low data rate digital signals can have high frequency signal components due to fast edge rates. When a  
PCB trace turns a corner at a 90° angle, a reflection can occur. A reflection occurs primarily because of the  
change of width of the trace. At the apex of the turn, the trace width increases to 1.414 times the width. This  
increase upsets the transmission-line characteristics, especially the distributed capacitance and self–inductance  
of the trace which results in the reflection. Not all PCB traces can be straight and therefore some traces must  
turn corners. Figure 6 shows progressively better techniques of rounding corners. Only the last example (BEST)  
maintains constant trace width and minimizes reflections.  
11.2 Layout Example  
WORST  
BETTER  
BEST  
1W min.  
W
Figure 6. Trace Example  
12  
版权 © 2017, Texas Instruments Incorporated  
 
SN74LVC1G86-Q1  
www.ti.com.cn  
ZHCSG58 MARCH 2017  
12 器件和文档支持  
12.1 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。请单击右上角的通知我进行注册,即可收到任意产品  
信息更改每周摘要。有关更改的详细信息,请查看任意已修订文档中包含的修订历史记录。  
12.2 社区资源  
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective  
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of  
Use.  
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration  
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help  
solve problems with fellow engineers.  
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and  
contact information for technical support.  
12.3 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.4 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包括机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据发生变化时,我们可能不  
会另行通知或修订此文档。如欲获取此产品说明书的浏览器版本,请参见左侧的导航栏。  
版权 © 2017, Texas Instruments Incorporated  
13  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN74LVC1G86QDCKRQ1  
SN74LVC1G86QDCKTQ1  
ACTIVE  
ACTIVE  
SC70  
SC70  
DCK  
DCK  
5
5
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
16T  
16T  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE OUTLINE  
DCK0005A  
SOT - 1.1 max height  
S
C
A
L
E
5
.
6
0
0
SMALL OUTLINE TRANSISTOR  
C
2.4  
1.8  
0.1 C  
1.4  
1.1  
B
1.1 MAX  
A
PIN 1  
INDEX AREA  
1
2
5
NOTE 4  
(0.15)  
(0.1)  
2X 0.65  
1.3  
2.15  
1.85  
1.3  
4
3
0.33  
5X  
0.23  
0.1  
0.0  
(0.9)  
TYP  
0.1  
C A B  
0.15  
0.22  
0.08  
GAGE PLANE  
TYP  
0.46  
0.26  
8
0
TYP  
TYP  
SEATING PLANE  
4214834/C 03/2023  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Refernce JEDEC MO-203.  
4. Support pin may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X (0.65)  
4
(R0.05) TYP  
(2.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214834/C 03/2023  
NOTES: (continued)  
4. Publication IPC-7351 may have alternate designs.  
5. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DCK0005A  
SOT - 1.1 max height  
SMALL OUTLINE TRANSISTOR  
PKG  
5X (0.95)  
1
5
5X (0.4)  
SYMM  
(1.3)  
2
3
2X(0.65)  
4
(R0.05) TYP  
(2.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 THICK STENCIL  
SCALE:18X  
4214834/C 03/2023  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
7. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

SN74LVC1G86QDCKTQ1

汽车类单路 2 输入、1.65V 至 5.5V XOR(异或)门 | DCK | 5 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74LVC1G86YEAR

SINGLE 2-INPUT EXCLUSIVE-OR GATE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74LVC1G86YEPR

SINGLE 2-INPUT EXCLUSIVE-OR GATE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74LVC1G86YEPR

LVC/LCX/Z SERIES, 2-INPUT XOR GATE, BGA5, DSBGA-5

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ROCHESTER

SN74LVC1G86YZAR

SINGLE 2-INPUT EXCLUSIVE-OR GATE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74LVC1G86YZPR

SINGLE 2-INPUT EXCLUSIVE-OR GATE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74LVC1G86_08

SINGLE 2-INPUT EXCLUSIVE-OR GATE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74LVC1G86_081

SINGLE 2-INPUT EXCLUSIVE-OR GATE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74LVC1G86_15

Single 2-Input Exclusive-OR Gate

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74LVC1G97

CONFIGURABLE MULTIPLE-FUNCTION GATE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74LVC1G97-EP

CONFIGURABLEMULTIPLE-FUNCTION GATE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

SN74LVC1G97-Q1

CONFIGURABLE MULTIPLE-FUNCTION GATE

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI