SN74LXC1T45DRL [TI]

SN74LXC1T45 Single-Bit Dual-Supply Bus Transceiver With Configurable Level Shifting;
SN74LXC1T45DRL
型号: SN74LXC1T45DRL
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

SN74LXC1T45 Single-Bit Dual-Supply Bus Transceiver With Configurable Level Shifting

文件: 总30页 (文件大小:1178K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
SN74LXC1T45 Single-Bit Dual-Supply Bus Transceiver With Configurable Level  
Shifting  
1 Features  
3 Description  
Fully configurable dual-rail design allows each port  
to operate from 1.1 V to 5.5 V  
The SN74LXC1T45 is  
a
1-bit, dual-supply  
noninverting bidirectional voltage level translation  
device. The I/O pin A and control pin (DIR) are  
referenced to VCCA logic levels, and the I/O pin B are  
referenced to VCCB logic levels. The A pin is able to  
accept I/O voltages ranging from 1.1 V to 5.5 V, while  
the B pin can accept I/O voltages from 1.1 V to 5.5 V.  
A high on DIR allows data transmission from A to B  
and a low on DIR allows data transmission from B to  
A. See Device Functional Modes for a summary of the  
operation of the control logic.  
Robust, glitch-free power supply sequencing  
Up to 420-Mbps support for 3.3 V to 5.0 V  
Schmitt-trigger inputs allow for slow or noisy inputs  
I/O's with integrated dynamic pull-down resistors  
help reduce external component count  
Control inputs with integrated static pull-down  
resistors allow for floating control inputs  
High drive strength (up to 32 mA at 5 V)  
Low power consumption  
– 3-µA maximum (25°C)  
Device Information (1)  
– 6-µA maximum (–40°C to 125°C)  
VCC isolation and Vcc disconnect (Ioff-float) feature  
– If either VCC supply is < 100 mV or  
disconnected, all I/O's get pulled-down and  
then become high-impedance  
Ioff supports partial-power-down mode operation  
Compatible with LVC family level shifters  
Control logic (DIR and OE) are referenced to VCCA  
Operating temperature from –40°C to +125°C  
Latch-up performance exceeds 100 mA per JESD  
78, class II  
PART NUMBER  
SN74LXC1T45DRL  
SN74LXC1T45DRY  
SN74LXC1T45DBV  
SN74LXC1T45DCK  
SN74LXC1T45DTQ  
PACKAGE  
BODY SIZE (NOM)  
1.60 mm × 1.20 mm  
1.45 mm × 1.00 mm  
2.90 mm × 1.60 mm  
2.00 mm × 1.25 mm  
1.00 mm × 0.80 mm  
SOT (6)  
SON (6)  
SOT-23 (6)  
SC70 (6)  
X2SON (6)  
(1) For all available packages, see the orderable addendum at  
the end of the data sheet.  
VCCA  
VCCB  
ESD protection exceeds JESD 22  
– 4000-V human-body model  
– 1000-V charged-device model  
DIR  
2 Applications  
Eliminate slow or noisy input signals  
Driving indicator LEDs or buzzers  
Debouncing a mechanical switch  
General purpose I/O level shifting  
B1  
A1  
SN74LXC1T45 Block Diagram  
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
 
 
 
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
www.ti.com  
Table of Contents  
1 Features............................................................................1  
2 Applications.....................................................................1  
3 Description.......................................................................1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................6  
6.6 Switching Characteristics, VCCA = 1.2 ± 0.1 V ........... 9  
6.7 Switching Characteristics, VCCA = 1.5 ± 0.1 V ......... 10  
6.8 Switching Characteristics, VCCA = 1.8 ± 0.15 V ....... 11  
6.9 Switching Characteristics, VCCA = 2.5 ± 0.2 V ......... 12  
6.10 Switching Characteristics, VCCA = 3.3 ± 0.3 V ....... 13  
6.11 Switching Characteristics, VCCA = 5.0 ± 0.5 V ....... 14  
6.12 Switching Characteristics: Tsk, TMAX ......................15  
6.13 Operating Characteristics....................................... 15  
6.14 Typical Characteristics............................................16  
7 Parameter Measurement Information..........................17  
7.1 Load Circuit and Voltage Waveforms........................17  
8 Detailed Description......................................................19  
8.1 Overview...................................................................19  
8.2 Functional Block Diagram.........................................19  
8.3 Feature Description...................................................19  
8.4 Device Functional Modes..........................................22  
9 Application and Implementation..................................23  
9.1 Application Information............................................. 23  
9.2 Enable Times............................................................ 23  
9.3 Typical Application.................................................... 23  
10 Power Supply Recommendations..............................24  
11 Layout...........................................................................24  
11.1 Layout Guidelines................................................... 24  
11.2 Layout Example...................................................... 24  
12 Device and Documentation Support..........................25  
12.1 Device Support....................................................... 25  
12.2 Documentation Support.......................................... 25  
12.3 Receiving Notification of Documentation Updates..25  
12.4 Support Resources................................................. 25  
12.5 Trademarks.............................................................25  
12.6 Electrostatic Discharge Caution..............................25  
12.7 Glossary..................................................................25  
13 Mechanical, Packaging, and Orderable  
Information.................................................................... 25  
4 Revision History  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision * (September 2021) to Revision A (December 2021)  
Page  
Changed the status of the data sheet from: Advanced Information to: Production Data ...................................1  
Copyright © 2021 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: SN74LXC1T45  
 
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
www.ti.com  
5 Pin Configuration and Functions  
1
2
3
6
5
4
VCCA  
GND  
A
VCCB  
DIR  
B
VCCA  
1
2
3
6
5
4
VCCB  
DIR  
B
GND  
A
Figure 5-2. DCK 6-Pin SC70  
Top View  
Figure 5-1. DBV 6-Pin SOT-23  
Top View  
1
2
3
6
5
4
VCCA  
GND  
A
VCCB  
DIR  
B
1
2
3
6
5
4
VCCA  
GND  
A
VCCB  
DIR  
B
Figure 5-3. DRL Package Preview 6-Pin SOT  
Top View  
Figure 5-4. DRY Package Preview 6-Pin SON  
Top View  
1
3
6
4
VCCA  
VCCB  
DIR  
B
2
5
GND  
A
Figure 5-5. DTQ Package Preview 6-Pin X2SON Transparent Top View  
Table 5-1. Pin Functions  
PIN  
TYPE  
DESCRIPTION  
DBV, DCK,  
DRL, DRY, DTQ  
NAME  
A
3
4
5
2
5
1
6
I/O  
I/O  
I
Input or output A. Referenced to VCCA  
Input or output B. Referenced to VCCB  
.
.
B
DIR  
GND  
DIR  
VCCA  
VCCB  
Direction-control signal for all ports. Referenced to VCCA  
Ground.  
.
.
I
Direction-control signal for all ports. Referenced to VCCA  
A-port supply voltage. 1.1 V ≤ VCCA ≤ 5.5 V.  
B-port supply voltage. 1.1 V ≤ VCCB ≤ 5.5 V.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN74LXC1T45  
 
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
www.ti.com  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
–0.5  
MAX UNIT  
VCCA  
VCCB  
Supply voltage A  
Supply voltage B  
6.5  
6.5  
6.5  
6.5  
6.5  
6.5  
6.5  
V
V
I/O Ports (A Port)  
I/O Ports (B Port)  
Control Inputs  
A Port  
VI  
Input Voltage(2)  
V
Voltage applied to any output in the high-impedance or power-off  
state(2)  
VO  
VO  
V
V
B Port  
A Port  
–0.5 VCCA + 0.5  
–0.5 VCCB + 0.5  
–50  
Voltage applied to any output in the high or low state(2) (3)  
B Port  
IIK  
IOK  
IO  
Input clamp current  
VI < 0  
mA  
mA  
Output clamp current  
VO < 0  
–50  
Continuous output current  
Continuous current through VCC or GND  
Junction Temperature  
–50  
50 mA  
200 mA  
150 °C  
150 °C  
–200  
Tj  
Tstg  
Storage temperature  
–65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions  
If briefly ooperating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, this device may not  
sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality,  
performance, and shorten the device lifetime.  
(2) The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.  
(3) The output positive-voltage rating may be exceeded up to 6.5 V maximum if the output current rating is observed.  
6.2 ESD Ratings  
VALUE  
±4000  
±1000  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2021 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: SN74LXC1T45  
 
 
 
 
 
 
 
 
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
www.ti.com  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted) (1) (2) (3)  
MIN  
1.1  
MAX UNIT  
VCCA  
VCCB  
Supply voltage A  
Supply voltage B  
5.5  
5.5  
–0.1  
–4  
V
V
1.1  
VCCO = 1.1 V  
VCCO = 1.4 V  
VCCO = 1.65 V  
VCCO = 2.3 V  
VCCO = 3 V  
–8  
IOH  
High-level output current  
mA  
–12  
–24  
–32  
0.1  
4
VCCO = 4.5 V  
VCCO = 1.1 V  
VCCO = 1.4 V  
VCCO = 1.65 V  
VCCO = 2.3 V  
VCCO = 3 V  
8
IOL  
Low-level output current  
Input voltage (3)  
mA  
12  
24  
VCCO = 4.5 V  
32  
VI  
0
0
5.5  
VCCO  
5.5  
V
V
Active State  
Tri-State  
Operating free-air temperature  
VO  
TA  
Output voltage  
0
–40  
125 °C  
(1) VCCI is the VCC associated with the input port.  
(2) VCCO is the VCC associated with the output port.  
(3) All control inputs and data I/Os of this device have weak pulldowns to ensure the line is not floating when undefined external to the  
device. The input leakage from these weak pulldowns is defined by the II specification indicated under the Electrical Characteristics.  
6.4 Thermal Information  
SN74LXC1T45  
THERMAL METRIC(1)  
DBV (SOT-23) DCK (SC70)  
DRL (SOT)  
6 PINS  
DRY (SON) DTQ (X2SON)  
UNIT  
6 PINS  
6 PINS  
6 PINS  
6 PINS  
Junction-to-ambient thermal  
resistance  
RθJA  
RθJC(top)  
RθJB  
YJT  
217.4  
216.1  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction-to-case (top) thermal  
resistance  
136.0  
98.5  
75.8  
98.2  
N/A  
143.6  
75.9  
58.5  
75.6  
N/A  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Junction-to-board thermal  
resistance  
Junction-to-top characterization  
parameter  
Junction-to-board  
characterization parameter  
YJB  
Rθ  
Junction-to-case (bottom) thermal  
resistance  
JC(bottom)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN74LXC1T45  
 
 
 
 
 
 
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
www.ti.com  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
Operating free-air temperature (TA)  
25°C –40°C to 85°C –40°C to 125°C UNIT  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
PARAMETER  
TEST CONDITIONS  
VCCA  
VCCB  
1.1 V  
1.1 V  
0.44  
0.60  
0.76  
1.08  
1.48  
2.19  
2.65  
0.44  
0.60  
0.76  
1.08  
1.48  
2.19  
2.65  
0.17  
0.28  
0.35  
0.56  
0.89  
1.51  
1.88  
0.17  
0.28  
0.35  
0.56  
0.89  
1.51  
1.88  
0.2  
0.88 0.44  
0.98 0.60  
1.13 0.76  
1.56 1.08  
1.92 1.48  
2.74 2.19  
3.33 2.65  
0.88 0.44  
0.98 0.60  
1.13 0.76  
1.56 1.08  
1.92 1.48  
2.74 2.19  
3.33 2.65  
0.48 0.17  
0.59 0.28  
0.69 0.35  
0.97 0.56  
1.5 0.89  
0.88  
0.98  
1.13  
1.56  
1.92  
2.74  
3.33  
0.88  
0.98  
1.13  
1.56  
1.92  
2.74  
3.33  
0.48  
0.59  
0.69  
0.97  
1.5  
1.4 V  
1.65 V  
2.3 V  
3 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
Data Inputs  
(Ax, Bx)  
(Referenced to VCCI  
V
V
V
V
V
V
)
)
)
4.5 V  
5.5 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
4.5 V  
5.5 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
Positive-  
going input-  
threshold  
voltage  
VT+  
Control Input  
(DIR)  
(Referenced to  
VCCA  
)
4.5 V  
5.5 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
4.5 V  
5.5 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
Data Inputs  
(Ax, Bx)  
(Referenced to VCCI  
4.5 V  
5.5 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
4.5 V  
5.5 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
1.97 1.51  
2.4 1.88  
1.97  
2.4  
Negative-  
going input-  
threshold  
voltage  
VT-  
0.48 0.17  
0.6 0.28  
0.48  
0.6  
Control Input  
(DIR)  
(Referenced to  
0.71 0.35  
0.71  
1
1
0.56  
1.5 0.89  
1.51  
2.46 1.88  
0.4 0.2  
0.5 0.25  
1.5  
VCCA  
)
4.5 V  
5.5 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
4.5 V  
5.5 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
2
2
2.46  
0.4  
0.25  
0.3  
0.5  
0.55  
0.3  
0.65 0.38  
0.72 0.46  
0.93 0.58  
1.06 0.69  
0.55  
0.65  
0.72  
0.93  
1.06  
0.4  
Data Inputs  
(Ax, Bx)  
(Referenced to VCCI  
0.38  
0.46  
0.58  
0.69  
0.2  
4.5 V  
5.5 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
4.5 V  
5.5 V  
1.1 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
Input-  
threshold  
hysteresis  
(VT+ – VT-)  
ΔVT  
0.4  
0.2  
0.25  
0.3  
0.5 0.25  
0.5  
Control Input  
(DIR)  
(Referenced to  
0.55  
0.3  
0.65 0.38  
0.72 0.46  
0.93 0.58  
1.06 0.69  
0.55  
0.65  
0.72  
0.93  
1.06  
0.38  
0.46  
0.58  
0.69  
VCCA  
)
4.5 V  
5.5 V  
4.5 V  
5.5 V  
Copyright © 2021 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN74LXC1T45  
 
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
www.ti.com  
6.5 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
Operating free-air temperature (TA)  
PARAMETER  
TEST CONDITIONS  
VCCA  
VCCB  
25°C  
–40°C to 85°C  
–40°C to 125°C UNIT  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
VCCO  
– 0.1  
VCCO  
– 0.1  
IOH = –100 µA  
1.1V – 5.5V 1.1V – 5.5V  
IOH = –4 mA  
IOH = –8 mA  
IOH = –12 mA  
IOH = –24 mA  
IOH = –32 mA  
IOL = 100 µA  
IOL = 4 mA  
1.4 V  
1.65 V  
2.3 V  
3 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
1
1.2  
1.9  
2.4  
3.8  
1
1.2  
1.9  
2.4  
3.8  
High-level  
output  
VOH  
V
voltage (3)  
4.5 V  
4.5 V  
1.1V – 5.5V 1.1V – 5.5V  
0.1  
0.3  
0.1  
0.3  
1.4 V  
1.65 V  
2.3 V  
3 V  
1.4 V  
1.65 V  
2.3 V  
3 V  
Low-level  
output  
IOL = 8 mA  
0.45  
0.3  
0.45  
0.3  
VOL  
V
voltage (4)  
IOL = 12 mA  
IOL = 24 mA  
IOL = 32 mA  
0.55  
0.55  
0.55  
0.55  
4.5 V  
4.5 V  
Control input  
(DIR)  
VI = VCCA or GND  
1.1V – 5.5V 1.1V – 5.5V  
-0.1  
1
1
-0.1  
–1  
2
1
-0.1  
–2  
2
2
µA  
µA  
µA  
Input leakage  
current  
II  
Data Inputs (5)  
(Ax, Bx)  
VI = VCCI or GND  
1.1V – 5.5V 1.1V – 5.5V –0.3  
A Port or B Port  
VI or VO = 0 V - 5.5  
V
0 V  
0 V - 5.5 V  
–1  
–1  
1
1
–2  
–2  
–2  
2
2
2
–2.5  
–2.5  
–2.5  
2.5  
2.5  
2.5  
Partial power  
down current  
Ioff  
0 V - 5.5 V 0 V  
Floating  
Floating (6) 0 V - 5.5 V  
–1.5  
1.5  
supply Partial A Port or B Port  
power down VI or VO = GND  
current  
Ioff-float  
µA  
µA  
0 V - 5.5 V Floating (6)  
–1.5  
1.5  
2
–2  
2
2
–2.5  
2.5  
4
1.1V – 5.5V 1.1V – 5.5V  
VI = VCCI or GND  
0 V  
5.5 V  
0 V  
–0.2  
–0.5  
–1  
IO = 0  
VCCA supply  
current  
ICCA  
5.5 V  
1
1
1
1
2
2
VI = GND  
IO = 0  
5.5 V  
Floating (6)  
1.1V – 5.5V 1.1V – 5.5V  
2
1
2
1
4
2
VI = VCCI or GND  
IO = 0  
0 V  
5.5 V  
0 V  
VCCB supply  
current  
ICCB  
µA  
µA  
5.5 V  
–0.2  
–0.5  
–1  
VI = GND  
IO = 0  
Floating (6) 5.5 V  
1
3
1
4
2
6
Combined  
supply  
current  
ICCA  
ICCB  
+
VI = VCCI or GND  
IO = 0  
1.1V – 5.5V 1.1V – 5.5V  
Control input (DIR):  
VI = VCCA – 0.6 V  
A port = VCCA or  
GND  
3.0V - 5.5V 3.0V - 5.5V  
3.0V - 5.5V 3.0V - 5.5V  
50  
50  
75  
75  
VCCA  
additional  
ΔICCA supply  
current per  
input  
B Port = open  
µA  
A Port: VI = VCCA  
0.6 V  
DIR = VCCA, B Port  
= open  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN74LXC1T45  
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
www.ti.com  
6.5 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
Operating free-air temperature (TA)  
25°C –40°C to 85°C –40°C to 125°C UNIT  
MIN TYP MAX MIN TYP MAX MIN TYP MAX  
PARAMETER  
TEST CONDITIONS  
VCCA  
VCCB  
VCCB  
additional  
ΔICCB supply  
current per  
input  
B Port: VI = VCCB  
0.6 V  
DIR = GND, A Port  
= open  
-
3.0V - 5.5V 3.0V - 5.5V  
50  
75 µA  
Control Input  
Capacitance  
Ci  
VI = 3.3 V or GND  
3.3 V  
3.3 V  
3.3 V  
3.3 V  
2.2  
4.3  
5
5
pF  
VCCO = 0V VO  
=
Data I/O  
Cio  
1.65V DC +1 MHz  
-16 dBm sine wave  
10.5  
10.5 pF  
Capacitance  
(1) VCCI is the VCC associated with the input port  
(2) VCCO is the VCC associated with the output port  
(3) Tested at VI = VT+(MAX)  
(4) Tested at VI = VT-(MIN)  
(5) For I/O ports, the parameter Il includes the IOZ current  
(6) Floating is defined as a node that is both not actively driven by an external device and has leakage not exeeding 10nA  
Copyright © 2021 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: SN74LXC1T45  
 
 
 
 
 
 
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
www.ti.com  
6.6 Switching Characteristics, VCCA = 1.2 ± 0.1 V  
See Figure 7-1 and Table 7-1 for test circuit and loading. See Figure 7-2, Figure 7-3, and Figure 7-4 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
1.8 ± 0.15 V 2.5 ± 0.2 V  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX  
)
Test  
Conditions  
PARAMETER  
FROM  
TO  
1.2 ± 0.1 V  
1.5 ± 0.1 V  
3.3 ± 0.3 V  
5.0 ± 0.5 V  
UNIT  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
6
8
85  
55  
4
6
41  
37  
71  
47  
53  
47  
47  
48  
110  
89  
89  
79  
3
5
36  
33  
67  
43  
53  
47  
41  
41  
99  
80  
84  
73  
1
3
33  
30  
60  
38  
53  
47  
34  
34  
86  
68  
81  
68  
1
3
34  
30  
57  
37  
53  
47  
33  
33  
83  
65  
82  
67  
1
2
44  
33  
58  
36  
53  
47  
32  
32  
85  
63  
92  
70  
A
B
A
A
B
A
B
Propagation  
delay  
tpd  
tdis  
ten  
ns  
6
85  
5
4
3
3
3
B
8
55  
6
6
5
4
4
5
53  
5
5
5
5
4
DIR  
DIR  
DIR  
DIR  
7
47  
7
7
7
7
7
Disable time  
Enable time  
ns  
ns  
10  
14  
21  
27  
16  
19  
85  
7
6
5
5
4
71  
11  
17  
23  
14  
18  
10  
16  
21  
13  
17  
8
8
6
150  
121  
118  
97  
13  
17  
12  
16  
13  
17  
11  
15  
12  
15  
11  
14  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN74LXC1T45  
 
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
www.ti.com  
6.7 Switching Characteristics, VCCA = 1.5 ± 0.1 V  
See Figure 7-1 and Table 7-1 for test circuit and loading. See Figure 7-2, Figure 7-3, and Figure 7-4 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
1.8 ± 0.15 V 2.5 ± 0.2 V  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX  
)
Test  
Conditions  
PARAMETER  
FROM  
TO  
1.2 ± 0.1 V  
1.5 ± 0.1 V  
3.3 ± 0.3 V  
5.0 ± 0.5 V  
UNIT  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
5
6
71  
47  
41  
37  
26  
27  
71  
61  
106  
92  
90  
69  
3
4
29  
30  
29  
30  
26  
27  
38  
39  
63  
64  
51  
51  
1
3
24  
25  
27  
27  
26  
27  
32  
34  
54  
56  
45  
47  
1
2
20  
21  
23  
24  
26  
27  
25  
26  
44  
45  
40  
42  
1
2
19  
20  
22  
22  
26  
27  
24  
25  
41  
42  
39  
40  
1
1
19  
20  
21  
22  
26  
27  
22  
23  
39  
40  
39  
40  
A
B
A
A
B
A
B
Propagation  
delay  
tpd  
tdis  
ten  
ns  
ns  
ns  
4
3
2
1
1
1
B
6
4
4
3
3
2
2
2
2
2
2
2
DIR  
DIR  
DIR  
DIR  
4
4
4
4
4
4
Disable time  
Enable time  
8
6
5
3
3
2
12  
17  
23  
12  
16  
10  
13  
19  
10  
14  
9
6
6
4
12  
17  
9
9
9
8
14  
8
14  
7
12  
7
13  
12  
11  
10  
Copyright © 2021 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: SN74LXC1T45  
 
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
www.ti.com  
6.8 Switching Characteristics, VCCA = 1.8 ± 0.15 V  
See Figure 7-1 and Table 7-1 for test circuit and loading. See Figure 7-2, Figure 7-3, and Figure 7-4 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
1.8 ± 0.15 V 2.5 ± 0.2 V  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX  
)
Test  
Conditions  
PARAMETER  
FROM  
TO  
1.2 ± 0.1 V  
1.5 ± 0.1 V  
3.3 ± 0.3 V  
5.0 ± 0.5 V  
UNIT  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
4
6
67  
43  
36  
33  
21  
22  
65  
56  
96  
82  
80  
60  
2
4
27  
27  
24  
25  
21  
22  
35  
36  
54  
56  
42  
43  
1
3
22  
22  
22  
22  
21  
22  
29  
30  
46  
48  
37  
39  
1
2
18  
18  
19  
19  
21  
22  
22  
24  
36  
38  
33  
34  
1
1
16  
17  
18  
18  
21  
22  
21  
22  
34  
35  
31  
33  
1
1
16  
16  
17  
18  
21  
22  
19  
20  
31  
33  
30  
32  
A
B
A
A
B
A
B
Propagation  
delay  
tpd  
tdis  
ten  
ns  
3
1
1
1
1
1
B
5
3
3
2
2
1
2
2
2
2
2
1
DIR  
DIR  
DIR  
DIR  
3
3
3
3
3
3
Disable time  
Enable time  
ns  
ns  
7
5
4
2
2
1
10  
15  
20  
11  
14  
8
7
6
5
3
11  
17  
9
10  
15  
7
8
7
6
13  
7
12  
6
10  
6
12  
11  
10  
9
9
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN74LXC1T45  
 
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
www.ti.com  
6.9 Switching Characteristics, VCCA = 2.5 ± 0.2 V  
See Figure 7-1 and Table 7-1 for test circuit and loading. See Figure 7-2, Figure 7-3, and Figure 7-4 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
1.8 ± 0.15 V 2.5 ± 0.2 V  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX  
)
Test  
Conditions  
PARAMETER  
FROM  
TO  
1.2 ± 0.1 V  
1.5 ± 0.1 V  
3.3 ± 0.3 V  
5.0 ± 0.5 V  
UNIT  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
3
5
60  
38  
33  
30  
15  
15  
54  
47  
82  
68  
67  
49  
1
3
23  
24  
20  
21  
15  
15  
30  
31  
44  
45  
33  
34  
1
2
19  
19  
18  
18  
15  
15  
25  
26  
37  
39  
29  
30  
1
1
15  
15  
15  
15  
15  
15  
19  
21  
29  
31  
25  
26  
1
1
14  
14  
14  
14  
15  
15  
18  
19  
27  
29  
23  
24  
1
1
1
1
1
1
1
2
5
8
4
6
13  
13  
14  
14  
15  
15  
16  
17  
24  
26  
22  
23  
A
B
A
A
B
A
B
Propagation  
delay  
tpd  
tdis  
ten  
ns  
ns  
ns  
1
1
1
1
1
B
3
2
2
1
1
1
1
1
1
1
DIR  
DIR  
DIR  
DIR  
1
1
1
1
1
Disable time  
Enable time  
5
4
3
2
2
8
7
6
5
4
12  
17  
8
9
8
6
6
14  
6
13  
5
11  
4
10  
4
11  
9
8
7
7
Copyright © 2021 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: SN74LXC1T45  
 
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
www.ti.com  
6.10 Switching Characteristics, VCCA = 3.3 ± 0.3 V  
See Figure 7-1 and Table 7-1 for test circuit and loading. See Figure 7-2, Figure 7-3, and Figure 7-4 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
1.8 ± 0.15 V 2.5 ± 0.2 V  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX  
)
Test  
Conditions  
PARAMETER  
FROM  
TO  
1.2 ± 0.1 V  
1.5 ± 0.1 V  
3.3 ± 0.3 V  
5.0 ± 0.5 V  
UNIT  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
3
4
57  
37  
34  
30  
14  
14  
49  
44  
78  
64  
64  
46  
1
3
22  
22  
19  
20  
14  
14  
27  
28  
39  
40  
30  
31  
1
2
18  
18  
16  
17  
14  
14  
23  
24  
33  
35  
26  
27  
1
1
1
1
1
1
1
4
6
9
4
7
14  
14  
13  
14  
14  
14  
18  
19  
26  
28  
23  
24  
1
1
1
1
1
1
2
4
5
9
4
6
13  
13  
13  
13  
14  
14  
17  
18  
25  
26  
21  
22  
1
1
1
1
1
1
1
2
4
7
4
6
12  
12  
12  
12  
14  
14  
15  
16  
22  
23  
20  
21  
A
B
A
A
B
A
B
Propagation  
delay  
tpd  
tdis  
ten  
ns  
1
1
1
B
3
2
1
1
1
1
DIR  
DIR  
DIR  
DIR  
1
1
1
Disable time  
Enable time  
ns  
ns  
5
3
3
8
6
5
12  
16  
8
8
7
13  
6
11  
5
11  
9
8
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN74LXC1T45  
 
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
www.ti.com  
6.11 Switching Characteristics, VCCA = 5.0 ± 0.5 V  
See Figure 7-1 and Table 7-1 for test circuit and loading. See Figure 7-2, Figure 7-3, and Figure 7-4 for measurement waveforms.  
B-Port Supply Voltage (VCCB  
1.8 ± 0.15 V 2.5 ± 0.2 V  
MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX MIN TYP MAX  
)
Test  
Conditions  
PARAMETER  
FROM  
TO  
1.2 ± 0.1 V  
1.5 ± 0.1 V  
3.3 ± 0.3 V  
5.0 ± 0.5 V  
UNIT  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
-40°C to 85°C  
-40°C to 125°C  
3
4
58  
36  
44  
33  
12  
12  
48  
43  
87  
66  
63  
43  
1
2
21  
22  
19  
20  
12  
12  
26  
26  
38  
39  
28  
28  
1
1
17  
18  
16  
16  
12  
12  
21  
22  
31  
32  
24  
25  
1
1
1
1
1
1
1
3
5
8
3
5
14  
14  
13  
13  
12  
12  
16  
17  
24  
25  
20  
21  
1
1
1
1
1
1
2
3
5
8
3
4
12  
13  
12  
12  
12  
12  
16  
17  
22  
24  
19  
19  
1
1
1
1
1
1
1
2
4
6
2
4
11  
11  
11  
11  
12  
12  
14  
15  
20  
21  
18  
18  
A
B
A
A
B
A
B
Propagation  
delay  
tpd  
tdis  
ten  
ns  
ns  
ns  
1
1
1
B
2
1
1
1
1
1
DIR  
DIR  
DIR  
DIR  
1
1
1
Disable time  
Enable time  
5
3
3
8
6
5
11  
15  
7
8
7
12  
5
10  
4
9
7
6
Copyright © 2021 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: SN74LXC1T45  
 
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
www.ti.com  
6.12 Switching Characteristics: Tsk, TMAX  
over operating free-air temperature range (unless otherwise noted)  
Operating free-air  
temperature (TA)  
PARAMETER  
TEST CONDITIONS  
VCCI  
VCCO  
UNIT  
-40°C to 125°C  
MIN TYP MAX  
3.0 V - 3.6 V  
2.25 V - 2.75 V  
1.65 V - 1.95 V  
1.1 V - 1.3 V  
1.65 V - 1.95 V  
1.1 V - 1.3 V  
1.1 V - 1.3 V  
4.5 V - 5.5 V  
4.5 V - 5.5 V  
4.5 V - 5.5 V  
4.5 V - 5.5 V  
4.5 V - 5.5 V  
4.5 V - 5.5 V  
4.5 V - 5.5 V  
3.0 V - 3.6 V  
3.0 V - 3.6 V  
1.65 V - 1.95 V  
3.0 V - 3.6 V  
2.25 V - 2.75 V  
1.65 V - 1.95 V  
1.1 V - 1.3 V  
1.65 V - 1.95 V  
1.1 V - 1.3 V  
1.1 V - 1.3 V  
200  
150  
100  
20  
420  
300  
200  
40  
Up Translation  
100  
10  
210  
20  
50% Duty Cycle Input  
TMAX - Maximum One channel switching  
5
10  
Mbps  
Data Rate  
20% of pulse > 0.7*VCCO  
20% of pulse < 0.3*VCCO  
100  
75  
210  
140  
75  
50  
Down Translation 4.5 V - 5.5 V  
3.0 V - 3.6 V  
15  
30  
40  
75  
3.0 V - 3.6 V  
10  
20  
1.65 V - 1.95 V  
5
10  
6.13 Operating Characteristics  
TA = 25(1)  
Supply Voltage (VCCB = VCCA  
)
PARAMETER  
Test Conditions 1.2 ± 0.1V 1.5 ± 0.1V 1.8 ± 0.15V 2.5 ± 0.2V 3.3 ± 0.3V 5.0 ± 0.5V UNIT  
TYP  
TYP  
TYP  
TYP  
TYP  
TYP  
A to B  
B to A  
A to B  
B to A  
A Port  
CL = 0, RL = Open  
f = 10 MHz  
3.2  
3.4  
3.5  
3.7  
3.9  
5.1  
(2)  
(2)  
CpdA  
pF  
pF  
19.4  
19.3  
3.3  
19.6  
19.5  
3.5  
19.8  
19.7  
3.6  
20.4  
20.4  
4.0  
21.8  
21.6  
4.4  
25.7  
25.3  
5.0  
trise = tfall = 1 ns  
B Port  
CL = 0, RL = Open  
f = 10 MHz  
CpdB  
trise = tfall = 1 ns  
(1) For more information about power dissipation capacitance, see the CMOS Power Consumption and Cpd Calculation application report  
(2) CpdA and CpdB are repectively A-Port and B-Port power dissipation capacitances per transceiver  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: SN74LXC1T45  
 
 
 
 
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
www.ti.com  
6.14 Typical Characteristics  
5
4.5  
4
1.8  
1.6  
1.4  
1.2  
1
VCC = 5 V  
VCC = 3.3 V  
VCC = 2.5 V  
3.5  
3
2.5  
2
0.8  
0.6  
0.4  
VCC = 1.8 V  
VCC = 1.5 V  
VCC = 1.2 V  
1.5  
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
0
2.5  
5
7.5 10 12.5 15 17.5 20 22.5 25  
IOH Output High Current (mA)  
IOH Output High Current (mA)  
Figure 6-1. Typical (TA=25°C) Output High Voltage (VOH) vs  
Source Current (IOH  
Figure 6-2. Typical (TA=25°C) Output High Voltage (VOH) vs  
Source Current (IOH  
)
)
0.45  
0.4  
0.35  
0.3  
0.25  
0.2  
0.15  
0.1  
VCC = 5 V  
VCC = 3.3 V  
VCC = 2.5 V  
0.05  
0
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
IOL Output Low Current (mA)  
Figure 6-3. Typical (TA=25°C) Output High Voltage (VOL) vs Sink  
Current (IOL  
Figure 6-4. Typical (TA=25°C) Output High Voltage (VOL) vs Sink  
Current (IOL  
)
)
Figure 6-6. Typical (TA=25°C) Supply Current (ICC) vs Input  
Voltage (VIN)  
Figure 6-5. Typical (TA=25°C) Supply Current (ICC) vs Input  
Voltage (VIN)  
Copyright © 2021 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: SN74LXC1T45  
 
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
www.ti.com  
7 Parameter Measurement Information  
7.1 Load Circuit and Voltage Waveforms  
Unless otherwise noted, all input pulses are supplied by generators having the following characteristics:  
f = 1 MHz  
ZO = 50 Ω  
Δt/ΔV ≤ 1 ns/V  
Measurement Point  
2 x VCCO  
Open  
RL  
S1  
Output Pin  
Under Test  
(1)  
GND  
CL  
RL  
A. CL includes probe and jig capacitance.  
Figure 7-1. Load Circuit  
Table 7-1. Load Circuit Conditions  
Parameter  
VCCO  
RL  
CL  
S1  
VTP  
N/A  
tpd  
Propagation (delay) time  
1.1 V – 5.5 V  
1.1 V – 1.6 V  
1.65 V – 2.7 V  
3.0 V – 5.5 V  
1.1 V – 1.6 V  
1.65 V – 2.7 V  
3.0 V – 5.5 V  
2 kΩ  
2 kΩ  
2 kΩ  
2 kΩ  
2 kΩ  
2 kΩ  
2 kΩ  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
15 pF  
Open  
2 × VCCO  
2 × VCCO  
2 × VCCO  
GND  
0.1 V  
0.15 V  
0.3 V  
0.1 V  
0.15 V  
0.3 V  
ten, tdis Enable time, disable time  
ten, tdis Enable time, disable time  
GND  
GND  
(1)  
VCCI  
(1)  
VCCI  
100 kHz  
Input A, B  
VCCI / 2  
VCCI / 2  
Input A, B  
500 ps/V œ 1 s/V  
0 V  
VOH  
0 V  
VOH  
(2)  
tpd  
tpd  
(2)  
Ensure Monotonic  
Rising and Falling Edge  
Output B, A  
(2)  
VOL  
Output B, A  
VCCI / 2  
VCCI / 2  
(2)  
VOL  
1. VCCI is the supply pin associated with the input port.  
2. VOH and VOL are typical output voltage levels that occur  
with specified RL, CL, and S1  
1. VCCI is the supply pin associated with the input port.  
2. VOH and VOL are typical output voltage levels that occur  
with specified RL, CL, and S1  
Figure 7-3. Input Transition Rise and Fall Rate  
Figure 7-2. Propagation Delay  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: SN74LXC1T45  
 
 
 
 
 
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
www.ti.com  
VCCA  
GND  
VCCA / 2  
VCCA / 2  
DIR  
(1)  
ten  
(5)  
VCCO  
Output A(2)  
VCCO / 2  
VOL + VTP  
(6)  
VOL  
tdis  
(6)  
VOH  
Output A(3)  
VOH - VTP  
VCCO / 2  
GND  
(1)  
ten  
(5)  
VCCO  
Output B(2)  
Output B(3)  
VCCO / 2  
VOL + VTP  
(6)  
VOL  
tdis  
(6)  
VOH  
VOH - VTP  
VCCO / 2  
GND  
A. 1. Illustrative purposes only. Enable time is a calculation as described in Enable Times.  
2. Output waveform on the condition that input is driven to a valid Logic low.  
3. Output waveform on the condition that input is driven to a valid Logic high.  
4. VCCI is the supply pin associated with the input port.  
5. VCCO is the supply pin associated with the output port.  
6. VOH and VOL are typical output voltage levels with specified RL, CL, and S1.  
Figure 7-4. Enable Time And Disable Time  
Copyright © 2021 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: SN74LXC1T45  
 
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
www.ti.com  
8 Detailed Description  
8.1 Overview  
The SN74LXC1T45 is an 1-bit translating transceiver that uses two individually configurable power-supply rails.  
The device is operational with both VCCA and VCCB supplies as low as 1.1 V and as high as 5.5 V. Additionally,  
the device can be operated with VCCA = VCCB. The A port is designed to track VCCA, and the B port is designed  
to track VCCB  
.
The SN74LXC1T45 device is designed for asynchronous communication between devices and transmits data  
from A to B or from B to A based on the logic level of the direction-control input (DIR). The control pins of the  
SN74LXC1T45 (DIR) is referenced to VCCA. The input circuitry on both A and B ports is always active and must  
have a logic HIGH or LOW level applied to prevent excess ICC and ICCZ.  
This device is fully specified for partial-power-down applications using the Ioff current. The Ioff protection circuitry  
ensures that no excessive current is drawn from or sourced into an input, output, or I/O while the device is  
powered down.  
The VCC isolation or VCC disconnect feature ensures that if either VCC is less than 100 mV or disconnected  
with the complementary supply within the recommended operating conditions, then both I/O ports are weakly  
pulled-down and then set to the high-impedance state by disabling their outputs while the supply current is  
maintained. The Ioff-float circuitry ensures that no excessive current is drawn from or sourced into an input, output,  
or I/O while the supply is floating.  
Glitch-free power supply sequencing allows either supply rail to be powered on or off in any order while providing  
robust power sequencing performance.  
8.2 Functional Block Diagram  
VCCA  
VCCB  
DIR  
B1  
A1  
8.3 Feature Description  
8.3.1 CMOS Schmitt-Trigger Inputs with Integrated Pulldowns  
Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input  
capacitance given in the Electrical Characteristics. The worst case resistance is calculated with the maximum  
input voltage, given in the Absolute Maximum Ratings, and the maximum input leakage current, given in the  
Electrical Characteristics, using ohm's law (R = V ÷ I).  
The Schmitt-trigger input architecture provides hysteresis as defined by ΔVT in the Electrical Characteristics,  
which makes this device extremely tolerant to slow or noisy inputs. Driving the inputs slowly will increase  
dynamic current consumption of the device. For additional information regarding Schmitt-trigger inputs, see  
Understanding Schmitt Triggers.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: SN74LXC1T45  
 
 
 
 
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
www.ti.com  
8.3.1.1 I/O's with Integrated Dynamic Pull-Down Resistors  
Input circuits of the data I/O's are always active even when the device is disabled. It is recommended to keep a  
valid voltage level at the I/O's to avoid high current consumption. To help avoid floating inputs on the I/O's during  
disabling, this device has 100-kΩ typical integrated weak dynamic pull-downs on all data I/O's. When the device  
is disabled, the dynamic pull-downs are activated for only a short period of time to help drive and keep low any  
floating inputs before the device I/O's become high impedance. If the I/O lines are to be floated after the device  
is disabled, then it is recommended to keep them at a valid input voltage level using the external pull-downs.  
This feature is ideal for loads of 30 pF or less. If greater capactive loading is present, then external pull-downs  
are recommended. If an external pull-up is required, then it should be no larger than 15 kΩ to avoid contention  
with the 100 kΩ internal pull-down.  
8.3.1.2 Control Inputs with Integrated Static Pull-Down Resistors  
Similar to the data I/O's, a floating control input can cause high current consumption. To help avoid this concern,  
this device has integrated weak static pull-downs of 5-MΩ typical on the control input (DIR). These pull-downs  
are always present. So for example if the DIR pin is left floating, then the B port will be configured as an input  
and the A port configured as an output.  
8.3.2 Balanced High-Drive CMOS Push-Pull Outputs  
A balanced output allows the device to sink and source similar currents. The high drive capability of this device  
creates fast edges into light loads so routing and load conditions should be considered to prevent ringing.  
Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without  
being damaged. The electrical and thermal limits defined in the Absolute Maximum Ratings must be followed at  
all times.  
8.3.3 Partial Power Down (Ioff)  
The inputs and outputs for this device enter a high-impedance state when the device is powered down, inhibiting  
current backflow into the device. The maximum leakage into or out of any input or output pin on the device is  
specified by Ioff in the Electrical Characteristics.  
8.3.4 VCC Isolation and VCC Disconnect (Ioff-float  
)
This device has I/O's with Integrated Dynamic Pull-Down Resistors. The I/O's will get pulled down and then enter  
a high-impedance state when either supply is < 100 mV or left floating (disconnected), while the other supply is  
still connected to the device. It is recommended that the I/O's for this device are not driven and kept at a logic  
low state prior to floating (disconnecting) either supply.  
The maximum supply current is specified by ICCx, while VCCx is floating, in the Electrical Characteristics. The  
maximum leakage into or out of any input or output pin on the device is specified by Ioff(float) in the Electrical  
Characteristics.  
Copyright © 2021 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: SN74LXC1T45  
 
 
 
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
www.ti.com  
VCCA  
VCCB  
ICCB maintained  
Supply disconnected  
VCCA  
VCCB  
DIR  
OE  
Disabled  
Hi-Z  
B1  
Hi-Z  
A1  
Ioff(float)  
Ioff(float)  
Disabled  
GND  
Figure 8-1. VCC Disconnect Feature  
8.3.5 Over-Voltage Tolerant Inputs  
Input signals to this device can be driven above the supply voltage so long as they remain below the maximum  
input voltage value specified in the Recommended Operating Conditions.  
8.3.6 Glitch-Free Power Supply Sequencing  
Either supply rail may be powered on or off in any order without producing a glitch on the I/Os (that is, where  
the output erroneously transitions to VCC when it should be held low or vice versa). Glitches of this nature can  
be misinterpreted by a peripheral as a valid data bit, which could trigger a false device reset of the peripheral, a  
false device configuration of the peripheral, or even a false data initialization by the peripheral.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: SN74LXC1T45  
 
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
www.ti.com  
8.3.7 Negative Clamping Diodes  
Figure 8-2 shows the inputs and outputs to this device that have negative clamping diodes.  
CAUTION  
Voltages beyond the values specified in the Absolute Maximum Ratings table can cause damage to  
the device. The input negative voltage and output voltage ratings may be exceeded if the input and  
output clamp current ratings are observed.  
VCCA VCCB  
Device  
Input or I/O  
configured  
as input  
Level  
Shifter  
I/O configured  
as output  
-IIK  
-IOK  
GND  
Figure 8-2. Electrical Placement of Clamping Diodes for Each Input and Output  
8.3.8 Fully Configurable Dual-Rail Design  
Both the VCCA and VCCB pins can be supplied at any voltage from 1.1 V to 5.5 V, making the device suitable for  
translating between any of the voltage nodes (1.2 V, 1.5 V, 1.8 V, 3.3 V, and 5.0 V).  
8.3.9 Supports High-Speed Translation  
The SN74LXC1T45 device can support high data rate applications. The translated signal data rate can be up to  
420 Mbps when the signal is translated from 3.3 V to 5.0 V.  
8.4 Device Functional Modes  
Table 8-1. Function Table  
CONTROL INPUTS (1)  
PORT STATUS  
OPERATION  
DIR  
L
A PORT  
B PORT  
Input (Hi-Z)  
Output (Enabled)  
Input (Hi-Z)  
B data to A bus  
A data to B bus  
H
Output (Enabled)  
(1) Input circuits of the data I/Os are always active and should be kept at a valid logic level.  
Copyright © 2021 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: SN74LXC1T45  
 
 
 
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
www.ti.com  
9 Application and Implementation  
Note  
Information in the following applications sections is not part of the TI component specification,  
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for  
determining suitability of components for their purposes, as well as validating and testing their design  
implementation to confirm system functionality.  
9.1 Application Information  
The SN74LXC1T45 device can be used in level-translation applications for interfacing devices or systems  
operating at different interface voltages with one another. The SN74LXC1T45 device is ideal for use in  
applications where a push-pull driver is connected to the data I/Os. The maximum data rate can be up to  
420 Mbps when the device translates a signal from 3.3 V to 5.0 V.  
9.2 Enable Times  
Calculate the enable times for the SN74LXC1T45 using the following formulas:  
tA_en (DIR to A) = tdis (DIR to B) + tpd (B to A)  
tB_en (DIR to B) = tdis (DIR to A) + tpd (A to B)  
(1)  
(2)  
In a bidirectional application, these enable times provide the maximum delay time from the time the DIR bit is  
switched until an output is expected. For example, if the SN74LXC1T45 initially is transmitting from A to B, then  
the DIR bit is switched; the B port of the device must be disabled (tdis) before presenting it with an input. After  
the B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified  
propagation delay (tpd). To avoid bus contention, care should be taken to not apply an input signal prior to the  
output being disabled (tdis maximum).  
9.3 Typical Application  
VCCB  
VCCA  
LDO  
PMIC  
DC/DC  
GPIO1  
RESET  
System  
Controller  
SN74LXC1T45  
Figure 9-1. LED Driver Application  
9.3.1 Design Requirements  
For this design example, use the parameters listed in Table 9-1.  
Table 9-1. Design Parameters  
DESIGN PARAMETERS  
EXAMPLE VALUES  
1.1 V to 5.5 V  
Input voltage range  
Output voltage range  
1.1 V to 5.5 V  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: SN74LXC1T45  
 
 
 
 
 
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
www.ti.com  
9.3.2 Detailed Design Procedure  
To begin the design process, determine the following:  
Input voltage range  
– Use the supply voltage of the device that is driving the SN74LXC1T45 device to determine the input  
voltage range. For a valid logic-high, the value must exceed the positive-going input-threshold voltage  
(Vt+) of the input port. For a valid logic low the value must be less than the negative-going input-threshold  
voltage (Vt-) of the input port.  
Output voltage range  
– Use the supply voltage of the device that the SN74LXC1T45 device is driving to determine the output  
voltage range.  
10 Power Supply Recommendations  
Always apply a ground reference to the GND pins first. This device is designed for glitch free power sequencing  
without any supply sequencing requirements such as ramp order or ramp rate.  
This device was designed with various power supply sequencing methods in mind to help prevent unintended  
triggering of downstream devices, as described in Glitch-free Power Supply Sequencing.  
11 Layout  
11.1 Layout Guidelines  
To ensure reliability of the device, the following common printed-circuit board layout guidelines are  
recommended:  
Use bypass capacitors on the power supply pins and place them as close to the device as possible. A 0.1  
µF capacitor is recommended, but transient performance can be improved by having both 1 µF and 0.1 µF  
capacitors in parallel as bypass capacitors.  
The high drive capability of this device creates fast edges into light loads so routing and load conditions  
should be considered to prevent ringing.  
11.2 Layout Example  
Legend  
Via to VCCA  
Via to VCCB  
A
B
G
Via to GND  
Copper Traces  
SN74LXC1T45DTQ  
B
VCCA  
1
VCCB  
6
A
01005  
0.1µF  
01005  
0.1µF  
4 mil  
GND  
DIR  
2
5
G
G
G
A
B
4
Reset Flag  
to Controller  
Reset Flag  
from LDO  
3
Figure 11-1. Layout Example − SN74LXC1T45  
Copyright © 2021 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: SN74LXC1T45  
 
 
 
 
SN74LXC1T45  
SCES934A – SEPTEMBER 2021 – REVISED DECEMBER 2021  
www.ti.com  
12 Device and Documentation Support  
12.1 Device Support  
12.1.1 Regulatory Requirements  
No statutory or regulatory requirements apply to this device.  
There are no special characteristics for this product.  
12.2 Documentation Support  
12.2.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, Understanding Schmitt Triggers application report  
12.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on  
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For  
change details, review the revision history included in any revised document.  
12.4 Support Resources  
TI E2Esupport forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.5 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
All trademarks are the property of their respective owners.  
12.6 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.7 Glossary  
TI Glossary  
This glossary lists and explains terms, acronyms, and definitions.  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2021 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: SN74LXC1T45  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Dec-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN74LXC1T45DBVR  
ACTIVE  
SOT-23  
DBV  
6
3000 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
-40 to 125  
2LSF  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
DBV0006A  
SOT-23 - 1.45 mm max height  
S
C
A
L
E
4
.
0
0
0
SMALL OUTLINE TRANSISTOR  
C
3.0  
2.6  
0.1 C  
1.75  
1.45  
B
1.45 MAX  
A
PIN 1  
INDEX AREA  
1
2
6
5
2X 0.95  
1.9  
3.05  
2.75  
4
3
0.50  
6X  
0.25  
C A B  
0.15  
0.00  
0.2  
(1.1)  
TYP  
0.25  
GAGE PLANE  
0.22  
0.08  
TYP  
8
TYP  
0
0.6  
0.3  
TYP  
SEATING PLANE  
4214840/C 06/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.25 per side.  
4. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.  
5. Refernce JEDEC MO-178.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X (0.95)  
4
(R0.05) TYP  
(2.6)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.07 MIN  
ARROUND  
0.07 MAX  
ARROUND  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4214840/C 06/2021  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DBV0006A  
SOT-23 - 1.45 mm max height  
SMALL OUTLINE TRANSISTOR  
PKG  
6X (1.1)  
1
6X (0.6)  
6
SYMM  
5
2
3
2X(0.95)  
4
(R0.05) TYP  
(2.6)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE:15X  
4214840/C 06/2021  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2021, Texas Instruments Incorporated  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX