SN74SSTU32866A [TI]

25-BIT CONFIGURABLE REGISTERED BUFFER WITH ADDRESS-PARITY TEST; 25位可配置寄存缓冲器,具有地址奇偶校验
SN74SSTU32866A
型号: SN74SSTU32866A
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

25-BIT CONFIGURABLE REGISTERED BUFFER WITH ADDRESS-PARITY TEST
25位可配置寄存缓冲器,具有地址奇偶校验

双倍数据速率
文件: 总35页 (文件大小:654K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁꢂ ꢃ ꢀ ꢀꢄ ꢅꢆ ꢇꢈ ꢉꢉ ꢊ  
ꢇ ꢋ ꢌꢍꢎ ꢄ ꢏꢐ ꢁꢑ ꢎꢒ ꢅꢓ ꢊꢍꢔ ꢕ ꢓꢕ ꢒꢎ ꢀꢄ ꢕꢓꢕꢖ ꢍ ꢅꢑ ꢑꢕ ꢓ  
ꢗ ꢎꢄ ꢘ ꢊꢖꢖ ꢓꢕꢀꢀ ꢌꢙꢊꢓ ꢎꢄ ꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
D
Member of the Texas Instruments  
Widebus+Family  
Pinout Optimizes DDR2 DIMM PCB Layout  
D
D
D
Checks Parity on DIMM-Independent Data  
Inputs  
D
Able to Cascade with a Second  
SN74SSTU32866A  
D
Configurable as 25-Bit 1:1 or 14-Bit 1:2  
Registered Buffer  
RESET Input Disables Differential Input  
Receivers, Resets All Registers, and  
Forces All Outputs Low, Except QERR  
D
D
D
D
D
Chip-Select Inputs Gate the Data Outputs  
from Changing State and Minimizes System  
Power Consumption  
D
D
Latch-Up Performance Exceeds 100 mA Per  
JESD 78, Class II  
Output Edge-Control Circuitry Minimizes  
Switching Noise in an Unterminated Line  
ESD Protection Exceeds JESD 22  
− 2000-V Human-Body Model (A114-A)  
− 200-V Machine Model (A115-A)  
Supports SSTL_18 Data Inputs  
Differential Clock (CLK and CLK) Inputs  
− 1000-V Charged-Device Model (C101)  
Supports LVCMOS Switching Levels on the  
Control and RESET Inputs  
description/ordering information  
This 25-bit 1:1 or 14-bit 1:2 configurable registered buffer is designed for 1.7-V to 1.9-V V  
operation. In the  
CC  
1:1 pinout configuration, only 1 device per DIMM is required to drive 9 SDRAM loads. In the 1:2 pinout  
configuration, 2 devices per DIMM are required to drive 18 SDRAM loads.  
All inputs are SSTL_18, except the reset (RESET) and control (Cn) inputs which are LVCMOS. All outputs are  
edge-controlled circuits optimized for unterminated DIMM loads and meet SSTL_18 specifications, except the  
open-drain error (QERR) output.  
The SN74SSTU32866A buffer operates from a differential clock (CLK and CLK). Data are registered at the  
crossing of CLK going high and CLK going low.  
The SN74SSTU32866A buffer accepts a parity bit from the memory controller on the parity bit (PAR_IN) input,  
compares it with the data received on the DIMM-independent D-inputs (D2−D3, D5−D6, D8−D25 when C0 = 0  
and C1 = 0; D2−D3, D5−D6, D8−D14 when C0 = 0 and C1=1; or D1−D6, D8−D13 when C0 = 1 and C1 = 1)  
and indicates whether a parity error has occurred on the open-drain QERR pin (active low). The convention is  
even parity; i.e., valid parity is defined as an even number of ones across the DIMM-independent data inputs,  
combined with the parity input bit. To calculate parity, all DIMM-independent data inputs must be tied to a known  
logic state.  
When used as a single device, the C0 and C1 inputs are tied low. In this configuration, parity is checked on the  
PAR_IN input signal, which arrives one cycle after the input data to which it applies. Two clock cycles after the  
data are registered, the corresponding partial-parity-out (PPO) and QERR signals are generated.  
ORDERING INFORMATION  
ORDERABLE  
PART NUMBER  
TOP-SIDE  
MARKING  
T
PACKAGE  
LFBGA − ZKE  
A
0°C to 70°C  
Tape and reel SN74SSTU32866AZKER  
SU866A  
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design  
guidelines are available at www.ti.com/sc/package.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Widebus+ is a trademark of Texas Instruments.  
ꢄꢦ  
Copyright 2005, Texas Instruments Incorporated  
ꢢ ꢦ ꢣ ꢢꢛ ꢜꢰ ꢞꢝ ꢡ ꢩꢩ ꢧꢡ ꢟ ꢡ ꢠ ꢦ ꢢ ꢦ ꢟ ꢣ ꢫ  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢀꢀ ꢄ ꢅ ꢆꢇꢈ ꢉ ꢉꢊ  
ꢇꢋ ꢌꢍꢎ ꢄ ꢏ ꢐꢁ ꢑ ꢎꢒꢅ ꢓꢊꢍ ꢔꢕ ꢓꢕ ꢒ ꢎꢀ ꢄꢕ ꢓꢕ ꢖ ꢍꢅꢑ ꢑ ꢕꢓ  
ꢗꢎ ꢄ ꢘ ꢊ ꢖꢖ ꢓ ꢕꢀꢀ ꢌꢙꢊꢓ ꢎ ꢄꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
description/ordering information (continued)  
When used in pairs, the C0 input of the first register is tied low, and the C0 input of the second register is tied  
high. The C1 input of both registers is tied high. Parity, which arrives one cycle after the data input to which it  
applies, is checked on the PAR_IN input signal of the first device. Two clock cycles after the data are registered,  
the corresponding PPO and QERR signals are generated on the second device. The PPO output of the first  
register is cascaded to the PAR_IN of the second SN74SSTU32866A. The QERR output of the first  
SN74SSTU32866A is left floating, and the valid error information is latched on the QERR output of the second  
SN74SSTU32866A.  
If an error occurs and the QERR output is driven low, then it stays latched low for a minimum of two clock cycles  
or until RESET is driven low. If two or more consecutive parity errors occur, then the QERR output is driven low  
and latched low for a clock duration equal to the parity-error duration or until RESET is driven low. The  
DIMM-dependent signals (DCKE, DCS, DODT, and CSR) are not included in the parity-check computation.  
The C0 input controls the pinout configuration of the 1:2 pinout from register-A configuration (when low) to  
register-B configuration (when high). The C1 input controls the pinout configuration from 25-bit 1:1 (when low)  
to 14-bit 1:2 (when high). C0 and C1 must not be switched during normal operation. They must be hard-wired  
to a valid low or high level to configure the register in the desired mode. In the 25-bit 1:1 pinout configuration,  
the A6, D6, and H6 terminals are driven low and are do-not-use (DNU) pins.  
In the DDR2 RDIMM application, RESET is specified to be completely asynchronous with respect to CLK and  
CLK. Therefore, no timing relationship can be ensured between the two. When entering reset, the register is  
cleared, and the data outputs are driven low quickly, relative to the time required to disable the differential input  
receivers. However, when coming out of reset, the register becomes active quickly, relative to the time required  
to enable the differential input receivers. As long as the data inputs are low, and the clock is stable during the  
time from the low-to-high transition of RESET until the input receivers are fully enabled, the design of the  
SN74SSTU32866A ensures that the outputs remain low, thus ensuring there will be no glitches on the output.  
To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in  
the low state during power up.  
The device supports low-power standby operation. When RESET is low, the differential input receivers are  
disabled, and undriven (floating) data, clock, and reference voltage (V  
) inputs are allowed. In addition, when  
REF  
RESET is low, all registers are reset and all outputs are forced low, except QERR. The LVCMOS RESET and  
Cn inputs always must be held at a valid logic high or low level.  
The device also supports low-power active operation by monitoring both system chip select (DCS and CSR)  
inputs and gates the Qn and PPO outputs from changing states when both DCS and CSR inputs are high. If  
either DCS or CSR input is low, then the Qn and PPO outputs function normally. Also, if the internal low-power  
signal (LPS1) is high (one cycle after DCS and CSR go high), then the device gates the QERR output from  
changing states. If LPS1 is low, then the QERR output functions normally. The RESET input has priority over  
the DCS and CSR control and, when driven low, forces the Qn and PPO outputs low and forces the QERR output  
high. If the DCS control functionality is not desired, then the CSR input can be hard-wired to ground, in which  
case the setup-time requirement for DCS is the same as for the other D data inputs. To control the low-power  
mode with DCS only, the CSR input must be pulled up to V  
through a pullup resistor.  
CC  
The two V  
pins (A3 and T3) are connected together internally by approximately 150 . However, it is  
REF  
necessary to connect only one of the two V  
must be terminated with a V  
pins to the external V  
power supply. An unused V  
pin  
REF  
REF  
REF  
coupling capacitor.  
REF  
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢀ ꢀꢄ ꢅꢆ ꢇꢈ ꢉꢉ ꢊ  
ꢇ ꢋ ꢌꢍꢎ ꢄ ꢏꢐ ꢁꢑ ꢎꢒ ꢅꢓ ꢊꢍꢔ ꢕ ꢓꢕ ꢒꢎ ꢀꢄ ꢕꢓꢕꢖ ꢍ ꢅꢑ ꢑꢕ ꢓ  
ꢗ ꢎꢄ ꢘ ꢊꢖꢖ ꢓꢕꢀꢀ ꢌꢙꢊꢓ ꢎꢄ ꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
ZKE PACKAGE  
(TOP VIEW)  
terminal assignments for 1:1 register (C0 = 0, C1 = 0)  
1
2
3
4
5
6
1
D1 (DCKE)  
D2  
2
PPO  
D15  
3
4
5
Q1 (QCKE)  
Q2  
6
A
B
C
D
E
F
V
V
DNU  
Q15  
Q16  
DNU  
Q17  
Q18  
C0  
REF  
CC  
A
B
C
D
GND  
GND  
D3  
D16  
V
V
Q3  
CC  
GND  
CC  
GND  
D4 (DODT)  
D5  
QERR  
D17  
Q4 (QODT)  
Q5  
V
CC  
GND  
V
CC  
GND  
E
F
G
H
J
D6  
D18  
Q6  
G
H
J
PAR_IN  
CLK  
RESET  
D7 (DCS)  
CSR  
D19  
V
V
C1  
CC  
GND  
CC  
GND  
Q7 (QCS)  
NC  
DNU  
NC  
CLK  
V
CC  
V
CC  
K
L
D8  
GND  
GND  
Q8  
Q19  
Q20  
Q21  
Q22  
Q23  
Q24  
Q25  
D9  
D20  
V
CC  
V
CC  
Q9  
K
L
M
N
P
R
T
D10  
D21  
GND  
GND  
Q10  
D11  
D22  
V
CC  
GND  
V
CC  
GND  
Q11  
M
N
P
R
T
D12  
D23  
Q12  
D13  
D24  
V
CC  
V
V
Q13  
CC  
D14  
D25  
V
REF  
Q14  
CC  
Each pin name in parentheses indicates the DDR2 DIMM signal name.  
DNU − Do not use  
NC − No internal connection  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢀꢀ ꢄ ꢅ ꢆꢇꢈ ꢉ ꢉꢊ  
ꢇꢋ ꢌꢍꢎ ꢄ ꢏ ꢐꢁ ꢑ ꢎꢒꢅ ꢓꢊꢍ ꢔꢕ ꢓꢕ ꢒ ꢎꢀ ꢄꢕ ꢓꢕ ꢖ ꢍꢅꢑ ꢑ ꢕꢓ  
ꢗꢎ ꢄ ꢘ ꢊ ꢖꢖ ꢓ ꢕꢀꢀ ꢌꢙꢊꢓ ꢎ ꢄꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
logic diagram for 1:1 register configuration (positive logic); C0 = 0, C1 = 0  
G2  
RESET  
H1  
CLK  
J1  
CLK  
A3, T3  
V
REF  
A1  
D1  
H2  
J2  
D1 (DCKE)  
D4 (DODT)  
D7 (DCS)  
CSR  
D
R
A5  
D5  
H5  
Q1 (QCKE)  
Q4 (QODT)  
Q7 (QCS)  
CLK  
CLK  
CLK  
Q
Q
Q
D
R
D
R
LPS0  
(internal node)  
D
R
CLK  
Q
LPS1  
(internal node)  
One of 22 Channels  
B1  
D2  
CE  
CLK  
D
R
B5  
Q
Q2  
To 21 Other Channels (D3, D5, D6, D8−D25)  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢀ ꢀꢄ ꢅꢆ ꢇꢈ ꢉꢉ ꢊ  
ꢇ ꢋ ꢌꢍꢎ ꢄ ꢏꢐ ꢁꢑ ꢎꢒ ꢅꢓ ꢊꢍꢔ ꢕ ꢓꢕ ꢒꢎ ꢀꢄ ꢕꢓꢕꢖ ꢍ ꢅꢑ ꢑꢕ ꢓ  
ꢗ ꢎꢄ ꢘ ꢊꢖꢖ ꢓꢕꢀꢀ ꢌꢙꢊꢓ ꢎꢄ ꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
parity logic diagram for 1:1 register configuration (positive logic); C0 = 0, C1 = 0  
G2  
RESET  
H1  
CLK  
J1  
CLK  
LPS0  
(internal node)  
D2−D3,  
22  
D5−D6,  
D8-D25  
D2−D3,  
D5−D6,  
D8−D25  
Q2−Q3,  
Q5−Q6,  
Q8−Q25  
CE  
D
R
A3, T3  
22  
V
REF  
CLK  
Q
22  
D2−D3,  
D5−D6,  
D8−D25  
22  
Parity  
Generator  
G5  
C1  
1
0
0
A2  
PPO  
D
Q
1
D
R
Q
D
R
Q
CLK  
CLK  
CLK  
R
CE  
G1  
G6  
PAR_IN  
D2  
QERR  
C0  
CLK  
0
1
2−Bit  
LPS1  
(internal node)  
Counter  
R
D
R
Q
CLK  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢀꢀ ꢄ ꢅ ꢆꢇꢈ ꢉ ꢉꢊ  
ꢇꢋ ꢌꢍꢎ ꢄ ꢏ ꢐꢁ ꢑ ꢎꢒꢅ ꢓꢊꢍ ꢔꢕ ꢓꢕ ꢒ ꢎꢀ ꢄꢕ ꢓꢕ ꢖ ꢍꢅꢑ ꢑ ꢕꢓ  
ꢗꢎ ꢄ ꢘ ꢊ ꢖꢖ ꢓ ꢕꢀꢀ ꢌꢙꢊꢓ ꢎ ꢄꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
ZKE PACKAGE  
(TOP VIEW)  
terminal assignments for 1:2 register-A (C0 = 0, C1 = 1)  
1
2
3
4
5
6
1
2
3
4
5
6
Q1A  
(QCKEA)  
Q1B  
(QCKEB)  
A
D1 (DCKE)  
PPO  
V
REF  
V
CC  
A
B
C
D
B
C
D2  
D3  
DNU  
DNU  
GND  
GND  
Q2A  
Q3A  
Q2B  
Q3B  
V
V
CC  
GND  
CC  
GND  
Q4A  
(QODTA)  
Q4B  
(QODTB)  
D
D4 (DODT)  
QERR  
E
F
G
H
J
E
F
D5  
D6  
DNU  
DNU  
V
V
Q5A  
Q6A  
C1  
Q5B  
Q6B  
C0  
CC  
GND  
CC  
GND  
G
PAR_IN  
RESET  
V
V
CC  
GND  
CC  
GND  
Q7A  
(QCSA)  
Q7B  
(QCSB)  
H
CLK  
D7 (DCS)  
J
K
L
CLK  
D8  
CSR  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
DNU  
V
V
NC  
NC  
CC  
GND  
CC  
GND  
K
L
Q8A  
Q8B  
D9  
V
CC  
GND  
V
CC  
GND  
Q9A  
Q9B  
M
N
P
R
T
M
N
P
R
T
D10  
D11  
D12  
D13  
D14  
Q10A  
Q11A  
Q12A  
Q13A  
Q14A  
Q10B  
Q11B  
Q12B  
Q13B  
Q14B  
V
CC  
GND  
V
CC  
GND  
V
CC  
V
V
CC  
V
REF  
CC  
Each pin name in parentheses indicates the DDR2 DIMM signal name.  
DNU − Do not use  
NC − No internal connection  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢀ ꢀꢄ ꢅꢆ ꢇꢈ ꢉꢉ ꢊ  
ꢇ ꢋ ꢌꢍꢎ ꢄ ꢏꢐ ꢁꢑ ꢎꢒ ꢅꢓ ꢊꢍꢔ ꢕ ꢓꢕ ꢒꢎ ꢀꢄ ꢕꢓꢕꢖ ꢍ ꢅꢑ ꢑꢕ ꢓ  
ꢗ ꢎꢄ ꢘ ꢊꢖꢖ ꢓꢕꢀꢀ ꢌꢙꢊꢓ ꢎꢄ ꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
logic diagram for 1:2 register-A configuration (positive logic); C0 = 0, C1 = 1  
G2  
RESET  
H1  
CLK  
J1  
CLK  
A3, T3  
V
REF  
A1  
D1  
A5  
A6  
D1 (DCKE)  
Q1A (QCKEA)  
Q1B (QCKEB)  
D
R
CLK  
CLK  
Q
Q
D5  
D6  
D4 (DODT)  
Q4A (QODTA)  
Q4B (QODTB)  
D
R
H2  
J2  
H5  
H6  
D7 (DCS)  
Q7A (QCSA)  
Q7B (QCSB)  
D
R
CLK  
Q
LPS0  
(internal node)  
CSR  
D
LPS1  
(internal node)  
CLK  
Q
R
One of Eleven Channels  
CE  
B1  
D2  
B5  
B6  
Q2A  
Q2B  
D
R
Q
CLK  
To 10 Other Channels (D3, D5, D6, D8−D14)  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢀꢀ ꢄ ꢅ ꢆꢇꢈ ꢉ ꢉꢊ  
ꢇꢋ ꢌꢍꢎ ꢄ ꢏ ꢐꢁ ꢑ ꢎꢒꢅ ꢓꢊꢍ ꢔꢕ ꢓꢕ ꢒ ꢎꢀ ꢄꢕ ꢓꢕ ꢖ ꢍꢅꢑ ꢑ ꢕꢓ  
ꢗꢎ ꢄ ꢘ ꢊ ꢖꢖ ꢓ ꢕꢀꢀ ꢌꢙꢊꢓ ꢎ ꢄꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
parity logic diagram for 1:2 register-A configuration (positive logic); C0 = 0, C1 = 1  
G2  
RESET  
H1  
CLK  
J1  
CLK  
LPS0  
(internal node)  
D2−D3,  
Q2A−Q3A,  
Q5A−Q6A,  
Q8A−Q14A  
11  
D5−D6,  
D8-D14  
D2−D3,  
D5−D6,  
D8−D14  
11  
11  
CE  
CLK  
D
R
A3, T3  
V
REF  
Q
11  
Q2B−Q3B,  
Q5B−Q6B,  
Q8B−Q14B  
D2−D3,  
D5−D6,  
D8−D14  
11  
Parity  
Generator  
G5  
C1  
1
0
0
A2  
PPO  
D
R
Q
1
D
R
Q
D
Q
CLK  
CLK  
CLK  
R
CE  
G1  
G6  
PAR_IN  
D2  
QERR  
C0  
CLK  
0
1
2−Bit  
LPS1  
(internal node)  
Counter  
D
R
R
Q
CLK  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢀ ꢀꢄ ꢅꢆ ꢇꢈ ꢉꢉ ꢊ  
ꢇ ꢋ ꢌꢍꢎ ꢄ ꢏꢐ ꢁꢑ ꢎꢒ ꢅꢓ ꢊꢍꢔ ꢕ ꢓꢕ ꢒꢎ ꢀꢄ ꢕꢓꢕꢖ ꢍ ꢅꢑ ꢑꢕ ꢓ  
ꢗ ꢎꢄ ꢘ ꢊꢖꢖ ꢓꢕꢀꢀ ꢌꢙꢊꢓ ꢎꢄ ꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
ZKE PACKAGE  
(TOP VIEW)  
terminal assignments for 1:2 register-B (C0 = 1, C1 = 1)  
1
2
3
4
5
6
1
D1  
2
3
4
5
6
A
B
C
D
E
F
PPO  
V
V
Q1A  
Q2A  
Q3A  
Q4A  
Q5A  
Q6A  
C1  
Q1B  
Q2B  
Q3B  
Q4B  
Q5B  
Q6B  
C0  
REF  
CC  
A
B
C
D
D2  
DNU  
DNU  
QERR  
DNU  
DNU  
RESET  
GND  
GND  
D3  
V
V
CC  
GND  
CC  
GND  
D4  
D5  
V
V
CC  
GND  
CC  
GND  
E
F
G
H
J
D6  
G
PAR_IN  
V
V
CC  
GND  
CC  
GND  
Q7A  
(QCSA)  
Q7B  
H
CLK  
D7 (DCS)  
(QCSB)  
J
K
L
CLK  
D8  
CSR  
DNU  
DNU  
DNU  
V
V
NC  
Q8A  
Q9A  
Q10A  
NC  
Q8B  
Q9B  
Q10B  
CC  
GND  
CC  
GND  
K
L
D9  
V
CC  
GND  
V
CC  
GND  
M
D10  
M
N
P
R
T
D11  
(DODT)  
Q11A  
(QODTA)  
Q11B  
(QODTB)  
N
DNU  
V
V
CC  
CC  
P
R
D12  
D13  
DNU  
DNU  
GND  
GND  
Q12A  
Q13A  
Q12B  
Q13B  
V
CC  
V
V
CC  
D14  
(DCKE)  
Q14A  
(QCKEA)  
Q14B  
(QCKEB)  
T
DNU  
V
REF  
CC  
Each pin name in parentheses indicates the DDR2 DIMM signal name.  
DNU − Do not use  
NC − No internal connection  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢀꢀ ꢄ ꢅ ꢆꢇꢈ ꢉ ꢉꢊ  
ꢇꢋ ꢌꢍꢎ ꢄ ꢏ ꢐꢁ ꢑ ꢎꢒꢅ ꢓꢊꢍ ꢔꢕ ꢓꢕ ꢒ ꢎꢀ ꢄꢕ ꢓꢕ ꢖ ꢍꢅꢑ ꢑ ꢕꢓ  
ꢗꢎ ꢄ ꢘ ꢊ ꢖꢖ ꢓ ꢕꢀꢀ ꢌꢙꢊꢓ ꢎ ꢄꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
logic diagram for 1:2 register-B configuration (positive logic); C0 = 1, C1 = 1  
G2  
RESET  
H1  
CLK  
J1  
CLK  
A3, T3  
V
REF  
T1  
A5  
A6  
D14 (DCKE)  
Q14A (QCKEA)  
Q14B (QCKEB)  
D
R
CLK  
CLK  
Q
Q
N1  
D5  
D6  
D11 (DODT)  
Q11A (QODTA)  
Q11B (QODTB)  
D
R
H2  
J2  
H5  
H6  
D7 (DCS)  
Q7A (QCSA)  
Q7B (QCSB)  
D
R
CLK  
Q
LPS0  
(internal node)  
CSR  
D
R
LPS1  
(internal node)  
CLK  
Q
One of Eleven Channels  
A1  
D1  
A5  
A6  
CE  
CLK  
Q1A  
Q1B  
D
R
Q
To 10 Other Channels (D2−D6, D8−D10, D12−D13)  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢀ ꢀꢄ ꢅꢆ ꢇꢈ ꢉꢉ ꢊ  
ꢇ ꢋ ꢌꢍꢎ ꢄ ꢏꢐ ꢁꢑ ꢎꢒ ꢅꢓ ꢊꢍꢔ ꢕ ꢓꢕ ꢒꢎ ꢀꢄ ꢕꢓꢕꢖ ꢍ ꢅꢑ ꢑꢕ ꢓ  
ꢗ ꢎꢄ ꢘ ꢊꢖꢖ ꢓꢕꢀꢀ ꢌꢙꢊꢓ ꢎꢄ ꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
parity logic diagram for 1:2 register-B configuration (positive logic); C0 = 1, C1 = 1  
G2  
RESET  
H1  
CLK  
J1  
CLK  
LPS0  
(internal node)  
D1−D6,  
D8-D13  
11  
11  
11  
Q1A−Q6A,  
Q8A−Q13A  
D1−D6,  
D8−D13  
CE  
D
R
A3, T3  
V
REF  
CLK  
Q
11  
Q1B−Q6B,  
Q8B−Q13B  
D1−D6,  
11  
D8−D10,  
D12−D13  
Parity  
Generator  
G5  
C1  
1
0
0
A2  
PPO  
D
Q
1
D
R
Q
D
Q
CLK  
CLK  
CLK  
R
R
CE  
G1  
G6  
PAR_IN  
D2  
QERR  
C0  
CLK  
0
1
2−Bit  
LPS1  
(internal node)  
Counter  
R
D
R
Q
CLK  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢀꢀ ꢄ ꢅ ꢆꢇꢈ ꢉ ꢉꢊ  
ꢇꢋ ꢌꢍꢎ ꢄ ꢏ ꢐꢁ ꢑ ꢎꢒꢅ ꢓꢊꢍ ꢔꢕ ꢓꢕ ꢒ ꢎꢀ ꢄꢕ ꢓꢕ ꢖ ꢍꢅꢑ ꢑ ꢕꢓ  
ꢗꢎ ꢄ ꢘ ꢊ ꢖꢖ ꢓ ꢕꢀꢀ ꢌꢙꢊꢓ ꢎ ꢄꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
TERMINAL FUNCTIONS  
ELECTRICAL  
CHARACTERISTICS  
TERMINAL NAME  
DESCRIPTION  
Ground  
Ground input  
GND  
Power-supply voltage  
Input reference voltage  
Positive master clock input  
1.8 V nominal  
0.9 V nominal  
Differential input  
Differential input  
LVCMOS input  
V
V
CC  
REF  
CLK  
Negative master clock input  
Configuration control input. Register A or Register B and 1:1 mode or 1:2 mode select.  
Asynchronous reset input. Resets registers and disables V , data, and clock  
differential-input receivers. When RESET is low, all Q outputs are forced low and the QERR  
output is forced high.  
CLK  
C0, C1  
REF  
LVCMOS input  
RESET  
Data input. Clocked in on the crossing of the rising edge of CLK and the falling edge of CLK.  
SSTL_18 inputs  
SSTL_18 inputs  
SSTL_18 input  
D1−D25  
CSR, DCS  
DODT  
Chip select inputs. Disables D1−D25 outputs switching when both inputs are high.  
The outputs of this register bit will not be suspended by the DCS and CSR control  
The outputs of this register bit will not be suspended by the DCS and CSR control  
Parity input. Arrives one clock cycle after the corresponding data input.  
Data outputs that are suspended by the DCS and CSR control  
SSTL_18 input  
DCKE  
SSTL_18 input  
PAR_IN  
1.8 V CMOS outputs  
1.8 V CMOS output  
1.8 V CMOS output  
1.8 V CMOS output  
1.8 V CMOS output  
Open-drain output  
Q1−Q25  
Partial parity out. Indicates odd parity of inputs D1−D25.  
PPO  
Data output that will not be suspended by the DCS and CSR control  
Data output that will not be suspended by the DCS and CSR control  
Data output that will not be suspended by the DCS and CSR control  
Output error bit. Timing is determined by the device mode.  
No internal connection  
QCS  
QODT  
QCKE  
QERR  
NC  
Do not use. Inputs are in standby-equivalent mode, and outputs are driven low.  
DNU  
Data inputs = D2, D3, D5, D6, D8−D25 when C0 = 0 and C1 = 0  
Data inputs = D2, D3, D5, D6, D8−D14 when C0 = 0 and C1 = 1  
Data inputs = D1−D6, D8−D10, D12, D13 when C0 = 1 and C1 = 1.  
Data outputs = Q2, Q3, Q5, Q6, Q8−Q25 when C0 = 0 and C1 = 0  
Data outputs = Q2, Q3, Q5, Q6, Q8−Q14 when C0 = 0 and C1 = 1  
Data outputs = Q1−Q6, Q8−Q10, Q12, Q13 when C0 = 1 and C1 = 1.  
FUNCTION TABLES  
INPUTS  
OUTPUTS  
RESET  
DCS  
L
CSR  
CLK  
CLK  
Dn  
L
Qn  
L
H
H
H
H
H
H
X
X
L
H
H
L
X
L
L
X
L
H
H
H
H
X
Q
Q
0
0
X
X
L or H  
L or H  
X
X or  
X or  
X or  
X or  
X or  
L
L
floating floating floating floating floating  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢀ ꢀꢄ ꢅꢆ ꢇꢈ ꢉꢉ ꢊ  
ꢇ ꢋ ꢌꢍꢎ ꢄ ꢏꢐ ꢁꢑ ꢎꢒ ꢅꢓ ꢊꢍꢔ ꢕ ꢓꢕ ꢒꢎ ꢀꢄ ꢕꢓꢕꢖ ꢍ ꢅꢑ ꢑꢕ ꢓ  
ꢗ ꢎꢄ ꢘ ꢊꢖꢖ ꢓꢕꢀꢀ ꢌꢙꢊꢓ ꢎꢄ ꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
Function Tables (Continued)  
INPUTS  
OUTPUTS  
DCKE,  
DCS,  
QCKE,  
QCS,  
RESET  
CLK  
CLK  
DODT  
QODT  
H
H
H
H
L
H
L
L or H  
L or H  
X
Q
0
X or  
X or  
X or  
L
L
floating floating floating  
PARITY AND STANDBY FUNCTION  
INPUTS  
OUTPUTS  
PPO QERR  
Σ OF INPUTS = H  
§
RESET  
CLK  
CLK  
DCS  
CSR  
PAR_IN  
D1−D25  
H
H
H
H
H
H
H
H
H
H
L
L
X
X
Even  
Odd  
Even  
Odd  
Even  
Odd  
Even  
Odd  
X
L
L
L
H
H
L
L
X
H
H
L
L
X
H
L
H
H
L
L
L
H
L
H
L
L
H
H
L
H
H
L
H
L
H
L
H
H
H
X
X
PPO  
PPO  
QERR  
QERR  
0
0
0
0
L or H  
L or H  
X
X
X
X or  
X or  
X or  
X or  
X or  
floating  
L
X
L
H
floating floating floating floating  
Data inputs = D2−D3, D5−D6, D8−D25 when C0 = 0 and C1 = 0  
Data inputs = D2−D3, D5−D6, D8−D14 when C0 = 0 and C1 = 1  
Data inputs = D1−D6, D8−D13 when C0 = 1 and C1 = 1  
PAR_IN arrives one clock cycle (C0 = 0) or two clock cycles (C0 = 1) after the data to which it applies.  
This transition assumes that QERR is high at the crossing of CLK going high and CLK going low. If QERR  
goes low, then it stays latched low for a minimum of two clock cycles or until RESET is driven low. If two  
or more consecutive parity errors occur, then the QERR output is driven low and latched low for a clock  
duration equal to the parity duration or until RESET is driven low.  
§
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢀꢀ ꢄ ꢅ ꢆꢇꢈ ꢉ ꢉꢊ  
ꢇꢋ ꢌꢍꢎ ꢄ ꢏ ꢐꢁ ꢑ ꢎꢒꢅ ꢓꢊꢍ ꢔꢕ ꢓꢕ ꢒ ꢎꢀ ꢄꢕ ꢓꢕ ꢖ ꢍꢅꢑ ꢑ ꢕꢓ  
ꢗꢎ ꢄ ꢘ ꢊ ꢖꢖ ꢓ ꢕꢀꢀ ꢌꢙꢊꢓ ꢎ ꢄꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
PARITY ERROR DETECT IN LOW-POWER MODE  
1:1 MODE  
(C0 = 0, C1 = 0)  
1:2 REGISTER-A MODE  
(C0 = 0, C1 = 1)  
1:2 REGISTER-B MODE  
(C0 = 1, C1 = 1)  
CASCADED MODE  
(Registers A and B)  
INPUT−DATA  
ERROR  
OCCURANCE  
PPO  
QERR  
PPO  
DURATION  
QERR  
DURATION  
PPO  
DURATION  
QERR  
DURATION  
PPO  
DURATION  
QERR  
DURATION  
#
||  
||  
||  
||  
||  
||  
||  
||  
DURATION  
DURATION  
2 Cycles  
2 Cycles  
2 Cycles  
n − 4  
n − 3  
n − 2  
1 Cycle  
1 Cycle  
1 Cycle  
1 Cycle  
2 Cycles  
2 Cycles  
2 Cycles  
1 Cycle  
1 Cycle  
1 Cycle  
2 Cycles  
2 Cycles  
2 Cycles  
1 Cycle  
1 Cycle  
1 Cycle  
2 Cycles  
2 Cycles  
2 Cycles  
1 Cycle  
1 Cycle  
LPM + 2  
Cycles  
LPM + 2  
Cycles  
LPM + 1  
Cycle  
LPM + 1  
Cycle  
LPM + 2  
Cycles  
LPM + 2  
Cycles  
LPM + 2  
Cycles  
LPM + 2  
Cycles  
n − 1  
n
Not detected Not detected Not detected Not detected Not detected Not detected Not detected Not detected  
If a parity error occurs before the device enters the low-power mode (LPM), then the behavior of PPO and QERR is dependent on the mode of  
the device and the position of the parity error occurrence. This table illustrates the low-power-mode effect on parity detect. The low-power mode  
is activated on the n clock cycle when DCS and CSR go high.  
#
||  
The clock-edge position of a one cycle data-input error relative to the clock-edge (n) which initiates LPM at the DCS and CSR inputs.  
If an error occurs, then the QERR output may be driven low and the PPO output driven high. These columns show the clock duration for which  
the PPO signal will be high.  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢀ ꢀꢄ ꢅꢆ ꢇꢈ ꢉꢉ ꢊ  
ꢇ ꢋ ꢌꢍꢎ ꢄ ꢏꢐ ꢁꢑ ꢎꢒ ꢅꢓ ꢊꢍꢔ ꢕ ꢓꢕ ꢒꢎ ꢀꢄ ꢕꢓꢕꢖ ꢍ ꢅꢑ ꢑꢕ ꢓ  
ꢗ ꢎꢄ ꢘ ꢊꢖꢖ ꢓꢕꢀꢀ ꢌꢙꢊꢓ ꢎꢄ ꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage range, V  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 2.5 V  
CC  
Input voltage range, V (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to 2.5 V  
I
Output voltage range, V (see Notes 1 and 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.5 V to V  
+ 0.5 V  
O
CC  
Input clamp current, I (V < 0 or V > V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
IK  
I
I
CC  
Output clamp current, I  
(V < 0 or V > V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
OK  
O O CC  
Continuous output current, I (V = 0 to V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA  
Continuous current through each V  
O
O
CC  
or GND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA  
CC  
Package thermal impedance, q (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36°C/W  
JA  
stg  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.  
2. This value is limited to 2.5 V maximum.  
3. The package thermal impedance is calculated in accordance with JESD 51-7.  
recommended operating conditions (see Note 4)  
MIN  
1.7  
NOM  
MAX  
1.9  
UNIT  
V
V
V
V
V
V
V
V
V
V
V
V
V
Supply voltage  
CC  
REF  
TT  
I
Reference voltage  
0.49 × V  
0.5 × V  
0.51 × V  
CC  
V
CC  
CC  
Termination voltage  
V
−40 mV  
REF  
V
REF  
V
+ 40 mV  
V
REF  
Input voltage  
0
V
CC  
V
AC high-level input voltage  
AC low-level input voltage  
DC high-level input voltage  
DC low-level input voltage  
High-level input voltage  
Low-level input voltage  
Data inputs, CSR, PAR_IN  
Data inputs, CSR, PAR_IN  
Data inputs, CSR, PAR_IN  
Data inputs, CSR, PAR_IN  
V
V
+ 250 mV  
+ 125 mV  
V
IH  
REF  
REF  
V
V
−250 mV  
REF  
V
IL  
V
IH  
−125 mV  
REF  
V
IL  
RESET, C  
RESET, C  
0.65 × V  
CC  
V
IH  
n
0.35 × V  
CC  
V
IL  
n
Common-mode input voltage range CLK, CLK  
0.675  
600  
1.125  
V
ICR  
I(PP)  
Peak-to-peak input voltage  
High-level output current  
CLK, CLK  
mV  
mA  
I
Q outputs, PPO  
Q outputs, PPO  
QERR output  
−8  
8
OH  
I
Low-level output current  
mA  
OL  
8
T
Operating free-air temperature  
0
70  
_C  
A
NOTE 4: The RESET and Cn inputs of the device must be held at valid logic voltage levels (not floating) to ensure proper device operation. The  
differential inputs must not be floating unless RESET is low. Refer to the TI application report, Implications of Slow or Floating CMOS  
Inputs, literature number SCBA004.  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢀꢀ ꢄ ꢅ ꢆꢇꢈ ꢉ ꢉꢊ  
ꢇꢋ ꢌꢍꢎ ꢄ ꢏ ꢐꢁ ꢑ ꢎꢒꢅ ꢓꢊꢍ ꢔꢕ ꢓꢕ ꢒ ꢎꢀ ꢄꢕ ꢓꢕ ꢖ ꢍꢅꢑ ꢑ ꢕꢓ  
ꢗꢎ ꢄ ꢘ ꢊ ꢖꢖ ꢓ ꢕꢀꢀ ꢌꢙꢊꢓ ꢎ ꢄꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
V
MIN TYP  
−0.2  
MAX  
UNIT  
CC  
I
I
I
I
I
= −100 µA  
= −6 mA  
= 100 µA  
= 6 mA  
1.7 V to 1.9 V  
1.7 V  
V
OH  
OH  
OL  
OL  
OL  
CC  
1.3  
V
OH  
V
OL  
V
Q outputs, PPO  
1.7 V to 1.9 V  
1.7 V  
0.2  
0.4  
0.35  
5
Q outputs, PPO  
QERR output  
V
= 8 mA  
1.7 V  
I
I
All inputs  
V = V  
CC  
or GND  
or GND  
1.9 V  
µA  
µA  
µA  
mA  
I
I
QERR output  
Static standby  
Static operating  
V
= V  
O CC  
1.9 V  
10  
OZ  
RESET = GND  
RESET = V , V = V  
100  
50  
I
I
I
= 0  
= 0  
1.9 V  
1.8 V  
CC  
O
or V  
or V  
CC  
I
IH(AC)  
IH(AC)  
IL(AC)  
Dynamic operating − RESET = V , V = V  
clock only  
,
,
µA/  
MHz  
CC  
I
IL(AC)  
43  
25  
CLK and CLK switching 50% duty cycle  
Dynamic operating −  
per each data input,  
1:1 configuration  
µA/  
clock  
RESET = V , V = V  
CC IH(AC)  
or V  
IL(AC)  
I
I
CCD  
O
CLK and CLK switching 50% duty cycle,  
MHz/  
D input  
one data input switching at one-half clock  
frequency, 50% duty cycle  
Dynamic operating −  
per each data input,  
1:2 configuration  
49  
46  
Chip-select-enabled  
low-power active  
mode − clock only  
RESET = V , V = V  
CC IH(AC)  
or V  
,
µA/  
MHz  
I
IL(AC)  
CLK and CLK switching 50% duty cycle  
Chip-select-enabled  
low-power active  
mode −  
2
2
I
I
O
= 0  
1.8 V  
CCDLP  
µA/  
clock  
MHz/  
D input  
RESET = V , V = V  
CC IH(AC)  
or V  
IL(AC)  
,
I
1:1 configuration  
CLK and CLK switching 50% duty cycle,  
one data input switching at one-half clock  
frequency, 50% duty cycle  
Chip-select-enabled  
low-power active  
mode −  
1:2 configuration  
Data inputs, CSR,  
PAR_IN  
V = V  
REF  
250 mV  
2.5  
2
3
3.5  
3
I
C
pF  
1.8 V  
i
CLK, CLK  
RESET  
V
= 0.9 V, V = 600 mV  
I(PP)  
ICR  
V = V  
or GND  
2.5  
I
CC  
All typical values are at V  
CC  
= 1.8 V, T = 25°C.  
A
Each V  
pin (A3 or T3) must be tested independently, with the other (untested) pin open. Since the two V pins are connected internally,  
REF  
REF  
the total maximum current on the V  
REF  
pin is doubled ( 10 µA).  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢀ ꢀꢄ ꢅꢆ ꢇꢈ ꢉꢉ ꢊ  
ꢇ ꢋ ꢌꢍꢎ ꢄ ꢏꢐ ꢁꢑ ꢎꢒ ꢅꢓ ꢊꢍꢔ ꢕ ꢓꢕ ꢒꢎ ꢀꢄ ꢕꢓꢕꢖ ꢍ ꢅꢑ ꢑꢕ ꢓ  
ꢗ ꢎꢄ ꢘ ꢊꢖꢖ ꢓꢕꢀꢀ ꢌꢙꢊꢓ ꢎꢄ ꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
timing requirements over recommended operating free-air temperature range (unless otherwise  
noted) (see Figure 1 and Note 5)  
V = 1.8 V  
CC  
0.1 V  
UNIT  
MIN MAX  
UNIT  
MHz  
ns  
f
t
t
t
Clock frequency  
500  
clock  
Pulse duration, CLK, CLK high or low  
Differential inputs active time (see Note 6)  
Differential inputs inactive time (see Note 7)  
1
w
10  
15  
ns  
act  
ns  
inact  
0.6  
0.5  
0.5  
0.5  
0.5  
0.5  
DCS before CLK, CLK, CSR high; CSR before CLK, CLK, DCS high  
DCS before CLK, CLK, CSR low  
DODT, DCKE, and Data before CLK, CLK↓  
PAR_IN before CLK, CLK↓  
t
Setup time  
Hold time  
ns  
ns  
su  
DCS, DODT, DCKE, and Data after CLK, CLK↓  
PAR_IN after CLK, CLK↓  
t
h
NOTES: 5. All inputs slew rate is 1 V/ns 20%.  
6.  
7.  
V
V
low.  
must be held at a valid input level, and data inputs must be held low for a minimum time of t  
, data, and clock inputs must be held at valid voltage levels (not floating) for a minimum time of t  
REF inact  
max, after RESET is taken high.  
max, after RESET is taken  
REF  
act  
switching characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
V
= 1.8 V  
CC  
0.1 V  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
UNIT  
MIN  
MAX  
f
t
(see Figure 1)  
500  
MHz  
ns  
max  
Q
1.41  
2.15  
(see Figure 1)  
CLK and CLK  
CLK and CLK  
pdm  
see Figure 4  
see Figure 3  
PPO  
0.4  
0.7  
0.7  
1.7  
2.5  
2.1  
2.35  
3
ns  
t
t
t
t
t
t
t
pd  
PLH  
PHL  
pdmss  
ns  
ns  
ns  
ns  
CLK and CLK  
CLK and CLK  
RESET  
QERR  
(see Figure 1)  
Q
Q
(see Figure 1)  
RPHL  
RPHL  
RPLH  
PPO  
QERR  
3
(see Figure 4)  
(see Figure 3)  
3
RESET  
Includes 350-ps test-load transmission-line delay.  
output slew rates over recommended operating free-air temperature range (unless otherwise  
noted) (see Figure 2)  
V = 1.8 V  
CC  
0.1 V  
PARAMETER  
FROM  
TO  
UNIT  
MIN  
MAX  
dV/dt_r  
dV/dt_f  
20%  
80%  
80%  
20%  
1
1
4
4
V/ns  
V/ns  
V/ns  
dV/dt_∆  
80% or 20%  
1
20% or 80%  
Difference between dV/dt_r (rising edge rate) and dV/dt_f (falling edge rate).  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢀꢀ ꢄ ꢅ ꢆꢇꢈ ꢉ ꢉꢊ  
ꢇꢋ ꢌꢍꢎ ꢄ ꢏ ꢐꢁ ꢑ ꢎꢒꢅ ꢓꢊꢍ ꢔꢕ ꢓꢕ ꢒ ꢎꢀ ꢄꢕ ꢓꢕ ꢖ ꢍꢅꢑ ꢑ ꢕꢓ  
ꢗꢎ ꢄ ꢘ ꢊ ꢖꢖ ꢓ ꢕꢀꢀ ꢌꢙꢊꢓ ꢎ ꢄꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
PARAMETER MEASUREMENT INFORMATION  
V
CC  
Z
= 50 Ω,  
= 350 ps  
O
Test  
DUT  
t
D
Point  
CLK  
R
= 1 kΩ  
L
Output  
Test Point  
Out  
Clock Inputs  
R
= 100 Ω  
L
C
= 30 pF  
L
Z
t
= 50 Ω,  
= 350 ps  
O
D
CLK  
R = 1 kΩ  
L
(see Note A)  
Test  
Point  
Z
= 50 Ω,  
= 350 ps  
O
t
D
LOAD CIRCUIT  
t
w
V
V
IH  
V
REF  
V
V
Input  
REF  
V
IL  
LVCMOS  
RESET  
Input  
CC  
V
/2  
V
/2  
CC  
CC  
VOLTAGE WAVEFORMS  
PULSE DURATION  
0 V  
V
I(PP)  
t
t
act  
inact  
Timing  
Inputs  
V
ICR  
ICR  
I
I
(operating)  
I
CC  
CC  
90%  
(see  
Note B)  
10%  
(standby)  
CC  
t
t
PLH  
PHL  
VOLTAGE AND CURRENT WAVEFORMS  
INPUTS ACTIVE AND INACTIVE TIMES  
V
OH  
Output  
V
CC  
/2  
V
CC  
/2  
V
OL  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
V
I(PP)  
V
V
IH  
Timing  
Inputs  
LVCMOS  
RESET  
Input  
V
ICR  
V
CC  
/2  
IL  
t
PHL  
/2  
t
t
h
su  
V
V
V
OH  
IH  
V
Input  
V
REF  
Output  
V
REF  
CC  
V
OL  
IL  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
NOTES: A.  
B.  
C
includes probe and jig capacitance.  
tested with clock and data inputs held at V  
L
I
or GND, and I = 0 mA.  
CC  
CC O  
C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z = 50 ,  
O
input slew rate = 1 V/ns 20% (unless otherwise noted).  
D. The outputs are measured one at a time, with one transition per measurement.  
E.  
F.  
G.  
H.  
I.  
V
V
V
V
= V = V /2  
REF TT  
IH  
IL  
CC  
+ 250 mV (ac voltage levels) for differential inputs. V = V for LVCMOS input.  
CC  
= V  
REF  
IH  
= V  
− 250 mV (ac voltage levels) for differential inputs. V = GND for LVCMOS input.  
REF  
= 600 mV  
IL  
I(PP)  
t
and t  
PHL  
are the same as t .  
pd  
PLH  
Figure 1. Data Output Load Circuit and Voltage Waveforms  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢀ ꢀꢄ ꢅꢆ ꢇꢈ ꢉꢉ ꢊ  
ꢇ ꢋ ꢌꢍꢎ ꢄ ꢏꢐ ꢁꢑ ꢎꢒ ꢅꢓ ꢊꢍꢔ ꢕ ꢓꢕ ꢒꢎ ꢀꢄ ꢕꢓꢕꢖ ꢍ ꢅꢑ ꢑꢕ ꢓ  
ꢗ ꢎꢄ ꢘ ꢊꢖꢖ ꢓꢕꢀꢀ ꢌꢙꢊꢓ ꢎꢄ ꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
PARAMETER MEASUREMENT INFORMATION  
V
CC  
DUT  
R
= 50 Ω  
L
V
V
Output  
OH  
Out  
Test Point  
80%  
C
= 10 pF  
L
20%  
(see Note A)  
OL  
dV_f  
dt_f  
VOLTAGE WAVEFORMS  
LOAD CIRCUIT  
HIGH-TO-LOW SLEW-RATE MEASUREMENT  
HIGH-TO-LOW SLEW-RATE MEASUREMENT  
DUT  
Out  
dt_r  
dV_r  
Test Point  
= 50 Ω  
V
OH  
80%  
C
= 10pF  
L
R
L
(see Note A)  
20%  
V
OL  
Output  
LOAD CIRCUIT  
LOW-TO-HIGH SLEW-RATE MEASUREMENT  
VOLTAGE WAVEFORMS  
LOW-TO-HIGH SLEW-RATE MEASUREMENT  
NOTES: A.  
C includes probe and jig capacitance.  
L
B. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z = 50 ,  
O
input slew rate = 1 V/ns 20% (unless otherwise specified).  
Figure 2. Data Output Slew-Rate Measurement Information  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢀꢀ ꢄ ꢅ ꢆꢇꢈ ꢉ ꢉꢊ  
ꢇꢋ ꢌꢍꢎ ꢄ ꢏ ꢐꢁ ꢑ ꢎꢒꢅ ꢓꢊꢍ ꢔꢕ ꢓꢕ ꢒ ꢎꢀ ꢄꢕ ꢓꢕ ꢖ ꢍꢅꢑ ꢑ ꢕꢓ  
ꢗꢎ ꢄ ꢘ ꢊ ꢖꢖ ꢓ ꢕꢀꢀ ꢌꢙꢊꢓ ꢎ ꢄꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
PARAMETER MEASUREMENT INFORMATION  
V
CC  
V
I(PP)  
Timing  
Inputs  
DUT  
V
ICR  
V
ICR  
R
= 1 kΩ  
L
t
PHL  
Out  
Test Point  
V
V
CC  
Output  
Waveform 1  
C
= 10 pF  
V
CC  
/2  
L
(see Note A)  
OL  
VOLTAGE WAVEFORMS  
OPEN-DRAIN OUTPUT TRANSITION TIME  
(HIGH-TO-LOW)  
LOAD CIRCUIT  
V
I(PP)  
LVCMOS  
RESET  
Input  
V
CC  
Timing  
Inputs  
V
CC  
/2  
V
ICR  
V
ICR  
0 V  
t
PLH  
t
PHL  
V
OH  
V
OH  
Output  
Waveform 2  
Output  
Waveform 2  
0.15 V  
0.15 V  
0 V  
0 V  
VOLTAGE WAVEFORMS  
VOLTAGE WAVEFORMS  
OPEN-DRAIN OUTPUT TRANSITION TIME  
(LOW-TO-HIGH)  
OPEN-DRAIN OUTPUT TRANSITION TIME  
(LOW-TO-HIGH)  
NOTES: A.  
C includes probe and jig capacitance.  
L
B. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z = 50 ,  
O
input slew rate = 1 V/ns 20% (unless otherwise noted).  
C.  
t
and t  
PHL  
are the same as t .  
pd  
PLH  
Figure 3. Error Output Load Circuit and Voltage Waveforms  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢀ ꢀꢄ ꢅꢆ ꢇꢈ ꢉꢉ ꢊ  
ꢇ ꢋ ꢌꢍꢎ ꢄ ꢏꢐ ꢁꢑ ꢎꢒ ꢅꢓ ꢊꢍꢔ ꢕ ꢓꢕ ꢒꢎ ꢀꢄ ꢕꢓꢕꢖ ꢍ ꢅꢑ ꢑꢕ ꢓ  
ꢗ ꢎꢄ ꢘ ꢊꢖꢖ ꢓꢕꢀꢀ ꢌꢙꢊꢓ ꢎꢄ ꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
PARAMETER MEASUREMENT INFORMATION  
DUT  
Out  
Test Point  
= 1 kΩ  
C
= 5 pF  
L
R
L
(see Note A)  
LOAD CIRCUIT  
V
I(PP)  
V
V
IH  
LVCMOS  
RESET  
Input  
Timing  
Inputs  
V
ICR  
V
ICR  
V
CC  
/2  
IL  
t
t
PHL  
t
PLH  
PHL  
V
OH  
OL  
V
V
OH  
Output  
V
TT  
V
TT  
Output  
V
TT  
V
OL  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
NOTES: A.  
C includes probe and jig capacitance.  
L
B. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z = 50 ,  
O
input slew rate = 1 V/ns 20% (unless otherwise noted).  
C.  
D.  
E.  
F.  
V
V
V
V
= V = V /2  
REF TT  
IH  
IL  
CC  
+ 250 mV (ac voltage levels) for differential inputs. V = V for LVCMOS input.  
CC  
= V  
REF  
IH  
= V  
− 250 mV (ac voltage levels) for differential inputs. V = GND for LVCMOS input.  
REF  
= 600 mV  
IL  
I(PP)  
G.  
t
and t  
are the same as t .  
pd  
PLH  
PHL  
Figure 4. Partial-Parity-Out Load Circuit and Voltage Waveforms  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢀꢀ ꢄ ꢅ ꢆꢇꢈ ꢉ ꢉꢊ  
ꢇꢋ ꢌꢍꢎ ꢄ ꢏ ꢐꢁ ꢑ ꢎꢒꢅ ꢓꢊꢍ ꢔꢕ ꢓꢕ ꢒ ꢎꢀ ꢄꢕ ꢓꢕ ꢖ ꢍꢅꢑ ꢑ ꢕꢓ  
ꢗꢎ ꢄ ꢘ ꢊ ꢖꢖ ꢓ ꢕꢀꢀ ꢌꢙꢊꢓ ꢎ ꢄꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
APPLICATION INFORMATION  
SN74SSTU32866A used as a single device in the 1:1 register configuration; C0 = 0, C1 = 0  
Register 1 of 1  
Qn  
1D  
C1  
Dn  
22  
22  
22  
22  
QERR  
PPO  
1D  
C1  
1D  
C1  
1D  
C1  
Latching  
and  
Reset  
Function  
C0 = 0  
PAR_IN  
Clock  
C1 = 0  
This function holds the error for two cycles. For details, see the parity logic diagram.  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢀ ꢀꢄ ꢅꢆ ꢇꢈ ꢉꢉ ꢊ  
ꢇ ꢋ ꢌꢍꢎ ꢄ ꢏꢐ ꢁꢑ ꢎꢒ ꢅꢓ ꢊꢍꢔ ꢕ ꢓꢕ ꢒꢎ ꢀꢄ ꢕꢓꢕꢖ ꢍ ꢅꢑ ꢑꢕ ꢓ  
ꢗ ꢎꢄ ꢘ ꢊꢖꢖ ꢓꢕꢀꢀ ꢌꢙꢊꢓ ꢎꢄ ꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
timing diagram for SN74SSTU32866A used as a single device; C0 = 0, C1 = 0  
(RESET switches from L to H)  
RESET  
DCS  
CSR  
n
n + 1  
n + 2  
n + 3  
n + 4  
CLK  
CLK  
t
t
t
h
su  
act  
D1−D25  
t
, t  
pdm pdmss  
CLK to Q  
Q1−Q25  
t
t
su  
h
PAR_IN  
t
pd  
CLK to PPO  
PPO  
t
t
, t  
PHL PLH  
PHL  
CLK to QERR  
CLK to QERR  
Data to QERR Latency  
QERR  
H, L, or X  
H or L  
After RESET is switched from low to high, all data and PAR_IN input signals must be set and held low for a minimum time of t  
to avoid false error.  
If the data is clocked in on the n clock pulse, then the QERR output signal will be generated on the n + 2 clock pulse, and it will be valid  
on the n + 3 clock pulse.  
max,  
act  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢀꢀ ꢄ ꢅ ꢆꢇꢈ ꢉ ꢉꢊ  
ꢇꢋ ꢌꢍꢎ ꢄ ꢏ ꢐꢁ ꢑ ꢎꢒꢅ ꢓꢊꢍ ꢔꢕ ꢓꢕ ꢒ ꢎꢀ ꢄꢕ ꢓꢕ ꢖ ꢍꢅꢑ ꢑ ꢕꢓ  
ꢗꢎ ꢄ ꢘ ꢊ ꢖꢖ ꢓ ꢕꢀꢀ ꢌꢙꢊꢓ ꢎ ꢄꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
timing diagram for SN74SSTU32866A used as a single device; C0 = 0, C1 = 0  
(RESET = H)  
RESET  
DCS  
CSR  
n
n + 1  
n + 2  
n + 3  
n + 4  
CLK  
CLK  
t
t
su  
h
D1−D25  
Q1−Q25  
t
, t  
pdm pdmss  
CLK to Q  
t
t
su  
h
PAR_IN  
PPO  
t
pd  
CLK to PPO  
t
or t  
PLH  
PHL  
CLK to QERR  
Data to PPO Latency  
QERR  
Data to QERR Latency  
Output signal is dependent on  
the prior unknown input event  
Unknown input  
event  
H or L  
If the data is clocked in on the n clock pulse, then the QERR output signal will be generated on the n + 2 clock pulse, and it will be valid on n  
+ 3 clock pulse. If an error occurs and the QERR output is driven low, then it stays latched low for a minimum of two clock cycles or until RESET  
is driven low.  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢀ ꢀꢄ ꢅꢆ ꢇꢈ ꢉꢉ ꢊ  
ꢇ ꢋ ꢌꢍꢎ ꢄ ꢏꢐ ꢁꢑ ꢎꢒ ꢅꢓ ꢊꢍꢔ ꢕ ꢓꢕ ꢒꢎ ꢀꢄ ꢕꢓꢕꢖ ꢍ ꢅꢑ ꢑꢕ ꢓ  
ꢗ ꢎꢄ ꢘ ꢊꢖꢖ ꢓꢕꢀꢀ ꢌꢙꢊꢓ ꢎꢄ ꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
timing diagram for SN74SSTU32866A used as a single device; C0 = 0, C1 = 0  
(RESET switches from H to L)  
RESET  
t
inact  
DCS  
CSR  
CLK  
CLK  
D1−D25  
t
RPHL  
RESET to Q  
Q1−Q25  
PAR_IN  
t
RPHL  
RESET to PPO  
PPO  
QERR  
t
RPLH  
RESET to QERR  
H, L, or X  
H or L  
After RESET is switched from high to low, all data and clock input signals must be held at valid logic levels (not floating) for a minimum  
time of t max.  
inact  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢀꢀ ꢄ ꢅ ꢆꢇꢈ ꢉ ꢉꢊ  
ꢇꢋ ꢌꢍꢎ ꢄ ꢏ ꢐꢁ ꢑ ꢎꢒꢅ ꢓꢊꢍ ꢔꢕ ꢓꢕ ꢒ ꢎꢀ ꢄꢕ ꢓꢕ ꢖ ꢍꢅꢑ ꢑ ꢕꢓ  
ꢗꢎ ꢄ ꢘ ꢊ ꢖꢖ ꢓ ꢕꢀꢀ ꢌꢙꢊꢓ ꢎ ꢄꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
SN74SSTU32866A used in pair in the 1:2 register configuration  
Register 1 of 2 (1:2 Register-A Configuration); C0 = 0, C1 = 1  
QnA  
QnB  
Dn  
1D  
C1  
22  
11  
11  
11  
11  
11  
QERR  
PPO  
1D  
C1  
1D  
C1  
1D  
C1  
Latching  
and  
Reset  
C0 = 0  
Function  
PAR_IN  
Clock  
C1 = 0  
Register 2 of 2 (1:2 Register-B Configuration); C0 = 1, C1 = 1  
QnA  
QnB  
1D  
C1  
11  
11  
11  
11  
11  
QERR  
PPO  
1D  
C1  
1D  
C1  
1D  
C1  
Latching  
and  
Reset  
C0 = 1  
Function  
PAR_IN  
Clock  
C1 = 0  
This function holds the error for two cycles. For details, see the parity logic diagram.  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢀ ꢀꢄ ꢅꢆ ꢇꢈ ꢉꢉ ꢊ  
ꢇ ꢋ ꢌꢍꢎ ꢄ ꢏꢐ ꢁꢑ ꢎꢒ ꢅꢓ ꢊꢍꢔ ꢕ ꢓꢕ ꢒꢎ ꢀꢄ ꢕꢓꢕꢖ ꢍ ꢅꢑ ꢑꢕ ꢓ  
ꢗ ꢎꢄ ꢘ ꢊꢖꢖ ꢓꢕꢀꢀ ꢌꢙꢊꢓ ꢎꢄ ꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
timing diagram for the first SN74SSTU32866A (1:2 Register-A configuration) device used in pair;  
C0 = 0, C1 = 1 (RESET switches from L to H)  
RESET  
DCS  
CSR  
n
n + 1  
n + 2  
n + 3  
n + 4  
CLK  
CLK  
t
t
t
h
su  
act  
D1−D14  
t
, t  
pdm pdmss  
CLK to Q  
Q1−Q14  
t
t
su  
h
PAR_IN  
t
pd  
CLK to PPO  
PPO  
t
t
, t  
PHL PLH  
PHL  
CLK to QERR  
CLK to QERR  
QERR  
(not used)  
Data to QERR  
Latency  
H, L, or X  
H or L  
After RESET is switched from low to high, all data and PAR_IN input signals must be set and held low for a minimum time of t  
to avoid false error.  
If the data is clocked in on the n clock pulse, then the QERR output signal will be generated on the n + 1 clock pulse, and it will be valid  
on the n + 2 clock pulse.  
max,  
act  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢀꢀ ꢄ ꢅ ꢆꢇꢈ ꢉ ꢉꢊ  
ꢇꢋ ꢌꢍꢎ ꢄ ꢏ ꢐꢁ ꢑ ꢎꢒꢅ ꢓꢊꢍ ꢔꢕ ꢓꢕ ꢒ ꢎꢀ ꢄꢕ ꢓꢕ ꢖ ꢍꢅꢑ ꢑ ꢕꢓ  
ꢗꢎ ꢄ ꢘ ꢊ ꢖꢖ ꢓ ꢕꢀꢀ ꢌꢙꢊꢓ ꢎ ꢄꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
timing diagram for the first SN74SSTU32866A (1:2 Register-A configuration) device used in pair;  
C0 = 0, C1 = 1 (RESET = H)  
RESET  
DCS  
CSR  
n
n + 1  
n + 2  
n + 3  
n + 4  
CLK  
CLK  
t
t
su  
h
D1−D14  
t
, t  
pdm pdmss  
CLK to Q  
Q1−Q14  
PAR_IN  
t
t
su  
h
t
pd  
CLK to PPO  
PPO  
t
or t  
PLH  
PHL  
CLK to QERR  
Data to PPO  
Latency  
QERR  
(not used)  
Data to QERR  
Latency  
Output signal is dependent on  
the prior unknown input event  
Unknown input  
event  
H or L  
If the data is clocked in on the n clock pulse, then the QERR output signal will be generated on the n + 1 clock pulse, and it will be valid on n  
+ 2 clock pulse. If an error occurs and the QERR output is driven low, then it stays latched low for a minimum of two clock cycles or until RESET  
is driven low.  
28  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢀ ꢀꢄ ꢅꢆ ꢇꢈ ꢉꢉ ꢊ  
ꢇ ꢋ ꢌꢍꢎ ꢄ ꢏꢐ ꢁꢑ ꢎꢒ ꢅꢓ ꢊꢍꢔ ꢕ ꢓꢕ ꢒꢎ ꢀꢄ ꢕꢓꢕꢖ ꢍ ꢅꢑ ꢑꢕ ꢓ  
ꢗ ꢎꢄ ꢘ ꢊꢖꢖ ꢓꢕꢀꢀ ꢌꢙꢊꢓ ꢎꢄ ꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
timing diagram for the first SN74SSTU32866A (1:2 Register-A configuration) device used in pair;  
C0 = 0, C1 = 1 (RESET switches from H to L)  
RESET  
t
inact  
DCS  
CSR  
CLK  
CLK  
D1−D14  
Q1−Q14  
t
RPHL  
RESET to Q  
PAR_IN  
t
RPHL  
RESET to PPO  
PPO  
QERR  
(not used)  
t
RPLH  
RESET to QERR  
H, L, or X  
H or L  
After RESET is switched from high to low, all data and clock input signals must be held at valid logic levels (not floating) for a minimum  
time of t max.  
inact  
29  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢀꢀ ꢄ ꢅ ꢆꢇꢈ ꢉ ꢉꢊ  
ꢇꢋ ꢌꢍꢎ ꢄ ꢏ ꢐꢁ ꢑ ꢎꢒꢅ ꢓꢊꢍ ꢔꢕ ꢓꢕ ꢒ ꢎꢀ ꢄꢕ ꢓꢕ ꢖ ꢍꢅꢑ ꢑ ꢕꢓ  
ꢗꢎ ꢄ ꢘ ꢊ ꢖꢖ ꢓ ꢕꢀꢀ ꢌꢙꢊꢓ ꢎ ꢄꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
timing diagram for the second SN74SSTU32866A (1:2 Register-B configuration) device used in  
pair; C0 = 1, C1 = 1 (RESET switches from L to H)  
RESET  
DCS  
CSR  
n
n + 1  
n + 2  
n + 3  
n + 4  
CLK  
CLK  
t
t
t
h
su  
act  
D1−D14  
t
, t  
pdm pdmss  
CLK to Q  
Q1−Q14  
t
t
su  
h
‡  
PAR_IN  
t
pd  
CLK to PPO  
PPO  
(not used)  
t
t
, t  
PHL PLH  
PHL  
CLK to QERR  
CLK to QERR  
§
QERR  
Data to QERR Latency  
H, L, or X  
H or L  
After RESET is switched from low to high, all data and PAR_IN input signals must be set and held low for a minimum time of t  
to avoid false error.  
PAR_IN is driven from PPO of the first SN74SSTU32866A device.  
If the data is clocked in on the n clock pulse, then the QERR output signal will be generated on the n + 2 clock pulse, and it will be valid  
on the n + 3 clock pulse.  
max,  
act  
§
30  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀꢁꢂ ꢃ ꢀ ꢀꢄ ꢅꢆ ꢇꢈ ꢉꢉ ꢊ  
ꢇ ꢋ ꢌꢍꢎ ꢄ ꢏꢐ ꢁꢑ ꢎꢒ ꢅꢓ ꢊꢍꢔ ꢕ ꢓꢕ ꢒꢎ ꢀꢄ ꢕꢓꢕꢖ ꢍ ꢅꢑ ꢑꢕ ꢓ  
ꢗ ꢎꢄ ꢘ ꢊꢖꢖ ꢓꢕꢀꢀ ꢌꢙꢊꢓ ꢎꢄ ꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
timing diagram for the second SN74SSTU32866A (1:2 Register-B configuration) device used in  
pair; C0 = 1, C1 = 1 (RESET = H)  
RESET  
DCS  
CSR  
n
n + 1  
n + 2  
n + 3  
n + 4  
CLK  
CLK  
t
t
su  
h
D1−D14  
Q1−Q14  
t
, t  
pdm pdmss  
CLK to Q  
t
t
su  
h
PAR_IN  
t
pd  
CLK to PPO  
PPO  
(not used)  
t
or t  
PLH  
PHL  
CLK to QERR  
Data to PPO Latency  
QERR  
Data to QERR Latency  
Unknown input  
event  
Output signal is dependent on  
the prior unknown input event  
H or L  
PAR_IN is driven from PPO of the first SN74SSTU32866A device.  
If the data is clocked in on the n clock pulse, then the QERR output signal will be generated on the n + 2 clock pulse, and it will be valid on n  
+ 3 clock pulse. If an error occurs and the QERR output is driven low, then it stays latched low for a minimum of two clock cycles or until RESET  
is driven low.  
31  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
ꢀ ꢁꢂ ꢃꢀꢀ ꢄ ꢅ ꢆꢇꢈ ꢉ ꢉꢊ  
ꢇꢋ ꢌꢍꢎ ꢄ ꢏ ꢐꢁ ꢑ ꢎꢒꢅ ꢓꢊꢍ ꢔꢕ ꢓꢕ ꢒ ꢎꢀ ꢄꢕ ꢓꢕ ꢖ ꢍꢅꢑ ꢑ ꢕꢓ  
ꢗꢎ ꢄ ꢘ ꢊ ꢖꢖ ꢓ ꢕꢀꢀ ꢌꢙꢊꢓ ꢎ ꢄꢚ ꢄꢕ ꢀ ꢄ  
SCAS803A − JUNE 2005 − REVISED NOVEMBER 2007  
timing diagram for the second SN74SSTU32866A (1:2 Register-B configuration) device used in  
pair; C0 = 1, C1 = 1 (RESET switches from H to L)  
RESET  
t
inact  
DCS  
CSR  
CLK  
CLK  
D1−D14  
t
RPHL  
RESET to Q  
Q1−Q14  
PAR_IN  
t
RPHL  
RESET to PPO  
PPO  
(not used)  
QERR  
t
RPLH  
RESET to QERR  
H, L, or X  
H or L  
After RESET is switched from high to low, all data and clock input signals must be held at valid logic levels (not floating) for a minimum  
time of t max.  
inact  
32  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All  
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time  
of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which  
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such  
components to meet such requirements.  
Products  
Audio  
Applications  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
www.ti.com/security  
Medical  
Logic  
Security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense www.ti.com/space-avionics-defense  
microcontroller.ti.com  
www.ti-rfid.com  
Video and Imaging  
www.ti.com/video  
OMAP Mobile Processors www.ti.com/omap  
Wireless Connectivity www.ti.com/wirelessconnectivity  
TI E2E Community  
e2e.ti.com  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2012, Texas Instruments Incorporated  

相关型号:

SN74SSTU32866AZKER

25-BIT CONFIGURABLE REGISTERED BUFFER WITH ADDRESS-PARITY TEST
TI

SN74SSTU32866GKER

25-BIT CONFIGURABLE REGISTERED BUFFER WITH ADDRESS-PARITY TEST
TI

SN74SSTU32866ZKER

25-BIT CONFIGURABLE REGISTERED BUFFER WITH ADDRESS-PARITY TEST
TI

SN74SSTUB32864

25-BIT CONFIGURABLE REGISTERED BUFFER
TI

SN74SSTUB32864NMJR

25-BIT CONFIGURABLE REGISTERED BUFFER
TI

SN74SSTUB32864ZKER

25-BIT CONFIGURABLE REGISTERED BUFFER
TI

SN74SSTUB32864_V01

25-BIT CONFIGURABLE REGISTERED BUFFER
TI

SN74SSTUB32866

25-BIT CONFIGURABLE REGISTERED BUFFER WITH ADDRESS-PARITY TEST
TI

SN74SSTUB32866NMJR

25-BIT CONFIGURABLE REGISTERED BUFFER WITH ADDRESS-PARITY TEST
TI

SN74SSTUB32866ZKER

25-BIT CONFIGURABLE REGISTERED BUFFER WITH ADDRESS-PARITY TEST
TI

SN74SSTUB32866ZWLR

25-BIT CONFIGURABLE REGISTERED BUFFER WITH ADDRESS-PARITY TEST
TI

SN74SSTUB32866_09

25-BIT CONFIGURABLE REGISTERED BUFFER WITH ADDRESS-PARITY TEST
TI