SN75ALS085DWG4 [TI]

LAN Access Unit Interface Dual Driver/Receiver 24-SOIC 0 to 70;
SN75ALS085DWG4
型号: SN75ALS085DWG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

LAN Access Unit Interface Dual Driver/Receiver 24-SOIC 0 to 70

局域网 驱动 光电二极管 接口集成电路 驱动器
文件: 总19页 (文件大小:291K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN75ALS085  
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER  
SLLS054D – APRIL 1989 – REVISED OCTOBER 2001  
DW OR NT PACKAGE  
Meets or Exceeds the Requirements of IOS  
8802.3:1989 and ANSI/IEEE Std 802.3-1988  
(TOP VIEW)  
Interdevice Loopback Paths for System  
Testing  
TXI1  
TXEN1  
LOOP1  
GND  
TXO1  
TXO1  
1
24  
23  
22  
21  
20  
2
Squelch Function Implemented on the  
Receiver Inputs  
V
3
CC  
RXI1  
RXI1  
4
RXEN1  
RXO1  
RXO2  
RXEN2  
GND  
5
Drives a Balanced 78-Load  
6
19 GND  
Transformer Coupling Not Required in  
System  
7
18  
17  
16  
15  
14  
13  
GND  
RXI2  
RXI2  
8
Power-Up/Power-Down Protection (Glitch  
Free)  
9
10  
11  
12  
LOOP2  
TXEN2  
TXI2  
V
CC  
Isolated Ground Pins for Reduced Noise  
Coupling  
TXO2  
TXO2  
Fault-Condition Protection Built Into the  
Device  
Driver Inputs Are Level-Shifted ECL  
Compatible  
Package Options Include Plastic  
Small-Outline (DW) Package and Standard  
Plastic (NT) DIP  
description  
The SN75ALS085 is a high-speed, advanced low-power Schottky, dual-channel driver/receiver device  
designed for use in the AUI of ANSI/IEEE Std 802.3-1988. The two drivers on the device drive a 78-balanced,  
terminated twisted-pair transmission line up to a maximum length of 50 meters. In the off (idle) state, the drivers  
maintain minimal differential output voltage on the twisted-pair line and, at the same time, remain within the  
required output common-mode range.  
With the driver enable (TXEN) high, upon receiving the first falling edge into the driver input, the differential  
outputs rise to full-amplitude output levels within 25 ns. The output amplitude is maintained for the remainder  
of the packet. After the last positive packet edge is transmitted into the driver, the driver maintains a minimum  
of 70% full differential output for a minimum of 200 ns, then decays to a minimum level for the reset (idle)  
condition within 8 µs. Disabling the driver by taking the driver enable low also forces the output into the idle  
conditionafterthenormal8-µstimeout. Whileoperating, thedriversareabletowithstandasetoffaultconditions  
and not suffer damage due to the faults being applied. The drivers power up in the idle state to ensure that no  
activity is placed on the twisted-pair cable, which could be interpreted as network traffic.  
The line receiver squelch function interfaces to a differential twisted-pair line terminated external to the device.  
The receiver squelch circuit allows differential receive signals to pass through, as long as the input amplitude  
and pulse duration are greater than the minimum squelch threshold. This ensures a good signal-to-noise ratio  
while the data path is active and prevents system noise from causing false data transitions during line shutdown  
and line-idle conditions. The receiver outputs (RXO) default to a high level and the receiver-enable (RXEN)  
outputs default to a low level while the squelch function is blocking the data path through the receiver (idle). The  
linereceiversquelchbecomesactivewithin50nswhentheinputsquelchthresholdisexceeded. RXENisdriven  
high when the squelch circuit allows data to pass through the receiver. The receiver squelch circuit also can  
withstand a set of fault conditions while operating, without causing permanent damage to the device.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2001, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75ALS085  
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER  
SLLS054D APRIL 1989 REVISED OCTOBER 2001  
description (continued)  
The purpose of the loop functions is to provide a means by which system data-path verification can be done  
to isolate faulty interfaces and assist in network diagnosis. The LOOP pins are TTL compatible and must be  
held high for normal operation. When LOOP1 is taken low, the output of driver 1 (TXO1) immediately goes into  
the idle state. Also, the input to receiver 1 is ignored, and a path from a transmit input (TXI1) to RXO1 is  
established. When LOOP1 is taken back high, driver 1 and receiver 1 revert back to their normal operation.  
When LOOP2 is taken low, a similar data path is established between TXI1 and RXO2. TXEN1 must be high  
for the loop functions to operate, and TXEN1 can be used to gate the loop function if desired. During loop  
operation, the respective RXEN reflects the status of TXEN1.  
The SN75ALS085 is characterized for operation from 0°C to 70°C.  
AVAILABLE OPTIONS  
PACKAGED DEVICES  
PLASTIC  
SMALL OUTLINE  
(DW)  
T
A
PLASTIC DIP  
(NT)  
0°C to 70°C  
SN75ALS085DW  
SN75ALS085NT  
The DW package is available taped and reeled. Add the suffix R  
to device type (e.g., SN75ALS085DWR).  
Function Tables  
RECEIVER (LOOP = H)  
OUTPUTS  
PREVIOUS  
RXEN  
RXI  
RXEN  
RXO  
H
V
ID  
V
ID  
V
ID  
V
ID  
= 1315 mV to 175 mV,  
= 275 mV to 1315 mV  
= 318 mV to 1315 mV,  
= 318 mV to 1315 mV,  
t
w
t
w
t
w
t
w
< 25 ns  
> 50 ns  
< 142 ns  
> 187 ns  
L
X
H
X
L
H
H
L
L
H
H
H = high level, L = low level, X = dont care  
DRIVER (LOOP = H)  
PREVIOUS  
OUTPUT  
TXI  
TXEN  
TXO  
TXO  
Idle  
Idle  
L
L
L
Idle  
H
L
H
Idle  
Idle  
L
H
Active  
Active  
Active  
Active  
Active  
Active  
Active  
Active  
L
H < 260 µs  
H > 8 µs  
L
H
H
H
Idle  
Idle  
Idle  
H
L > 8 µs  
L > 8 µs  
L < 260 ns  
L < 260 ns  
L < 260 ns  
H < 260 ns  
H < 260 ns  
H > 8 µs  
L
Idle  
L
H = V V max, L = V V min  
I
T
I
T
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75ALS085  
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER  
SLLS054D APRIL 1989 REVISED OCTOBER 2001  
Function Tables (continued)  
LOOP  
INPUTS  
TXEN1  
OUTPUTS  
LOOP1  
LOOP2  
TXI1  
RXI1  
RXI2  
RXO1  
RXO2  
RXEN1  
RXEN2  
TXO1  
Idle  
L
L
L
L
L
H
X
X
L
L
H
H
H
H
X
X
X
X
H
H
H
H
H
L
H
L
Idle  
L
L
X
L
Idle  
L
H
H
H
L
L
H
X
Normal  
Normal  
Normal  
X
L
Normal  
Normal  
Normal  
L
H
Normal  
Normal  
Normal  
H
Idle  
L
H
H
X
H
H
Idle  
L
X
L
X
H
L
Idle  
H
H
H
H
L
H
H
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
Idle  
L
H
L
X
H
H
Idle  
L
X
X
H
L
Idle  
H
Normal  
Normal  
Normal  
Normal  
Normal  
Normal  
H = high level, L = low level, X = dont care  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75ALS085  
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER  
SLLS054D APRIL 1989 REVISED OCTOBER 2001  
logic diagram (positive logic)  
20  
RXI1  
RXI1  
Noise  
Filter  
21  
5
6
RXEN1  
+
150 ns  
225 mV  
RXO1  
3
LOOP1  
24  
23  
1
2
TXO1  
TXO1  
TXI1  
ECL/TTL  
250 ns  
1
1
TXEN1  
X1  
4 µS  
10  
LOOP2  
7
8
RXO2  
17  
16  
150 ns  
RXI2  
RXI2  
Noise  
Filter  
RXEN2  
+
225 mV  
14  
13  
12  
TXO2  
TXO2  
ECL/TTL  
TXI2  
250 ns  
11  
1
1
4 µS  
TXEN2  
X1  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75ALS085  
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER  
SLLS054D APRIL 1989 REVISED OCTOBER 2001  
schematics of inputs and outputs  
RXI and RXI Inputs  
LOOP and TXEN Inputs  
VCC  
V
CC  
20 kΩ  
4 kΩ  
4 kΩ  
4 kΩ  
4 kΩ  
4 kΩ  
LOOP,  
TXEN  
RXI  
RXI  
ESD  
ESD  
3 kΩ  
ESD  
+
1 kΩ  
TXI Inputs  
RXO and RXEN Outputs  
V
CC  
V
CC  
50 Ω  
200 Ω  
50 kΩ  
TXI  
ESD  
RXO,  
5 kΩ  
RXEN  
ESD  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75ALS085  
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER  
SLLS054D APRIL 1989 REVISED OCTOBER 2001  
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)  
Supply voltage, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V  
CC  
TXI and LOOP input voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V  
TXO and TXO output voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 V  
RXI and RXI input voltage, V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 V  
RXO and RXEN output voltage, V  
I
O
I
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V  
O
Package thermal impedance, θ (see Notes 2 and 3): DW package . . . . . . . . . . . . . . . . . . . . . . . . . . 46°C/W  
JA  
(see Notes 2 and 4): NT package . . . . . . . . . . . . . . . . . . . . . . . . . . . 67°C/W  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Storage temperature range, T  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 to 150°C  
stg  
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditionsis not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTES: 1. Voltage values are with respect to network ground terminal.  
2. Maximum power dissipation is a function of T (max), θ , and T . The maximum allowable power dissipation at any allowable  
J
JA  
A
ambient temperature is P = (T (max) T )/θ . Operating at the absolute maximum T of 150°C can affect reliability.  
D
J
A
JA  
J
3. The package thermal impedance is calculated in accordance with JESD 51-7.  
4. The package thermal impedance is calculated in accordance with JESD 51-3.  
recommended operating conditions  
MIN NOM  
MAX  
5.25  
UNIT  
V
V
V
V
V
V
Supply voltage  
4.75  
1
5
CC  
Common-mode voltage at RXI inputs  
4.2  
V
IC  
Differential voltage between RXI inputs  
±318  
2
±1315  
mV  
V
ID  
High-level input voltage, LOOP and TXEN  
Low-level input voltage, LOOP and TXEN  
IH  
0.8  
0.4  
16  
V
IL  
I
I
t
t
t
t
t
High-level output current, RXO and RXEN  
Low-level output voltage, RXO and RXEN  
Setup time, driver mode, TXEN high before TXI(see Figure 7)  
Setup time, loop mode, LOOP low before TXEN(see Figure 9)  
Setup time, loop mode, TXEN high before TXI(see Figure 9)  
Hold time, loop mode, TXEN high after TXI(see Figure 8)  
Hold time, loop mode, LOOP low after TXEN(see Figure 8)  
Operating free-air temperature  
mA  
mA  
ns  
ns  
ns  
ns  
ns  
°C  
OH  
OL  
su1  
su2  
su3  
h1  
10  
15  
10  
10  
15  
0
h2  
T
A
70  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75ALS085  
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER  
SLLS054D APRIL 1989 REVISED OCTOBER 2001  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
PARAMETER  
Clamp voltage at all inputs  
TEST CONDITIONS  
I = 18 mA  
MIN  
MAX  
UNIT  
V
IK  
1.5  
V
I
V
V
V
V
V
V
V
V
V
= 4.75 V  
= 5 V  
3.202 3.752  
3.389 3.998  
3.577 4.244  
3.213 3.797  
3.400 4.043  
3.588 4.289  
3.239 3.849  
3.426 4.095  
3.614 4.341  
275  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
CC  
T
= 0°C  
A
= 5.25 V  
= 4.75 V  
= 5 V  
V
Driver input (TXI) threshold voltage  
T
A
= 25°C  
= 70°C  
V
(TO)  
= 5.25 V  
= 4.75 V  
= 5 V  
T
A
= 5.25 V  
Receiver differential input threshold voltage  
Driver output (TXO) common-mode voltage  
mV  
V
TXEN at 0.8 V,  
LOOP2 at 2 V,  
LOOP1 at 2 V,  
See Figure 1  
Idle  
1
4.2  
TXEN at 2 V,  
LOOP2 at 2 V,  
See Figure 1  
LOOP1 at 2 V,  
TXI at 3.2 V,  
Active  
1
4.2  
V
OC  
TXEN at 2 V,  
LOOP2 at 2 V,  
See Figure 1  
LOOP1 at 2 V,  
TXI at 4.4 V,  
Active  
Idle  
1
4.2  
±40  
TXEN at 0.8 V,  
LOOP2 at 2 V,  
LOOP1 at 2 V,  
See Figure 1  
TXEN at 2 V,  
LOOP2 at 2 V,  
See Figure 1  
LOOP1 at 2 V,  
TXI at 3.2 V,  
Active  
600  
1315  
V
OD  
Driver output (TXO) differential voltage  
mV  
TXEN at 2 V,  
LOOP2 at 2 V,  
See Figure 1  
LOOP1 at 2 V,  
TXI at 4.4 V,  
Active  
600  
2.4  
1315  
V
V
High-level output voltage  
Low-level output voltage  
RXO, RXEN  
RXO, RXEN  
TXEN, LOOP  
TXI  
I
I
= 0.4 mA  
V
V
OH  
OH  
= 16 mA  
0.5  
20  
OL  
OL  
V = 2 V  
I
I
IH  
High-level input current  
V = 4.5 V  
I
400  
µA  
RXI, RXI  
V
= 0.5 V,  
V
V
= 1 V to 4.2 V  
= 1 V to 4.2 V  
1000  
200  
100  
ID  
V = 0.8 V  
IC  
TXEN, LOOP  
I
V = 3.1 V  
I
I
IL  
Low-level input current  
TXI  
µA  
V = 0.3 V  
I
4
10  
RXI, RXI  
Idle  
V
ID  
= 0.5 V,  
1000  
IC  
TXEN at 0.8 V,  
LOOP2 at 2 V,  
LOOP1 at 2 V,  
See Figure 2  
I
I
I
Driver differential output current  
±4  
mA  
mA  
mA  
OD  
OS  
CC  
V
at 0 V,  
RXI at 3 V,  
O
Short-circuit output current  
Supply current  
RXO, RXEN  
40 150  
RXI at 2 V  
LOOP2 at 2 V,  
TXI at 4.5 V,  
TXEN at 2 V,  
Outputs open  
225  
Not more than one output should be shorted at a time, and the duration of the test should not exceed 1 second.  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75ALS085  
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER  
SLLS054D APRIL 1989 REVISED OCTOBER 2001  
electrical characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted) (continued)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
150  
150  
150  
150  
150  
150  
150  
10  
UNIT  
TXO shorted to TXO, Current measured in short  
TXO at 0 V,  
TXO is open,  
TXO at 0 V,  
TXO at 16 V,  
TXO is open,  
TXO at 16 V,  
RXI shorted to RXI,  
RXI at 0 V,  
TXO is open,  
TXO at 0,  
Current measured at TXO  
Current measured at TXO  
Driver fault condition current  
TXO at 0 V,  
TXO is open,  
TXO at 16 V,  
TXO at 16 V,  
Current measured at TXO and TXO  
Current measured at TXO  
mA  
Current measured at TXO  
Current measured at TXO and TXO  
Current measured in short  
RXI is open,  
RXI at 0 V,  
RXI at 0 V,  
RXI at open,  
RXI at 16 V,  
RXI at 16 V,  
Current measured at RXI  
3
RXI is open,  
RXI at 0 V,  
Current measured at RXI  
3
Receiver fault condition current  
Current measured at RXI and RXI  
Current measured at RXI  
3
mA  
RXI at 16 V,  
RXI at open,  
RXI at 16 V,  
10  
Current measured at RXI  
10  
Current measured at RXI and RXI  
10  
Fault conditions should be measured on only one channel at a time.  
switching characteristics over recommended ranges of supply voltage and operating free-air  
temperature (unless otherwise noted)  
driver  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
15  
UNIT  
ns  
Propagation delay time,  
low-to-high level output  
t
t
t
t
t
TXI  
TXI  
TXO, TXO TXEN at 2 V,  
TXO, TXO TXEN at 2 V,  
TXO, TXO TXEN at 2 V,  
TXO, TXO TXI at 3.2 V,  
TXO, TXO TXEN at 2 V,  
TXO, TXO TXEN at 2 V,  
TXO, TXO TXEN at 2 V,  
See Figure 3  
See Figure 3  
See Figure 4  
See Figure 5  
See Figure 6  
See Figure 6  
See Figure 3  
PLH  
PHL  
PIL  
PIL  
w
Propagation delay time,  
high-to-low level output  
15  
ns  
Propagation delay time,  
idle-to-low level output  
TXI  
25  
ns  
Propagation delay time,  
idle-to-low level output  
TXEN  
25  
ns  
Output pulse duration, from  
low-to-high level to 70% output level  
260  
8000  
100  
±3  
ns  
Driver output differential  
undershoot voltage  
V
TXI  
TXI  
mV  
ns  
OD(U)  
Driver caused signal skew  
t
sk  
t
t  
PLH PHL  
t
t
Rise time, TXO, TXO  
Fall time, TXO, TXO  
TXEN at 2 V,  
TXEN at 2 V,  
See Figure 3  
See Figure 3  
1
1
5
5
ns  
ns  
r
f
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75ALS085  
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER  
SLLS054D APRIL 1989 REVISED OCTOBER 2001  
receiver  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
15  
UNIT  
ns  
Propagation delay time,  
low-to-high level output  
t
t
t
t
t
t
t
t
t
t
RXI, RXI  
RXO  
RXO  
V
= 1 V to 4.2 V, See Figure 10  
= 1 V to 4.2 V, See Figure 10  
PLH  
PHL  
PLH  
PHL  
sk  
IC  
Propagation delay time,  
high-to-low level output  
RXI, RXI  
RXI, RXI  
RXI, RXI  
RXI, RXI  
V
V
15  
ns  
IC  
Start-up delay time,  
low-to-high level output  
= 1 V to 4.2 V,  
See Figure 12  
V
ID  
V
ID  
V
ID  
V
ID  
V
ID  
V
ID  
V
ID  
V
ID  
V
ID  
= 500 mV,  
= 500 mV,  
= 500 mV,  
= 175 mV,  
= 275 mV,  
= ±500 mV,  
= ±500 mV,  
= ±500 mV,  
= ±500 V,  
IC  
RXEN  
RXEN  
RXO  
55  
ns  
Shutdown delay time,  
high-to-low level output  
V
= 1 V to 4.2 V,  
IC  
See Figure 12  
142  
25  
181  
±3  
ns  
Receiver caused signal  
V
= 1 V to 4.2 V,  
IC  
See Figure 10  
ns  
skew (t  
t )  
PLH PHL  
Pulse duration at RXI and RXI  
(to not activate squelch)  
V
= 1 V to 4.2 V,  
IC  
See Figure 11  
ns  
w
Pulse duration at RXI and RXI  
(to activate squelch)  
V
= 1 V to 4.2 V,  
IC  
See Figure 11  
50  
8
ns  
w
V
= 1 V to 4.2 V,  
IC  
See Figure 10  
Rise time, RXO  
Rise time, RXEN  
Fall time, RXO  
1
1
1
ns  
r1  
V
= 1 V to 4.2 V,  
IC  
See Figure 12  
8
ns  
r2  
V
= 1 V to 4.2 V,  
IC  
See Figure 10  
8
ns  
f1  
V
IC  
= 2.5 V,  
See Figure 12  
t
t
Fall time, RXEN  
1
8
ns  
ns  
f2  
RXO valid after RXEN high  
See Figure 10  
10  
15  
v
loop  
FROM  
(INPUT)  
TO  
(OUTPUT)  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
30  
UNIT  
ns  
Propagation delay time,  
low-to-high level output  
LOOP at 0.8 V,  
TXEN at 2 V,  
TXEN at 2 V,  
t
t
t
t
TXI  
TXI  
RXO  
RXO  
PLH  
PHL  
PLH  
PHL  
See Figure 13  
Propagation delay time,  
high-to-low level output  
LOOP at 0.8 V,  
See Figure 13  
30  
ns  
Propagation delay time,  
low-to-high level output  
TXEN  
TXEN  
RXEN  
RXEN  
LOOP at 0.8 V,  
LOOP at 0.8 V,  
See Figure 14  
See Figure 14  
50  
ns  
Propagation delay time,  
high-to-low level output  
50  
ns  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75ALS085  
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER  
SLLS054D APRIL 1989 REVISED OCTOBER 2001  
PARAMETER MEASUREMENT INFORMATION  
V
TXO  
TXO  
TXO  
39 Ω  
V
OD  
TXI  
39 Ω  
V
OC  
V
TXO  
Figure 1. Driver Test Circuit  
TXO  
I
OD  
TXI  
TXO  
Figure 2. Driver Test Circuit  
TXO  
TXO  
39 Ω  
0.01 µF  
25 pF  
V
OD  
3 kΩ  
3 kΩ  
TXI  
39 Ω  
25 pF  
TEST CIRCUIT  
4.5 V  
3 V  
TXI  
50%  
50%  
t
t
PHL  
PLH  
V
OD+  
90%  
90%  
TXO  
0 V  
0 V  
10%  
10%  
V
OD–  
t
t
f
r
VOLTAGE WAVEFORMS  
Transformer specifications:  
Turns ratio  
1:1  
Magnetizing inductance  
Winding resistance  
Rise time 10% to 90%  
Interwinding capacitance  
Leakage inductance  
Inductive Q  
26 to 30 µH  
0.6 Max  
5 ns Max  
25 pF  
0.25 µH Max  
1250 Min  
Figure 3. Test Circuit and Voltage Waveforms  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75ALS085  
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER  
SLLS054D APRIL 1989 REVISED OCTOBER 2001  
PARAMETER MEASUREMENT INFORMATION  
TXO  
39 Ω  
0.01 µF  
25 pF  
3 kΩ  
3 kΩ  
V
OD  
TXI  
39 Ω  
TXO  
25 pF  
TEST CIRCUIT  
See Figure 3  
4.5 V  
3 V  
50%  
TXI  
t
PIL  
IDLE  
TXO  
90%  
V
OD–  
VOLTAGE WAVEFORMS  
NOTE A: Input t 5 ns; t 5 ns  
r
f
Figure 4. Test Circuit and Voltage Waveforms  
TXEN  
TXI  
TXO  
39 Ω  
0.01 µF  
25 pF  
V
3 kΩ  
3 kΩ  
OD  
39 Ω  
TXO  
25 pF  
TEST CIRCUIT  
See Figure 3  
2 V  
TXEN  
50%  
90%  
0.8 V  
t
PIL  
Idle  
TXO  
V
OD–  
VOLTAGE WAVEFORMS  
Figure 5. Test Circuit and Voltage Waveforms  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75ALS085  
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER  
SLLS054D APRIL 1989 REVISED OCTOBER 2001  
PARAMETER MEASUREMENT INFORMATION  
TXO  
39 Ω  
25 pF  
V
OD  
3 kΩ  
3 kΩ  
TXI  
0.01 µF  
39 Ω  
TXO  
25 pF  
TEST CIRCUIT  
See Figure 3  
V
OH  
70%  
TXO  
50%  
V
OD(U)  
V
OL  
t
w
VOLTAGE WAVEFORMS  
Figure 6. Test Circuit and Voltage Waveforms  
2 V  
TXEN  
50%  
0.8 V  
t
su1  
4.5 V  
3 V  
50%  
TXI  
NOTE A: Input t 5 ns; t 5 ns  
r
f
Figure 7  
4.5 V  
3 V  
TXI  
50%  
t
h1  
2 V  
50%  
TXEN  
0.8 V  
t
h2  
2 V  
LOOP  
50%  
0.8 V  
NOTE A: Input t 5 ns; t 5 ns  
r
f
Figure 8  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75ALS085  
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER  
SLLS054D APRIL 1989 REVISED OCTOBER 2001  
PARAMETER MEASUREMENT INFORMATION  
2 V  
50%  
LOOP  
TXEN  
0.8 V  
2 V  
t
su2  
50%  
0.8 V  
t
su3  
4.5 V  
3 V  
TXI  
50%  
NOTE A: Input t 5 ns; t 5 ns  
r
f
Figure 9  
RXEN  
6 kΩ  
20 pF  
RXI  
RXI  
RXO  
20 pF  
6 kΩ  
TEST CIRCUIT  
1 V  
RXI  
0 V  
1 V  
V
OH  
RXEN  
90%  
V
IL  
t
PHL  
t
PLH  
t
t
v
t
f1  
r1  
V
V
OH  
90%  
10%  
VOLTAGE WAVEFORMS  
90%  
10%  
1.3 V  
1.3 V  
1.3 V  
RXO  
OL  
NOTE A: Input t 5 ns; t 5 ns  
r
f
Figure 10. Test Circuit and Voltage Waveforms  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75ALS085  
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER  
SLLS054D APRIL 1989 REVISED OCTOBER 2001  
PARAMETER MEASUREMENT INFORMATION  
RXEN  
6 kΩ  
20 pF  
RXI  
RXO  
RXI  
TEST CIRCUIT  
0 V  
40 mV  
40 mV  
RXI  
V
IO  
t
w
V
OH  
OL  
RXEN  
V
VOLTAGE WAVEFORMS  
NOTE A: Input t 5 ns; t 5 ns  
r
f
Figure 11. Test Circuit and Voltage Waveforms  
RXEN  
6 kΩ  
20 pF  
RXI  
RXO  
RXI  
TEST CIRCUIT  
1 V  
RXI  
0
40 mV  
1 V  
t
PLH  
t
PHL  
90%  
V
V
OH  
90%  
RXEN  
10%  
10%  
OL  
t
t
f2  
r2  
VOLTAGE WAVEFORMS  
NOTE A: Input t 5 ns; t 5 ns  
r
f
Figure 12. Test Circuit and Voltage Waveforms  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75ALS085  
LAN ACCESS UNIT INTERFACE DUAL DRIVER/RECEIVER  
SLLS054D APRIL 1989 REVISED OCTOBER 2001  
PARAMETER MEASUREMENT INFORMATION  
4.5 V  
50%  
50%  
TXI  
3 V  
t
t
PLH  
PHL  
V
OH  
OL  
1.3 V  
1.3 V  
RXO  
V
NOTE A: Input t 5 ns; t 5 ns  
r
f
Figure 13  
2 V  
TXEN  
RXEN  
50%  
50%  
0.8 V  
t
PLH  
t
PHL  
V
V
OH  
1.3 V  
1.3 V  
OL  
NOTE A: Input t 5 ns; t 5 ns  
r
f
Figure 14  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2014  
PACKAGING INFORMATION  
Orderable Device  
SN75ALS085DW  
SN75ALS085DWG4  
Status Package Type Package Pins Package  
Eco Plan  
Lead/Ball Finish  
MSL Peak Temp  
Op Temp (°C)  
0 to 70  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(6)  
(3)  
(4/5)  
NRND  
SOIC  
SOIC  
DW  
24  
24  
25  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
75ALS085  
75ALS085  
NRND  
DW  
25  
Green (RoHS  
& no Sb/Br)  
CU NIPDAU  
Level-1-260C-UNLIM  
0 to 70  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability  
information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that  
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between  
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight  
in homogeneous material)  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish  
value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Jun-2014  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other  
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest  
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms  
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary  
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily  
performed.  
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and  
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or  
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information  
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or  
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the  
third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service  
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.  
TI is not responsible or liable for any such statements.  
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements  
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support  
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which  
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause  
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use  
of any TI components in safety-critical applications.  
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to  
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and  
requirements. Nonetheless, such components are subject to these terms.  
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties  
have executed a special agreement specifically governing such use.  
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in  
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components  
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of  
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.  
Products  
Applications  
Audio  
www.ti.com/audio  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
Automotive and Transportation www.ti.com/automotive  
Communications and Telecom www.ti.com/communications  
Amplifiers  
Data Converters  
DLP® Products  
DSP  
Computers and Peripherals  
Consumer Electronics  
Energy and Lighting  
Industrial  
www.ti.com/computers  
www.ti.com/consumer-apps  
www.ti.com/energy  
dsp.ti.com  
Clocks and Timers  
Interface  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/industrial  
www.ti.com/medical  
Medical  
Logic  
Security  
www.ti.com/security  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Space, Avionics and Defense  
Video and Imaging  
www.ti.com/space-avionics-defense  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/omap  
OMAP Applications Processors  
Wireless Connectivity  
TI E2E Community  
e2e.ti.com  
www.ti.com/wirelessconnectivity  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2014, Texas Instruments Incorporated  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX