SN75DP139RSBT [TI]

3.4Gbps DP++ 转 HDMI 1.4b 重定时器 | RSB | 40 | 0 to 85;
SN75DP139RSBT
型号: SN75DP139RSBT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

3.4Gbps DP++ 转 HDMI 1.4b 重定时器 | RSB | 40 | 0 to 85

消费电路 商用集成电路
文件: 总32页 (文件大小:952K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN75DP139  
www.ti.com...................................................................................................................................................................................................... SLLS977APRIL 2009  
DisplayPort to TMDS Translator  
1
FEATURES  
APPLICATIONS  
Personal Computer Market  
DisplayPort Physical Layer Input Port to TMDS  
Physical Layer Output Port  
DP/TMDS Dongle  
Desktop PC  
Notebook PC  
Docking Station  
Standalone Video Card  
Integrated TMDS level translator with Receiver  
Equalization  
Supports Data Rates up to 2.5Gbps  
Integrated I2C Logic Block for DVI/HDMI  
Connector Recognition  
Integrated Active I2C Buffer  
Enhanced ESD: 10KV on all pins  
Enhanced Commercial Temperature Range:  
0°C to 85°C  
48 Pin 7 × 7 QFN Package  
DESCRIPTION  
The SN75DP139 is a Dual-Mode DisplayPort input to Transition-Minimized Differential Signaling (TMDS) output.  
The TMDS output has a built in level translator supporting Digital Video Interface (DVI) 1.0 and High Definition  
Multimedia Interface (HDMI) 1.3 standards. The SN75DP139 is specified up to a maximum data rate of 2.5Gbps,  
supporting resolutions greater then 1920x1200 or HDTV 12 bit color depth at 1080p (progressive scan).  
An integrated Active I2C buffer isolates the capacitive loading of the source system from that of the sink and  
interconnecting cable. This isolation improves overall signal integrity of the system and allows for considerable  
design margin within the source system for DVI / HDMI compliance testing.  
A logic block was designed into the SN75DP139 in order to assist with TMDS connector identification. Through  
the use of the I2C_EN pin, this logic block can be enabled to indicate the translated port is an HDMI port;  
therefore legally supporting HDMI content.  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 2009, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
SN75DP139  
SLLS977APRIL 2009...................................................................................................................................................................................................... www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive  
foam during storage or handling to prevent electrostatic damage to the MOS gates.  
TYPICAL APPLICATION  
DP++  
SN75DP139 TMDS  
TMDS Buffer  
DVI or HDMI  
Compliant  
GPU  
Monitor or HDTV  
Dongle  
Computer Notebook  
Docking Station  
GPU - Graphics Processing Unit  
DP++ - Dual-Mode DisplayPort  
TMDS - Transition-Minimized Differential Signaling  
DVI - Digital Visual Interface  
HDMI - High Definition Multimedia Interface  
GPU  
DP++  
TMDS  
DVI  
Graphics Processing Unit  
Dual-Mode DisplayPort  
Transition-Minimized Differential Signaling  
Digital Visual Interface  
HDMI  
High Definition Multimedia Interface  
2
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN75DP139  
SN75DP139  
www.ti.com...................................................................................................................................................................................................... SLLS977APRIL 2009  
DATA FLOW BLOCK DIAGRAM  
Vsadj, SRC, OE_N  
GND  
GND  
SN75DP139  
I2C  
Slave  
IN_D1-  
IN_D1+  
VCC  
OUT_D1-  
OUT_D1+  
VCC  
OVS,  
DDC_EN  
I2C_EN  
IN_D2-  
IN_D2+  
OUT_D2-  
OUT_D2+  
GND  
130kohm  
GND  
IN_D3-  
OUT_D3-  
IN_D3+  
VCC  
OUT_D3+  
VCC  
HPDINV  
IN_D4-  
IN_D4+  
OUT_D4-  
OUT_D4+  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): SN75DP139  
SN75DP139  
SLLS977APRIL 2009...................................................................................................................................................................................................... www.ti.com  
DEVICE INFORMATION  
RGZ PACKAGE  
36 35 34 33 32 31 30 29 28 27 26 25  
37  
GND  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
GND  
IN_D1-  
IN_D1+  
VCC  
38  
39  
40  
41  
42  
43  
44  
OUT_D1-  
OUT_D1+  
VCC  
IN_D2-  
IN_D2+  
OUT_D2-  
OUT_D2+  
GND  
DP139  
TOP VIEW  
GND  
IN_D3-  
OUT_D3-  
IN_D3+  
VCC  
45  
46  
OUT_D3+  
VCC  
IN_D4-  
IN_D4+  
47  
OUT_D4-  
OUT_D4+  
48  
1
2
3
4
5
6
7
8
9 10 11 12  
4
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN75DP139  
SN75DP139  
www.ti.com...................................................................................................................................................................................................... SLLS977APRIL 2009  
PIN FUNCTIONS  
PIN  
I/O  
DESCRIPTION  
SIGNAL  
NO.  
MAIN LINK INPUT PINS  
IN_D1  
38, 39  
41, 42  
44, 45  
47, 48  
I
I
I
I
DisplayPort Main Link Channel 0 Differential Input  
DisplayPort Main Link Channel 1 Differential Input  
DisplayPort Main Link Channel 2 Differential Input  
DisplayPort Main Link Channel 3 Differential Input  
MAIN LINK PORT B OUTPUT PINS  
TMDS Data 2 Differential Output  
IN_D2  
IN_D3  
IN_D4  
OUT_D1  
OUT_D2  
OUT_D3  
OUT_D4  
23, 22  
20, 19  
17, 16  
14, 13  
O
O
O
O
TMDS Data 1 Differential Output  
TMDS Data 0 Differential Output  
TMDS Data Clock Differential Output  
HOT PLUG DETECT PINS  
HPD_SOURCE  
HPD_SINK  
7
O
I
Hot Plug Detect Output  
30  
Hot Plug Detect Input  
AUXILIARY DATA PINS  
SDA_SOURCE,  
SCL_SOURCE  
8, 9  
I/O Source Side Bidirectional DisplayPort Auxiliary Data Line  
I/O TMDS Port Bidirectional DDC Data Lines  
CONTROL PINS  
SDA_SINK,  
SCL_SINK  
29, 28  
OE_N  
NC  
25  
10  
35  
32  
34  
6
I
Output Enable and power saving function for High Speed Differential level shifter path.  
No Connect  
OVS  
I
I
I
I
I
I
DDC I2C buffer offset select  
DDC_EN  
HPDINV  
VSadj  
SRC  
Enables or Disables the DDC I2C buffer  
HPD_SOURCE Logic and Level Select  
TMDS Compliant Voltage Swing Control  
TMDS outputs rise and fall time select  
Internal I2C register enable, used for HDMI / DVI connector differentiation  
SUPPLY AND GROUND PINS  
3
I2C_EN  
4
VCC  
GND  
2, 11, 15, 21,  
26,  
33, 40, 46  
3.3V Supply  
1, 5, 12, 18, 24,  
27, 31, 36, 37,  
43  
Ground  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): SN75DP139  
SN75DP139  
SLLS977APRIL 2009...................................................................................................................................................................................................... www.ti.com  
Input/Output Equivalent Circuits  
VTERM  
VTERM  
VCC  
50 W  
50 W  
+
Figure 1. DisplayPort Input Stage  
Y
Z
10 mA  
Figure 2. TMDS Output Stage  
6
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN75DP139  
SN75DP139  
www.ti.com...................................................................................................................................................................................................... SLLS977APRIL 2009  
OE_N  
I2C_EN  
HPDINV  
SRC  
OVS  
DDC_EN  
HPD_SINK  
Figure 3. HPD and Control Input Stage  
VCC  
HPD_OUT  
Figure 4. HPD Output Stage  
400 W  
SCL  
SDA  
AUX+/–  
VOL  
Figure 5. I2C Input and Output Stage  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): SN75DP139  
SN75DP139  
SLLS977APRIL 2009...................................................................................................................................................................................................... www.ti.com  
Table 1. Control Pin Lookup Table  
SIGNAL  
LEVEL(1)  
STATE  
DESCRIPTION  
OE_N  
H
Power Saving  
Mode  
Main Link is disabled. IN_Dx termination = 50 with common mode voltage set to  
0V.  
OUT_Dx outputs = high impedance  
L
Normal Mode  
HDMI  
IN_Dx termination = 50 Ω  
OUT_Dx outputs = active  
I2C_EN  
H
The Internal I2C register is active and readable when the TMDS port is selected  
indicating that the connector being used is HDMI.  
This mode selects the fastest rise and fall time for the TMDS differential output  
signals  
L
DVI  
The Internal I2C register is disabled and not readable when the TMDS port is  
selected indicating that the connector being used is DVI.  
This mode selects a slower rise and fall time for the TMDS differential output signals  
See DVI Application Section.  
VSadj  
4.02 kΩ  
±5%  
Output Voltage Driver output voltage swing precision control to aid with system compliance  
Swing Contol  
HPDINV  
H
L
HPD Inversion  
HPD_SOURCE VOH =0.9V (typical) and HPD logic is inverted  
HPD_SOURCE VOH =3.2V (typical) and HPD logic is non-inverted  
HPD  
non-inversion  
SRC  
H
L
Edge Rate:  
Slowest  
SRC helps to slow down the rise and fall time. SRC =High adds ~60ps to the rise  
and fall time of the TMDS differential output signals in addition to the I2C_EN pin  
selection  
Edge Rate: Slow SRC helps to slow down the rise and fall time. SRC =Low adds ~30ps to the rise  
and fall time of the TMDS differential output signals in addition to the I2C_EN pin  
selection  
Hi-Z  
Edge Rate  
Leaving the SRC pin High Z, will keep the default rise and fall time of the TMDS  
differential output signals as selected by the I2C_EN pin.  
It is recommended that an external resistor-divider (less than 100 k) is used so  
that voltage on this pin = VCC/2, if Hi-Z logic level is intended on this pin.  
OVS  
H
L
Offset 1  
Offset 2  
Offset 3  
DDC source side VOL and VIL offset range 1  
DDC source side VOL and VIL offset range 2  
Hi-Z  
DDC source side VOL and VIL offset range 3  
It is recommended that an external resistor-divider (less than 100 k) is used so  
that voltage on this pin = VCC/2, if Hi-Z logic level is intended on this pin.  
DDC_EN  
H
L
DDC Buffer  
enabled  
DDC Buffer is enabled  
DDC buffer  
disabled  
DDC Buffer is disabled  
(1) (H) Logic High; (L) Logic Low; (Z) High Z  
8
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN75DP139  
SN75DP139  
www.ti.com...................................................................................................................................................................................................... SLLS977APRIL 2009  
ORDERING INFORMATION(1)  
PART NUMBER  
SN75DP139RGZR  
SN75DP139RGZT  
PART MARKING  
DP139  
PACKAGE  
48-pin QFN Reel (large)  
48-pin QFN Reel (small)  
DP139  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range (unless otherwise noted)  
(1)  
VALUE  
–0.3 to 3.6  
1.56  
UNIT  
Supply voltage range(2)  
Voltage range  
VCC  
V
V
V
V
V
Main Link Input (IN_Dx) differential voltage  
TMDS Outputs (OUT_Dx)  
HPD I/O (HPD_SOURCE, HPD_SINK)  
–0.3 to 4  
–0.3 to 5.5  
–0.3 to 5.5  
Auxiliary I/O (SCL_SOURCE, SDA_SOURCE, SCL_SINK,  
SDA_SINK)  
Control I/O (OE_N, DDC_EN, SRC, OVS, HPDINV)  
Human body model(3)  
Charged-device model(4)  
–0.3 to 5.5  
V
V
V
V
±10000  
Electrostatic discharge  
±1500  
±200  
Machine model(5)  
Continuous power dissipation  
See Dissipation Rating Table  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any conditions beyond those indicated under recommended operating conditions  
is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential voltages, are with respect to network ground terminal.  
(3) Tested in accordance with JEDEC Standard 22, Test Method A114-B  
(4) Tested in accordance with JEDEC Standard 22, Test Method C101-A  
(5) Tested in accordance with JEDEC Standard 22, Test Method A115-A  
DISSIPATION RATINGS  
PACKAGE  
PCB JEDEC  
STANDARD  
TA 25°C  
DERATING FACTOR(1)  
ABOVE TA = 25°C  
TA = 85°C  
POWER RATING  
Low-K  
High-K  
1426.8 mW  
3125 mW  
14.28 mW/°C  
31.25 mW/°C  
570 mW  
48-pin QFN (RGZ)  
1250 mW  
(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): SN75DP139  
SN75DP139  
SLLS977APRIL 2009...................................................................................................................................................................................................... www.ti.com  
THERMAL CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
9
MAX(1)  
UNIT  
°C/W  
°C/W  
RθJB  
RθJC  
Junction-to-board thermal resistance  
Junction-to-case thermal resistance  
22  
HDMI Mode: OE_N = 0V, DDC_EN = 5V, VCC = 3.6V,  
ML: VID_PP = 1200mV, 2.5Gbps TMDS pattern  
AUX: VI = 3.3V, 100 kHz PRBS  
PD1  
Device power dissipation(2)  
Device power dissipation(2)  
270+146(2) 396+146(2)  
214+146(2) 306+146(2)  
mW  
mW  
HPD: HPD_SINK = 5V, I2C_EN = 5V, SRC = Hi-Z  
DVI Mode: OE_N = 0V, DDC_EN = 5V, VCC = 3.6V,  
ML: VID_PP = 1200mV, 2.5Gbps TMDS pattern  
AUX: VI = 3.3V, 100 kHz PRBS  
PD2  
HPD: HPD_SINK= 5V, I2C_EN = 0V, SRC = Hi-Z  
Device power dissipation under low  
power with  
HPDINV = LOW  
OE_N = 5V, DDC_EN = 0V, HPDINV = 0V,  
HPD_SINK = 0V  
PSD1  
PSD2  
PSD3  
PSD4  
18  
1.7  
54  
3
µW  
mW  
mW  
mW  
Device power dissipation under low  
power with  
HPDINV =HIGH  
OE_N = 5V, DDC_EN = 0V, HPDINV = 5V  
OE_N = 5V, DDC_EN = 5V, HPDINV = 5V  
OE_N = 5V, DDC_EN = 5V, HPDINV = 0V  
Device power dissipation under low  
power with DDC enabled with  
HPDINV = HIGH  
16.5  
15  
29  
26  
Device power dissipation under low  
power with DDC enabled with  
HPDINV = LOW  
(1) The maximum rating is simulated under 3.6V VCC unless otherwise noted.  
(2) Power dissipation is the sum of the power consumption from the VCC pins, plus the 146 mW of power from the AVCC (HDMI/DVI  
Receiver Termination Supply).  
RECOMMENDED OPERATING CONDITIONS  
over operating free-air temperature range (unless otherwise noted)  
MIN NOM  
MAX UNIT  
VCC  
TA  
Supply Voltage  
3
0
3.3  
3.6  
85  
V
Operating free-air temperature  
°C  
MAIN LINK DIFFERENTIAL INPUT PINS  
VID_PP Peak-to-peak AC input differential voltage  
dR  
trise fall time  
VPRE  
0.15  
0.25  
75  
1.2  
V
Data rate  
2.5 Gbps  
ps  
Input Signal Rise and Fall time (20%-80%)  
Pre-emphasis on the Input Signal at IN_Dx pins  
0
0
0
db  
TMDS DIFFERENTIAL OUTPUT PINS  
AVCC  
dR  
TMDS output termination voltage  
3
0.25  
45  
3.3  
3.6  
V
Data rate  
2.5 Gbps  
RT  
Termination resistance  
TMDS output swing voltage bias resistor(1)  
50  
55  
RVsadj  
3.65  
4.02  
kΩ  
AUXILIARY AND I2C PINS  
VI  
Input voltage  
I2C data rate  
0
5.5  
V
dR(I2C)  
100  
kHz  
(1) RVsadj resistor controls the SN75DP139 Driver output voltage swing and thus helps in meeting system compliance. It is recommended  
that RVsadj resistor should be above the MIN value as indicated in the RECOMMENDED OPERATING CONDITIONS table, however for  
NOM and MAX value, Figure 24 could be used as reference. It is important to note that system level losses, AVCC and RT variation  
affect RVsadj resistor selection. Worse case variation on system level losses, AVCC, RT could make RVsadj resistor value of 4.02 k±5%  
result in non-compliant TMDS output voltage swing. In such cases Figure 24 could be used as reference.  
10  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN75DP139  
SN75DP139  
www.ti.com...................................................................................................................................................................................................... SLLS977APRIL 2009  
RECOMMENDED OPERATING CONDITIONS (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN NOM  
MAX UNIT  
HPD_SINK, HPDINV, OE_N, DDC_EN, I2C_EN  
VIH  
High-level input voltage  
Low-level input voltage  
2
0
5.5  
0.8  
V
V
VIL  
SRC, OVS  
VIH_SRC_OVS  
VIL_SRC_OVS  
High-level input voltage  
Low-level input voltage  
3
0
5.5  
0.5  
V
V
DEVICE POWER  
The SN75DP139 is designed to operate off of one supply voltage VCC.  
The SN75DP139 offers features to enable or disable different functionality based on the status of the output  
enable (OE_N) and DDC Enable (DDC_EN) inputs.  
OE_N affects only the High Speed Differential channels (Main Link/TMDS link). OE_N has no influence on the HPD_SINK input,  
HPD_SOURCE output, or the DDC buffer.  
DDC_EN affects only the DDC channel. The DDC_EN should never change state during the I2C operation. Disabling DDC_EN during a  
bus operation will hang the bus, while enabling the DDC_EN during bus traffic will corrupt the I2C bus operation. DDC_EN should only  
be toggled while the bus is idle.  
TMDS output edge rate control has impact on the SN75DP139 Active power. See Figure 20. TMDS output edge rate can be controlled  
by SRC pin. Slower output Edge Rate Setting helps in reducing the Active power consumption.  
HPD_SINK  
HPDINV  
OE_N  
DDC_EN  
IN_Dx  
OUT_Dx  
DDC  
HPD_SOURCE  
MODE  
Input = H or L  
L
L
L
50 termination  
Enabled  
High-  
Output = non inverted, Active  
active  
impedance follows HPD_SINK  
Input = H or L  
Input = H or L  
L
L
L
H
L
50 termination  
active  
Enabled  
High-  
enabled  
Output = non inverted, Active  
follows HPD_SINK  
H
50 termination  
active:  
High-  
Output = non inverted, Low Power  
impedance impedance follows HPD_SINK  
Terminations  
connected to  
common Mode  
Voltage = 0V.  
Input = H or L  
L
H
H
50 termination  
active:  
High-  
impedance  
enabled  
Output = non inverted, Low Power  
follows HPD_SINK  
with  
Terminations  
connected to  
common Mode  
Voltage = 0V.  
DDC channel  
enabled  
Input = H or L  
Input = H or L  
Input = H or L  
H
H
H
L
L
L
H
L
50 termination  
active  
Enabled  
Enabled  
High-  
High-  
Output = inverted,  
Active  
impedance follows HPD_SINK  
50 termination  
active  
enabled  
Output = inverted,  
follows HPD_SINK  
Active  
H
50 termination  
active:  
High-  
Output = inverted,  
Low Power  
impedance impedance follows HPD_SINK  
Terminations  
connected to  
common Mode  
Voltage = 0V.  
Input = H or L  
H
H
H
50 termination  
active:  
High-  
impedance  
enabled  
Output = inverted,  
follows HPD_SINK  
Low Power  
with  
Terminations  
connected to  
common Mode  
Voltage = 0V.  
DDC channel  
enabled  
L = LOW, H = HIGH  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): SN75DP139  
SN75DP139  
SLLS977APRIL 2009...................................................................................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
ICC1  
Supply current (HDMI Mode)  
HDMI Mode: OE_N = 0V, DDC_EN = 5V, VCC  
=
82  
110  
mA  
3.6V,  
ML: VID_PP = 1200mV, 2.5Gbps TMDS pattern  
AUX: VI = 3.3V, 100 kHz PRBS  
HPD: HPD_SINK = 5V, I2C_EN = 5V, SRC = Hi-Z  
ICC2  
Supply Current (DVI Mode)  
DVI Mode: OE_N = 0V, DDC_EN = 5V, VCC = 3.6V,  
ML: VID_PP = 1200mV, 2.5Gbps TMDS pattern  
AUX: VI = 3.3V, 100 kHz PRBS  
65  
85  
15  
mA  
HPD: HPD_SINK= 5V, I2C_EN = 0V, SRC = Hi-Z  
ISD1  
ISD2  
ISD3  
Shutdown current with  
HPDINV = LOW  
OE_N = 5V, DDC_EN = 0V, HPDINV = 0V,  
HPD_SINK = 0V  
5.5  
µA  
Shutdown current with  
HPDINV = HIGH  
0.5  
5
0.8  
8
mA  
mA  
OE_N = 5V, DDC_EN = 0V, HPDINV = 5V  
Shutdown current with DDC enabled  
with  
OE_N = 5V, DDC_EN = 5V, HPDINV = 5V  
HPDINV = HIGH  
ISD4  
Shutdown current with DDC enabled  
4.5  
7.2  
mA  
with  
OE_N = 5V, DDC_EN = 5V, HPDINV = 0V  
HPDINV = LOW  
Hot Plug Detect  
The SN75DP139 has a built in level shifter for the HPD outputs. The output voltage level of the HPD pin is  
defined by the voltage level of the VCC pin. The HPD input or HPD_SINK side has 130kohm of pull down  
resistor integrated.  
The logic of the HPD_SOURCE output always follows the logic state of the HPD_SINK input based on the  
HPDINV pin logic, regardless of whether the device is in Active or Low Power Mode  
ELECTRICAL CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
VOH3.3  
VOH1.1  
High-level output voltage  
IOH = –100 µA, VCC = 3.3 V ±10%,  
HPDINV = LOW  
2.8  
3.6  
V
High-level output voltage  
IOH = –100 µA, VCC = 3.3 V ±10%,  
0.8  
1.1  
V
HPDINV = HIGH  
VOL  
IIH  
Low-level output voltage  
IOH = 100 µA  
0
–30  
–30  
110  
0.1  
30  
V
High-level input current  
VIH = 2.0 V, VCC = 3.6 V  
VIL = 0.8 V, VCC = 3.6 V  
µA  
µA  
kΩ  
IIL  
Low-level input current  
30  
RINTHPD  
Input pull down on HPD_SINK (HPD Input)  
130  
160  
SWITCHING CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
30 ns  
tPD(HPD)  
Propagation delay  
VCC = 3.6 V  
2
12  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN75DP139  
SN75DP139  
www.ti.com...................................................................................................................................................................................................... SLLS977APRIL 2009  
1.1 V  
HPD Output/HPD_source  
HPD Input/HPD_sink  
10 kW  
HPD Input/HPD_sink  
Dp139  
DP139  
HPD Output/HPD_source  
130 kW  
100 kW  
100 kW  
130 kW  
130 kW Pull down  
resistor on the sink side  
is integrated  
130 kW Pull down  
resistor is integrated  
Figure 6. HPD Test Circuit (HPDINV = LOW)  
Figure 7. HPD Test Circuit (VOH =1.1), HPDINV=HIGH  
5 V  
0 V  
HPD_SINK  
50%  
5 V  
50%  
HPD_SINK  
0 V  
t
PD(HPD)  
t
PD(HPD)  
V
CC  
1.1 V  
HPD_SOURCE  
50%  
HPD_SOURCE  
50%  
0 V  
0 V  
Figure 8. HPD Timing Diagram (HPDINV = LOW)  
Figure 9. HPD Timing Diagram (HPDINV = HIGH)  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): SN75DP139  
SN75DP139  
SLLS977APRIL 2009...................................................................................................................................................................................................... www.ti.com  
AUX / I2C pins  
The SN75DP139 utilizes an active I2C repeater. The repeater is designed to isolate the parasitic effects of the  
system in order to aid with system level compliance.  
In addition to the I2C repeater, the SN75DP139 also supports the connector detection I2C register. This register  
is enabled via the I2C_EN pin. When active an internal memory register is readable via the AUX_I2C I/O. The  
functionality of this register block is described in the APPLICATION INFORMATION section.  
ELECTRICAL CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
Low input current  
TEST CONDITIONS  
VCC = 3.6 V, VI = 0 V  
MIN TYP MAX  
UNIT  
µA  
IL  
–10  
–10  
10  
10  
Ilkg(AUX)  
Input leakage current  
AUX_I2C pins  
VCC = 3.6V, VI = 3.6 V  
µA  
(SCL_SOURCE,  
SDA_SOURCE)  
CIO(AUX)  
VIH(AUX)  
VIL1(AUX)  
VOL1(AUX)  
VIL2(AUX)  
VOL2(AUX)  
VIL3(AUX)  
VOL3(AUX)  
Ilkg(I2C)  
Input/Output capacitance  
High-level input voltage  
Low-level input voltage  
Low-level output voltage  
Low-level input voltage  
Low-level output voltage  
Low-level input voltage  
Low-level output voltage  
Input leakage current  
AUX_I2C pins  
(SCL_SOURCE,  
SDA_SOURCE)  
AUX_I2C pins  
(SCL_SOURCE,  
SDA_SOURCE)  
AUX_I2C pins  
(SCL_SOURCE,  
SDA_SOURCE)  
AUX_I2C pins  
(SCL_SOURCE,  
SDA_SOURCE)  
AUX_I2C pins  
(SCL_SOURCE,  
SDA_SOURCE)  
AUX_I2C pins  
(SCL_SOURCE,  
SDA_SOURCE)  
AUX_I2C pins  
(SCL_SOURCE,  
SDA_SOURCE)  
AUX_I2C pins  
(SCL_SOURCE,  
SDA_SOURCE)  
I2C SDA/SCL pins VCC = 3.6 V, VI = 4.95 V  
(SCL_SINK,  
SDA_SINK)  
I2C SDA/SCL pins DC bias = 2.5 V, AC = 3.5Vp-p, f = 100  
(SCL_SINK,  
SDA_SINK)  
I2C SDA/SCL pins  
(SCL_SINK,  
SDA_SINK)  
I2C SDA/SCL pins  
(SCL_SINK,  
SDA_SINK)  
DC bias = 1.65 V, AC = 2.1Vp-p, f = 100  
kHz  
15  
5.5  
0.4  
0.7  
0.4  
0.6  
0.3  
0.5  
10  
pF  
V
1.6  
–0.2  
0.6  
OVS = HIGH  
V
IO = 3 mA, OVS = HIGH  
OVS = Hi-Z  
V
–0.2  
0.5  
V
IO = 3 mA, OVS = Hi-Z  
OVS = Low  
V
–0.2  
0.4  
V
IO = 3 mA, OVS = Low  
V
–10  
µA  
pF  
V
CIO(I2C)  
Input/Output capacitance  
High-level input voltage  
Low-level input voltage  
Low-level output voltage  
15  
kHz  
VIH(I2C)  
2.1  
5.5  
1.5  
0.2  
VIL(I2C)  
–0.2  
V
VOL(I2C)  
I2C SDA/SCL pins IO = 3mA  
(SCL_SINK,  
V
SDA_SINK)  
14  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN75DP139  
SN75DP139  
www.ti.com...................................................................................................................................................................................................... SLLS977APRIL 2009  
SWITCHING CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Source to Sink  
MIN  
204  
35  
TYP  
MAX UNIT  
tPLH1  
tPHL1  
tPLH2  
tPHL2  
tf1  
Propagation delay time, low to high  
Propagation delay time, high to low  
Propagation delay time, low to high  
Propagation delay time, high to low  
Output signal fall time  
600  
200  
251  
200  
72  
ns  
ns  
ns  
ns  
ns  
ns  
kHz  
µs  
µs  
ns  
µs  
µs  
µs  
µs  
µs  
Source to Sink  
Sink to Source  
Sink to Source  
Sink Side  
80  
35  
20  
tf2  
Output signal fall time  
Source Side  
Source Side  
Source Side  
Source Side  
Source Side  
Source Side  
20  
72  
fSCL  
tW(L)  
tW(H)  
tSU1  
th(1)  
SCL clock frequency for internal register  
Clock LOW period for I2C register  
Clock HIGH period for internal register  
Internal register setup time, SDA to SCL  
Internal register hold time, SCL to SDA  
100  
4.7  
4.0  
250  
0
T(buf)  
tsu(2)  
th(2)  
Internal register bus free time between STOP and START Source Side  
4.7  
4.7  
4.0  
4.0  
Internal register setup time, SCL to START  
Internal register hold time, START to SCL  
Internal register hold time, SCL to STOP  
Source Side  
Source Side  
Source Side  
tsu(3)  
3.3 V  
V
CC  
R
= 2 kW  
L
PULSE  
GENERATOR  
D.U.T.  
C
= 100 pF  
L
R
V
T
IN  
V
OUT  
Figure 10. Source Side Test Circuit (SCL_SOURCE, SDA_SOURCE)  
5 V  
V
CC  
R
= 2 kW  
L
PULSE  
GENERATOR  
D.U.T.  
C
= 400 pF  
L
R
V
T
IN  
V
OUT  
Figure 11. Sink Side Test Circuit (SCL_SINK,SDA_SINK)  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): SN75DP139  
SN75DP139  
SLLS977APRIL 2009...................................................................................................................................................................................................... www.ti.com  
5 V  
SCL_SINK  
SDA_SINK  
Input  
1.6 V  
0.1 V  
t
t
PHL2  
PLH2  
3.3 V  
80%  
SCL_SOURCE  
SDA_SOURCE  
Output  
1.6 V  
20%  
V
OL  
t
f2  
Figure 12. Source Side Output AC Measurements  
3.3 V  
SCL_SOURCE  
SDA_SOURCE  
Input  
1.6 V  
0.1 V  
t
PHL1  
5 V  
80%  
SCL_SINK  
SDA_SINK  
Output  
1.6 V  
20%  
V
OL  
t
f1  
Figure 13. Sink Side Output AC Measurements  
3.3 V  
SCL_SOURCE  
SDA_SOURCE  
Input  
VOL  
5 V  
t
PLH1  
SCL_SINK  
SDA_SINK  
Output  
1.6 V  
Figure 14. Sink Side Output AC Measurements Continued  
TMDS and Main link pins  
The main link inputs are designed to support DisplayPort 1.1 specification. The TMDS outputs of the  
SN75DP139 are designed to support the Digital Video Interface (DVI) 1.0 and High Definition Multimedia  
Interface (HDMI) 1.3 specifications. The differential output voltage swing can be fine tuned with the RVsadj  
resistor.  
16  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN75DP139  
SN75DP139  
www.ti.com...................................................................................................................................................................................................... SLLS977APRIL 2009  
ELECTRICAL CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
AVCC–10  
AVCC–600  
400  
TYP  
MAX UNIT  
VOH  
Single-ended HIGH level output voltage AVCC = 3.3 V, RT = 50 ,  
Single-ended LOW level output voltage  
AVCC+10  
mV  
mV  
mV  
mV  
VOL  
AVCC-400  
VSWING  
VOC(SS)  
Single-ended output voltage swing  
600  
5
Change in steady-state common-mode  
output voltage between logic states  
–5  
VOD(PP)  
V(O)SBY  
Peak-to-Peak output differential voltage  
800  
1200  
mV  
mV  
Single-ended standby output voltage  
AVCC = 3.3 V, RT = 50 , OE_N =  
AVCC–10  
AVCC+10  
High  
I(O)OFF  
Single-ended power down output  
current  
0V VCC 1.5 V, AVCC = 3.3 V,  
RT = 50Ω  
–10  
10  
µA  
IOS  
Short circuit output current  
Input termination impedance  
Input termination voltage  
See Figure 19  
–15  
40  
1
15  
60  
2
mA  
RINT  
Vterm  
50  
V
SWITCHING CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
tPLH  
tPHL  
tR1  
Propagation delay time  
250  
250  
60  
350  
350  
85  
600  
600  
120  
120  
150  
150  
180  
180  
150  
150  
220  
220  
180  
180  
15  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
Propagation delay time  
Rise Time (I2C_EN = HI, SRC = Hi-Z)  
Fall Time (I2C_EN = HI, SRC = Hi-Z)  
Rise Time (I2C_EN = Low, SRC = Hi-Z)  
Fall Time (I2C_EN = Low, SRC = Hi-Z)  
Rise Time (I2C_EN = HI, SRC = HI)  
Fall Time (I2C_EN = HI, SRC = HI)  
Rise Time (I2C_EN = HI, SRC = Low)  
Fall Time (I2C_EN = HI, SRC = Low)  
Rise Time (I2C_EN = Low, SRC = HI)  
Fall Time (I2C_EN = Low, SRC = HI)  
Rise Time (I2C_EN = Low, SRC = Low)  
Fall Time (I2C_EN = Low, SRC = Low)  
Pulse skew  
tF1  
60  
85  
tR2  
115  
115  
150  
150  
115  
115  
175  
175  
150  
150  
8
tF2  
tR3  
tF3  
AVCC=3.3 V, RT = 50 , f = 1MHz,  
RVsadj = 4.02 kΩ  
tR4  
tF4  
tR5  
tF5  
tR6  
tF6  
tSK(P)  
tSK(D)  
tSK(O)  
tJITD(PP)  
Intra-pair skew  
20  
65  
Inter-pair skew  
20  
100  
50  
Peak-to-peak output residual data jitter  
AVCC = 3.3 V, RT = 50, dR=2.5Gbps,  
TMDS output slew rate (default).  
14  
RVsadj = 4.02 k(refer to Figure 18)  
tJITC(PP)  
Peak-to-peak output residual clock jitter  
AVCC = 3.3 V, RT = 50, f = 250 MHz  
TMDS output slew rate (default).  
RVsadj= 4.02 k(refer to Figure 18)  
8
30  
ps  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): SN75DP139  
SN75DP139  
SLLS977APRIL 2009...................................................................................................................................................................................................... www.ti.com  
V
TERM  
3.3V  
50Ω  
50Ω  
50Ω  
50Ω  
0.5 pF  
D+  
D-  
Y
Z
100 pF  
100 pF  
Receiver  
= V - V  
V
Driver  
ID  
V
D+  
V
Y
V
= V - V  
Y Z  
V
V
OD  
D-  
ID  
D+  
D-  
V
Z
V
= (V + V )  
Y Z  
V
= (V + V )  
D+ D-  
OC  
ICM  
2
2
Figure 15. TMDS Main Link Test Circuit  
2.2 V  
1.8 V  
V
V
ID  
TERM  
V
ID+  
V
0 V  
ID(pp)  
V
ID-  
t
t
PHL  
PLH  
80%  
80%  
V
OD  
V
OD(pp)  
0 V  
20%  
20%  
t
t
r
f
Figure 16. TMDS Main Link Timing Measurements  
V
OC  
ΔV  
OC SS)  
(
Figure 17. TMDS Main Link Common Mode Measurements  
18  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN75DP139  
SN75DP139  
www.ti.com...................................................................................................................................................................................................... SLLS977APRIL 2009  
(4)  
Avcc  
(5)  
(8)  
R
T
R
T
SMA  
SMA  
SMA  
SMA  
Data +  
Data -  
Coax  
Coax  
Coax  
Coax  
RX  
Parallel  
BERT  
OUT  
+EQ  
Jitter Test  
(2,3)  
600, 800 mV  
VPP Differential  
Instrument  
(1)  
FR4 PCB trace  
AC coupling Caps  
&
SN75DP139  
FR4 PCB trace  
AVcc  
[No Pre-emphasis]  
R
T
R
T
SMA  
SMA  
SMA  
SMA  
Coax  
Coax  
Coax  
Coax  
Clk+  
RX  
OUT  
+EQ  
Clk-  
(6)(7)  
Jitter Test  
(2,3)  
Instrument  
TTP 4  
TTP 1  
TTP 2  
TTP 3  
1. The FR4 trace between TTP1 and TTP2 is designed to emulate 1-8" of FR4, AC coupling cap, connector and another 1-8" of FR4. Trace width - 4 mils.  
2. All Jitter is measured at a BER of 10-9  
3. Residual jitter reflects the total jitter measured at TTP4 minus the jitter measured at TTP1  
4. AVCC = 3.3V  
5. RT = 50Ω,  
6. Jitter data is taken with SN75DP139 configured in the fastest slew rate setting(default)  
7. Rvsadj = 4.02kΩ  
8. The input signal from parallel BERT does not have any pre-emphasis. Refer to recommended operating conditions  
Figure 18. TMDS Jitter Measurements  
50 W  
I
OS  
Driver  
50 W  
+
0 V or 3.6 V  
-
Figure 19. TMDS Main Link Short Circuit Output Circuit  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): SN75DP139  
SN75DP139  
SLLS977APRIL 2009...................................................................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS  
AVCC = 3.3 V, RT = 50, RVsadj = 4.02 kΩ  
POWER DISSIPATION  
RESIDUAL JITTER OF 2.5 Gbps  
vs  
vs  
DATA RATE  
SUPPLY VOLTAGE  
420  
400  
380  
60  
55  
50  
45  
25°C Slowest Edge Rate  
85°C  
0°C  
0°C Slowest Edge Rate  
85°C Slowest Edge Rate  
25°C  
40  
35  
85°C Slowest Edge Rate  
0°C Slowest Edge Rate  
360  
340  
320  
300  
85°C  
30  
25  
20  
15  
25°C  
25°C Slowest Edge Rate  
0°C  
0
0.5  
1
1.5  
2
2.5  
3
3
3.3  
- Supply Voltage - V  
3.6  
V
Data Rate - Gbps  
CC  
Figure 20.  
Figure 21.  
RESIDUAL JITTER  
vs  
GAIN  
vs  
FREQUENCY  
DATA RATE  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
20  
VID(PP) = 600 mV  
VID(PP) = 800 mV  
(Slowest Edge Rate)  
15  
10  
(Slowest Edge Rate)  
VID(PP) = 1000 mV  
(Slowest Edge Rate)  
−5  
VID(PP) = 600 mV  
−0  
−5  
VID(PP) = 800 mV  
VID(PP) = 1000 mV  
−10  
−15  
0
0.25  
10  
100  
1000  
10000  
0.75  
1.25  
1.75  
2.25  
f − Frequency − MHz  
Data Rate - Gbps  
Figure 22.  
Figure 23.  
20  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN75DP139  
SN75DP139  
www.ti.com...................................................................................................................................................................................................... SLLS977APRIL 2009  
TYPICAL CHARACTERISTICS (continued)  
AVCC = 3.3 V, RT = 50Ω  
VOD  
vs  
Vsadj  
1300  
VCC = 3.6 V  
1200  
VCC = 3.3 V  
1100  
1000  
900  
VCC = 3.0 V  
800  
700  
600  
3.5  
4
4.5  
5
5.5  
6
6.5  
VSadj Resistance − kΩ  
Figure 24.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): SN75DP139  
SN75DP139  
SLLS977APRIL 2009...................................................................................................................................................................................................... www.ti.com  
APPLICATION INFORMATION  
DVI APPLICATION  
In DVI application case, it is recommended that between the SN75DP139 TMDS outputs (OUT_Dx) and a  
through hole DVI connector a series resistor placeholder is incorporated. This could help in case if there are  
signal integrity issues as well as help pass system level compliance.  
I2C INTERFACE NOTES  
The I2C interface can be used to access the internal memory of the SN75DP139. I2C is a two-wire serial  
interface developed by Philips Semiconductor (see I2C-Bus Specification, Version 2.1, January 2000). The bus  
consists of a data line (SDA) and a clock line (SCL) with pull-up structures. When the bus is idle, both SDA and  
SCL lines are pulled high. All the I2C compatible devices connect to the I2C bus through open drain I/O pins,  
SDA and SCL. A master device, usually a microcontroller or a digital signal processor, controls the bus. The  
master is responsible for generating the SCL signal and device addresses. The master also generates specific  
conditions that indicate the START and STOP of data transfer. A slave device receives and/or transmits data on  
the bus under control of the master device. The SN75DP139 works as a slave and supports the standard mode  
transfer (100 kbps) as defined in the I2C-Bus Specification.  
The basic I2C start and stop access cycles are shown in Figure 25.  
The basic access cycle consists of the following:  
A start condition  
A slave address cycle  
Any number of data cycles  
A stop condition  
SDA  
SCL  
SDA  
SCL  
Start  
Condition  
Stop  
Condition  
Figure 25. I2C Start and Stop Conditions  
GENERAL I2C PROTOCOL  
The master initiates data transfer by generating a start condition. The start condition is when a high-to-low  
transition occurs on the SDA line while SCL is high, as shown in Figure 27. All I2C-compatible devices should  
recognize a start condition.  
The master then generates the SCL pulses and transmits the 7-bit address and the read/write direction bit  
R/W on the SDA line. During all transmissions, the master ensures that data is valid. A valid data condition  
requires the SDA line to be stable during the entire high period of the clock pulse (see Figure 26). All devices  
recognize the address sent by the master and compare it to their internal fixed addresses. Only the slave  
device with a matching address generates an acknowledge (see Figure 27) by pulling the SDA line low during  
the entire high period of the ninth SCL cycle. On detecting this acknowledge, the master knows that a  
communication link with a slave has been established.  
The master generates further SCL cycles to either transmit data to the slave (R/W bit 0) or receive data from  
the slave (R/W bit 1). In either case, the receiver needs to acknowledge the data sent by the transmitter. So  
an acknowledge signal can either be generated by the master or by the slave, depending on which one is the  
receiver. The 9-bit valid data sequences consisting of 8-bit data and 1-bit acknowledge can continue as long  
as necessary (See Figure 28 ).  
To signal the end of the data transfer, the master generates a stop condition by pulling the SDA line from low  
to high while the SCL line is high (see Figure 28). This releases the bus and stops the communication link  
22  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN75DP139  
 
SN75DP139  
www.ti.com...................................................................................................................................................................................................... SLLS977APRIL 2009  
with the addressed slave. All I2C compatible devices must recognize the stop condition. Upon the receipt of a  
stop condition, all devices know that the bus is released, and they wait for a start condition followed by a  
matching address.  
SDA  
SCL  
Data Line  
Stable;  
Data Valid  
Change of Data Allowed  
Figure 26. I2C Bit Transfer  
Data Output  
by Transmitter  
Not Acknowledge  
Data Output  
by Receiver  
Acknowledge  
SCL From  
Master  
Clock Pulse for  
Acknowledgement  
START  
Condition  
Figure 27. I2C Acknowledge  
SCL  
SDA  
Acknowledge  
Acknowledge  
Data  
Slave Address  
Figure 28. I2C Address and Data Cycles  
During a read cycle, the slave receiver will acknowledge the initial address byte if it decodes the address as its  
address. Following this initial acknowledge by the slave, the master device becomes a receiver and  
acknowledges data bytes sent by the slave. When the master has received all of the requested data bytes from  
the slave, the not acknowledge (A) condition is initiated by the master by keeping the SDA signal high just before  
it asserts the stop (P) condition. This sequence terminates a read cycle as shown in Figure 29 and Figure 30.  
See Example – Reading from the SN75DP139 section for more information.  
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Link(s): SN75DP139  
SN75DP139  
SLLS977APRIL 2009...................................................................................................................................................................................................... www.ti.com  
Figure 29. I2C Read Cycle  
Figure 30. Multiple Byte Read Transfer  
SLAVE ADDRESS  
Both SDA and SCL must be connected to a positive supply voltage via a pull-up resistor. These resistors should  
comply with the I2C specification that ranges from 2kto 19k. When the bus is free, both lines are high. The  
address byte is the first byte received following the START condition from the master device. The 7 bit address is  
factory preset to 1000000. Table 2 lists the calls that the SN75DP139 will respond to.  
Table 2. SN75DP139 Slave Address  
Fixed Address  
Bit 4  
Read/Write Bit  
Bit 7  
Bit 6  
Bit 5  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
(MSB)  
(R/W)  
1
0
0
0
0
0
0
1
Sink Port Selection Register and Source Plug-In Status Register Description (Sub-Address)  
The SN75DP139 operates using a multiple byte transfer protocol similar to Figure 30. The internal memory of the  
SN75DP139 contains the phrase “DP-HDMI ADAPTOR<EOT>” converted to ASCII characters. The internal  
memory address registers and the value of each can be found in Table 3.  
During a read cycle, the SN75DP139 will send the data in its selected sub-address in a single transfer to the  
master device requesting the information. See the Example – Reading from the SN75DP139 section of this  
document for the proper procedure on reading from the SN75DP139.  
Table 3. SN75DP139 Sink Port and Source Plug-In Status Registers Selection  
Address  
Data  
0x00  
44  
0x01  
50  
0x02  
2D  
0x03  
48  
0x04  
44  
0x05  
4D  
0x06  
49  
0x07  
20  
0x08  
41  
0x09  
44  
0x0A  
41  
0x0B  
50  
0x0C  
54  
0x0D  
4F  
0x0E  
52  
0x0F  
04  
0x10  
FF  
24  
Submit Documentation Feedback  
Copyright © 2009, Texas Instruments Incorporated  
Product Folder Link(s): SN75DP139  
 
 
 
SN75DP139  
www.ti.com...................................................................................................................................................................................................... SLLS977APRIL 2009  
EXAMPLE – READING FROM THE SN75DP139:  
The read operation consists of several steps. The I2C master begins the communication with the transmission of  
the start sequence followed by the slave address of the SN75DP139 and logic address of 00h. The SN75DP139  
will acknowledge it’s presence to the master and begin to transmit the contents of the memory registers. After  
each byte is transferred the SN75DP139 will wait for either an acknowledge (ACK) or a not-acknowledge (NACK)  
from the master. If an ACK is received the next byte of data will be transmitted. If a NACK is received the data  
transmission sequence is expected to end and the master should send the stop command.  
The SN75DP139 will continue to send data as long as the master continues to acknowledge each byte  
transmission. If an ACK is received after the transmission of byte 0x0F the SN75DP139 will transmit byte 0x10  
and continue to transmit byte 0x10 for all further ACK’s until a NACK is received.  
The SN75DP139 also supports an accelerated read mode where steps 1–6 can be skipped.  
SN75DP139 Read Phase  
Step 1  
0
I2C Start (Master)  
S
Step 2  
7
6
5
4
3
2
1
0
I2C General Address Write (Master)  
1
0
0
0
0
0
0
0
Step 3  
9
I2C Acknowledge (Slave)  
A
Step 4  
7
6
5
4
3
2
1
0
I2C Logic Address (Master)  
0
0
0
0
0
0
0
0
Step 5  
9
I2C Acknowledge (Slave)  
A
Step 6  
0
I2C Stop (Master)  
P
Step 7  
0
I2C Start (Master)  
S
Step 8  
7
6
5
4
3
2
1
0
I2C General Address Read (Master)  
1
0
0
0
0
0
0
1
Step 9  
9
I2C Acknowledge (Slave)  
A
Step 10  
7
6
5
4
3
2
1
0
I2C Read Data (Slave)  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Data  
Where Data is determined by the Logic values Contained in the Sink Port Register  
Step 11  
9
I2C Not-Acknowledge (Master)  
X
Where X is an A (Acknowledge) or A (Not-Acknowledge)  
An A causes the pointer to increment and step 10 is repeated.  
An A causes the slave to stop transmitting and proceeds to step 12.  
Step 12  
0
I2C Stop (Master)  
P
Copyright © 2009, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Link(s): SN75DP139  
PACKAGE OPTION ADDENDUM  
www.ti.com  
14-Apr-2009  
PACKAGING INFORMATION  
Orderable Device  
SN75DP139RGZR  
SN75DP139RGZT  
Status (1)  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
QFN  
RGZ  
48  
2500 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
QFN  
RGZ  
48  
250 Green (RoHS & CU NIPDAU Level-3-260C-168 HR  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Jul-2009  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
SN75DP139RGZR  
SN75DP139RGZT  
QFN  
QFN  
RGZ  
RGZ  
48  
48  
2500  
250  
330.0  
180.0  
16.4  
16.4  
7.3  
7.3  
7.3  
7.3  
1.5  
1.5  
12.0  
12.0  
16.0  
16.0  
Q2  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
15-Jul-2009  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN75DP139RGZR  
SN75DP139RGZT  
QFN  
QFN  
RGZ  
RGZ  
48  
48  
2500  
250  
346.0  
190.5  
346.0  
212.7  
33.0  
31.8  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Military  
Optical Networking  
Security  
amplifier.ti.com  
dataconverter.ti.com  
www.dlp.com  
www.ti.com/audio  
Data Converters  
DLP® Products  
DSP  
Clocks and Timers  
Interface  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
Telephony  
Video & Imaging  
Wireless  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2009, Texas Instruments Incorporated  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX