SN75DP159RSBT [TI]

工作温度为 -40°C 至 85°C 的 6Gbps DP++ 1.1 至 HDMI 2.0 重定时器 | RSB | 40 | 0 to 85;
SN75DP159RSBT
型号: SN75DP159RSBT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

工作温度为 -40°C 至 85°C 的 6Gbps DP++ 1.1 至 HDMI 2.0 重定时器 | RSB | 40 | 0 to 85

商用集成电路
文件: 总65页 (文件大小:3058K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
SNx5DP159 6Gbps 交流耦合 TMDS™ HDMI™ 电平转换器重定时器  
1 特性  
3 说明  
1
交流耦合 TMDS DisplayPort 双模物理电平输入  
HDMI2.0a TMDS 物理电平输出支持高达 6Gbps  
的数据速率且与 HDMI2.0a 电气参数兼容  
SNx5DP159 器件是一款双模[1] DisplayPort 转最小化  
传输差分信号 (TMDS) 重定时器,支持数字视频接口  
(DVI) 1.0 以及高清多媒体接口 (HDMI) 1.4b 2.0 输  
出信号。SNx5DP159 器件通过 DDC 链路或 AUX 通  
道支持双模标准版本 1.1 1 类和 2 类应用。  
SNx5DP159 器件的每条数据信道支持的数据速率高达  
6Gbps,可支持超高清 (4K × 2K/60Hz) 8 位彩色高分  
辨率视频和 1080p 16 位色深的高清电视 (1920 ×  
1080/60Hz)SNx5DP159 器件在数据速率低于  
1Gbps 时可自动配置为转接驱动器,在超过该数据速  
率后可自动配置为重定时器。此特性可通过 I2C[4] 编  
程来关闭。  
支持 DisplayPort 双模标准版本 1.1  
高达 16.5dB 的自适应接收器均衡器和可编程固定  
均衡器  
高速通道控制、预加重和发送摆幅以及转换率控制  
I2C 或引脚搭接可编程  
支持 2 I2C-over-AUX DDC 电桥  
集成了 TMDS 电平转换器和时钟和数据恢复  
(CDR) 功能  
有源 I2C[4] 缓冲器  
主信道输入交换  
低功耗  
为确保信号完整性,SNx5DP159 器件实现了多个 特  
性。SNx5DP159 接收器支持自适应和固定均衡,以便  
消除电路板走线或电缆因带宽受限而引起的码间串扰  
(ISI) 抖动或损耗。用作重定时器时,内置的时钟数据  
恢复 (CDR) 功能可清除输入端高频和视频源的随机抖  
动。发送器提供多种 功能 不仅有利于达到合规要求,  
还能够减少系统设计问题,例如去加重功能可补偿驱动  
长电缆或高损耗电路板走线时的衰减。SNx5DP159 器  
件还包含使用 Vsadj 引脚上的外部电阻器实现的  
TMDS 输出幅值调节功能,以及源端选择功能和输出  
转换速率控制功能。器件的运行和配置可通过引脚设置  
I2C[4] 编程。  
低功耗  
6Gbps 时的工作功耗为 435mW,关断状态下的  
功耗为 10mW  
面向商业和工业应用的扩展温度器件选项  
采用 40 引脚、0.4mm 间距、5mm x 5mm WQFN  
封装,与 TPD158 转接驱动器引脚兼容  
40 引脚、0.5mm 间距、7mm x 7mm VQFN 封装  
2 应用  
笔记本、台式机、一体机、平板电脑、游戏机和工  
业电脑  
音频/视频设备  
Blu-Ray™DVD  
游戏系统  
SNx5DP159 器件采用多种方法来进行电源管理和降低  
有功功率。  
器件信息(1)  
HDMI 适配器或软件狗  
扩展基座  
器件型号  
SN65DP159  
封装  
VQFN (48)  
WQFN (40)  
封装尺寸(标称值)  
7.00mm × 7.00mm  
5.00mm x 5.00mm  
SN75DP159  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
DP159 母板应用结构  
DP159 软件狗应用结构  
GPU  
Dongle  
DP++  
HDMI  
Monitor  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSEJ2  
 
 
 
 
 
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
说明 (续.............................................................. 4  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings.............................................................. 7  
7.3 Recommended Operating Conditions....................... 8  
7.4 Thermal Information.................................................. 8  
7.5 Power Supply Electrical Characteristics ................... 9  
7.6 Differential Input Electrical Characteristics ............. 10  
9
Detailed Description ............................................ 24  
9.1 Overview ................................................................. 24  
9.2 Functional Block Diagram ....................................... 24  
9.3 Feature Description................................................. 25  
9.4 Device Functional Modes........................................ 31  
9.5 Register Maps......................................................... 32  
10 Application and Implementation........................ 40  
10.1 Application Information.......................................... 40  
10.2 Typical Application ................................................ 45  
10.3 System Example ................................................... 47  
11 Power Supply Recommendations ..................... 48  
11.1 Power Management.............................................. 48  
12 Layout................................................................... 49  
12.1 Layout Guidelines ................................................. 49  
12.2 Layout Examples................................................... 50  
12.3 Thermal Considerations........................................ 51  
13 器件和文档支持 ..................................................... 52  
13.1 相关链接................................................................ 52  
13.2 文档支持................................................................ 52  
13.3 接收文档更新通知 ................................................. 52  
13.4 社区资源................................................................ 52  
13.5 ....................................................................... 52  
13.6 静电放电警告......................................................... 52  
13.7 术语表 ................................................................... 52  
14 机械、封装和可订购信息....................................... 52  
7.7 HDMI and DVI TMDS Output Electrical  
Characteristics ......................................................... 11  
7.8 AUX, DDC, and I2C Electrical Characteristics ........ 12  
7.9 HPD Electrical Characteristics ................................ 12  
7.10 HDMI and DVI Main Link Switching  
Characteristics ......................................................... 13  
7.11 AUX Switching Characteristics (Only for RGZ  
Package).................................................................. 15  
7.12 HPD Switching Characteristics ............................. 15  
7.13 DDC and I2C Switching Characteristics................ 15  
7.14 Typical Characteristics.......................................... 16  
Parameter Measurement Information ................ 16  
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Revision E (April 2018) to Revision F  
Page  
“SN75DP159 的工作温度范围为 –40°C 85°C”更改为“SN65DP159 的工作温度范围为 –40°C 85°C”(说明  
(续)) ................................................................................................................................................................................. 4  
“SN65DP159 的工作温度范围为 0°C 85°C”更改为“SN75DP159 的工作温度范围为 0°C 85°C”(说明 (续)..... 4  
Changes from Revision D (June 2017) to Revision E  
Page  
Changed the pinout images appearance in the Pin Configuration and Functions section..................................................... 4  
Changes from Revision C (July 2016) to Revision D  
Page  
将标题从“SNx5DP159 6-Gbps DP++ HDMI 重定时器更改为“SNx5DP159 6-Gbps 交流耦合 TMDS™ HDMI™  
电平转换器重定时器” .............................................................................................................................................................. 1  
更改了特性列表....................................................................................................................................................................... 1  
更改了应用 列表...................................................................................................................................................................... 1  
VSADJ: Added Note: "Best transmit eye ..", added MIN and MAx values in the Recommended Operating Conditions  
table ....................................................................................................................................................................................... 8  
Changed the description of td1 in 1 .................................................................................................................................. 26  
Changed read procedures in the I2C Control Behavior section ........................................................................................... 34  
Added paragraph: "DP159 is designed..." to the Application and Implementation section.................................................. 40  
Added 2 paragraphs to the Application Information section................................................................................................. 40  
2
版权 © 2015–2018, Texas Instruments Incorporated  
 
SN65DP159, SN75DP159  
www.ti.com.cn  
ZHCSE15F JULY 2015REVISED MAY 2018  
Added line item "Adding pre-emphasis will improve..." to the Detailed Design Procedure section ..................................... 46  
Changes from Revision B (Arpil 2016) to Revision C  
Page  
Recommended Operating Conditions, Changed the CONTROL PINS section ..................................................................... 8  
Changed the AUX, DDC, and I2C Electrical Characteristics table ....................................................................................... 12  
Added text to 31 Note: "The SCL_SRC and SDA_SRC pins must be pulled to ground."............................................... 42  
Changes from Revision A (July 2015) to Revision B  
Page  
Added "Low-level input voltage at OE" to VIL in the Recommended Operating Conditions table.......................................... 8  
Added OE to VIH "High-level input voltage" in the Recommended Operating Conditions table ............................................ 8  
Changed 22 .................................................................................................................................................................... 25  
Deleted the VDD_ramp and VCC_ramp MIN values in 1 ............................................................................................... 26  
Changed text "through the I2C interface" To: "through the I2C access on the DDC interface" in DDC Functional  
Description............................................................................................................................................................................ 31  
Changed the HDMI and DVI value for 1Ah 3 ................................................................................................................. 32  
Added Note to 11–400-kbps in 7 .................................................................................................................................... 36  
Changed the note in the DEV_FUNC_MODE section of 7.............................................................................................. 36  
Changed Note in the DDC_TRAIN_SET section of 8 ..................................................................................................... 37  
Changes from Original (July 2015) to Revision A  
Page  
将器件状态从产品预览更新为生产数据.............................................................................................................................. 1  
更新了典型电源................................................................................................................................................................... 1  
删除了备用电源................................................................................................................................................................... 1  
预览更改为生产数据” ....................................................................................................................................................... 1  
Replaced SIG_EN with NC in pinout drawing and Pin Functions table ................................................................................. 4  
Removed lane swap from description of SWAP/POL = H .................................................................................................... 7  
Updated swing data ............................................................................................................................................................... 8  
Changed DDC link into its pin names between SNK and SRC and updated min value ....................................................... 8  
Added new line for SCL_SNK, SDA_SNK ............................................................................................................................. 8  
Removed standby power and standby current rows and updated active power and current numbers ................................ 9  
Changed term control to no source termination .................................................................................................................. 11  
Increased ILEAK max value from 10 µA to 45 µA................................................................................................................... 11  
Updated redriver mode max jitter value .............................................................................................................................. 13  
Clarified polarity swap to input signals ................................................................................................................................ 27  
Added more information on compliance in redriver mode ................................................................................................... 31  
Added note to DDC Functional Description section describing DDC snoop function ......................................................... 31  
Removed bit 4 SIG_EN and made reserved ....................................................................................................................... 36  
Removed SIG_EN Pin and added Note 1 for DDC Snoop ................................................................................................. 42  
Updated schematic to replace SIG_EN pin with NC ........................................................................................................... 43  
Updated VID swing .............................................................................................................................................................. 46  
Changed Title to better match table. Removed Standby and redundant rows .................................................................... 48  
Updated drawing with pin 17 changed to NC ...................................................................................................................... 51  
版权 © 2015–2018, Texas Instruments Incorporated  
3
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
5 说明 (续)  
SNx5DP159 接收器使用多种方法来确定应用支持 HDMI1.4b[2] 还是 HDMI2.0[3] 数据速率。SNx5DP159 接收器  
采用两种封装:40 引脚 RSB 封装(支持空间受限的 应用 )和 48 引脚 RGZ 封装(支持软件狗等 应用 中  
DisplayPort 双模标准版本 1.1 的全部特性)。  
SN65DP159 器件可在 –40°C 85°C 的工业级温度范围内运行。  
SN75DP159 器件可在 0°C 85°C 的扩展商业级温度范围内运行。  
6 Pin Configuration and Functions  
RGZ Package  
48-Pin VQFN  
Top View  
SWAP/POL  
IN_D2p  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
TX_TERM_CTL  
OUT_D2p  
OUT_D2n  
HPD_SNK  
OUT_D1p  
OUT_D1n  
GND  
2
IN_D2n  
3
HPD_SRC  
IN_D1p  
4
5
IN_D1n  
6
Thermal  
Pad  
GND  
7
IN_D0p  
8
OUT_D0p  
OUT_D0n  
HDMI_SEL/A1  
OUT_CLKp  
OUT_CLKn  
IN_D0n  
9
I2C_EN/PIN  
IN_CLKp  
IN_CLKn  
10  
11  
12  
Not to scale  
4
Copyright © 2015–2018, Texas Instruments Incorporated  
SN65DP159, SN75DP159  
www.ti.com.cn  
ZHCSE15F JULY 2015REVISED MAY 2018  
RSB Package  
40-Pin WQFN  
Top View  
IN_D2p  
IN_D2n  
1
2
3
4
5
6
7
8
9
10  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
OUT_D2p  
OUT_D2n  
HPD_SNK  
OUT_D1p  
OUT_D1n  
OUT_D0p  
OUT_D0n  
HDMI_SEL/A1  
OUT_CLKp  
OUT_CLKn  
HPD_SRC  
IN_D1p  
IN_D1n  
Thermal  
Pad  
IN_D0p  
IN_D0n  
I2C_EN/PIN  
IN_CLKp  
IN_CLKn  
Not to scale  
Pin Functions  
PIN(1)  
I/O  
DESCRIPTION(2)  
SIGNAL NAME  
RGZ  
RSB  
MAIN LINK INPUT PINS (FAIL SAFE)  
IN_D2p  
IN_D2n  
IN_D1p  
IN_D1n  
IN_D0p  
IN_D0n  
IN_CLKp  
IN_CLKn  
2
3
1
2
I
I
I
I
Channel 2 differential input  
Channel 1 differential input  
Channel 0 differential input  
Clock differential input  
5
4
6
5
8
6
9
7
11  
12  
9
10  
MAIN LINK OUTPUT PINS (FAIL SAFE)  
OUT_D2n  
OUT_D2p  
OUT_D1n  
OUT_D1p  
34  
35  
31  
32  
29  
30  
26  
27  
O
O
TMDS data 2 differential output  
TMDS data 1 differential output  
(1) Blue pin names are only in the SNx5DP159 RGZ package.  
(2) (H) Logic high (pin strapped to VCC through 65-kresistor); (L) logic low (pin strapped to GND through 65-kresistor); (for mid-level,  
no connect)  
Copyright © 2015–2018, Texas Instruments Incorporated  
5
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN(1)  
I/O  
O
DESCRIPTION(2)  
SIGNAL NAME  
OUT_D0n  
RGZ  
28  
RSB  
24  
TMDS data 0 differential output  
OUT_D0p  
29  
25  
OUT_CLKn  
25  
21  
O
TMDS data clock differential output  
OUT_CLKp  
26  
22  
HOT PLUG DETECT PINS  
HPD_SRC  
4
3
O
Hot plug detect output  
HPD_SNK  
33  
28  
I (Failsafe)  
Hot plug detect input  
AUXILIARY/DDC DATA PINS  
AUX_SRCp  
AUX_SRCn  
SDA_SRC  
45  
N/A  
N/A  
39  
Source side bidirectional DisplayPort auxiliary for I2C-over-AUX (DP159RGZ only)  
I/O  
44  
47  
46  
39  
38  
I/O (Failsafe) Source side TMDS port bidirectional DDC data line  
I/O (Failsafe) Sink side TMDS port bidirectional DDC data lines  
SCL_SRC  
38  
SDA_SNK  
33  
SCL_SNK  
32  
CONTROL PINS  
Operation enable/reset pin  
OE = L: Power-down mode  
OE = H: Normal operation  
OE  
42  
36  
I
Internal weak pullup: Resets device when transitions from H to L  
(1)  
NC  
17  
18  
N/A  
N/A  
I
No connect  
(1)  
CEC_EN  
O
CEC control pin for Dongle applications  
Slew rate control when I2C_EN/PIN = Low.  
SLEW_CTL = H, fastest data rate  
SLEW_CTL = L, 5 ps slow  
SLEW_CTL = No Connect, 10 ps slow  
When I2C_EN/PIN = High Slew rate is controlled through I2C[4]  
I
3
level  
SLEW_CTL  
PRE_SEL  
40  
20  
34  
16  
(2)  
(2)  
De-emphasis pin strap when I2C_EN/PIN = Low.  
PRE_SEL = L: - 2 dB de-emphasis  
PRE_SEL = No Connect: 0 dB  
I
3
level  
PRE_SEL = H: Reserved  
Input Receive Equalization pin strap when I2C_EN/PIN = Low  
EQ_SEL = L: Fixed EQ at 7.5 dB  
EQ_SEL = No Connect: Adaptive EQ  
EQ_SEL = H: Fixed at 14 dB  
When I2C_EN/PIN = High  
I
3
level  
EQ_SEL/A0  
21  
17  
(2)  
Address bit 1  
Note: (3 level for pin strap programming but 2 level when I2C[4] address)  
I2C_EN/PIN = High; puts device into I2C control mode  
I2C_EN/PIN = Low; puts device into pin strap mode  
I2C_EN/PIN  
SCL_CTL  
10  
15  
8
I
I
I2C clock signal  
13  
Note: When I2C_EN/PIN = Low Pin strapping take priority and those functions cannot be  
changed by I2C  
I2C data signal  
SDA_CTL  
Vsadj  
16  
22  
14  
18  
I/O  
I
Note: When I2C_EN/PIN = Low Pin strapping take priority and those functions cannot be  
changed by I2C  
TMDS-compliant voltage swing control nominal resistor to GND  
HDMI_SEL when I2C_EN/PIN = Low  
HDMI_SEL = High: Device configured for DVI  
HDMI_SEL = Low: Device configured for HDMI (Adaptor ID block is readable through I2C[4]  
or I2C-over-AUX.  
When I2C_EN/PIN = High  
Address bit 2  
HDMI_SEL/A1  
27  
36  
23  
I
Note: Weak internal pull down  
Transmit Termination Control when I2C_EN/PIN = Low  
TX_TERM_CTL = H, No transmit termination  
TX_TERM_CTL = L, Transmit termination impedance in 75 to about 150  
TX_TERM_CTL = No Connect, automatically selects the termination impedance  
Data rate (DR) > 3.4 Gbps – 75- to 150-Ω differential near end termination  
2 Gbps < DR < 3.4 Gbps – 150- to 300-Ω differential near end termination  
DR < 2 Gbps – no termination  
I
3
level  
(1)  
TX_TERM_CTL  
N/A  
(2)  
Note: If left floating will be in automatic select mode.  
6
Copyright © 2015–2018, Texas Instruments Incorporated  
SN65DP159, SN75DP159  
www.ti.com.cn  
SIGNAL NAME  
ZHCSE15F JULY 2015REVISED MAY 2018  
Pin Functions (continued)  
PIN(1)  
I/O  
DESCRIPTION(2)  
RGZ  
RSB  
Input lane SWAP and polarity control pin when I2C_EN/PIN = Low  
SWAP/POL = H receive lane polarity swap (retimer mode only)  
SWAP/POL = L receive lanes swap (retimer and redriver mode)  
SWAP/POL = No Connect normal working  
I
3
level  
(1)  
SWAP/POL  
1
N/A  
(2)  
SUPPLY AND GROUND PINS  
VCC  
VDD  
13, 43  
11, 37  
P
P
3.3-V power supply  
1.1-V power supply  
14, 23, 24, 12, 19, 20,  
37, 48  
31, 40  
7, 19, 41,  
30,  
GND  
15, 35  
G
Ground  
Thermal Pad  
Connected to ground  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature (unless otherwise noted)  
(1)(2)  
MIN  
–0.3  
–0.3  
MAX  
4
UNIT  
V
VCC  
Supply voltage(3)  
VDD  
1.4  
V
Main link input (IN_Dx AC-coupled mode), AUX_SRCp, AUX_SRCn  
differential voltage  
1.56  
V
V
V
V
TMDS outputs ( OUT_Dx)  
–0.3  
–0.3  
–0.3  
4
4
6
Voltage  
HPD_SRC, Vsadj, SDA_CTL, SCL_CTL, OE, HDMI_SEL/A1, EQ_SEL/A0,  
I2C_EN/PIN, SLEW_CTL, TX_TERM_CTL, SDA_SRC, SCL_SRC  
HPD_SNK, SDA_SNK, SCL_SNK  
Continuous power dissipation  
Storage temperature, Tstg  
See Thermal Information  
–65 150  
°C  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltage values, except differential voltages, are with respect to network ground terminal.  
(3) Tested in accordance with JEDEC Standard 22, Test Method A114-B.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
V
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1)  
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2015–2018, Texas Instruments Incorporated  
7
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
GENERAL PARAMETERS  
VCC  
3
3.3  
1.1  
3.6  
1.27  
93.5  
92.7  
85  
Supply voltage  
VDD  
V
1.00  
TCASE  
TCASE  
Case temperature for RSB package  
Case temperature for RGZ package  
°C  
°C  
SN75DP159  
0
TA  
Operating free-air temperature  
°C  
SN65DP159  
–40  
85  
MAIN LINK DIFFERENTIAL PINS  
VID_PP  
Peak-to-peak input differential voltage  
75  
0
1200  
2
mv  
V
VIC  
Input common mode voltage  
AC coupling capacitance  
Data rate  
CAC  
75  
100  
200  
5
nF  
dR  
0.25  
4.5  
Gbps  
kΩ  
(1)  
VSADJ  
TMDS-compliant swing voltage bias resistor  
7.06  
7.5  
CONTROL PINS  
VI-DC  
DC input voltage  
Control pins  
–0.3  
3.6  
0.8  
V
V
Low-level input voltage at OE  
(2)  
VIL  
Low-level input voltage at SLEW_CTL, PRE_SEL, EQ_SEL/A0, TX_TERM_CTL,  
SWAP/POL  
0.3  
1.4  
No connect input voltage at SLEW_CTL, PRE_SEL, EQ_SEL/A0, TX_TERM_CTL,  
SWAP/POL  
High-level input voltage at SLEW_CTL, OE(3) , PRE_SEL, EQ_SEL/A0,  
TX_TERM_CTL, SWAP/POL  
(2)  
VIM  
1
1.2  
V
V
(2)  
VIH  
2.6  
VOL  
VOH  
IIH  
Low-level output voltage  
High-level output voltage  
High-level input current  
0.4  
V
V
2.4  
–30  
–10  
–50  
30  
10  
µA  
µA  
mA  
µA  
kΩ  
IIL  
Low-level input current  
IOS  
Short circuit output current  
High impedance output current  
Pullup resistance on OE pin  
50  
IOZ  
10  
ROEPU  
150  
250  
(1) Best transmit eye with minimum intra-pair skew, largest vertical and horizontal eye opening, maintaining HDMI compliant output swing  
can be achieved with resistors around 6.4k. Using smaller resistors may lead to compliance failures.  
(2) These values are based upon a microcontroller driving the control pins. The pullup/pulldown/floating resistor configuration will set the  
internal bias to the proper voltage level which will not match the values shown here.  
(3) This value is based upon a microcontroller driving the OE pin. A passive reset circuit using an external capacitor and the internal pullup  
resistor will set OE pin properly, but may have a different value than shown due to internal biasing.  
7.4 Thermal Information  
SNx5DP159  
RGZ (VQFN)  
48 PINS  
31.1  
SNx5DP159  
THERMAL METRIC(1)  
RSB (WQFN)  
UNIT  
40 PINS  
37.3  
23.1  
9.9  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance (High-K board(2)  
Junction-to-board thermal resistance (High-K board(2)  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
)
18.2  
)
8.1  
ψJT  
0.4  
0.3  
ψJB  
8.1  
3.8  
RθJC(bot)  
3.2  
3.2  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) Test conditions for ΨJB and ΨJT are clarified in TI document Semiconductor and IC Package Thermal Metrics.  
8
Copyright © 2015–2018, Texas Instruments Incorporated  
 
SN65DP159, SN75DP159  
www.ti.com.cn  
ZHCSE15F JULY 2015REVISED MAY 2018  
7.5 Power Supply Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1) MAX(2) UNIT  
OE = H, VCC = 3.3 V/3.6 V, VDD = 1.1 V/1.27 V  
Device power dissipation IN_Dx: VID_PP = 1200 mV, 6Gbps TMDS pattern, VI = 3.3 V,  
PD1  
435  
600  
mW  
(Retimer operation)  
I2C_EN/PIN = L, PRE_SEL= H, EQ_CTL= H,  
SDA_CTL/CLK_CTL = 0 V, VSadj = 7.06 kΩ  
OE = H, VCC = 3.3 V/3.6 V, VDD = 1.1 V/1.27 V  
Device power dissipation IN_Dx: VID_PP = 1200 mV, 6Gbps TMDS pattern, VI = 3.3 V,  
PD2  
215  
10  
400  
30  
mW  
mW  
(Redriver operation)  
I2C_EN/PIN = L, PRE_SEL= H, EQ_CTL= H,  
SDA_CTL/CLK_CTL = 0 V, VSadj = 7.06 kΩ  
Device power in power  
down  
OE = L, VCC = 3.3 V/3.6 V, VDD = 1.1 V/1.27 V, VSadj = 7.06  
kΩ  
PSD1  
OE = H, VCC= 3.3 V/3.6 V, VDD = 1.1V/1.27 V, VSadj = 7.06  
kΩ  
IN_Dx: VID_PP = 1200 mV, 6Gbps TMDS pattern  
I2C_EN/PIN = L, PRE_SEL = H, EQ_CTL = H,  
SDA_CTL/CLK_CTL = 0 V, SLEW_CTL = H  
VCC supply current  
(TMDS 6Gpbs retimer  
mode)  
ICC1  
IDD1  
ICC2  
IDD2  
35  
295  
8
50  
325  
20  
mA  
mA  
mA  
OE = H, VCC = 3.3 V/3.6 V, VDD = 1.1 V/1.27 V, VSadj = 7.06  
kΩ  
IN_Dx: VID_PP = 1200 mV, 6Gbps TMDS pattern  
I2C_EN/PIN = L, PRE_SEL = H, EQ_CTL = H,  
SDA_CTL/CLK_CTL = 0 V, SLEW_CTL = H  
VDD supply current  
(TMDS 6Gpbs retimer  
mode)  
OE = H, VCC = 3.3 V/3.465 V, VDD = 1.1 V/1.27 V, VSadj =  
7.06 kΩ  
IN_Dx: VID_PP = 1200 mV, 6Gbps TMDS pattern  
I2C_EN/PIN = L, PRE_SEL = H, EQ_CTL = H,  
SDA_CTL/CLK_CTL = 0 V, SLEW_CTL = H  
VCC supply current  
(TMDS 6Gpbs redriver  
mode)  
OE = H, VCC = 3.3 V/3.465 V, VDD = 1.1 V/1.27 V, VSadj =  
7.06 kΩ  
IN_Dx: VID_PP = 1200 mV, 6Gbps TMDS pattern  
I2C_EN/PIN = L, PRE_SEL = H, EQ_CTL = H,  
SDA_CTL/CLK_CTL = 0 V, SLEW_CTL = H  
VDD supply current  
(TMDS 6Gpbs redriver  
mode)  
170  
250  
mA  
mA  
OE = L, VCC = 3.3 V/3.465 V, VDD  
3.3-V rail  
ISD1  
ISD1  
Power-down current  
Power-down current  
2
5
= 1.1 V/1.27 V, VSadj = 7.06 kΩ  
OE = L, VCC = 3.3 V/3.465 V, VDD  
1.1-V rail  
3.5  
10  
= 1.1 V/1.27 V, VSadj = 7.06 kΩ  
(1) The typical rating is simulated at 3.3-V VCC and 1.1-V VDD and at 27°C temperature unless otherwise noted  
(2) The maximum rating is simulated at 3.6-V VCC and 1.27-V VDD and at 85°C temperature unless otherwise noted  
Copyright © 2015–2018, Texas Instruments Incorporated  
9
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
MAX UNIT  
7.6 Differential Input Electrical Characteristics  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
0.25  
25  
TYP  
DR_RX_DATA Ddata lanes data rate  
6
340  
60%  
0.3  
Gbps  
MHz  
DR_RX_CLK  
tRX_DUTY  
tCLK_JIT  
Clock lanes clock rate  
Input clock duty circle  
Input clock jitter tolerance  
Input data jitter tolerance  
40%  
50%  
Tbit  
ps  
tDATA_JIT  
Test the TTP2, see 10  
150  
Test at TTP2 when DR = 1.6-Gbps, see 图  
10  
TRX_INTRA  
TRX_INTER  
EQH(D)  
Input intra-pair skew tolerance  
Input inter-pair skew tolerance  
112  
ps  
ns  
dB  
1.8  
Fixed EQ gain for data lane  
IN_D(0,1,2)n/p  
EQ_SEL/A0 = H; Fixed EQ gain,  
test at 6-Gbps  
15  
Fixed EQ gain for data lane  
IN_D(0,1,2)n/p  
EQ_SEL/A0 = L; Fixed EQ gain,  
test at 6-Gbps  
EQL(D)  
EQZ(D)  
7.5  
dB  
dB  
Adaptive EQ gain for data lane  
IN_D(0,1,2)n/p  
EQ_SEL/A0 = Z; adaptive EQ  
EQ_SEL/A0 = H,L,NC  
2
15  
EQ(c)  
EQ gain for clock lane IN_CLKn/p  
Input differential termination impedance  
Input termination voltage  
3
100  
0.7  
RINT  
80  
75  
120  
VITERM  
VID_PP  
OE = H  
V
Input differential voltage (peak to peak)  
Tested at TTP2, check 10  
1200 mVPP  
10  
Copyright © 2015–2018, Texas Instruments Incorporated  
SN65DP159, SN75DP159  
www.ti.com.cn  
ZHCSE15F JULY 2015REVISED MAY 2018  
7.7 HDMI and DVI TMDS Output Electrical Characteristics  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Data rate 1.65-Gbps; PRE_SEL =  
NC; TX_TERM_CTL = H;  
SLEW_CTL = H; OE = H; DR = 750-  
Mbps, VSadj = 7.06-kΩ  
VCC – 10  
VCC + 10  
VOH  
VOH  
VOL  
Single-ended high level output voltage  
mV  
mV  
mV  
1.65-Gbps < Data rate 3.4-Gbps;  
PRE_SEL = NC; TX_TERM_CTL =  
H; SLEW_CTL = H; OE = H; DR =  
2.97-Gbps, VSadj = 7.06-kΩ  
VCC – 200  
VCC – 400  
VCC – 600  
VCC – 700  
VCC – 1000  
400  
VCC + 10  
VCC + 10  
VCC – 400  
VCC – 400  
VCC – 400  
600  
3.4-Gbps < Data rate < 6 Gbps;  
PRE_SEL = NC; TX_TERM_CTL = L;  
SLEW_CTL = H; OE = H; DR = 6-  
Gbps, VSadj = 7.06-kΩ  
Single-ended high level output voltage  
Single-ended low level output voltage  
Single-ended low level output voltage  
Data rate 1.65-Gbps; PRE_SEL =  
NC; TX_TERM_CTL = H;  
SLEW_CTL = H; OE = H; DR = 750-  
Mbps, VSadj = 7.06-kΩ  
1.65-Gbps < Data rate 3.4-Gbps;  
PRE_SEL = NC; TX_TERM_CTL =  
H; SLEW_CTL = H; OE = H; DR =  
2.97-Gbps, VSadj = 7.06-kΩ  
3.4-Gbps < Data rate < 6-Gbps;  
PRE_SEL = NC; TX_TERM_CTL = L;  
SLEW_CTL = H; OE = H; DR = 6-  
Gbps  
VOL  
mV  
mV  
PRE_SEL = NC; TX_TERM_CTL =  
H/NC/L; SLEW_CTL = H; OE = H;  
DR = 270-Mbs/2.97/6Gbps VSadj =  
7.06-kΩ  
Single-ended output voltage swing on  
data lane  
VSWING_DA  
500  
500  
Data rate 3.4-Gbps; PRE_SEL =  
NC; TX_TERM_CTL = H;  
SLEW_CTL = H; OE = H; VSadj =  
7.06-kΩ  
400  
600  
Single-ended output voltage swing on  
clock lane  
VSWING_CLK  
mV  
Data rate > 3.4-Gbps; PRE_SEL =  
NC; TX_TERM_CTL = NC;  
SLEW_CTL = H; OE = H; VSadj =  
7.06-kΩ  
200  
300  
20  
400  
Change in single-end output voltage  
swing per 100 Ω ΔVsadj  
ΔVSWING  
ΔVOCM(SS)  
VOD(PP)  
mV  
mV  
mV  
mV  
Change in steady state output common  
mode voltage between logic levels  
–5  
800  
600  
5
1200  
1050  
Output differential voltage before pre-  
emphasis  
Vsadj = 7.06-kΩ; PRE_SEL = Z, See  
8  
Vsadj = 7.06-kΩ; PRE_SEL = L, See  
9  
VOD(SS)  
Steady-state output differential voltage  
VCC = 0-V; VDD = 0-V; output pulled  
to 3.3 V through 50-resistors  
ILEAK  
IOS  
Failsafe condition leakage current  
Short circuit current limit  
45  
50  
µA  
mA  
Ω
Main link output shorted to GND  
Source termination resistance for HDMI  
2.0  
RTERM  
75  
150  
Copyright © 2015–2018, Texas Instruments Incorporated  
11  
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
7.8 AUX, DDC, and I2C Electrical Characteristics  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
pF  
CIO  
Input capacitance  
AUX data rate = 1-MHz  
10  
CAC  
AUX AC coupling capacitance  
Data rate of the AUX channel input  
75  
200  
1.2  
nF  
DR(AUX)  
0.8  
1
Mbps  
DC input voltage on AUX channel,  
AUX_SRCp/n: 100-kpull up to 3.6 V  
but differential common mode is 2 V  
or less.  
VI-DC(AUX)  
-0.5  
3.6  
V
Peak-to-peak differential voltage at  
TX pins  
VAUX_DIFF_PP_TX  
VAUX_DIFF_PP_RX  
VAUX_DC_CM  
IAUX_SHORT  
VI-DC  
VAUX_DIFF_PP = 2 × |VAUXP – VAUXN  
VAUX_DIFF_PP = 2 × |VAUXP – VAUXN  
|
|
0.29  
0.14  
0
1.38  
1.36  
2
V
V
V
Peak-to-peak differential voltage at  
RX pins  
AUX channel DC common mode  
voltage  
AUX channel short circuit current limit  
SCL/SDA_SNK DC input voltage  
90  
mA  
V
–0.3  
-0.3  
5.6  
SCL/SDA_CTL, SCL/SDA_SRC DC  
input voltage  
3.6  
0.3 x VCC  
0.3 x VCC  
V
V
V
V
V
V
SCL/SDA_SNK, SCL/SDA_SRC Low  
level input voltage  
VIL  
SCL/SDA_CTL Low level input  
voltage  
SCL/SDA_SNK high level input  
voltage  
3
0.7 x VCC  
0.7 x VCC  
SCL/SDA_SRC high level input  
voltage  
VIH  
SCL/SDA_CTL high level input  
voltage  
I0 = 3-mA and VCC > 2-V  
I0 = 3-mA and VCC < 2-V  
0.4  
V
V
SCL/SDA_CTL, SCL/SDA_SRC low-  
level output voltage  
VOL  
0.2 VCC  
SCL clock frequency fast I2C mode  
for local I2C control  
fSCL  
400  
400  
kHz  
pF  
Total capacitive load for each bus line  
(DDC and local I2C pins)  
Cbus  
7.9 HPD Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VIH  
High-level input voltage  
Low-level input voltage  
High-level output voltage  
Low-level output voltage  
Failsafe condition leakage current  
HPD_SNK  
2.1  
VIL  
HPD_SNK  
0.8  
3.6  
0.1  
40  
V
VOH  
VOL  
ILEAK  
IOH = –500-µA; HPD_SRC  
IOL = 500-µA; HPD_SRC  
VCC = 0-V; VDD = 0-V; HPD_SNK = 5-V  
2.4  
0
V
V
μA  
Device powered; VIH = 5-V;  
IH_HPD includes RpdHPD resistor current  
IH_HPD  
High-level input current  
40  
μA  
Device powered; VIL = 0.8-V;  
IL_HPD includes RpdHPD resistor current  
IL_HPD  
Low-level input current  
30  
RpdHPD  
HPD input termination to GND  
VCC = 0-V  
150  
190  
220  
kΩ  
12  
版权 © 2015–2018, Texas Instruments Incorporated  
SN65DP159, SN75DP159  
www.ti.com.cn  
ZHCSE15F JULY 2015REVISED MAY 2018  
7.10 HDMI and DVI Main Link Switching Characteristics  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
REDRIVER MODE  
DR  
Data rate (Automatic Mode)  
250  
250  
250  
250  
1000 Mbps  
6000 Mbps  
DR  
Data rate (full redriver mode)  
tPLH  
tPHL  
Propagation delay time (low to high)  
Propagation delay time (high to low)  
600  
800  
ps  
ps  
SLEW_CTL = H; TX_TERM_CTL = L;  
PRE_SEL = NC; OE = H; DR = 6 Gbps  
tT1  
tT2  
45  
65  
Transition time (rise and fall time);  
measured at 20% and 80% levels for data  
lanes. TMDS clock meets tT3 for all three  
times.  
SLEW_CTL = L; TX_TERM_CTL = NC;  
PRE_SEL = NC; OE = H; DR = 6 Gbps  
ps  
SLEW_CTL = NC; TX_TERM_CTL =  
NC; PRE_SEL = NC; OE = H; DR = 6  
Gbps; CLK 150MHz  
tT3  
100  
SLEW_CTL = NC; TX_TERM_CTL =  
NC; PRE_SEL = NC; OE = H; DR = 6  
Gbps;  
tSK1(T)  
Intra-pair output skew  
Inter-pair output skew  
40  
ps  
ps  
SLEW_CTL = NC; TX_TERM_CTL =  
NC; PRE_SEL = NC; OE = H; DR = 6  
Gbps;  
tSK2(T)  
100  
DR = 2.97 Gbps, HDMI_SEL/A1 = NC,  
EQ_SEL/A0 = NC; PRE_SEL = NC;  
SLEW_CTL = H OE = H.  
tJITD1(1.4b)  
Total output data jitter  
0.2  
Tbit  
Tbit  
See 10 at TTP3  
3.4Gbps < Rbit 3.712Gps SLEW_CTL  
= H; TX_TERM_CTL = NC; PRE_SEL =  
NC; OE = H  
0.4  
-0.033  
2Rbit2  
+0.23  
12  
Rbit +  
0.1998  
3.712Gbps < Rbit < 5.94Gbps  
SLEW_CTL = H; TX_TERM_CTL = NC;  
PRE_SEL = NC; OE = H  
tJITD1(2.0)  
Total output data jitter  
Tbit  
Tbit  
5.94Gbps Rbit 6.0Gbps SLEW_CTL  
= H; TX_TERM_CTL = NC; PRE_SEL =  
NC; OE = H  
0.8  
tJITC1(1.4b)  
Total output clock jitter  
Total output clock jitter  
CLK = 297 MHz  
0.25  
0.3  
Tbit  
Tbit  
tJITC1(2.0)  
DR = 6Gbps: CLK = 150 MHz  
RETIMER MODE  
dR  
dR  
Data rate (Full retimer mode)  
Data rate (Automatic mode)  
0.25  
1.0  
6
6
Gbps  
Gbps  
Measured with input signal applied from  
0 to 200 mVpp  
dXVR  
Automatic redriver to retimer crossover  
.75  
1.0  
1.25 Gbps  
MHz  
fCROSSOVER  
PLLBW  
Crossover frequency hysteresis  
Data retimer PLL bandwidth  
250  
.4  
Default loop bandwidth setting  
1
MHz  
Input clock frequency detection and retimer  
acquisition time  
tACQ  
IJT1  
tT1  
180  
μs  
Input clock jitter tolerance  
Tested when data rate > 1.0 Gbps  
0.3  
Tbit  
SLEW_CTL = H; TX_TERM_CTL = L;  
PRE_SEL = NC; OE = H; DR = 6 Gbps  
45  
65  
Transition time (rise and fall time);  
measured at 20% and 80% levels for data  
lanes. TMDS clock meets tT3 for all three  
times.  
SLEW_CTL = L; TX_TERM_CTL = NC;  
PRE_SEL = NC; OE = H; DR = 6 Gbps  
tT2  
ps  
SLEW_CTL = NC; TX_TERM_CTL =  
NC; PRE_SEL = NC; OE = H; DR = 6  
Gbps; CLK = 150 MHz  
tT3  
100  
tDCD  
OUT_CLK ± duty cycle  
40%  
50%  
60%  
版权 © 2015–2018, Texas Instruments Incorporated  
13  
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
MAX UNIT  
HDMI and DVI Main Link Switching Characteristics (接下页)  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
tSK_INTER  
tSK_INTRA  
tJITC1(1.4b)  
tJITC1(2.0)  
0.2  
0.15  
0.25  
0.3  
Tch  
Tbit  
Tbit  
Tbit  
Default setting for internal inter-pair skew  
adjust, HDMI_SEL/A1 = NC  
Inter-pair output skew  
Total output clock jitter  
Total output clock jitter  
CLK = 297 MHz  
DR = 6Gbps: CLK = 150 MHz  
3.4 Gbps < Rbit 3.712 Gbps  
0.4  
See  
tJITD2  
Total output data jitter  
3.712 Gbps < Rbit < 5.94 Gbps  
Tbit  
mV  
(1)  
5.94 Gbps Rbit 6.0 Gbps  
3.4 Gbps < Rbit 3.712 Gbps  
0.6  
335  
Total TMDS data lanes output differential  
voltage  
See  
VOD_range  
3.712 Gbps < Rbit < 5.94 Gbps  
(2)  
5.94 Gbps Rbit 6.0 Gbps  
150  
(1) –0.0332Rbit2 + 0.2312 Rbit + 0.1998  
(2) –19.66 × (Rbit2) + (106.74 × Rbit) + 209.58  
14  
版权 © 2015–2018, Texas Instruments Incorporated  
SN65DP159, SN75DP159  
www.ti.com.cn  
ZHCSE15F JULY 2015REVISED MAY 2018  
7.11 AUX Switching Characteristics (Only for RGZ Package)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
0.6  
UNIT  
µs  
UIMAN  
Manchester transaction unit interval  
Cycle-to-cycle jitter time at transmit pins  
Cycle-to-cycle jitter time receive pins  
0.4  
tAUXjitter_TX  
tAUXjitter_RX  
0.08  
0.05  
UIMAN  
UIMAN  
7.12 HPD Switching Characteristics  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
See 14; not valid during switching time  
See 15  
MIN  
TYP  
MAX UNIT  
Propagation delay from HPD_SNK to  
HPD_SRC; rising edge and falling edge  
tPD(HPD)  
tT(HPD)  
40  
2
120  
ns  
HPD logical disconnected timeout  
ms  
7.13 DDC and I2C Switching Characteristics  
over recommended operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Vcc = 3.3-V  
MIN  
TYP  
MAX  
UNIT  
ns  
tr  
Rise time of both SDA and SCL signals  
Fall time of both SDA and SCL signals  
Pulse duration, SCL high  
300  
300  
tf  
ns  
tHIGH  
tLOW  
tSU1  
0.6  
1.3  
100  
0.6  
0.6  
0.6  
1.3  
μs  
Pulse duration, SCL low  
μs  
Setup time, SDA to SCL  
ns  
tST, STA  
tHD,STA  
tST,STO  
t(BUF)  
Setup time, SCL to start condition  
Hold time, start condition to SCL  
Setup time, SCL to stop condition  
Bus free time between stop and start condition.  
μs  
μs  
μs  
μs  
Source-to-sink: 100-kbps pattern;  
tPLH1  
tPHL1  
tPLH2  
tPHL2  
Propagation delay time, low-to-high-level output Cb(Sink) = 400-pF(1)  
;
360  
230  
250  
200  
ns  
ns  
ns  
ns  
See 18  
Propagation delay time, high-to-low-level output  
Sink to Source: 100-kbps pattern;  
Propagation delay time, low-to-high-level output Cb(Source) = 100-pF(1)  
See 19  
;
Propagation delay time, high-to-low-level output  
(1) Cb = total capacitance of one bus line in pF.  
版权 © 2015–2018, Texas Instruments Incorporated  
15  
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
7.14 Typical Characteristics  
350  
300  
250  
200  
150  
100  
50  
200  
180  
160  
140  
120  
100  
80  
1.1 V  
3.3 V  
1.1 V  
3.3 V  
60  
40  
20  
0
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
Data Rate (Gbps)  
Data Rate (Gbps)  
D001  
D002  
1. Current vs Data Rate in Retimer Mode  
2. Current vs Data Rate in Redriver Mode  
1600  
VOD No Term  
VOD 150 to 300 W  
VOD 75 to 150 W  
1400  
1200  
1000  
800  
600  
400  
200  
0
4
4.5  
5
5.5  
6
6.5  
7
7.5  
8
Vsadj (kW)  
D003  
3. VOD vs Vsadj  
8 Parameter Measurement Information  
VTERM  
3.3V  
50Q  
50Q  
50Q  
75-200nF  
75-200nF  
50Q  
0.5 pF  
D+  
D-  
Y
Z
Receiver  
Driver  
VID  
VD+  
VY  
VID = VD+ - VD-  
VOD = VY - VZ  
VD-  
VZ  
VICM = (VD+ + VD-  
)
VOC = (VY + VZ)  
2
2
4. TMDS Main Link Test Circuit  
16  
版权 © 2015–2018, Texas Instruments Incorporated  
 
SN65DP159, SN75DP159  
www.ti.com.cn  
ZHCSE15F JULY 2015REVISED MAY 2018  
Parameter Measurement Information (接下页)  
2.2 V  
VTERM  
VID  
1.8 V  
VID+  
VID(pp)  
0 V  
VIDœ  
tPHL  
80%  
tPLH  
80%  
VOD(pp)  
VOD  
0 V  
20%  
tf  
20%  
tr  
5. Input and Output Timing Measurements  
tSK1(T)  
tSK1(T)  
TMDS_OUTxp  
TMDS_OUTxn  
50%  
tSK2(T)  
TMDS_OUTyp  
TMDS_OUTyn  
6. HDMI and DVI Sink TMDS Output Skew Measurements  
VOC  
ûVOC(SS)  
7. TMDS Main Link Common Mode Measurements  
版权 © 2015–2018, Texas Instruments Incorporated  
17  
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
VOD(PP)  
PRE_SEL=Z  
Vsadj = 7.06YQ  
8. Output Differential Waveform 0 dB De-Emphasis  
PRE_SEL = Z  
Vsadj = 7.06 lQ  
PRE_SEL = L  
Vsadj = 7.06 lQ  
1st bit  
2nd to N bit  
VOD(SS)  
VOD(PP)  
9. PRE_SEL = L for –2-dB De-Emphasis  
18  
版权 © 2015–2018, Texas Instruments Incorporated  
 
SN65DP159, SN75DP159  
www.ti.com.cn  
ZHCSE15F JULY 2015REVISED MAY 2018  
Parameter Measurement Information (接下页)  
Avcc(4)  
RT  
(5)  
RT  
SMA  
SMA  
SMA  
SMA  
REF  
Cable  
EQ  
Data +  
Coax  
Coax  
Coax  
Coax  
RX  
+EQ  
OUT  
Data œ  
Parallel(6)  
BERT  
Jitter Test  
Instrument(2,3)  
FR4 PCB trace(1)  
and AC coupling  
capacitors  
Device  
FR4 PCB trace  
AVcc  
RT  
[No Pre-  
emphasis]  
RT  
REF  
SMA  
SMA  
SMA  
SMA  
Coax  
Coax  
Coax  
Coax  
Clk+  
Cable  
EQ  
RX  
+EQ  
OUT  
Clkœ  
Jitter Test  
Instrument(2,3)  
TTP4_EQ  
TTP4  
TTP1  
TTP2  
TTP3  
TTP2_EQ  
(1) The FR4 trace between TTP1 and TTP2 is designed to emulate 1-8” of FR4, AC coupling cap, connector and another  
1-2” of FR4. Trace width – 4 mils. 100-Ω differential impedance.  
(2) All jitter is measured at a BER of 10-9.  
(3) Residual jitter reflects the total jitter measured at TTP4 minus the jitter measured at TTP1.  
(4) AVCC = 3.3-V  
(5) RT = 50-Ω  
(6) The input signal from parallel bit error rate tester (BERT) does not have any pre-emphasis. Refer to Recommended  
Operating Conditions.  
10. TMDS Output Jitter Measurement  
HDMI Mask  
(mV)  
75  
V
20  
0
DP159 Post EQ Eye Mask  
t20  
t75  
H
Tbit  
(ps)  
0.3  
t33.7 t25  
0.5  
0.7  
25 33.7  
11. Post EQ Input Eye Mask at TTP2_EQ  
版权 © 2015–2018, Texas Instruments Incorporated  
19  
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
V
0
H
0
0.5  
TMDS DATA RATE (Gbps)  
3.4 < DR < 3.712  
H (Tbit)  
V (mV)  
0.6  
335  
3.712 < DR < 5.94  
5.94 DR 6.0  
–0.0332Rbit2 + 0.2312Rbit + 0.1998  
–19.66Rbit2 + 106.74Rbit + 209.58  
0.4  
150  
12. Output Eye Mask at TTP4_EQ  
20  
版权 © 2015–2018, Texas Instruments Incorporated  
SN65DP159, SN75DP159  
www.ti.com.cn  
ZHCSE15F JULY 2015REVISED MAY 2018  
HPD_SNK  
HPD_SRC  
190K  
100Kꢀ  
13. HPD Test Circuit  
HPD_SNK  
VCC  
50%  
0 V  
tPD(HPD)  
HPD_SRC  
VCC  
50%  
0 V  
14. HPD Timing Diagram Number 1  
HPD_SNK  
Vcc  
50%  
0V  
HPD Logical Disconnect  
Timeout  
HPD_SRC  
tT(HPD)  
Vcc  
0V  
Logically  
Disconnected  
Device Logically  
Connected  
15. HPD Logic Disconnect Timeout  
版权 © 2015–2018, Texas Instruments Incorporated  
21  
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
tHD,STA  
tf  
tr  
SCL  
tST,STO  
SDA  
t(BUF)  
START  
STOP  
16. Start and Stop Condition Timing  
tHIGH  
tLOW  
SCL  
tST,STA  
SDA  
t
SU1  
17. SCL and SDA Timing  
22  
版权 © 2015–2018, Texas Instruments Incorporated  
SN65DP159, SN75DP159  
www.ti.com.cn  
ZHCSE15F JULY 2015REVISED MAY 2018  
SDA_SRC/  
SCL_SRC  
INPUT  
½ Vcc  
tPLH1  
tPHL1  
80%  
20%  
SDA_SNK/  
SCL_SNK  
OUTPUT  
½ Vcc  
tf  
tr  
18. DDC Propagation Delay – Source to Sink  
SDA_SNK/  
SCL_SNK  
INPUT  
½ Vcc  
tPHL2  
tPLH2  
80%  
20%  
SDA_SRC/  
SCL_SRC  
OUTPUT  
½ Vcc  
tf  
19. DDC Propagation Delay – Sink to Source  
tr  
版权 © 2015–2018, Texas Instruments Incorporated  
23  
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The SNx5DP159 device is a Dual Mode[1] DisplayPort retiming level shifter that supports data rates up to 6-  
Gbps for HDMI2.0a. The device takes in AC coupled HDMI/DVI signals and level shifts them to TMDS signals  
while compensating for loss and jitter through its receiver equalizer and retiming functions. The SNx5DP159 in  
default configuration should meet most system needs but also provides features that allow the system  
implementer flexibility in design. Programming can be accomplished through I2C[4] or pin strapping.  
9.2 Functional Block Diagram  
HPD_SRC  
HPD_SNK  
VSADJ  
190YQ  
VBIAS  
50Q  
50Q  
OUT_CLKp  
OUT_CLKn  
IN_CLKp  
IN_CLKn  
TMDS  
EQ  
Data Registers  
SWAP  
VBIAS  
PLL  
PLL Control  
SERDES  
50Q  
50Q  
IN_D[2:0]p  
IN_D[2:0]n  
OUT_D[2:0]p  
OUT_D[2:0]n  
EQ  
TMDS  
TERM_SEL  
SLEW_SEL  
PRE_SEL  
Enable  
Control Block, I2C Registers  
I2C_EN/PIN  
EQ_CTL  
EQ_SEL  
EQ_SEL/A0  
HDMI_SEL  
A0  
CEC_EN  
HDMI_SEL/A1  
PRE_SEL  
OE  
TX_TERM_CTL  
SLEW_CTL  
SWAP/POL  
A1  
Local I2C  
Control  
SDA_CTL  
SCL_CTL  
DDC Snoop Block  
SDA_SRC  
SCL_SRC  
SDA_SNK  
ACTIVE DDC BLOCK  
SCL_SNK  
GND  
I2C over AUX  
DDC  
Bridge  
AUX_SRCp  
AUX_SRCn  
1.1V  
3.3V  
VDD  
VREG  
VCC  
Copyright © 2016, Texas Instruments Incorporated  
NOTE: Black pin names are common to both packages.  
Blue pin names are only in the SNx5DP159 RGZ package.  
24  
版权 © 2015–2018, Texas Instruments Incorporated  
SN65DP159, SN75DP159  
www.ti.com.cn  
ZHCSE15F JULY 2015REVISED MAY 2018  
9.3 Feature Description  
9.3.1 Reset Implementation  
When OE is de-asserted, control signal inputs are ignored; the Dual Mode[1] DisplayPort inputs and outputs are  
high impedance. It is critical to transition the OE input from a low level to a high level after the VCC supply has  
reached the minimum recommended operating voltage. Achieve this transition by a control signal to the OE  
input, or by an external capacitor connected between OE and GND. To ensure that the SNx5DP159 device is  
properly reset, the OE pin must be de-asserted for at least 100-μs before being asserted. When OE is toggled in  
this manner the device is reset. This requires the device to be reprogrammed if it was originally programmed  
through I2C for configuration. When implementing the external capacitor, the size of the external capacitor  
depends on the power-up ramp of the VCC supply, where a slower ramp-up results in a larger value external  
capacitor. Refer to the latest reference schematic for SNx5DP159; consider approximately 200-nF capacitor as a  
reasonable first estimate for the size of the external capacitor. Both OE implementations are shown in 20 and  
21.  
SPACE  
GPO  
OE  
OE  
RRST = 200 K  
C
C
20. External Capacitor Controlled OE  
9.3.2 Operation Timing  
21. OE Input from Active Controller  
SNx5DP159 starts to operate after the OE signal goes high (see 22, 23, and 1). Keeping OE low until  
VDD and VCC become stable avoids any timing requirements as shown in 22.  
t
d2  
OE  
t
d1  
VCC / VDD  
VDD / VCC  
22. Power-Up Timing for SSNx5DP159  
版权 © 2015–2018, Texas Instruments Incorporated  
25  
 
 
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
Feature Description (接下页)  
td3  
CDR Active  
td4  
Retimer mode  
OE De-assert or  
HPD_SNK De-assert or  
Redriver mode  
23. CDR Timing for SNx5DP159  
1. SNx5DP159 Operation Timing  
MIN  
0
MAX  
UNIT  
µs  
td1  
VDD/VCC stable before VCC/VDD  
VDD and VCC stable before OE deassertion  
200  
td2  
100  
µs  
td3  
CDR active operation after retimer mode initial  
CDR turn off time after retimer mode de-assert  
VDD supply ramp-up requirements  
15  
120  
100  
100  
ms  
ns  
td4  
VDD_ramp  
VCC_ramp  
ms  
ms  
VCC supply ramp-up requirements  
9.3.3 I2C-over-AUX to DDC Bridge (SNx5DP159 48-Pin Package Version Only)  
The SNx5DP159 device incorporates the I2C-over-AUX to DDC bridge to support the DisplayPort Dual-Mode  
standard version 1.1. It enables the communication between source device and sink device through AUX  
channel. The bridge receives the request from source device in the I2C-over-AUX format and transfers it into  
DDC signal to sink device. When the sink device responds, the request in the DDC channel and bridge packages  
it into I2C-over-AUX and sends it back to the source device.  
9.3.4 Input Lane Swap and Polarity Working  
The SNx5DP159 device incorporates the swap function, which can set the input lanes in swap mode. The IN_D2  
routes to the OUT_CLK position. The IN_D1 swaps with IN_D0. The swap function only changes the input pins;  
EQ setup follows new mapping. The SWAP/POL is pin 1 in the 48-pin RGZ package.For the RSB version, the  
user needs to control the register 0x09h bit 7 for SWAP enable. Lane swap is operational in both redriver and  
retimer mode.  
2. Lane Swap(1)  
NORMAL OPERATION  
IN_D2 OUT_D2  
IN_D1 OUT_D1  
IN_D0 OUT_D0  
IN_CLK OUT_CLK  
SWAP = L OR CSR 0x09h BIT 7 IS 1’b1  
IN_D2 OUT_CLK  
IN_D1 OUT_D0  
IN_D2 OUT_D1  
IN_CLK OUT_D2  
(1) The output lanes never change. Only the input lanes change. See 24 and 25.  
26  
版权 © 2015–2018, Texas Instruments Incorporated  
SN65DP159, SN75DP159  
www.ti.com.cn  
ZHCSE15F JULY 2015REVISED MAY 2018  
36  
35  
34  
33  
32  
TERM_CTL  
OUT_D2p  
OUT_D2n  
SWAP/POL  
1
2
SWAP/POL  
36  
35  
34  
33  
32  
TERM_CTL  
OUT_D2p  
OUT_D2n  
1
2
IN_D2p  
IN_D2n  
IN_D2p  
IN_D2n  
DATA LANE2  
CLOCK LANE  
3
3
HPD_SNK  
OUT_D1p  
4
HPD_SNK  
OUT_D1p  
HPD_SRC  
IN_D1p  
HPD_SRC  
IN_D1p  
4
5
5
DATA LANE1  
DATA LANE0  
OUT_D1n  
OUT_D1n  
IN_D1n  
GND  
31  
30  
IN_D1n  
GND  
6
31  
30  
6
GND  
7
GND  
7
29  
28  
27  
26  
25  
IN_D0p  
OUT_D0p  
OUT_D0n  
A1  
8
IN_D0p  
OUT_D0p  
OUT_D0n  
29  
28  
27  
26  
25  
8
DATA LANE0  
DATA LANE1  
IN_D0n  
I2C_EN/PIN  
IN_CLKp  
9
IN_D0n  
I2C_EN/PIN  
IN_CLKp  
9
10  
11  
12  
10  
11  
12  
A1  
OUT_CLKp  
OUT_CLKn  
CLOCK LANE  
OUT_CLKp  
OUT_CLKn  
DATA LANE2  
IN_CLKn  
IN_CLKn  
SWAP = Z  
In Normal Working  
SWAP = L  
In Swap Working  
24. SNx5DP159 Swap Function for 48 Pins  
IN_D2p  
IN_D2n  
1
2
30  
IN_D2p  
IN_D2n  
1
2
3
4
5
6
7
8
9
30  
29  
28  
27  
26  
OUT_D2p  
OUT_D2n  
HPD_SNK  
OUT_D2p  
OUT_D2n  
HPD_SNK  
DATA LANE2  
CLOCK LANE  
29  
28  
27  
26  
HPD_SRC  
HPD_SRC  
3
IN_D1p  
IN_D1n  
4
IN_D1p  
IN_D1n  
OUT_D1p  
OUT_D1p  
DATA LANE1  
DATA LANE0  
DATA LANE0  
DATA LANE1  
5
OUT_D1n  
OUT_D0p  
OUT_D1n  
OUT_D0p  
IN_D0p  
25  
24  
IN_D0p  
IN_D0n  
6
25  
24  
IN_D0n  
I2C_EN/GPIO  
IN_CLKp  
7
OUT_D0n  
OUT_D0n  
23  
22  
21  
I2C_EN/GPIO  
IN_CLKp  
23  
22  
21  
8
HDMI_SEL  
OUT_CLKp  
OUT_CLKn  
HDMI_SEL  
OUT_CLKp  
OUT_CLKn  
9
DATA LANE2  
CLOCK LANE  
IN_CLKn  
IN_CLKn  
10  
10  
40-Pin RSB  
In Swap Working  
40-Pin RSB  
In Normal Working  
25. SNx5DP159 Swap Function for 40 Pins  
The SNx5DP159 can also change the polarity of the input signals. When SWAP/POL is high, the n and p pins on  
each lane will swap.Use Register 0x9h bit 6 to swap polarity using I2C. Polarity swap only works for retimer  
mode. When the device is in automatic redriver to retimer mode this only works when device is in retimer stage.  
If set and data rate falls below 1.0-Gbps in this mode the polarity function will be lost.  
版权 © 2015–2018, Texas Instruments Incorporated  
27  
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
9.3.5 Main Link Inputs  
Standard Dual Mode[1] DisplayPort terminations are integrated on all inputs with expected AC coupling  
capacitors on board prior to input pins. External terminations are not required. Each input data channel contains  
an adaptive or fixed equalizer to compensate for cable or board losses. The voltage at the input pins must be  
limited below the absolute maximum ratings. The input pins have incorporated failsafe circuits. The input pins  
can be polarity changed through the local I2C register or pin strapping.  
9.3.6 Main Link Inputs Debug Tools  
There are two methods for debugging a system making sure the inputs to the SNx5DP159 are valid. A TMDS  
error checker is implemented that will increment an error counter per data lane. This allows the system  
implementer to determine how the link between the source and SNx5DP159 is performing on all three data  
lanes. See CSR Bit Field Definitions – RX PATTERN VERIFIER CONTROL/STATUS register in 10.  
If a high error count is evident, the SNx5DP159 has the ability to provide the general eye quality. A tool is  
available that uses the I2C[4] link to download data that can be plotted for an eye diagram. This is available per  
data lane.  
9.3.7 Receiver Equalizer  
Equalizers are used to clean up inter-symbol interference (ISI) jitter or loss from the bandwidth-limited board  
traces or cables. The SNx5DP159 device supports both fixed receiver equalizer (redriver and retimer mode) and  
adaptive receive equalizer (retimer mode) by setting the EQ_SEL/A0 pin or through I2C using reg0Ah[5]. When  
the EQ_SEL/A0 pin is high, the EQ gain is fixed to 14-dB. The EQ gain will be 7.5-dB if the EQ_SEL/A0 pin is  
set low. The SNx5DP159 device operates in adaptive equalizer mode when EQ_SEL/A0 left floating. Using  
adaptive equalization the gain will be automatically adjusted based on the data rate to compensate for variable  
trace or cable loss. Using the local I2C[4] control, reg0Dh[5:1], the fixed EQ gain can be selected for both data  
and clock.  
26. Adaptive EQ Gain Curve  
9.3.8 Termination Impedance Control  
HDMI2.0[3] standard requires the transmitter termination impedance should be between 75 to 150-. Older  
versions of the HDMI standard required no source termination. For HDMI1.4b[2] when data rate over 2 Gbps, the  
output performance could be better if the termination value between 150 to 300-which was allowed. The  
SNx5DP159 supports three different source termination impedances for HDMI1.4b[2] and HDMI2.0[3]. Pin 36,  
TX_TERM_CTL, offers a selection option to choose the output termination impedance value. This can be  
adjusted by I2C[4]; reg0Bh[4:3] TX_TERM_CTL.  
28  
版权 © 2015–2018, Texas Instruments Incorporated  
SN65DP159, SN75DP159  
www.ti.com.cn  
ZHCSE15F JULY 2015REVISED MAY 2018  
9.3.9 TMDS Outputs  
An 1% precision resistor, 7.06-kΩ, is recommended to be connected from Vsadj pin to ground to allow the  
differential output swing to comply with TMDS signal levels. The differential output driver provides a typical 10-  
mA current sink capability when no source term is enabled, which provides a typical 500-mV voltage drop across  
a 50-Ω termination resistor. As compliance testing is system dependant this resistor value can be adjusted.  
AVCC  
Vcc  
Zo=RT  
Zo=RT  
TMDS DRIVER  
TMDS RECEIVER  
27. TMDS Driver and Termination Circuit  
Referring to 27, if both VCC (device supply) and AVCC (sink termination supply) are powered, the TMDS  
output signals are high impedance when OE = low. The normal operating condition is that both supplies are  
active. A total of 33-mW of power is consumed by the terminations independent of the OE logical selection.  
When AVCC is powered on, normal operation (OE controls output impedance) is resumed. When the power  
source of the device is off and the power source to termination is on, the IO(off) (output leakage current)  
specification ensures the leakage current is limited 45-μA or less.  
The clock and data lanes VOD can be changed through I2C[4] (see VSWING_CLK and VSWING_DATA in 8  
for details). 3 shows the different output voltage based on different Vsadj resistor values.  
9.3.9.1 Pre-Emphasis/De-Emphasis  
The SNx5DP159 provides De-emphasis as a way to compensate for the ISI loss between the TMDS outputs and  
the receiver it is driving. There are two methods to implement this function. When in pin strapping mode the  
PRE_SEL pin controls this. The PRE_SEL pin provides –2-dB, or 0-dB de-emphasis, which allows output signal  
pre-conditioning to offset interconnect losses from the SNx5DP159 device outputs to a TMDS receiver. TI  
recommends setting PRE_SEL at 0 dB while connecting to a receiver through a short PCB route. When pulled to  
ground with a 65-kΩ resistor –2-dB can be realized, see 9. When using I2C, Reg0Ch[1:0] is used to make  
these adjustments.  
As there are times true pre-emphasis may be the best solution there are two ways to accomplish this. If pin  
strapping is being use the best method is to reduce the Vsadj resistor value increasing the VOD and then pulling  
the PRE_SEL pin to ground using the 65-kΩ resistor, see 28. If using I2C this can be accomplished using two  
methods. First is similar to pin strapping by adjusting the Vsadj resistor value and then implementing –2-dB de-  
emphasis. Second method is to set Reg0Ch[7:5] = 011 and the set Reg0Ch[1:0] = 01 which accomplishes the  
same pre-emphasis setting. See 29.  
版权 © 2015–2018, Texas Instruments Incorporated  
29  
 
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
PRE_SEL = Z  
Vsadj = 7.06YQ  
PRE_SEL = L  
Vsadj = 4.5YQ  
1st bit  
VOD(PP) = 1400mVpp  
2nd to N bit  
VOD(SS) = 1150mVpp  
28. Pre-Emphasis Using Pin Strapping Method  
PRE_SEL = Z  
Vsadj = 7.06YQ  
Vsadj = 7.06YQ  
I2C Reg0Ch[7:5] = 011  
Reg0C[1:0] = 01  
1st bit  
2nd to N bit  
VOD(PP) = 1200mVpp  
VOD(SS) = 1020mVpp  
29. Pre-Emphasis Using I2C Method  
30  
版权 © 2015–2018, Texas Instruments Incorporated  
SN65DP159, SN75DP159  
www.ti.com.cn  
ZHCSE15F JULY 2015REVISED MAY 2018  
9.4 Device Functional Modes  
9.4.1 Retimer Mode  
Clock and data recovery circuits (CDR) are used to track, sample and retime the equalized data bit streams. The  
CDRs are designed with loop bandwidth to minimize the amount of jitter transfer from the video source to the  
TMDS outputs. Input jitter within the CDR’s PLL bandwidth, < 1-MHz, will be transferred to the TMDS outputs.  
Higher frequency jitter above the CDR loop bandwidth is attenuated, providing a jitter cleaning function to reduce  
the amount of high frequency jitter from the video source. The retimer is automatically activated at pixel clock  
above approximately 100-MHz when jitter cleaning is needed for robust operation. The retimer operates at about  
1.0 to 6-Gbps DR supporting HDMI2.0[3]. At pixel clock frequency below about 100 MHz, the SNx5DP159  
automatically bypasses the internal retimer and operates as a redriver. When the video source changes  
resolution, the internal retimer starts the acquisition process to determine the input clock frequency and acquire  
lock to the new data bit streams. During the clock frequency detection period and the retimer acquisition period  
(that last approximately 7-ms), the TMDS drivers can be kept active (default) or programmed to be disabled to  
avoid sending invalid clock or data to the downstream receiver.  
9.4.2 Redriver Mode  
The SNx5DP159 also has a redriver mode that can be enabled through I2C[4]; at offset address 0Ah bits 1:0  
DEV_FUNC_MODE. When in this mode, the CDR and PLL are shut off, thus reducing power. Jitter performance  
is degraded as the device will now only compensate for ISI loss in the link. In redriver mode HDMI2.0[3]  
compliance is not guaranteed as skew compensation and retiming functions are disabled. Excessive random or  
phase jitter will not be compensated.  
9.4.3 DDC Training for HDMI2.0 Data Rate Monitor  
As part of discovery, the source reads the sink’s E-EDID information to understand the sink’s capabilities. Part of  
this read is HDMI forum vendor specific data block (HF-VSDB) MAX_TMDS_Character_Rate byte to determine  
the data rate supported. Depending upon the value, the source will write to slave address 0xA8 offset 0x20 bit1,  
TMDS_CLOCK_RATIO_STATUS. The SNx5DP159 snoops this write to determine the TMDS clock ratio and  
thus sets its own TMDS_CLOCK_RATIO_STATUS bit accordingly. If a 1 is written, then the TMDS clock is 1/40  
of TMDS bit period. If a 0 is written, then the TMDS clock is 1/10 of TMDS bit period. The SNx5DP159 will  
always default to 1/10 of TMDS bit period unless a 1 is written to address 0xA8 offset 0x20 bit 1. When  
HPD_SNK is de-asserted, this bit is reset to default values. If the source does not write this bit the SNx5DP159  
will not be configured for TMDS clock 1/40 mode in support of HDMI2.0. As the SNx5DP159 is in link but not  
recognized as part of the link it is possible that the source could read the sink EDID where this bit is set and  
does not re-write this bit. If the SNx5DP159 has entered a power down state this bit is cleared and does not re-  
set on a read. To work properly the bit has to be set again with a write by the source.  
9.4.4 DDC Functional Description  
The SNx5DP159 solves sink- or source-level issues by implementing a master/slave control mode for the DDC  
bus. When the SNx5DP159detects the start condition on the DDC bus from the SDA_SRC/SCL_SRC, it will  
transfer the data or clock signal to the SDA_SNK/SCL_SNK with little propagation delay. When SDA_SNK  
detects the feedback from the downstream device, the SNx5DP159 will pull up or pull down the SDA_SRC bus  
and deliver the signal to the source.  
The DDC link defaults to 100 kbps, but can be set to various values including 400 kbps by setting the correct  
value to address 22h (see 3) through the I2C access on the DDC interface. The DDC lines are 5-V tolerant.  
The HPD_SRC goes to high impedance when VCC is under low power conditions, < 1.5-V.  
The SNx5DP159 uses clock stretching for DDC transactions. As there are sources and  
sinks that do no perform this function correctly a system may not work correctly as DDC  
transactions are incorrectly transmitted/received. To overcome this a snoop configuration  
can be implemented where the SDA/SCL from the source is connected directly to the  
SDA/SCL sink. The SNx5DP159 will need its SDA_SNK and SCL_SNK pins connected to  
this link in order to the SNx5DP159 to configure the TMDS_CLOCK_RATIO_STATUS bit.  
Care must be taken when this configuration is being implemented as the voltage levels for  
DDC between the source and sink may be different, 3.3 V vs 5 V.  
版权 © 2015–2018, Texas Instruments Incorporated  
31  
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
9.5 Register Maps  
9.5.1 DP-HDMI Adaptor ID Buffer  
The SNx5DP159 device includes the DP-HDMI adapter ID buffer for HDMI/DVI adaptor recognition, defined by  
the VESA DisplayPort Dual-Mode Standard Version 1.1, accessible by standard I2C[4] protocols through the  
DDC interface when the HDMI_SEL/A1 pin is low. The DP-HDMI adapter buffer and extended DDC register for  
Type 2 capability is accessed at target addresses 80h (Write) and 81h (Read).  
The DP-HDMI adapter buffer contains a read-only phrase DP-HDMI ADAPTOR<EOT> converted to ASCII  
characters, as shown in 3, and supports the WRITE command procedures (accessed at target address 80h)  
to select the subaddress, as recommended in the VESA DisplayPort Interoperability Guideline Adaptor Checklist  
Version 1.0 section 2.3.  
3. SNx5DP159 DP-HDMI Adaptor ID Buffer and Extended DDC  
Read or  
Read/Write  
Address  
Description  
Value HDMI  
Value DVI  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
44h  
50h  
2Dh  
48h  
44h  
4Dh  
49h  
20h  
41h  
44h  
41h  
50h  
54h  
4Fh  
52h  
04h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
00h  
HDMI ID code  
Read only  
Video Adaptor Identifier  
Bit 2:0 ADAPTOR_REVISION  
0
0
0
0
0
10h  
Read only  
Bit 3 Reserved: but 0 for type 2  
Bits 7:4 1010 = Dual mode defined by dual mode[1]  
standard  
1010  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
IEE_OUI first two hex digits  
IEE_OUI second two hex digits  
IEE_OUI third two hex digits  
08h  
00h  
28h  
44h  
50h  
31h  
35h  
39h  
00h  
02h  
00h  
02h  
00h  
00h  
08h  
00h  
28h  
44h  
50h  
31h  
35h  
39h  
00h  
02h  
00h  
02h  
00h  
00h  
Read only  
Read only  
Read only  
Device ID  
Read only  
Hardware revision  
1Ah  
Bits 7:4 major revision  
Read only  
Bits 3:0 minor revision  
1Bh  
1Ch  
Firmware or software major revision  
Firmware or software minor revision  
Read only  
Read only  
32  
版权 © 2015–2018, Texas Instruments Incorporated  
 
SN65DP159, SN75DP159  
www.ti.com.cn  
ZHCSE15F JULY 2015REVISED MAY 2018  
Register Maps (接下页)  
3. SNx5DP159 DP-HDMI Adaptor ID Buffer and Extended DDC (接下页)  
Read or  
Read/Write  
Address  
Description  
Value HDMI  
Value DVI  
Max TMDS clock rate  
Default value is F0h in HDMI column  
Note: Value determined by taking clock rate and dividing by  
2.5 and converting to HEX. For HDMI2.0 extend as if the  
clock rate extended instead of its actual method, clock 1/10  
DR and not 1/40 DR.  
1Dh  
1Eh  
F0h  
42h  
Read only  
Read only  
If I2C_DR_CTL = 0 the value is 0Fh If  
DDC_AUX_DR_SEL = 0 the value is 0Fh  
If I2C_DR_CTL = 1 the value is 1Fh If  
DDC_AUX_DR_SEL = 1 then value is 1Fh  
If I2C_DR_CTL = 0 the value is 0Fh  
If I2C_DR_CTL = 1 the value is 1Fh  
0Fh  
0Fh  
1Fh  
20h  
Reserved  
00h  
00h  
00h  
00h  
Write/Read  
Write/Read  
TMDS_OE  
Bit 0: 0 = TMDS_ENABLED (default)  
Bit 0: 1 = TMDS_DISABLED  
Bits 7:1 Reserved  
HDMI Pin Control  
Bit 0 = CEC_EN  
Enables connection between the HDMI CEC pin connected  
to the sink and the  
CONFIG2 pin to the upstream device + 27-kΩ pullup.  
0 = CEC_ DISABLED (default)  
1 = CEC_ ENABLED  
21h  
00h  
00h  
Write/Read  
Bits 7:1 = RESERVED  
Writing a bit pattern to this register that is not defined above  
may result in an unpredictable I2C speed selection, but the  
adaptor must continue to otherwise work normally. Only  
applicable when using I2C-over-AUX transport  
01h = 1-Kbps  
02h = 5-Kbps  
04h = 10-Kbps  
22h  
08h = 100-kbps  
08h  
08h  
Write/Read  
10h = 400-Kbps (RSVD in Dual Mode STND)  
On read, the dual-mode cable adaptor returns a value to  
indicate the speed currently in use. The default I2C speed  
prior to software writing to this register is 100-Kbps.  
Illegal write value shall write register default (08h). This  
register sets the DDC output DR whether I2C-over-AUX or  
straight DDC  
23h-FFh Reserved  
00h  
00h  
Read  
9.5.2 Local I2C Interface Overview  
The SCL_CTL and SDA_CTL pins are used for I2C clock and I2C data respectively. The SNx5DP159 I2C  
interface conforms to the 2-wire serial interface defined by the I2C Bus Specification, Version 2.1 (January 2000),  
and supports the fast mode transfer up to 400 kbps.  
The device address byte is the first byte received following the start condition from the master device. The 7-bit  
device address for the SNx5DP159 device decides by the combination of EQ_SEL/A0 and HDMI_SEL/A1. 4  
clarifies the SNx5DP159 device target address.  
版权 © 2015–2018, Texas Instruments Incorporated  
33  
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
4. I2C Device Address Description  
SNx5DP159 I2C Device Address  
A1/A0  
ADD  
7 (MSB)  
6
0
0
0
0
5
1
1
1
1
4
1
1
1
1
3
1
1
1
0
2
1
0
0
1
1
0
1
0
1
0 (W/R)  
0/1  
00  
01  
10  
11  
1
1
1
1
BC/BD  
BA/BB  
B8/B9  
B6/B7  
0/1  
0/1  
0/1  
9.5.3 I2C Control Behavior  
Follow this procedure to write to the SNx5DP159 device I2C registers:  
1. The master initiates a write operation by generating a start condition (S), followed by the SNx5DP159 device  
7-bit address and a zero-value W/R bit to indicate a write cycle.  
2. The SNx5DP159 device acknowledges the address cycle by combination of A0 and A1.  
3. The master presents the subaddress (I2C register within SNx5DP159 device) to be written, consisting of one  
byte of data, MSB-first.  
4. The SNx5DP159 device acknowledges the subaddress cycle.  
5. The master presents the first byte of data to be written to the I2C register.  
6. The SNx5DP159 device acknowledges the byte transfer.  
7. The master may continue presenting additional bytes of data to be written, with each byte transfer completing  
with an acknowledge from the SNx5DP159 .  
8. The master terminates the write operation by generating a stop condition (P).  
Follow this procedure to read the SNx5DP159 I2C registers:  
1. The master initiates a write operation by generating a start condition (S), followed by the SNx5DP159 7-bit  
address and a zero-value W/R bit to indicate a write cycle.  
2. The SNx5DP159 device acknowledges the address cycle by combination of A0 and A1.  
3. The master presents the subaddress (I2C register within SNx5DP159 device) to be read, consisting of one  
byte of data, MSB-first.  
4. The SNx5DP159 device acknowledges the subaddress cycle.  
5. The master initiates a read operation by generating a start condition (S), followed by the SNx5DP159 7-bit  
address and a one-value W/R bit to indicate a read cycle.  
6. The SNx5DP159 device acknowledges the address cycle.  
7. The SSNx5DP159 device transmit the contents of the memory registers MSB-first starting at the written  
subaddress.  
8. The SNx5DP159 device will wait for either an acknowledge (ACK) or a not-acknowledge (NACK) from the  
master after each byte transfer; the I2C master acknowledges reception of each data byte transfer.  
9. If an ACK is received, the SNx5DP159 device transmits the next byte of data.  
10. The master terminates the read operation by generating a stop condition (P).  
Upon reset, the SNx5DP159 sub-address will always be set to 0x00. When no subaddress  
is included in a read operation, the SNx5DP159 subaddress increments from previous  
acknowledged read or write data byte. If it is required to read from a subaddress that is  
different from the SNx5DP159 internal subaddress, a write operation with only a  
subaddress specified is needed before performing the read operation.  
Refer to 6 for the SNx5DP159 device local I2C register descriptions. Reads from reserved fields return 0s and  
writes are ignored.  
34  
版权 © 2015–2018, Texas Instruments Incorporated  
SN65DP159, SN75DP159  
www.ti.com.cn  
ZHCSE15F JULY 2015REVISED MAY 2018  
9.5.4 I2C Control and Status Registers  
Reads from reserved fields return 0, and writes to read-only reserved registers are ignored. Writes to reserved  
registers, which are marked with ‘W’, produce unexpected behavior. All addresses not defined by this  
specification are considered reserved. Reads from these addresses return 0 and writes will be ignored.  
9.5.4.1 Bit Access Tag Conventions  
A table of bit descriptions is typically included for each register description that indicates the bit field name, field  
description, and the field access tags. The field access tags are described in 5.  
5. Field Access Tags  
ACCESS TAG  
NAME  
Read  
Write  
Set  
DESCRIPTION  
R
W
S
The field is read by software  
The field is written by software  
The field is set by a write of one. Writes of 0 to the field have no effect  
C
Clear  
The field is cleared by a write of 1. Writes of 0 to the field have no  
effect  
U
Update  
Hardware may autonomously update this field  
Not accessible or not applicable  
NA  
No access  
9.5.4.2 CSR Bit Field Definitions  
9.5.4.2.1 ID Registers  
6. ID Registers  
ADDRESS  
BIT  
DESCRIPTION  
ACCESS  
DEVICE_ID  
00h:07h  
7:0  
R
These fields return a string of ASCII characters “DP159” followed by three space characters.  
Address 0x00 – 0x07 = {0x44”D”, 0x50”P”, 0x31”1”, 0x35”5”, 0x39”9”, 0x20, 0x20, 0x20}  
REV _ID. This field identifies the device revision.  
0000001 – DP159 revision 1  
08h  
7:0  
R
版权 © 2015–2018, Texas Instruments Incorporated  
35  
 
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
9.5.4.2.2 Misc Control  
7. Misc Control  
ADDRESS  
BIT  
DEFAULT DESCRIPTION  
ACCESS  
SWAP_EN: This field enables swapping the input main link lanes  
0 – Disable (default)  
1 – Enable  
7
1’b0  
RWU  
Note: field is loaded from SWAP/POL pin; Writes ignored when I2C_EN/PIN = 0  
LANE_POLARITY: swaps the input data and clock lanes polarity.  
0 – Disabled: No polarity swap  
6
1’b0  
1 – Swaps the input data and clock lane polarity  
RWU  
Note: field is loaded from SWAP/POL pin; Writes ignored when I2C_EN/PIN = 0. This  
feature is only valid when in retimer mode.  
5:4  
3
2'b00  
1’b0  
Reserved  
R
PD_EN  
09h  
0 – Normal working (default)  
RW  
1 – Forced power-down by I2C, lowest power state  
HPD_AUTO_PWRDWN_DISABLE  
0 – Automatically enters power down mode based on HPD_SNK (default)  
1 – Will not automatically enter power mode based upon HPD_SNK  
2
1’b0  
RW  
RW  
I2C_DR_CTL. I2C data rate supported for configuring device  
00 – 5-kbps  
01 – 10-kbps  
10 – 100-kbps (default)  
1:0  
2’b10  
11 – 400-kbps (Note: HPD_AUTO_PWRDWN_DISABLE must be set before enabling 400  
Kbps mode)  
Application Mode Selection  
0 – Source (default) - Set the adaptive EQ mid point to between 6.5-dB and 7.5-dB  
1 – Sink - Sets the adaptive EQ starting point to between 12-dB and 13-dB  
7
6
1’b0  
1’b0  
RW  
RW  
HPDSNK_GATE_EN: This field sets the functional relationship between HPD_SNK and  
HPD_SRC.  
0 – HPD_SNK passed through to the HPD_SRC (default)  
1 – HPD_SNK will not pass through to the HPD_SRC.  
EQ_ADA_EN: this field enables the equalizer working state.  
0 – Fixed EQ  
1 – Adaptive EQ (default)  
5
4
3
1’b1  
1’b1  
1’b1  
RWU  
RW  
Writes are ignored when I2C_EN/PIN = 0  
EQ_EN: this field enables the receiver equalizer.  
0 – EQ disabled  
1 – EQ enable (default)  
0Ah  
AUX_BRG_EN: this field enable the AUX bridge working.This is only valid for the 48-pin  
package.  
0 – AUX bridge disable  
1 – AUX bridge enable (default)  
RWU  
APPLY_RXTX_CHANGES , Self clearing write-only bit. Writing a 1 to this bit will apply new  
slew, tx_term, twpst1, eqen, eqadapten, swing, eqftc, eqlev settings to the clock and data  
2
1’b0  
lanes. Writes to the respective registers do not take immediate effect. This bit does not need  
to be written if I2C configuration occurs while OE or hpd_sink are low, I2C power down is  
active.  
W
DEV_FUNC_MODE: This field selects the device working function mode.  
00 – Redriver mode across full range 250 Mbps to 6-Gbps  
01 - Automatic redriver to retimer crossover at 1.0 Gbps (default)  
10 - Automatic retimer for HDMI2.0  
1:0  
2’b01  
RW  
11 - Retimer mode across full range 250 Mbps to 6-Gbps  
When changing crossover point, need to toggle PD_EN or toggle external HPD_SNK.  
Mode Selection Definition: This bit lets the receiver know where the device is located in a system for the  
purpose of centering the AEQ point. The SNx5DP159 is targeting the source application, so the default value is  
0, which will center the EQ at 6.5 to 7.5-dB depending upon TMDS_CLOCK_RATIO_STATUS value, see 9. If  
the SNx5DP159 is in a dock or sink application, the value should be changed to a value of 1, which will center  
the EQ at 12 to 13-dB depending upon TMDS_CLOCK_RATIO_STATUS value.  
36  
版权 © 2015–2018, Texas Instruments Incorporated  
SN65DP159, SN75DP159  
www.ti.com.cn  
ZHCSE15F JULY 2015REVISED MAY 2018  
9.5.4.2.3 HDMI Control  
8. HDMI Control  
ADDRESS BIT  
DEFAULT DESCRIPTION  
ACCESS  
SLEW_CTL. Slew rate control.2’00 is fastest and 2’b11 is slowest  
Writes ignored when I2C_EN/PIN = 0  
7:6  
2’b00  
RWU  
HDMI_SEL: Contro; Writes ignored when I2C_EN/PIN = 0l  
0 – HDMI (default)  
1 – DVI  
5
1’b0  
RWU  
RWU  
TX_TERM_CTL: Controls termination for HDMI TX  
00 – No termination  
01 – 150 to 300-Ω  
10 – Reserved  
11 – 75 to 150-Ω  
4:3  
2’b00  
1’b0  
Note: Reflects the value of the TX_TERM_CTL pin; Writes ignored when I2C_EN/PIN = 0  
2
Reserved  
R
TMDS_CLOCK_RATIO_STATUS: This field is updated from snoop of I2C write to slave  
address 0xA8 offset 0x20 bit 1 that occurred on the SDA_SRC/SCL_SRC interface. When  
bit 1 of address 0xA8 offset 0x20 is written to a 1’b1, then this field will be set to a 1’b1.  
When bit 1 of address 0xA8 offset 0x20 is written to a 1’b0, then this field will be set to a  
1’b0. This field is reset to the default value whenever HPD_SNK is de-asserted for greater  
than 2 ms.  
0Bh  
1
0
1’b0  
1’b0  
RWU  
0 – TMDS clock is 1/10 of TMDS bit period (default)  
1 – TMDS clock is 1/40 of TMDS bit period  
DDC_TRAIN_SET: This field indicates the DDC training block function status. If disabled,  
the device can only work at the HDMI1.4b[2] or DVI mode  
0 – DDC training enable (default)  
RW  
RW  
1 – DDC training disable  
Note: To force TMDS_CLOCK_RATIO_STATUS to 1, this register bit must be set to 1  
which will force the 1/40 mode for HDMI2.0.  
VSWING_DATA: Data output swing control  
000 – Vsadj set  
001 – Increase by 7%  
010 – Increase by 14%  
011 – Increase by 21%  
100 – Decrease by 30%  
101 – Decrease by 21%  
110 – Decrease by 14%  
111 – Decrease by 7%  
7:5  
3’b000  
VSWING_CLK: Clock Output Swing Control  
000 – Vsadj set  
001 – Increase by 7%  
0Ch  
010 – Increase by 14%  
011 – Increase by 21%  
4:2  
3’b000  
100 – Decrease by 30%  
RW  
101 – Decrease by 21%  
110 – Decrease by 14%  
111 – Decrease by 7%  
Note: Default is set by DR, which means standard based swing values but this allows for  
the swing to be overridden by selecting one of these values  
HDMI_TWPST1. HDMI de-emphasis FIR post-cursor-1 signed tap weight.  
00 – No de-emphasis  
01 – 2-dB de-emphasis  
10 – Reserved  
1:0  
2’b00  
RWU  
11 – Reserved  
版权 © 2015–2018, Texas Instruments Incorporated  
37  
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
9.5.4.2.4 Equalization Control Register  
9. Equalization Control Register  
ADDRESS  
BIT  
DEFAULT  
DESCRIPTION  
ACCESS  
7:6  
2’b00  
Reserved  
RW  
Data Lane EQ – Sets fixed EQ values  
HDMI1.4b[2]  
000 – 0-dB  
HDMI2.0[3]  
000 – 0-dB  
001 – 3-dB  
010 – 5-dB  
011 – 7.5-dB  
100 – 9.5-dB  
101 – 11-dB  
110 – 13-dB  
111 – 14.5-dB  
001 – 4.5-dB  
010 – 6.5-dB  
011 – 8.5-dB  
100 – 10.5-dB  
101 – 12-dB  
110 – 14-dB  
111 – 16.5-dB  
5:3  
1’b000  
RW  
0Dh  
Clock Lane EQ - Sets fixed EQ values  
HDMI1.4b[2]  
00 – 0-dB  
01 – 1.5-dB  
10 – 3-dB  
HDMI2.0[3]  
00 – 0-dB  
01 – 1.5-dB  
10 – 3-dB  
2:1  
0
1’b00  
1’b0  
RW  
RW  
11 – RSVD  
11 – 4.5-dB  
0 – Clock VOD is half the set value when TMDS_CLOCK_RATIO_STATUS  
states in HDMI2.0 mode  
1 – Disables TMDS_CLOCK_RATIO_STATUS control of the clock VOD so the  
output swing is full swing  
9.5.4.2.5 EyeScan Control Register  
10. EyeScan Control Register  
ADDRESS  
BITS  
DEFAULT  
DESCRIPTION  
ACCESS  
PV_SYNC[3:0]. Pattern timing pulse. This field is updated for 8UI once  
every cycle of the PRBS generator. 1 bit per lane.  
7:4  
4’b0000  
R
PV_LD[3:0]. Load pattern-verifier controls into RX lanes. When asserted  
high, the PV_TO, PV_SEL, PV_LEN, PV_CP20, and PV_CP values are  
enabled into the corresponding RX lane. These values are then latched  
and held when PV_LD[n] is subsequently de-asserted low. 1 bit per lane.  
0Eh  
3:0  
4’b0000  
RWU  
7:4  
3:0  
4’b0000  
4’b0000  
PV_FAIL[3:0]. Pattern verification mismatch detected. 1 bit per lane.  
PV_TIP[3:0]. Pattern search/training in progress. 1 bit per lane.  
RU  
RU  
0Fh  
PV_CP20. Customer pattern length 20 or 16 bits.  
7
6
1’b0  
1’b0  
0 – 16 bits  
1 – 20 bits  
RW  
R
Reserved  
PV_LEN[2:0]. PRBS pattern length  
000 – PRBS7  
001 – PRBS11  
010 – PRBS23  
5:3  
3’b000  
011 – PRBS31  
100 – PRBS15  
RW  
10h  
101 – PRBS15  
110 – PRBS20  
111 – PRBS20  
PV_SEL[24:0]. Pattern select control  
000 – Disabled  
001 – PRBS  
010 – Clock  
2:0  
3’b000  
RW  
011 – Custom  
1xx – Timing only mode with sync pulse spacing defined by PV_LEN  
11h  
12h  
7:0  
7:0  
‘h00  
‘h00  
PV_CP[7:0]. Custom pattern data.  
PV_CP[15:8]. Custom pattern data.  
RW  
RW  
38  
版权 © 2015–2018, Texas Instruments Incorporated  
SN65DP159, SN75DP159  
www.ti.com.cn  
ZHCSE15F JULY 2015REVISED MAY 2018  
10. EyeScan Control Register (接下页)  
ADDRESS  
BITS  
7:4  
DEFAULT  
4’b0000  
4’b0000  
5’b00000  
3’b000  
DESCRIPTION  
ACCESS  
Reserved  
R
13h  
3:0  
PV_CP[19:16]. Custom pattern data. Used when PV_CP20 = 1’b1.  
Reserved  
RW  
R
7:3  
14h  
15h  
2:0  
PV_THR[2:0]. Pattern-verifier retain threshold.  
RW  
DESKEW_CMPLT: Indicates TMDS lane deskew has completed when  
high  
7
1'b0  
R
6:5  
4
2’b00  
1’b0  
Reserved  
R
BERT_CLR. Clear BERT counter (on rising edge).  
TST_INTQ_CLR. Clear latched interrupt flag.  
TST_SEL[2:0]. Test interrupt source select.  
RSU  
RSU  
RW  
3
1’b0  
2:0  
3’b000  
PV_DP_EN[3:0]. Enabled datapath verified based on DP_TST_SEL, 1 bit  
per lane.  
7:4  
3
4’b0000  
1’b0  
RW  
R
Reserved  
DP_TST_SEL[2:0] Selects pattern reported by BERT_CNT[11:0],  
TST_INT[0] and TST_INTQ[0]. PV_DP_EN is non-zero  
000 – TMDS disparity or data errors  
001 – FIFO errors  
16h  
010 – FIFO overflow errors  
011 – FIFO underflow errors  
100 – TMDS deskew status  
2:0  
3'b000  
RW  
101 – Reserved  
110 – Reserved  
111 – Reserved  
7:4  
3:0  
7:0  
7:4  
3:0  
7:0  
7:4  
3:0  
7:0  
7:4  
3:0  
7:0  
7:4  
3:0  
7:4  
3
4’b0000  
4’b0000  
‘h00  
TST_INTQ[3:0]. Latched interrupt flag. 1 bit per lane  
TST_INT[3:0]. Test interrupt flag. 1 bit per lane.  
BERT_CNT[7:0]. BERT error count. Lane 0  
Reserved  
RU  
RU  
RU  
R
17h  
18h  
19h  
1Ah  
1Bh  
1Ch  
1Dh  
1Eh  
1Fh  
4’b0000  
4’b0000  
‘h00  
BERT_CNT[11:8]. BERT error count. Lane 0  
BERT_CNT[19:12]. BERT error count. Lane 1  
Reserved  
RU  
RU  
R
4’b0000  
4’b0000  
‘h00  
BERT_CNT[23:20]. BERT error count. Lane 1  
BERT_CNT[31:24]. BERT error count. Lane 2  
Reserved  
RU  
RU  
R
4’b0000  
4’b0000  
‘h00  
BERT_CNT[35:32]. BERT error count. Lane 2  
BERT_CNT[19:12]. BERT error count. Lane 3  
Reserved  
RU  
RU  
R
4’b0000  
‘h00  
BERT_CNT[23:20]. BERT error count. Lane 3  
Reserved  
RU  
R
4’b0000  
1'b1  
AUX_TX_SR Slew Rate Control for AUX Output  
RW  
AUX_SWING; Swing Control for AUX Output  
000 – 270 mV  
001 – 355 mV  
010 – 450 mV  
20h  
2:0  
3'b010  
011 – 535 mV  
RW  
100 – 625 mV  
101 – 710 mV  
110 – 800 mV  
111 – Not allowed  
版权 © 2015–2018, Texas Instruments Incorporated  
39  
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
10 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
DP159 is designed to accept AC coupled HDMI input signals. The device provides signal conditioning and level  
shifting functions to drive a compliant HDMI source connector. DP159 can be used as an DP1.2 retimer, follow  
application note SLLA358 for required additional configuration. In many major PC or gaming platforms APU/GPU  
can provide AC coupled HDMI 2.0 signals, DP159 is suitable for such platforms.  
10.1 Application Information  
The DP159 was defined to work in mainly in source applications such as gaming systems, Blu-Ray DVD player,  
desktop, notebook or VR. The following sections provide design consideration for various types of applications.  
10.1.1 Use Case of SNx5DP159  
SNx5DP159 can be used on the motherboard and dongle applications. The following use case diagrams show  
the connection of AUX and DDC between source side and sink side. The control pin pull up and pull down  
resistors are shown from reference. If a high is needed only use the pull up. If a low is needed only use the pull  
down. If mid level is to be selected do not use either resistors and leave the pin floating/No connect. The 6.5-KΩ  
Vsadj resistor value shown is explained further in the compliance section, for the RSB package.  
The DP159 was defined to work in mainly in source applications such as gaming systems, Blu-Ray DVD player,  
Desktop, Notebook or VR. The following sections provide design consideration for various types of applications.  
30 shows the original connection of SNx5DP159 on motherboard through the DDC channel. The DDC DR  
default is 100-kHz and is capable to adjust to 400-kHz.  
40  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
SN65DP159, SN75DP159  
www.ti.com.cn  
ZHCSE15F JULY 2015REVISED MAY 2018  
Application Information (接下页)  
HDMI/DVI  
Receptacle  
40-Pin  
1
30  
29  
27  
26  
25  
24  
22  
21  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
1
2
2
TMDS_D2p  
ML0p  
ML0n  
ML1p  
ML1n  
ML2p  
ML2n  
ML3p  
ML3n  
IN_D2p  
IN_D2n  
IN_D1p  
IN_D1n  
IN_D0p  
IN_D0n  
IN_CLKp  
IN_CLKn  
HPD_SRC  
OUT_D2p  
OUT_D2n  
OUT_D1p  
OUT_D1n  
OUT_D0p  
OUT_D0n  
GND1  
3
4
5
TMDS_D2n  
TMDS_D1p  
GND2  
GND3  
GND4  
GND5  
GND6  
8
4
11  
14  
17  
6
5
TMDS_D1n  
TMDS_D0p  
TMDS_D0n  
TMDS_CLKp  
TMDS_CLKn  
CEC  
7
6
9
7
10  
12  
9
OUT_CLKp  
OUT_CLKn  
10  
3
5V  
13  
HPD  
CEC  
20  
21  
22  
23  
2YQ  
CASE_GND1  
DDC_SCL CASE_GND2  
DDC_SDA CASE_GND3  
3.3V  
2YQ  
32  
33  
28  
15  
16  
19  
SCL_SNK  
SDA_SNK  
HPD_SNK  
2YQ  
2YQ  
2YQ  
38  
39  
DDC_SCL  
DDC_SDA  
SCL_SRC  
SDA_SRC  
HPD  
CASE_GND4  
VCC  
3.3V  
0.01uF  
100YQ  
VCC  
CAD_DET  
65lQ  
65lQ  
2YQ  
13  
14  
SCL_CTL  
SDA_CTL  
I2C_SCL  
I2C_SDA  
10uF  
0.1uF 0.1uF  
8
I2C_EN/PIN  
PRE_SEL  
16  
17  
23  
Optional  
36  
18  
EQ_SEL/A0  
HDMI_SEL/A1  
SLEW_CTL  
OE  
0.1uF  
34  
VSADJ  
CEC  
CEC  
6.5YQ  
1%  
65lQ  
65lQ  
15  
35  
GND  
VDD  
GND  
THERMAL PAD  
10uF  
0.1uF 0.1uF 0.1uF 0.1uF 0.01uF 0.01uF  
11  
37  
12  
20  
19  
31 40  
VCC  
VDD  
Copyright © 2016, Texas Instruments Incorporated  
30. Implementation for Motherboard 1  
版权 © 2015–2018, Texas Instruments Incorporated  
41  
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
Application Information (接下页)  
31 shows the connection for both DDC and AUX GPU connections with the SNx5DP159RGZ. Only one can  
be implemented at a time. Only the RGZ package supports the I2C-over-AUX implementation. The control pin  
pull up and pull down resistors are shown for reference. If a high is needed only use the pull up. If a low is  
needed only use the pull down. If mid level is to be selected do not use either resistors and leave the pin  
floating/No connect.  
HDMI/DVI  
Receptacle  
SNx5DP159RGZ  
1
3
35  
34  
32  
31  
29  
28  
26  
25  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
2
3
2
5
TMDS_D2p  
TMDS_D2n  
TMDS_D1p  
ML0p  
ML0n  
ML1p  
ML1n  
ML2p  
ML2n  
ML3p  
ML3n  
IN_D2p  
IN_D2n  
IN_D1p  
IN_D1n  
IN_D0p  
IN_D0n  
IN_CLKp  
IN_CLKn  
HPD_SRC  
OUT_D2p  
OUT_D2n  
OUT_D1p  
OUT_D1n  
OUT_D0p  
OUT_D0n  
OUT_CLKp  
OUT_CLKn  
GND1  
GND2  
8
4
5
GND3  
GND4  
GND5  
GND6  
11  
14  
17  
6
6
TMDS_D1n  
TMDS_D0p  
TMDS_D0n  
TMDS_CLKp  
TMDS_CLKn  
CEC  
7
8
9
9
10  
12  
11  
12  
4
5V  
13  
HPD  
CEC  
20  
21  
22  
23  
2YQ  
CASE_GND1  
DDC_SCL CASE_GND2  
DDC_SDA CASE_GND3  
VCC_3.3V  
2YQ  
38  
39  
33  
15  
16  
19  
SCL_SNK  
SDA_SNK  
HPD_SNK  
2YQ  
2YQ  
Note 1  
46  
47  
DDC_SCL  
DDC_SDA  
SCL_SRC  
SDA_SRC  
NC  
Note 1  
HPD  
CASE_GND4  
VCC_3.3V  
17  
1aQ  
0.01uF  
65lQ  
0.1uF  
0.1uF  
45  
44  
7
65lQ  
AUXp  
AUXn  
AUX_SRCp  
AUX_SRCn  
GND  
1
SWAP/POL  
I2C_EN/PIN  
PRE_SEL  
10  
20  
21  
27  
36  
40  
19  
30  
GND  
VCC_3.3V  
100YQ  
GND  
EQ_SEL/A0  
HDMI_SEL/A1  
TX_TERM_CTL  
SLEW_CTL  
VCC_3.3V  
CAD_DET  
2YQ  
2YQ  
15  
16  
I2C_SCL  
I2C_SDA  
SCL_CTL  
SDA_CTL  
10uF  
0.1uF 0.1uF  
Optional  
42  
22  
65lQ  
OE  
65lQ  
0.1uF  
VDD_1.1V  
VSADJ  
13  
43  
CEC  
CEC  
VCC  
VCC  
VCC_3.3V  
0.1uF 0.1uF 0.1uF 0.1uF 0.01uF 0.01uF  
7YQ  
1%  
10uF  
14  
24  
41  
23  
37 48  
VDD_1.1V  
Copyright © 2016, Texas Instruments Incorporated  
Note 1: For applications where the GPU or Sink does not support clock stretching the DDC lines from the GPU/DP TX  
should bypass the SCL_SRC and SDA_SRC but still connect to the SCL_SNK and SDA_SNK pins on the DP159.  
The SCL_SRC and SDA_SRC pins must be pulled to ground. Note that if the GPU/DP TX cannot support the 5V  
DDC lines from the connector, a level shifter is needed to step down the 5V signals to the voltage level the GPU/DP  
TX can support.  
31. Implementation for Motherboard 2  
42  
版权 © 2015–2018, Texas Instruments Incorporated  
 
SN65DP159, SN75DP159  
www.ti.com.cn  
ZHCSE15F JULY 2015REVISED MAY 2018  
Application Information (接下页)  
32 shows the SNx5DP159 in the dongle application. It uses the unified structure on DisplayPort connector.  
SNx5DP159 has to identify if the signal comes from DDC or from AUX in I2C-over-AUX format. Due to the AUX  
channel needed, use only the RGZ package for this application.  
Dongle  
SNx5DP159RGZ  
DisplayPort  
Plug  
HDMI/DVI  
Receptacle  
12  
1
3
2
5
8
35  
34  
32  
31  
29  
28  
26  
25  
33  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
0.1uF  
2
5
2
3
TMDS_D2p  
IN_D2p  
IN_D2n  
IN_D1p  
IN_D1n  
IN_D0p  
IN_D0n  
IN_CLKp  
IN_CLKn  
HPD_SRC  
OUT_D2p  
ML0p  
ML0n  
ML1p  
ML1n  
ML2p  
ML2n  
ML3p  
ML3n  
GND1  
GND1  
10  
9
TMDS_D2n  
TMDS_D1p  
TMDS_D1n  
TMDS_D0p  
TMDS_D0n  
TMDS_CLKp  
TMDS_CLKn  
HPD  
GND2  
GND3  
GND4  
GND5  
GND6  
GND2  
OUT_D2n  
OUT_D1p  
OUT_D1n  
OUT_D0p  
OUT_D0n  
OUT_CLKp  
8
4
5
GND3  
11  
14  
17  
6
7
11  
16  
6
GND4  
7
6
8
GND5  
9
19  
4
9
DP_PWR_RTN  
10  
12  
3
11  
12  
4
1
OUT_CLKn  
HPD_SNK  
18  
19  
18  
HPD  
5V  
5VCC  
DP_PWR  
3.3V  
5V  
20  
21  
22  
23  
13  
CASE_GND1  
CASE_GND2  
CASE_GND3  
CASE_GND4  
CEC  
CEC  
2YQ  
2YQ  
2YQ  
2YQ  
15  
17  
DDC_SCL  
DDC_SDA  
38  
39  
18  
15  
16  
46  
47  
AUX_CHp/DDC_CLK  
SCL_SRC  
SDA_SRC  
SCL_SNK  
SDA_SNK  
CEC_EN  
AUX_CHn/DDC_DATA  
DP_PWR  
3.3V  
CEC_EN  
45  
44  
1aQ  
0.01uF  
NC  
NC  
AUX_SRCp  
AUX_SRCn  
65lQ  
65lQ  
1
SWAP/POL  
I2C_EN/PIN  
PRE_SEL  
NC  
17  
10  
20  
21  
27  
36  
40  
21  
22  
23  
24  
EQ_SEL/A0  
HDMI_SEL/A1  
TX_TERM_CTL  
SLEW_CTL  
THERMAL PAD  
GND  
CASE_GND1  
CASE_GND2  
CASE_GND3  
CASE_GND4  
41  
7
GND  
19  
30  
GND  
GND  
65lQ  
65lQ  
1aQ  
0.01uF  
42  
22  
OE  
DP_PWR  
3.3V  
100YQ  
0.1uF  
DP_PWR_RTN  
DP_PWR  
3.3V  
VSADJ  
15  
16  
SCL_CTL  
SDA_CTL  
100YQ  
DP_PWR  
3.3V  
7.06YQ  
1%  
CONFIG1  
(CAD_DET)  
13  
20  
100YQ  
10uF  
0.1uF 0.1uF  
DP_PWR  
3.3V  
VDD_1.1V  
V-REG  
5V  
14  
24  
13 43  
23  
37 48  
DP_PWR  
DP_PWR  
3.3V  
DP_PWR  
3.3V  
VDD_1.1V  
VDD_1.1V  
HDMI Adaptor Only  
27YQ  
14  
CONFIG2  
(CEC)  
10uF  
CEC  
0.1uF 0.1uF 0.1uF 0.1uF 0.01uF 0.01uF  
NC for DVI  
27K installed for  
HDMI  
CEC_EN  
Copyright © 2016, Texas Instruments Incorporated  
32. SNx5DP159 in Dongle Application  
10.1.2 DDC Pullup Resistors  
This section is for information only and subject to change depending upon system  
implementation.  
版权 © 2015–2018, Texas Instruments Incorporated  
43  
 
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
Application Information (接下页)  
The pullup resistor value is determined by two requirements:  
A. The maximum sink current of the I2C buffer:  
The maximum sink current is 3-mA or slightly higher for an I2C driver supporting standard-mode I2C[4]  
operation.  
VCC  
=
Rup(min)  
Isink  
(1)  
B. The maximum transition time on the bus:  
The maximum transition time, T, of an I2C bus is set by an RC time constant, where R is the pullup resistor  
value, and C is the total load capacitance. The parameter, k, can be calculated from 公式 3 by solving for t,  
the times at which certain voltage thresholds are reached. Different input threshold combinations introduce  
different values of t. 11 summarizes the possible values of k under different threshold combinations.  
T = k ´RC  
(2)  
-t  
æ
ö
÷
RC  
ç
V(t) = VCC´ 1- e  
ç
÷
è
ø
(3)  
11. Value k Upon Different Input Threshold Voltages  
Vth–\Vth+  
0.7 VCC  
1.0986  
1.0415  
0.9808  
0.9163  
0.8473  
0.65 VCC  
0.9445  
0.8873  
0.8267  
0.7621  
0.6931  
0.6 VCC  
0.8109  
0.7538  
0.6931  
0.6286  
0.5596  
0.55 VCC  
0.6931  
0.6360  
0.5754  
0.5108  
0.4418  
0.5 VCC  
0.5878  
0.5306  
0.4700  
0.4055  
0.3365  
0.45 VCC  
0.4925  
0.4353  
0.3747  
0.3102  
0.2412  
0.4 VCC  
0.4055  
0.3483  
0.2877  
0.2231  
0.1542  
0.35 VCC  
0.3254  
0.2683  
0.2076  
0.1431  
0.0741  
0.3 VCC  
0.2513  
0.1942  
0.1335  
0.0690  
0.1 VCC  
0.15 VCC  
0.2 VCC  
0.25 VCC  
0.3 VCC  
From 公式 1, Rup(min) = 5.5-V / 3-mA = 1.83-kΩ to operate the bus under a 5-V pullup voltage and provide less  
than 3-mA when the I2C device is driving the bus to a low state. If a higher sink current, for example 4 mA, is  
allowed, Rup(min) can be as low as 1.375-kΩ.  
If DDC is working at a standard mode of 100-Kbps, the maximum transition time, T, is fixed, 1 μs, and using the  
k values from 11, the recommended maximum total resistance of the pullup resistors on an I2C bus can be  
calculated for different system setups. If DDC is working in a fast mode of 400-kbps, the transition time should be  
set at 300 ns, according to I2C[4] specification.  
To support the maximum load capacitance specified in the HDMI specification, Ccable(max) = 700-pF, Csource = 50-  
pF, Ci = 50-pF, and R(max) can be calculated as shown in 12.  
12. Pullup Resistor Upon Different Threshold Voltages and 800-pF Loads  
Vth–\Vth+  
0.1 VCC  
0.15 VCC  
0.2 VCC  
0.25 VCC  
0.3 VCC  
0.7 VCC  
1.14  
1.2  
0.65 VCC  
1.32  
0.6 VCC  
1.54  
1.66  
1.8  
0.55 VCC  
1.8  
0.5 VCC  
2.13  
0.45 VCC  
2.54  
0.4 VCC  
3.08  
3.59  
4.35  
5.6  
0.35 VCC  
3.84  
0.3 VCC  
4.97  
6.44  
9.36  
18.12  
UNIT  
kΩ  
1.41  
1.97  
2.36  
2.87  
4.66  
kΩ  
1.27  
1.36  
1.48  
1.51  
2.17  
2.66  
3.34  
6.02  
kΩ  
1.64  
1.99  
2.23  
2.45  
3.08  
4.03  
8.74  
kΩ  
1.8  
2.83  
3.72  
5.18  
8.11  
16.87  
kΩ  
To accommodate the 3-mA drive current specification, a narrower threshold voltage range is required to support  
a maximum 800-pF load capacitance for a standard-mode I2C bus.  
44  
版权 © 2015–2018, Texas Instruments Incorporated  
 
 
 
 
SN65DP159, SN75DP159  
www.ti.com.cn  
ZHCSE15F JULY 2015REVISED MAY 2018  
10.2 Typical Application  
HDMI/DVI  
40-Pin  
Receptacle  
1
30  
29  
27  
26  
25  
24  
22  
21  
0.1uF  
1
2
2
TMDS_D2p  
ML0p  
IN_D2p  
IN_D2n  
IN_D1p  
IN_D1n  
IN_D0p  
IN_D0n  
IN_CLKp  
IN_CLKn  
HPD_SRC  
OUT_D2p  
OUT_D2n  
OUT_D1p  
OUT_D1n  
OUT_D0p  
OUT_D0n  
GND1  
3
4
5
0.1uF  
TMDS_D2n  
TMDS_D1p  
GND2  
GND3  
GND4  
GND5  
GND6  
ML0n  
8
0.1uF  
4
ML1p  
11  
14  
17  
6
0.1uF  
5
TMDS_D1n  
TMDS_D0p  
TMDS_D0n  
TMDS_CLKp  
TMDS_CLKn  
CEC  
ML1n  
7
0.1uF  
6
ML2p  
9
0.1uF  
7
ML2n  
10  
12  
0.1uF  
9
ML3p  
OUT_CLKp  
OUT_CLKn  
0.1uF  
10  
3
ML3n  
5V  
13  
HPD  
CEC  
20  
21  
22  
23  
2YQ  
CASE_GND1  
DDC_SCL CASE_GND2  
DDC_SDA CASE_GND3  
3.3V  
2YQ  
32  
33  
28  
15  
16  
19  
SCL_SNK  
SDA_SNK  
HPD_SNK  
2YQ  
2YQ  
2YQ  
38  
39  
DDC_SCL  
DDC_SDA  
SCL_SRC  
SDA_SRC  
HPD  
CASE_GND4  
VCC  
3.3V  
0.01uF  
100YQ  
VCC  
CAD_DET  
65lQ  
65lQ  
2YQ  
13  
14  
SCL_CTL  
SDA_CTL  
I2C_SCL  
I2C_SDA  
10uF  
0.1uF 0.1uF  
8
I2C_EN/PIN  
PRE_SEL  
16  
17  
23  
Optional  
36  
18  
EQ_SEL/A0  
HDMI_SEL/A1  
SLEW_CTL  
OE  
0.1uF  
34  
VSADJ  
CEC  
CEC  
6.5YQ  
1%  
65lQ  
65lQ  
15  
35  
GND  
VDD  
GND  
THERMAL PAD  
10uF  
0.1uF 0.1uF 0.1uF 0.1uF 0.01uF 0.01uF  
11  
37  
12  
20  
19  
31 40  
VCC  
VDD  
Copyright © 2016, Texas Instruments Incorporated  
33. Implementation for Motherboard 1 Schematic  
10.2.1 Design Requirements  
The SNx5DP159 can be designed into many types of applications. All applications have certain requirements for  
the system to work properly. Two voltage rails are required to support the lowest possible power consumption.  
The OE pin must have a 0.1-µF capacitor to ground. This pin can be driven by a processor but the pin needs to  
change states after voltage rails have stabilized. Configure the device by using I2C. Pin strapping is provided as  
I2C is not available in all cases. Because sources may have different naming conventions, confirm the link  
between the source and the SNx5DP159 is correctly mapped. A swap function is provided for the input pins in  
case signaling is reversed between the source and the device. For the control pins the values provided below are  
when they are being controlled by a micro-controller. If this is not the case then using the 65-kfor a pull up for  
high, pulled down for low, and left floating for mid level.  
版权 © 2015–2018, Texas Instruments Incorporated  
45  
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
13. Design Parameters  
DESIGN PARAMETER  
VALUE  
VCC  
VDD  
3.3 V  
1.1 V  
Main link input voltage  
VID = 75 mVpp to 1.2 Vpp  
65-kpulled to GND  
No Connect  
Control pin Low  
Control pin Mid  
Control pin High  
Vsadj resistor  
65-kpulled to 3.3-V  
7.06-kΩ  
Main link AC decoupling capacitor 75 to 200 nF, recommend 100 nF  
10.2.2 Detailed Design Procedure  
The SNx5DP159 is a signal conditioner that provides AC coupling to DC coupling level shifting, to support Dual  
Mode DisplayPort-capable GPUs or GPUs with AC-coupled drive capability to support HDMI or DVI connectors  
and compliance. Signal conditioning is accomplished using receive equalization, retiming, and output driver  
configurability. The transmitter drives 2 to 3 inches of board trace and connector.  
Designing in the SNx5DP159 requires the following:  
Determine the loss profile between the GPU and the HDMI/DVI connector.  
Based upon the loss profile and signal swing, determine the optimal location for the SNx5DP159, to pass  
electrical compliance.  
Use the typical application drawings in Use Case of SNx5DP159 for information on using the AC coupling  
capacitors and control pin resistors.  
The DP159 has a receiver adaptive equalizer by default but can also be configured for fixed value  
equalization using the EQ_SEL control pin.  
Set the VOD, pre-emphasis, termination, and edge rate levels to support compliance by using the appropriate  
Vsadj resistor value and by setting the PRE_SEL, SLEW_CTL, and TX_TERM_CTL control pins.  
Adding pre-emphasis will improve performance on bandwidth limited channels and make steeper transitions.  
VOD can be increased to compensate for DC losses and have a sheerer slope. SLEW_CTL handle transition  
inclination. Making the transition sharper will improve skew performance.  
The thermal pad must be connected to ground.  
See the schematics in Application Information on recommended decouple capacitors from VCC pins to  
ground.  
10.2.3 Application Curve  
34. 5.94 Gbps Compliance Eye Mask  
46  
版权 © 2015–2018, Texas Instruments Incorporated  
SN65DP159, SN75DP159  
www.ti.com.cn  
ZHCSE15F JULY 2015REVISED MAY 2018  
10.3 System Example  
10.3.1 Compliance Testing  
Compliance testing is very system design specific. Properly designing the system and configuring the DP159 can  
help pass transmitter compliance for the system. The following information is the starting point to help prepare for  
compliance test. As each system is different there are many features in the DP159 to help tune the circuit. These  
include VOD adjust by changing the Vsadj resistor value or using I2C. Other knobs to turn are pre/de-emphasis  
and slew rate control. Passing both HDMI2.0 and HDMI1.4b compliance is easier to accomplish when using I2C  
as this provides more fine tuning capability.  
For the SNx5DP159RGZ:  
Pin Strapping  
HDMI2.0 & HDMI1.4b  
Vsadj Resistor = 7.06-kΩ  
PRE_SEL = NC for 0-dB  
TX_TERM_CTL = NC for Auto Select  
SLEW_CTL = NC  
I2C Control  
HDMI2.0 & HDMI1.4b  
Vsadj Resistor = 7.06 kΩ  
PRE_SEL = Reg0Ch[1:0] = 00 (labeled HDMI_TWPST)  
TX_TERM_CTL =  
Reg0Bh[4:3] = 00 No term; HDMI1.4b < 2Gbps (This may be best value for all HDMI1.4b)  
Reg0Bh[4:3] = 01 150 to 300 Ω; HDMI1.4b > 2Gbps  
Reg0Bh[4:3] = 11 75 to 150 Ω; HDMI2.0  
SLEW_CTL = Reg0Bh[7:6] = 10  
For the SNx5DP159RSB:  
Pin Strapping  
HDMI2.0 and HDMI1.4b  
Vsadj Resistor = 6.5 kΩ  
PRE_SEL = L for –2 dB  
TX_TERM_CTL = NC for Auto Select  
SLEW_CTL = NC  
I2C  
HDMI2.0  
Vsadj Resistor = 6.5 kΩ  
PRE_SEL = Reg0Ch[1:0] = 01 (labeled HDMI_TWPST)  
TX_TERM_CTL = Reg0Bh[4:3] = 11  
SLEW_CTL = Reg0Bh[7:6] = 10  
HDMI1.4b  
Vsadj Resistor = 6.5 kΩ  
VSWING_DATA & VSWING_CLK to -7% = Reg0Ch[7:2] = 111111  
PRE_SEL = Reg0Ch[1:0] = 00: (Labeled HDMI_TWPST)  
TX_TERM_CTL: Reg0Bh[4:3]  
<2 Gbps = 00 for no termination (This may be best value for all HDMI1.4b)  
>2 Gbps and < 3.4 Gbps = 01 for 150 to 300 Ω  
SLEW_CTL = Reg0Bh[7:6] = 10  
版权 © 2015–2018, Texas Instruments Incorporated  
47  
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
11 Power Supply Recommendations  
11.1 Power Management  
To minimize the power consumption of customer application, SNx5DP159 uses dual power supply. VCC is 3.3-V  
with 10% range to support the I/O voltage. The VDD is 1.00-V to 1.27-V range to supply the internal digital control  
circuit. v operates in two different working states. See 14 for conditions for each mode. When OE is  
deasserted and then reasserted the device will rest to its default configurations. If different configurations were  
programmed using I2C then the device will have to be reprogrammed.  
Power-down mode:  
OE = Low puts the device into its lowest power state by shutting down all function blocks  
When OE is re-asserted the transitions from L H will create a reset and if the device is programmed  
through I2C it will have to be reprogrammed.  
OE = High, HPD_SNK = Low  
Writing a 1 to register 09h[3]  
Normal operation: Working in redriver or retimer  
When HPD asserts, the device CDR and output will enable based on the signal detector circuit result  
HPD_SRC = HPD_SNK in all conditions. The HPD channel operational when VCC over 3-V.  
When the SNx5DP159 is put into a power down state using the OE pin the I2C registers  
are cleared. The TMDS_CLOCK_RATIO_STATUS bit will be cleared in all power down  
states. If cleared and HDMI2.0 resolutions are to be supported, the SNx5DP159 expects  
the source to write a 1 to this bit location. If this does not happen the PLL will not be set  
properly and no video may be evident.  
14. Control Logic and Mode of Operation  
INPUTS(1)  
HPD_SNK  
STATUS  
MODE  
SDA_CTL  
SCL_CTL  
OUT_Dx  
OUT_CLK  
AUX_SRC±  
(48 PIN ONLY)  
Mode of  
Operation  
OE  
L
HPD_SRC  
IN_Dx  
High-Z  
High-Z  
DDC  
Power-down  
mode  
H
L
X
X
H
L
Disabled  
High-Z  
High-Z  
Disabled  
Disabled  
Disable  
Disable  
Power-down  
mode  
H
Active  
Active  
Power-down  
mode when a one  
is written to 09h[3]  
H
H
X
H
High-Z  
High-Z  
Disabled  
Disable  
H
H
H
H
Redriver  
Retimer  
H
H
RX active  
RX active  
Active  
Active  
TX active  
TX active  
Active  
Active  
Active  
Active  
Normal operation  
Normal operation  
(1) L = LOW, H = HIGH  
TMDS output termination control impacts the operating power.  
15. Control Logic and Mode of Operation  
INPUTS(1)  
HPD_SNK  
STATUS  
MODE  
SDA_CTL  
SCL_CTL  
OUT_Dx  
OUT_CLK  
OE  
Mode of Operation  
HPD_SRC  
IN_Dx  
DDC  
H
L
L
X
X
H
L
High-Z  
High-Z  
Disabled  
Active  
High-Z  
Disabled  
Disabled  
Power-down mode  
Power-down mode  
H
High-Z  
Power-down mode  
when a one is written  
to 09h[3]  
H
H
X
H
High-Z  
Active  
High-Z  
Disabled  
H
H
H
H
Redriver  
Retimer  
H
H
RX active  
RX active  
Active  
Active  
TX active  
TX active  
Active  
Active  
Normal operation  
Normal operation  
(1) L = LOW, H = HIGH  
48  
版权 © 2015–2018, Texas Instruments Incorporated  
 
SN65DP159, SN75DP159  
www.ti.com.cn  
ZHCSE15F JULY 2015REVISED MAY 2018  
TMDS output termination control impacts the operating power.  
12 Layout  
12.1 Layout Guidelines  
TI recommends to use at a minimum a four layer stack up to accomplish a low-EMI PCB design. TI recommends  
six layers because the SNx5DP159 is a two voltage rail device.  
Routing the high-speed input DisplayPort traces and TMDS output traces on the top layer avoids the use of  
vias (and their discontinuities) and allows for clean interconnects from the HDMI connectors to the repeater  
inputs and from the repeater output to the subsequent receiver circuit. It is important to match the electrical  
length of these high speed traces to minimize both inter-pair and intra-pair skew.  
Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for  
transmission line interconnects and provides an excellent low-inductance path for the return current flow.  
Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance.  
Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power / ground plane system to  
the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also  
the power and ground plane of each power system can be placed closer together, thus increasing the high-  
frequency bypass capacitance significantly.  
The control pin pullup and pulldown resistors are shown in application section for reference. If a high is  
needed only use the pull up. If a low is needed only use the pull down. If mid level is to be selected do not  
use either resistors and leave the pin floating/No connect.  
Layer 1: TMDS signal layer  
Layer 1: TMDS signal layer  
5 to 10 mils  
Layer 2: Ground  
Layer 3: VCC  
Layer 2: Ground plane  
20 to 40 mils  
Layer 4: VDD  
Layer 3: Power plane  
Layer 5: Ground  
5 to 10 mils  
Layer 6: Control signal layer  
Layer 4: Control signal layer  
35. Recommended 4- or 6-Layer Stack for a Receiver PCB Design  
版权 © 2015–2018, Texas Instruments Incorporated  
49  
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
12.2 Layout Examples  
36. Layout Example for the DP159RSB  
50  
版权 © 2015–2018, Texas Instruments Incorporated  
SN65DP159, SN75DP159  
www.ti.com.cn  
ZHCSE15F JULY 2015REVISED MAY 2018  
Layout Examples (接下页)  
100nF  
AUX_SRCn  
100nF  
AUX_SRCp  
SCL_SRC  
SLEW_CTL  
SDA_SNK  
5V  
2kQ  
2kQ  
VCC  
2kQ  
2kQ  
OE  
VCC  
5V  
SCL_SNK  
SDA_SRC  
Match High Speed traces  
length as close as possible to  
minimize Skew  
65kQ  
VCC  
SWAP/POL  
65kQ  
GND  
65kQ  
VCC  
TX_TERM_CTL  
100nF  
100nF  
1
65kQ  
GND  
IN_D2p/n  
OUT_D2p/n  
HPD_SNK  
HPD_SRC  
IN_D1p/n  
100nF  
OUT_D1p/n  
100nF  
GND  
GND  
GND  
100nF  
100nF  
IN_D0p/n  
OUT_D0p/n  
65kQ  
65kQ  
VCC  
TEST/A1  
GND  
65kQ  
VCC  
I2C_EN/PIN  
65kQ  
GND  
OUT_CLKp/n  
100nF  
100nF  
IN_CLKp/n  
SCL_CTL  
Place VCC and VDD decoupling  
caps as close to VCC and VDD  
pins as possible  
VCC  
VCC  
2kQ  
2kQ  
Note 1: CEC_EN  
VSADJ  
This pin is either NC or can be  
routed to control a CEC enable  
FET  
SDA_CTL  
Match High Speed traces  
length as close as possible to  
minimize Skew  
37. Layout Example for the DP159RGZ  
12.3 Thermal Considerations  
On a high-K board: TI recommends to solder the PowerPAD™ onto the thermal land. A thermal land is the area  
of solder-tinned-copper underneath the PowerPAD package. On a high-K board, the SNx5DP159 device can  
operate over the full temperature range by soldering the PowerPAD onto the thermal land without vias.  
On a low-K board: For the device to operate across the temperature range on a low-K board, a 1-oz Cu trace  
connecting the GND pins to the thermal land must be used. A simulation shows RθJA = 100.84°C/W allowing 545-  
mW power dissipation at 70°C ambient temperature.  
A general PCB design guide for PowerPAD packages is provided in PowerPAD Thermally Enhanced Package,  
SLMA002.  
版权 © 2015–2018, Texas Instruments Incorporated  
51  
SN65DP159, SN75DP159  
ZHCSE15F JULY 2015REVISED MAY 2018  
www.ti.com.cn  
13 器件和文档支持  
13.1 相关链接  
下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链  
接。  
16. 相关链接  
器件  
产品文件夹  
请单击此处  
请单击此处  
样片与购买  
请单击此处  
请单击此处  
技术文档  
请单击此处  
请单击此处  
工具与软件  
请单击此处  
请单击此处  
支持和社区  
请单击此处  
请单击此处  
SN65DP159  
SN75DP159  
13.2 文档支持  
13.2.1 相关文档  
本节标识的文档均在本数据表中引用。为简化文本,数据表中的大多数参考文献均使用方括号 [文档标签] 标识的文  
本,而不使用完整的文档标题。  
(1) [双模] VESA DisplayPort 双模标准版本 1.12013 2 8 日  
(2) [HDMI1.4b] 高清多媒体接口规范版本 1.4b2011 10 月  
(3) [HDMI2.0] 高清多媒体接口规范版本 2.0a2015 3 月  
(4) [I2C] I2C 总线规范版本 2.12000 1 月  
(5) [HDMI1.4b CTS] 高清多媒体接口 CTS 版本 1.4b2011 10 月  
(6) [HDMI2.0 CTS] 高清多媒体接口 CTS 版本 2.0k2015 6 月  
13.3 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.4 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
13.5 商标  
PowerPAD, E2E are trademarks of Texas Instruments.  
Blu-Ray is a trademark of Blu-ray Disc Accociation.  
13.6 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.7 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查看左侧的导航栏。  
52  
版权 © 2015–2018, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN65DP159RGZR  
SN65DP159RGZT  
SN65DP159RSBR  
SN65DP159RSBT  
SN75DP159RGZR  
SN75DP159RGZT  
SN75DP159RSBR  
SN75DP159RSBT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
VQFN  
VQFN  
WQFN  
WQFN  
VQFN  
VQFN  
WQFN  
WQFN  
RGZ  
RGZ  
RSB  
RSB  
RGZ  
RGZ  
RSB  
RSB  
48  
48  
40  
40  
48  
48  
40  
40  
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
2500 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
0 to 85  
DP159  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
NIPDAU  
DP159  
DP159  
DP159  
75DP159  
75DP159  
75DP159  
75DP159  
0 to 85  
0 to 85  
0 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN65DP159RGZR  
SN65DP159RGZT  
SN65DP159RSBR  
SN65DP159RSBT  
SN75DP159RGZR  
SN75DP159RGZT  
SN75DP159RSBR  
SN75DP159RSBT  
VQFN  
VQFN  
WQFN  
WQFN  
VQFN  
VQFN  
WQFN  
WQFN  
RGZ  
RGZ  
RSB  
RSB  
RGZ  
RGZ  
RSB  
RSB  
48  
48  
40  
40  
48  
48  
40  
40  
2500  
250  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
330.0  
180.0  
16.4  
16.4  
12.4  
12.4  
16.4  
16.4  
12.4  
12.4  
7.3  
7.3  
5.3  
5.3  
7.3  
7.3  
5.3  
5.3  
7.3  
7.3  
5.3  
5.3  
7.3  
7.3  
5.3  
5.3  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
1.1  
12.0  
12.0  
8.0  
16.0  
16.0  
12.0  
12.0  
16.0  
16.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
Q2  
3000  
250  
8.0  
2500  
250  
12.0  
12.0  
8.0  
3000  
250  
8.0  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
20-Apr-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
SN65DP159RGZR  
SN65DP159RGZT  
SN65DP159RSBR  
SN65DP159RSBT  
SN75DP159RGZR  
SN75DP159RGZT  
SN75DP159RSBR  
SN75DP159RSBT  
VQFN  
VQFN  
WQFN  
WQFN  
VQFN  
VQFN  
WQFN  
WQFN  
RGZ  
RGZ  
RSB  
RSB  
RGZ  
RGZ  
RSB  
RSB  
48  
48  
40  
40  
48  
48  
40  
40  
2500  
250  
367.0  
210.0  
346.0  
210.0  
367.0  
210.0  
346.0  
210.0  
367.0  
185.0  
346.0  
185.0  
367.0  
185.0  
346.0  
185.0  
38.0  
35.0  
33.0  
35.0  
38.0  
35.0  
33.0  
35.0  
3000  
250  
2500  
250  
3000  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGZ 48  
7 x 7, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUADFLAT PACK- NO LEAD  
Images above are just a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224671/A  
www.ti.com  
PACKAGE OUTLINE  
RGZ0048B  
VQFN - 1 mm max height  
S
C
A
L
E
2
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
7.15  
6.85  
A
B
PIN 1 INDEX AREA  
7.15  
6.85  
1 MAX  
C
SEATING PLANE  
0.05  
0.00  
0.08 C  
2X 5.5  
4.1 0.1  
(0.2) TYP  
EXPOSED  
THERMAL PAD  
13  
24  
44X 0.5  
12  
25  
49  
SYMM  
2X  
5.5  
0.30  
0.18  
36  
48X  
1
0.1  
0.05  
C B A  
48  
37  
SYMM  
PIN 1 ID  
(OPTIONAL)  
0.5  
0.3  
48X  
4218795/B 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGZ0048B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
4.1)  
(1.115) TYP  
(0.685)  
TYP  
37  
48  
48X (0.6)  
1
36  
48X (0.24)  
(1.115)  
TYP  
44X (0.5)  
(0.685)  
TYP  
SYMM  
49  
(
0.2) TYP  
VIA  
(6.8)  
(R0.05)  
TYP  
12  
25  
13  
24  
SYMM  
(6.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:12X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4218795/B 02/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGZ0048B  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(1.37)  
TYP  
37  
48  
48X (0.6)  
1
36  
48X (0.24)  
44X (0.5)  
(1.37)  
TYP  
SYMM  
49  
(R0.05) TYP  
(6.8)  
9X  
METAL  
TYP  
(
1.17)  
12  
25  
13  
24  
SYMM  
(6.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 49  
73% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:12X  
4218795/B 02/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
RSB0040E  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
7
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
5.1  
4.9  
B
A
PIN 1 INDEX AREA  
5.1  
4.9  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2X 3.6  
(0.2) TYP  
EXPOSED  
11  
20  
THERMAL PAD  
36X 0.4  
10  
21  
2X  
41  
SYMM  
3.6  
3.15 0.1  
1
30  
0.25  
0.15  
40X  
40  
31  
PIN 1 ID  
(OPTIONAL)  
0.1  
C A B  
SYMM  
0.5  
0.3  
0.05  
40X  
4219096/A 11/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RSB0040E  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
3.15)  
SYMM  
40  
31  
40X (0.6)  
40X (0.2)  
1
30  
36X (0.4)  
41  
SYMM  
(4.8)  
(1.325)  
(
0.2) TYP  
VIA  
10  
21  
(R0.05)  
TYP  
11  
20  
(1.325)  
(4.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219096/A 11/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RSB0040E  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.785)  
4X ( 1.37)  
40  
31  
40X (0.6)  
1
30  
40X (0.2)  
36X (0.4)  
SYMM  
(0.785)  
(4.8)  
41  
(R0.05) TYP  
10  
21  
METAL  
TYP  
20  
11  
SYMM  
(4.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD 41  
75% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4219096/A 11/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX