SN75HVD1176DG4 [TI]

RS-485 Transceivers;
SN75HVD1176DG4
型号: SN75HVD1176DG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

RS-485 Transceivers

驱动 信息通信管理 光电二极管 接口集成电路 驱动器
文件: 总17页 (文件大小:247K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁꢂ ꢃ ꢄ ꢅꢆ  ꢂ  
ꢀꢁꢈ ꢃ ꢄ ꢅꢆ  ꢂ  
www.ti.com  
SLLS563C − JULY 2003 − REVISED APRIL 2005  
FEATURES  
APPLICATIONS  
D
Optimized for PROFIBUS Networks  
D
D
D
Process Automation  
− Meets the Requirements of EN 50170  
− Signaling Rates Up to 40 Mbps  
− Differential Output Exceeds 2.1 V  
(54 Load)  
Chemical Production  
Brewing and Distillation  
Paper Mills  
− Low Bus Capacitance: 10 pF (Max)  
Factory Automation  
D
D
D
D
D
D
D
D
D
Meets the Requirements of TIA/EIA-485-A  
ESD Protection Exceeds 10 kV HBM  
Automobile Production  
Rolling, Pressing, Stamping Machines  
Networked Sensors  
Failsafe Receiver for Bus Open, Short, Idle  
Up to 160 Transceivers on a Bus  
General RS-485 Networks  
Low Skew During Output Transitions and  
Driver Enabling / Disabling  
Motor/Motion Control  
HVAC and Building Automation Networks  
Networked Security Stations  
Common-Mode Rejection Up to 50 MHz  
Short-Circuit Current Limit  
Hot Swap Capable  
Thermal Shutdown Protection  
DESCRIPTION  
These devices are half-duplex differential transceivers, with characteristics optimized for use in PROFIBUS (EN 50170)  
applications. The driver output differential voltage exceeds the Profibus requirements of 2.1 V with a 54-load. A signaling  
rate of up to 40 Mbps allows technology growth to high data transfer speeds. The low bus capacitance provides low signal  
distortion.  
The SN65HVD1176 and SN75HVD1176 meet or exceed the requirements of ANSI standard TIA/EIA-485-A (RS-485) for  
differential data transmission across twisted-pair networks. The driver outputs and receiver inputs are tied together to form  
a half-duplex bus port, with one-fifth unit load, allowing up to 160 nodes on a single bus. The receiver output stays at logic  
high when the bus lines are shorted, left open, or when no driver is active. The driver outputs are in high impedance when  
the supply voltage is below 2.5 V to prevent bus disturbance during power cycling or during live insertion to the bus.  
An internal current limit protects the transceiver bus pins in short-circuit fault conditions by limiting the output current to a  
constant value. Thermal shutdown circuitry protects the device against damage due to excessive power dissipation caused  
by faulty loading and drive conditions.  
The SN75HVD1176 is characterized for operation at temperatures from 0°C to 70°C. The SN65HVD1176 is characterized  
for operation at temperatures from −40°C to 85°C.  
D PACKAGE  
(TOP VIEW)  
LOGIC DIAGRAM (POSITIVE LOGIC)  
A
B
D
R
RE  
DE  
D
V
B
A
1
2
3
4
8
7
6
5
CC  
DE  
GND  
RE  
R
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
ꢉꢊ ꢋ ꢆꢏ ꢕ ꢓꢍ ꢋꢁ ꢆ ꢔꢓꢔ ꢗꢘ ꢙꢚ ꢛ ꢜꢝ ꢞꢗꢚꢘ ꢗꢟ ꢠꢡ ꢛ ꢛ ꢢꢘꢞ ꢝꢟ ꢚꢙ ꢣꢡꢤ ꢥꢗꢠ ꢝꢞꢗ ꢚꢘ ꢦꢝ ꢞꢢꢧ ꢉꢛ ꢚꢦꢡ ꢠꢞꢟ  
ꢠ ꢚꢘ ꢙꢚꢛ ꢜ ꢞꢚ ꢟ ꢣꢢ ꢠ ꢗ ꢙꢗ ꢠ ꢝ ꢞꢗ ꢚꢘꢟ ꢣ ꢢꢛ ꢞꢨꢢ ꢞꢢ ꢛ ꢜꢟ ꢚꢙ ꢓꢢꢩ ꢝꢟ ꢍꢘꢟ ꢞꢛ ꢡꢜ ꢢꢘꢞ ꢟ ꢟꢞ ꢝꢘꢦ ꢝꢛ ꢦ ꢪ ꢝꢛ ꢛ ꢝ ꢘꢞꢫꢧ  
ꢉꢛ ꢚ ꢦꢡꢠ ꢞ ꢗꢚ ꢘ ꢣꢛ ꢚ ꢠ ꢢ ꢟ ꢟ ꢗꢘ ꢬ ꢦꢚ ꢢ ꢟ ꢘꢚꢞ ꢘꢢ ꢠꢢ ꢟꢟ ꢝꢛ ꢗꢥ ꢫ ꢗꢘꢠ ꢥꢡꢦ ꢢ ꢞꢢ ꢟꢞꢗ ꢘꢬ ꢚꢙ ꢝꢥ ꢥ ꢣꢝ ꢛ ꢝꢜ ꢢꢞꢢ ꢛ ꢟꢧ  
Copyright 2003, Texas Instruments Incorporated  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆ ꢂ  
www.ti.com  
SLLS563C − JULY 2003 − REVISED APRIL 2005  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during  
storage or handling to prevent electrostatic damage to the MOS gates.  
AVAILABLE OPTIONS  
(1)  
T
PACKAGED DEVICES  
MARKED AS  
VN1176  
A
0°C to 70°C  
SN75HVD1176D  
−40°C to 85°C  
SN65HVD1176D  
VP1176  
(1)  
The D package is available taped and reeled. Add an R suffix to the device type (i.e., SN65HVD1176DR).  
ABSOLUTE MAXIMUM RATINGS  
over operating junction temperature range unless otherwise noted  
(1)  
SN65HVD1176, SN75HVD1176  
−0.5 V to 7 V  
−9 V to 14 V  
−40 V to 40 V  
−0.5 V to 7 V  
−10 mA to 10 mA  
4 kV  
(2)  
Supply voltage , V  
CC  
Voltage at any bus I/O terminal  
Voltage input, transient pulse, A and B, (through 100 , see Figure 14)  
Voltage input at any D, DE or RE terminal  
Receiver output current, I  
O
All pins  
(3)  
Human Body Model, (HBM)  
Electrostatic discharge  
Junction temperature, T  
Bus terminals and GND  
10 kV  
150°C  
J
(1)  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
All voltage values, except differential I/O bus voltages, are with respect to network ground terminal.  
(2)  
(3)  
Tested in accordance with JEDEC standard 22. test method A114−A.  
RECOMMENDED OPERATING CONDITIONS  
MIN  
4.75  
−7  
NOM MAX UNIT  
Supply voltage, V  
CC  
5
5.25  
12  
Voltage at either bus I/O terminal  
A, B  
High−level input voltage, V  
IH  
2
V
CC  
0.8  
V
D, DE, RE  
Low−level input voltage, V  
IL  
0
Differential input voltage, V  
A with respect to B  
Driver  
−12  
−70  
−8  
12  
70  
ID  
Output current  
mA  
Receiver  
8
SN65HVD1176  
SN75HVD1176  
−40  
0
130  
130  
(1)  
Junction temperature, T  
J
Differential load resistance, R  
54  
L
Signaling rate, 1/t  
U1  
40 Mbps  
(1)  
See the Thermal Characteristics table for more information on maintenance of this requirement.  
2
ꢀꢁꢂ ꢃꢄ ꢅꢆ  ꢂ  
ꢀꢁꢈ ꢃꢄ ꢅꢆ  ꢂ  
www.ti.com  
SLLS563C − JULY 2003 − REVISED APRIL 2005  
DRIVER ELECTRICAL CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
(1)  
MIN TYP  
PARAMETER  
TEST CONDITIONS  
MAX  
UNIT  
V
Open-circuit output voltage  
A or B,  
R = 54 ,  
No load  
0
V
CC  
V
O
See Figure 1  
With common-mode loading,  
(V from −7 V to 12 V)  
2.1  
2.9  
2.7  
L
V  
Steady-state differential output voltage magnitude  
V
OD(SS)  
2.1  
TEST  
See Figure 2  
Change in steady-state differential output voltage  
between logic states  
∆|V  
|
See Figure 1 and Figure 6  
−0.2  
2
0
2.5  
0
0.2  
3
V
V
V
V
OD(SS)  
V
Steady-state common-mode output voltage  
OC(SS)  
Change in steady-state common-mode output  
voltage  
V  
OC(SS)  
−0.2  
0.2  
See Figure 5  
V
Peak-to-peak common-mode output voltage  
Differential output voltage over and under shoot  
Input current  
0.5  
OC(PP)  
V
R = 54 , C = 50 pF, See Figure 6  
10%  
50  
V
OD(PP)  
OD(RING)  
L
L
I
I
D, DE  
−50  
µA  
I
Output current with power off  
V
< = 2.5 V  
O(OFF)  
CC  
DE at 0 V  
See receiver line input  
current  
I
High impedance state output current  
Peak short-circuit output current  
OZ  
I
V
V
= −7 V to 12 V  
> 4 V,  
−250  
60  
250  
mA  
mA  
OS(P)  
OS  
OS  
90  
135  
−60  
DE at V  
See Figure 8  
,
CC  
Output driving low  
I
Steady-state short-circuit output current  
Differential output capacitance  
OS(SS)  
V
OS  
< 1 V,  
−135  
−90  
Output driving high  
C
See receiver C  
I
OD  
(1)  
All typical values are at V  
CC  
= 5 V and 25°C.  
DRIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
4
TYP  
7
MAX  
10  
10  
2
UNIT  
ns  
t
t
t
t
t
t
Propagation delay time low-level-to-high-level output  
Propagation delay time high-level-to-low-level output  
Pulse skew | t – t  
PLH  
PHL  
sk(p)  
r
4
7
ns  
R = 54 , C = 50 pF,  
L
L
|
0
ns  
PLH PHL  
See Figure 3  
Differential output rise time  
Differential output fall time  
Output transition skew  
2
2
3
7.5  
7.5  
1
ns  
3
ns  
f
, t  
t(MLH) t(MHL)  
See Figure 4  
0.2  
ns  
t
t
, t  
p(AZH) p(BZH)  
Propagation delay time, high-impedance-to-active output  
Propagation delay time, active-to- high-impedance output  
Enable skew time  
10  
10  
20  
20  
1.5  
2.5  
4
ns  
ns  
ns  
ns  
µs  
ns  
, t  
p(AZL) p(BZL)  
t
t
, t  
p(AHZ) p(BHZ)  
, t  
p(ALZ) p(BLZ)  
RE at 0 V  
R
C
= 110 ,  
= 50 pF,  
|t  
|t  
− t  
|
|
L
L
p(AZL) p(BZH)  
0.55  
− t  
p(AZH) p(BZL)  
See Figure 7a  
and 7b  
|t  
|t  
− t  
|
|
p(ALZ) p(BHZ)  
Disable skew time  
− t  
p(AHZ) p(BLZ)  
t
t
, t  
Propagation delay time, high-impedance-to-active output  
(from sleep mode)  
p(AZH) p(BZH)  
, t  
p(AZL) p(BZL)  
1
RE at 5 V  
t
t
, t  
, t  
Propagation delay time, active-output-to high-impedance  
(to sleep mode)  
p(AHZ) p(BHZ)  
p(ALZ) p(BLZ)  
30  
50  
t
Time from application of short-circuit to current foldback  
Time from application of short-circuit to thermal shutdown  
See Figure 8  
0.5  
µs  
µs  
(CFB)  
(TSD)  
t
T
= 25°C, See Figure 8  
100  
A
(1)  
All typical values are at V  
CC  
= 5 V and 25°C.  
3
ꢀ ꢁꢂꢃ ꢄꢅ ꢆ ꢂ  
www.ti.com  
SLLS563C − JULY 2003 − REVISED APRIL 2005  
RECEIVER ELECTRICAL CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
(1)  
MIN TYP  
PARAMETER  
TEST CONDITIONS  
= 2.4 V, I = −8 mA  
MAX  
UNIT  
V
IT(+)  
Positive-going differential input voltage threshold  
Negative-going differential input voltage threshold  
V
O
−80  
−120  
40  
−20  
O
See Figure 9  
mV  
V
IT(−)  
V
O
= 0.4 V, I = 8 mA  
−200  
4
O
V
HYS  
Hysteresis voltage (V  
IT+  
− V  
)
mV  
V
IT−  
V
OH  
High-level output voltage  
Low-level output voltage  
V
ID  
= 200 mV,  
I
= −8 mA, See Figure 9  
= 8 mA, See Figure 9  
4.6  
OH  
V
V
ID  
= −200 mV, I  
0.2  
0.4  
V
OL  
I , I  
OL  
V
= 4.75 V to 5.25 V  
A B  
CC  
CC  
V = − 7 V to 12 V,  
I
Other input = 0 V  
Bus pin input current  
−160  
200  
µA  
I
I
A(OFF),  
V
= 0V  
B(OFF)  
I
Receiver enable input current  
RE  
−50  
−1  
50  
1
µA  
µA  
kΩ  
I
I
High-impedance -state output current  
Input resistance  
RE = V  
CC  
OZ  
R
60  
I
Test input signal is a 1.5 MHz sine wave  
with amplitude 1 Vpp, capacitance  
measured across A and B  
C
Differential input capacitance  
Common mode rejection  
7
4
10  
pF  
V
ID  
See Figure 11  
CMR  
(1)  
All typical values are at 25°C.  
RECEIVER SWITCHING CHARACTERISTICS  
over recommended operating conditions  
TEST  
CONDITIONS  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
t
Propagation delay time, low-to-high level output  
Propagation delay time, high-to-low level output  
20  
20  
1
25  
25  
2
PLH  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
t
PHL  
sk(p)  
r
Pulse skew | t |  
– t  
See Figure 10  
PLH PHL  
Receiver output voltage rise time  
2
4
Receiver output voltage fall time  
2
4
f
Propagation delay time, high-impedance-to-high-level output  
Propagation delay time, high-level-to-high-impedance output  
Propagation delay time, high-impedance-to-low-level output  
Propagation delay time, low-level-to-high-impedance output  
Propagation delay time, high-impedance-to-high-level output (standby to active)  
Propagation delay time, high-level-to-high-impedance output (active to standby)  
Propagation delay time, high-impedance-to-low-level output (standby to active)  
Propagation delay time, low-level-to-high-impedance output (active to standby)  
20  
20  
20  
20  
4
PZH  
PHZ  
PZL  
PLZ  
PZH  
PHZ  
PZL  
PLZ  
DE at V ,  
CC  
See Figure 13  
ns  
ns  
DE at V  
See Figure 14  
,
CC  
1
13  
2
µs  
ns  
µs  
ns  
DE at 0 V,  
See Figure 12  
20  
4
DE at 0 V  
See Figure 12  
13  
20  
SUPPLY CURRENT  
over recommended operating conditions  
PARAMETER  
TEST CONDITIONS  
Driver and receiver, RE at 0 V, DE at V , All other inputs open, no load  
MIN  
TYP  
4
MAX  
UNIT  
mA  
mA  
mA  
µA  
6
6
6
5
CC  
Driver only, RE at V  
,
DE at V , All other inputs open, no load  
3.8  
3.6  
0.2  
CC  
CC  
Receiver only, RE at 0 V, DE at 0 V, All other inputs open, no load  
Standby only, RE at V DE at 0 V, All other inputs open  
I
Supply current  
CC  
,
CC  
4
ꢀꢁꢂ ꢃꢄ ꢅꢆ  ꢂ  
ꢀꢁꢈ ꢃꢄ ꢅꢆ  ꢂ  
www.ti.com  
SLLS563C − JULY 2003 − REVISED APRIL 2005  
PARAMETER MEASUREMENT INFORMATION  
NOTES:  
Test load capacitance includes probe and jig capacitance (unless otherwise specified).  
Signal generator characteristics: rise and fall time < 6 ns, pulse rate 100 kHz, 50% duty cycle, Z = 50 (unless otherwise specified)  
o
I
A
B
O
O
27 Ω  
27 Ω  
I
I
V
OD  
50 pF  
0 V or 3 V  
D
I
V
OC  
Figure 1. Driver Test Circuit, V  
and V  
Without Common-Mode Loading  
OC  
OD  
375 Ω  
A
V
= −7 V to 12 V  
TEST  
V
OD  
60 Ω  
375 Ω  
0 V or 3 V  
D
B
V
TEST  
Figure 2. Driver Test Circuit, V  
With Common-Mode Loading  
OD  
3 V  
0 V  
INPUT  
V
OD  
R
L
= 54 Ω  
C
L
= 50 pF  
V
OD(H)  
OD(L)  
Signal  
Generator  
90%  
10%  
50 Ω  
OUTPUT  
V
t
r
t
f
Figure 3. Driver Switching Test Circuit and Rise/Fall Time Measurement  
D
1.5 V  
1.5 V  
t
t
PLH  
PHL  
A,B  
50%  
50%  
A
B
t
t
t(MLH)  
t(MHL)  
50%  
50%  
Figure 4. Driver Switching Waveforms for Propagation Delay and Output Midpoint Time Measurements  
5
ꢀ ꢁꢂꢃ ꢄꢅ ꢆ ꢂ  
www.ti.com  
SLLS563C − JULY 2003 − REVISED APRIL 2005  
27 Ω  
27 Ω  
A
V
A
3.25 V  
1.75 V  
D
V
B
Signal  
Generator  
B
50 Ω  
V
V
OC  
V  
OC(SS)  
OC(PP)  
50 pF  
V
OC  
Figure 5. Driver V  
OC  
Test Circuit and Waveforms  
V
OD(SS)  
V
OD(RING)  
V
OD(PP)  
0 V Differential  
V
OD(RING)  
V
OD(SS)  
:
NOTE  
V
V
is measured at four points on the output waveform, corresponding to overshoot and undershoot from the  
OD(RING)  
and V  
steady state values.  
OD(H)  
OD(L)  
Figure 6. V  
Waveform and Definitions  
OD(RING)  
3 V  
DE  
1.5 V  
R
L
= 110 Ω  
V
CC  
t
t
p(AZL)  
p(ALZ)  
A
B
C
C
= 50 pF  
L
D
A
50%  
50%  
0 V  
V
+0.5 V  
OL  
DE  
R
= 110 Ω  
L
0 V  
t
p(BHZ)  
−0.5 V  
t
p(BZH)  
Signal  
Generator  
50 Ω  
= 50 pF  
L
V
OL  
B
a) D at Logic Low  
3 V  
t
DE  
1.5 V 1.5 V  
R
= 110 Ω  
L
0 V  
V
t
p(AZH)  
p(AHZ)  
−0.5 V  
A
B
C
C
= 50 pF  
L
D
V
OH  
A
50%  
3 V  
R
L
= 110 Ω  
DE  
t
p(BLZ)  
CC  
t
p(BZL)  
Signal  
Generator  
50 Ω  
= 50 pF  
L
50%  
V
OH  
+0.5 V  
B
b) D at Logic High  
Figure 7. Driver Enable/Disable Test  
6
ꢀꢁꢂ ꢃꢄ ꢅꢆ  ꢂ  
ꢀꢁꢈ ꢃꢄ ꢅꢆ  ꢂ  
www.ti.com  
SLLS563C − JULY 2003 − REVISED APRIL 2005  
250  
Output  
Current |mA|  
135  
60  
I
OS  
D
V
OS  
Voltage  
Source  
time  
t
(CFB)  
t
(TSD)  
Figure 8. Driver Short-Circuit Test Circuit and Waveforms (Short Circuit applied at Time t = 0)  
I
A
A
B
I
O
R
V
A
V
I
ID  
V
B
V
IC  
V
O
V
A
+ V  
2
B
B
Figure 9. Receiver DC Parameter Definitions  
Signal  
Generator  
50 Ω  
Input B  
V
ID  
1.5 V  
0 V  
A
B
50%  
I
O
Input A  
t
R
t
PHL  
PLH  
V
C
= 15 pF  
O
V
OH  
Signal  
Generator  
L
90%  
50 Ω  
Output  
1.5 V  
10%  
V
OL  
t
r
t
f
Figure 10. Receiver Switching Test Circuit and Waveforms  
50 Ω  
50 Ω  
A
B
100 nF  
R
V = A sin 2pft  
1 MHz < f < 50 MHz  
I
470 nF  
RE  
DE  
D
2.2 kΩ  
V
R
Scope  
2.2 kΩ  
V
=
offset  
−2 V to 7 V  
GND  
V
CC  
Scope  
100 nF  
V
shall be greater than  
R
2 V throughout this test.  
Figure 11. Receiver Common-Mode Rejection Test Circuit  
7
ꢀ ꢁꢂꢃ ꢄꢅ ꢆ ꢂ  
www.ti.com  
SLLS563C − JULY 2003 − REVISED APRIL 2005  
3 V  
A
B
A
1 k1%  
= 15 pF 20%  
0 V or 1.5 V  
1.5 V or 0 V  
R
V
O
S1  
B
C
L
RE  
Input  
Generator  
V
I
50 Ω  
3 V  
1.5 V  
V
I
0 V  
V
t
PZH(2)  
OH  
A at 1.5 V  
B at 0 V  
S1 to B  
1.5 V  
V
O
GND  
t
PZL(2)  
3 V  
A at 0 V  
B at 1.5 V  
S1 to A  
1.5 V  
V
O
V
OL  
Figure 12. Receiver Enable Time From Standby (Driver Disabled)  
D
V
V
CC  
DE  
CC  
A
54 Ω  
B
3 V  
0 V  
1 kΩ  
R
RE  
1.5 V  
0 V  
C
L
= 15 pF  
RE  
t
t
PHZ  
PZH  
Signal  
Generator  
V
OH  
−0.5 V  
50 Ω  
V
OH  
1.5 V  
R
GND  
Figure 13. Receiver Enable Test Circuit and Waveforms, Data Output High (Driver Active)  
8
ꢀꢁꢂ ꢃꢄ ꢅꢆ  ꢂ  
ꢀꢁꢈ ꢃꢄ ꢅꢆ  ꢂ  
www.ti.com  
SLLS563C − JULY 2003 − REVISED APRIL 2005  
D
0 V  
DE  
V
CC  
A
54 Ω  
B
3 V  
0 V  
1 kΩ  
R
RE  
1.5 V  
PZL  
5 V  
C
L
= 15 pF  
RE  
t
t
PLZ  
Signal  
Generator  
V
CC  
50 Ω  
1.5 V  
R
V
OL  
+0.5 V  
V
OL  
Figure 14. Receiver Enable Test Circuit and Waveforms, Data Output Low (Driver Active)  
V
TEST  
100 Ω  
0 V  
Pulse Generator,  
15 µs Duration,  
1% Duty Cycle  
1.5 ms  
15 µs  
−V  
TEST  
Figure 15. Test Circuit and Waveforms, Transient Over-Voltage Test  
9
ꢀ ꢁꢂꢃ ꢄꢅ ꢆ ꢂ  
www.ti.com  
SLLS563C − JULY 2003 − REVISED APRIL 2005  
DEVICE INFORMATION  
DRIVER FUNCTION TABLE  
INPUT  
ENABLE  
OUTPUTS  
D
DE  
A
H
L
B
L
H
H
L
X
H
L
H
Z
Z
L
Z
Z
H
X
OPEN  
H
OPEN  
H = high level, L= low level, X = don’t care,  
Z = high impedance (off)  
RECEIVER FUNCTION TABLE  
DIFFERENTIAL INPUT  
= (V – V )  
ENABLE  
OUTPUT  
V
ID  
RE  
R
H
?
A
B
V
0.02 V  
L
ID  
−0.2 V < V < −0.02 V  
L
ID  
V
ID  
−0.2 V  
L
L
X
X
H
Z
Z
H
H
H
OPEN  
Open circuit  
Short Circuit  
L
L
L
Idle (terminated) bus  
H = high level, L= low level, X = don’t care,Z = high impedance (off),  
? = indeterminate  
(1)  
THERMAL CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
(2)  
TYP  
PARAMETERS  
TEST CONDITIONS  
MIN  
MAX  
UNITS  
(4)  
Low-K board , no air flow  
208.3  
128.7  
77.6  
°C/W  
°C/W  
°C/W  
°C/W  
(3)  
θ
θ
Junction-to-ambient thermal resistance  
JA  
(5)  
High-K board , no air flow  
Junction-to-board thermal resistance  
Junction-to-case thermal resistance  
High-K board  
JB  
JC  
θ
43.9  
R
L
= 54 , C = 50 pF, 0 V to 3 V  
L
15 MHz, 50% duty cycle square  
wave input, driver and receiver  
enabled  
P
D
Device power dissipation  
277  
318  
mW  
SN65HVD1176  
SN75HVD1176  
SN65HVD1176  
SN75HVD1176  
−40  
0
Low-K board, no air flow,  
64  
89  
°C  
P
D
= 318 mW  
T
Ambient air temperature  
A
−40  
0
High-K board, no air flow,  
= 318 mW  
°C  
°C  
P
D
T
(1)  
(2)  
(3)  
Thermal shut down junction temperature  
150  
SD  
See Application Information section for an explanation of these parameters.  
All typical values are with V = 5 V and T = 25°C.  
CC  
A
The intent of θ specification is solely for a thermal performance comparison of one package to another in a standardized environment. This  
JA  
methodology is not meant to and will not predict the performance of a package in an application-specific environment.  
JESD51−3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages.  
JESD51−7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages.  
(4)  
(5)  
10  
ꢀꢁꢂ ꢃꢄ ꢅꢆ  ꢂ  
ꢀꢁꢈ ꢃꢄ ꢅꢆ  ꢂ  
www.ti.com  
SLLS563C − JULY 2003 − REVISED APRIL 2005  
EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
D and RE Inputs  
DE Input  
V
CC  
V
CC  
200 kΩ  
500 Ω  
500 Ω  
Input  
Input  
200 kΩ  
9 V  
9 V  
A Input  
B Input  
V
CC  
V
CC  
18 kΩ  
16 V  
18 kΩ  
16 V  
90 kΩ  
90 kΩ  
18 kΩ  
Input  
Input  
18 kΩ  
16 V  
16 V  
A and B Outputs  
R Output  
V
CC  
V
CC  
16 V  
5 Ω  
Output  
9 V  
Output  
16 V  
11  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆ ꢂ  
www.ti.com  
SLLS563C − JULY 2003 − REVISED APRIL 2005  
TYPICAL CHARACTERISTICS  
DRIVER SUPPLY CURRENT  
DIFFERENTIAL OUTPUT VOLTAGE  
vs  
vs  
SIGNALING RATE  
LOAD CURRENT  
66  
64  
5
V
CC  
= 5 V  
V
4.5  
4
100 Ω  
= 5.25 V  
CC  
3.5  
3
62  
50 Ω  
V
CC  
= 4.75 V  
60  
58  
2.5  
2
V
= 5 V  
= 25°C  
= 56 ,  
CC  
1.5  
T
A
R
L
1
0.5  
0
DE and RE at 5 V  
Input 0 V to 3 V PRBS  
See Figure 3  
56  
54  
T
A
= 255C  
0
10  
20  
30  
40  
50  
0
20  
40  
60  
80  
Signaling Rate − Mbps  
I
L
− Load Current − mA  
Figure 16  
Figure 17  
DRIVER OUTPUT TRANSITION SKEW  
DRIVER RISE, FALL TIME  
vs  
vs  
FREE-AIR TEMPERATURE  
FREE-AIR TEMPERATURE  
4
0.35  
0.3  
R
C
= 54 ,  
= 50 pF  
L
L
R
C
= 54 ,  
= 50 pF  
L
L
3.75  
3.5  
See Figure 3  
See Figure 4  
V
CC  
= 4.75 V  
V
= 4.75 V  
CC  
0.25  
0.2  
V
CC  
= 5 V  
3.25  
3
V
CC  
= 5 V  
V
CC  
= 5.25 V  
0.15  
0.1  
V
CC  
= 5.25 V  
2.75  
2.5  
0.05  
0
2.25  
2
−40  
−15  
10  
35  
60  
85  
−40  
−15  
10  
35  
60  
85  
T
A
− Free-Air Temperature − °C  
T
A
− Free-Air Temperature − °C  
Figure 18  
Figure 19  
12  
ꢀꢁꢂ ꢃꢄ ꢅꢆ  ꢂ  
ꢀꢁꢈ ꢃꢄ ꢅꢆ  ꢂ  
www.ti.com  
SLLS563C − JULY 2003 − REVISED APRIL 2005  
DRIVER ENABLE SKEW  
vs  
FREE-AIR TEMPERATURE  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
V
= 4.75 V  
CC  
V
= 5.25 V  
CC  
V
CC  
= 5 V  
R
C
= 110 ,  
L
L
= 50 pF  
0.1  
0
See Figure 7  
−40  
−15  
10  
35  
60  
85  
T
A
− Free-Air Temperature − °C  
Figure 20  
APPLICATION INFORMATION  
TI uses two test PCBs as defined by JEDEC  
specifications. The low-k board gives average in-use  
condition thermal performance, and it consists of a single  
copper trace layer 25 mm long and 2-oz thick. The high-k  
board gives best case in-use condition, and it consists of  
two 1-oz buried power planes with a single copper trace  
layer 25 mm long and 2-oz thick. A 4% to 50% difference  
THERMAL CHARACTERISTICS OF IC  
PACKAGES  
q
(Junction-to-Ambient Thermal Resistance) is  
JA  
defined as the difference in junction temperature to  
ambient temperature divided by the operating power.  
in θ can be measured between these two test cards  
θ
is not a constant and is a strong function of:  
the PCB design (50% variation)  
JA  
JA  
q
(Junction-to-Case Thermal Resistance) is defined  
JC  
D
D
D
θ
as difference in junction temperature to case divided by the  
operating power. It is measured by putting the mounted  
package up against a copper block cold plate to force heat  
to flow from die, through the mold compound into the  
copper block.  
altitude (20% variation)  
device power (5% variation)  
can be used to compare the thermal performance of  
θ
is a useful thermal characteristic when a heatsink is  
JC  
JA  
packages if the specific test conditions are defined and  
used. Standardized testing includes specification of PCB  
construction, test chamber volume, sensor locations, and  
applied to package. It is not a useful characteristic to  
predict junction temperature because it provides  
pessimistic numbers if the case temperature is measured  
in a nonstandard system and junction temperatures are  
the thermal characteristics of holding fixtures. θ is often  
JA  
misused when it is used to calculate junction temperatures  
for other installations.  
backed out. It can be used with θ in 1-dimensional  
JB  
thermal simulation of a package system.  
13  
ꢀ ꢁꢂꢃ ꢄꢅ ꢆ ꢂ  
www.ti.com  
SLLS563C − JULY 2003 − REVISED APRIL 2005  
q
(Junction-to-Board Thermal Resistance) is defined  
θ
provides an overall thermal resistance between the die  
JB  
JB  
as the difference in the junction temperature and the PCB  
temperature at the center of the package (closest to the  
and the PCB. It includes a bit of the PCB thermal  
resistance (especially for BGA’s with thermal balls) and  
can be used for simple 1-dimensional network analysis of  
package system (see Figure 21).  
die) when the PCB is clamped in a cold-plate structure. θ  
JB  
is only defined for the high-k test card.  
Ambient Node  
Calculated  
q
CA  
Surface Node  
Calculated/Measured  
q
JC  
Junction  
Calculated/Measured  
q
JB  
PC Board  
Figure 21. Thermal Resistance  
14  
PACKAGE OPTION ADDENDUM  
www.ti.com  
8-Aug-2005  
PACKAGING INFORMATION  
Orderable Device  
SN65HVD1176D  
Status (1)  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
SOIC  
D
8
8
8
8
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65HVD1176DR  
SN75HVD1176D  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN75HVD1176DR  
SN75HVD1176DRG4  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan  
-
The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS  
&
no Sb/Br)  
-
please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 1  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,  
enhancements, improvements, and other changes to its products and services at any time and to discontinue  
any product or service without notice. Customers should obtain the latest relevant information before placing  
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms  
and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI  
deems necessary to support this warranty. Except where mandated by government requirements, testing of all  
parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for  
their products and applications using TI components. To minimize the risks associated with customer products  
and applications, customers should provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,  
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process  
in which TI products or services are used. Information published by TI regarding third-party products or services  
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.  
Use of such information may require a license from a third party under the patents or other intellectual property  
of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without  
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction  
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for  
such altered documentation.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that  
product or service voids all express and any implied warranties for the associated TI product or service and  
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.  
Following are URLs where you can obtain information on other Texas Instruments products and application  
solutions:  
Products  
Applications  
Audio  
Amplifiers  
amplifier.ti.com  
www.ti.com/audio  
Data Converters  
dataconverter.ti.com  
Automotive  
www.ti.com/automotive  
DSP  
dsp.ti.com  
Broadband  
Digital Control  
Military  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
Logic  
interface.ti.com  
logic.ti.com  
Power Mgmt  
Microcontrollers  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address:  
Texas Instruments  
Post Office Box 655303 Dallas, Texas 75265  
Copyright 2005, Texas Instruments Incorporated  

相关型号:

SN75HVD1176DR

PROFIBUS RS-485 TRANSCEIVERS
TI

SN75HVD1176DRG4

PROFIBUS RS-485 TRANSCEIVERS
TI

SN75HVD11D

3.3V RS 485 TRANSCEIVERS
TI

SN75HVD11DG4

3.3-V RS-485 TRANSCEIVERS
TI

SN75HVD11DR

3.3-V RS-485 TRANSCEIVERS
TI

SN75HVD11DRG4

3.3-V RS-485 TRANSCEIVERS
TI

SN75HVD11P

3.3V RS 485 TRANSCEIVERS
TI

SN75HVD11PE4

LINE TRANSCEIVER, PDIP8, ROHS COMPLIANT, PLASTIC, DIP-8
TI

SN75HVD12

3.3V RS 485 TRANSCEIVERS
TI

SN75HVD12D

3.3V RS 485 TRANSCEIVERS
TI

SN75HVD12DG4

3.3-V RS-485 TRANSCEIVERS
TI

SN75HVD12DR

3.3-V RS-485 TRANSCEIVERS
TI