SN75LVDM977DGG [TI]

9-CHANNEL DUAL-MODE TRANSCEIVERS; 9通道双模式收发器件
SN75LVDM977DGG
型号: SN75LVDM977DGG
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

9-CHANNEL DUAL-MODE TRANSCEIVERS
9通道双模式收发器件

线路驱动器或接收器 驱动程序和接口 接口集成电路 光电二极管
文件: 总28页 (文件大小:426K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
DGG PACKAGE  
(TOP VIEW)  
9 Channels for the Data and Control Paths  
of the Small Computer Systems Interface  
(SCSI)  
INV/NON  
GND  
CDE2  
CDE1  
CDE0  
9B+  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
Supports Single-Ended and Low-Voltage  
Differential (LVD) SCSI  
2
GND  
3
CMOS Input Levels (’LVDM976) or TTL  
Input Levels (’LVDM977) Available  
1A  
4
1DE/RE  
2A  
9B–  
5
Includes DIFFSENS Comparators on CDE0  
8B+  
6
2DE/RE  
3A  
8B–  
7
Single-Ended Receivers Include Noise  
Pulse Rejection Circuitry  
7B+  
8
3DE/RE  
4A  
7B–  
9
Packaged in Thin Shrink Small-Outline  
Package With 20-Mil Terminal Pitch  
6B+  
10  
11  
12  
4DE/RE  
6B–  
Low Disabled Supply Current 7 mA  
Maximum  
V
V
CC  
CC  
GND 13  
44 GND  
Power-Up/Down Glitch Protection  
GND 14  
43 GND  
Bus is High-Impedance With V  
= 1.5 V  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
GND  
GND  
GND  
GND  
GND  
GND  
CC  
Pin-Compatible With the SN75976ADGG  
High-Voltage Differential Transceiver  
V
V
CC  
5A  
CC  
description  
5B+  
5B–  
4B+  
4B–  
3B+  
3B–  
2B+  
2B–  
1B+  
1B–  
5DE/RE  
6A  
The SN75LVDM976 and SN75LVDM977 have  
nine transceivers for transmitting or receiving the  
signals to or from a SCSI data bus. They offer  
electrical compatibility to both the single-ended  
signaling of X3.277:1996–SCSI–3 Parallel Inter-  
face (Fast–20) and the new low-voltage differen-  
tial signaling method of proposed standard  
1142–D SCSI Parallel Interface – 2 (SPI–2).  
6DE/RE  
7A  
7DE/RE  
8A  
8DE/RE  
9A  
9DE/RE  
The differential drivers are nonsymmetrical. The  
SCSI bus uses a dc bias on the line to allow  
terminated fail safe and wired-OR signaling. This bias can be as high as 125 mV and induces a difference in  
the high-to-low and low-to-high transition times of a symmetrical driver. In order to reduce pulse skew, an LVD  
SCSI driver’s output characteristics become nonsymmetrical. In other words, there is more assertion current  
than negation current to or from the driver. This allows the actual differential signal voltage on the bus to be  
symmetrical about 0 V. Even though the driver output characteristics are nonsymmetrical, the design of the  
’LVDM976 drivers maintains balanced signaling. Balanced means that the current that flows in each signal line  
is nearly equal but opposite in direction and is one of the keys to the low-noise performance of a differential bus.  
AVAILABLE OPTIONS  
PACKAGE  
TSSOP  
(DGG)  
TSSOP  
(DGG)  
T
A
CMOS INPUT LEVELS  
TTL INPUTS LEVELS  
SN75LVDM976DGG  
SN75LVDM976DGGR  
SN75LVDM977DGG  
SN75LVDM977DGGR  
0°C to 70°C  
The R suffix designates a taped and reeled package.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Copyright 2000, Texas Instruments Incorporated  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of Texas Instruments  
standard warranty. Production processing does not necessarily include  
testing of all parameters.  
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
description (continued)  
The signal symmetry requirements of the LVD-SCSI bus mean you can no longer obtain logical inversion of a  
signal by simply reversing the differential signal connections. This requires the ability to invert the logic  
convention through the INV/NON terminal. This input would be a low for SCSI controllers with active-high data  
and high for active-low data. In either case, the B+ signals of the transceiver must be connected to the SIGNAL+  
line of the SCSI bus and the B– of the transceiver to the SIGNAL– line.  
The CDE0 input incorporates a window comparator to detect the status of the DIFFSENS line of a SCSI bus.  
This line is below 0.5 V, if using single-ended signals, between 1.7 V and 1.9 V if low-voltage differential, and  
between 2.4 V and 5.5 V if high-voltage differential. The outputs assume the characteristics of single-ended or  
LVDaccordingly or place the outputs into high-impedance, when HVD is detected. This, and the INV/NONinput,  
are the only differences to the trade-standard function of the SN75976A HVD transceiver.  
Two options are offered to minimize the signal noise margins on the interface between the communications  
controller and the transceiver. The SN75LVDM976 has logic input voltage thresholds of about 0.5 V . The  
CC  
SN75LVDM977 has a fixed logic input voltage threshold of about 1.5 V. The input voltage threshold should be  
selected to be near the middle of the output voltage swing of the corresponding driver circuit.  
The SN75LVDM976 and SN75LVDM977 are characterized for operation over an free-air temperature range of  
T = 0°C to 70°C.  
A
2
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
logic diagram (positive logic)  
2.4 V  
A
CDE1  
(Internal)  
+
LVD  
CDE0  
B
+
0.5 V  
(Internal)  
SE  
INV/NON  
1DEb  
1REb  
1DE/RE  
1DEb  
1B–  
1DEa  
1A  
1B+  
1DEa  
1REa  
1REb  
1REa  
2A  
2DE/RE  
3A  
3DE/RE  
4A  
2B–  
2B+  
3B–  
3B+  
4B–  
4B+  
Channel 2  
Channel 3  
Channel 4  
4DE/RE  
INV/NON  
SE  
LVD  
CDE2  
5A  
5DE/RE  
6A  
6DE/RE  
7A  
5B–  
5B+  
6B–  
6B+  
7B–  
7B+  
8B–  
8B+  
Channel 5  
Channel 6  
Channel 7  
Channel 8  
7DE/RE  
8A  
8DE/RE  
9DE/RE  
9A  
INV/NON  
SE  
LVD  
9DEb  
9REb  
9DEb  
9DEa  
9B–  
9B+  
9DEa  
9REa  
9REb  
9REa  
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
logic diagrams and function tables  
FUNCTION TABLE  
Inputs  
Outputs  
B–  
(B+ – B–)  
30 mV  
DE/RE  
A
NA  
NA  
NA  
NA  
L
B+  
B–  
Z
A
L
V
A
ID  
B+  
V
ID  
L
L
Z
Z
Z
Z
H
L
30 mV < V < 30 mV  
Z
?
ID  
–30 mV  
DE/RE  
V
ID  
L
Z
H
?
Open circuit  
L
Z
NA  
NA  
H
H
L
Z
Z
Figure 1. Inverting LVD Transceiver  
H
H
FUNCTION TABLE  
Inputs  
DE/RE  
Outputs  
A
B–  
B+  
B–  
H
A
NA  
NA  
NA  
L
B+  
L
B–  
Z
A
L
DE/RE  
L
L
L
L
Z
H
?
Open circuit  
L
L
Z
NA  
NA  
H
H
L
H
L
Z
Z
H
L
Figure 2. Inverting Single-Ended Transceiver  
A
FUNCTION TABLE  
B–  
Input  
Outputs  
A
L
B+  
B–  
H
L
L
B+  
H
L
Figure 3. Inverting Single-Ended Driver  
FUNCTION TABLE  
Input Outputs  
B–  
A
A
L
B+  
B–  
L
B+  
H
L
H
H
Figure 4. Inverting LVD Driver  
4
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
logic diagrams and function tables (continued)  
FUNCTION TABLE  
B–  
Input  
Outputs  
A
A
L
B+  
B–  
H
B+  
L
H
H
L
Figure 5. Noninverting LVD Driver  
FUNCTION TABLE  
Inputs  
Outputs  
B–  
ID  
B+  
(B+ – B)  
30 mV  
DE/RE  
A
NA  
NA  
NA  
NA  
L
B+  
B–  
Z
A
H
?
V
A
V
L
L
Z
Z
Z
Z
L
ID  
30 mV < V < 30 mV  
Z
DE/RE  
ID  
–30 mV  
V
L
Z
L
ID  
Open circuit  
L
Z
?
NA  
NA  
H
H
H
L
Z
Z
Figure 6. Noninverting LVD Transceiver  
H
H
FUNCTION TABLE  
A
B–  
Inputs  
DE/RE  
Outputs  
DE/RE  
B–  
H
A
NA  
NA  
NA  
L
B+  
L
B–  
Z
A
H
L
L
L
L
L
Z
B+  
Open Circuit  
L
L
Z
?
NA  
NA  
H
H
L
L
Z
Z
Figure 7. Noninverting Single-Ended Transceiver  
H
L
H
B–  
B+  
A
FUNCTION TABLE  
Input  
Outputs  
A
L
B+  
B–  
L
L
L
H
H
Figure 8. Noninverting Single-Ended Driver  
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
1B–  
1B–  
1B+  
1B–  
1B+  
1A  
1A  
1A  
2A  
3A  
4A  
1B+  
1DE/RE  
1DE/RE  
2B–  
2B+  
2B–  
2B+  
2B–  
2B+  
2A  
2A  
2DE/RE  
2DE/RE  
3B–  
3B+  
3B–  
3B+  
3B–  
3B+  
3A  
3A  
3DE/RE  
3DE/RE  
4B–  
4B+  
4B–  
4B+  
4B–  
4B+  
4A  
4A  
4DE/RE  
4DE/RE  
5B–  
5B+  
5B–  
5B+  
5B–  
5B+  
5A  
5A  
5A  
5DE/RE  
5DE/RE  
6B–  
6B+  
6B–  
6B+  
6B–  
6B+  
6A  
6A  
6A  
7A  
6DE/RE  
6DE/RE  
7B–  
7B+  
7B–  
7B+  
7B–  
7B+  
7A  
7A  
7DE/RE  
7DE/RE  
8B–  
8B+  
8B–  
8B+  
8B–  
8B+  
8A  
8A  
8A  
8DE/RE  
8DE/RE  
9B–  
9B+  
9B–  
9B+  
9B–  
9B+  
9A  
9A  
9A  
9DE/RE  
9DE/RE  
9DE/RE  
Control Inputs  
Control Inputs  
Control Inputs  
CDE0 0.7 V < V < 1.9 V  
CDE0  
INV/NON  
CDE1  
0.7 V < V < 1.9 V  
I
CDE0  
INV/NON  
CDE1  
0.7 V < V < 1.9 V  
I
I
L
L
L
L
L
INV/NON  
CDE1  
L
H
L
CDE2  
CDE2  
H
CDE2  
(a)  
(b)  
(c)  
Figure 9. Logic Diagrams  
6
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
1B–  
1B+  
1B–  
1B+  
1A  
1A  
1B–  
1B+  
1A  
2A  
3A  
4A  
5A  
6A  
7A  
8A  
1DE/RE  
1DE/RE  
2B–  
2B+  
2B–  
2B+  
2A  
2A  
2B–  
2B+  
2DE/RE  
2DE/RE  
3B–  
3B+  
3B–  
3B+  
3A  
3A  
3B–  
3B+  
3DE/RE  
3DE/RE  
4B–  
4B+  
4B–  
4B+  
4A  
4A  
4B–  
4B+  
4DE/RE  
4DE/RE  
5B–  
5B+  
5B–  
5B+  
5A  
5A  
6A  
7A  
8A  
5B–  
5B+  
5DE/RE  
6B–  
6B+  
6B–  
6B+  
6A  
6B–  
6B+  
6DE/RE  
7B–  
7B+  
7B–  
7B+  
7A  
7B–  
7B+  
7DE/RE  
8B–  
8B+  
8B–  
8B+  
8A  
8B–  
8B+  
8DE/RE  
9B–  
9B+  
9B–  
9B+  
9B–  
9B+  
9A  
9A  
9A  
9DE/RE  
9DE/RE  
9DE/RE  
Control Inputs  
CDE0 0.7 V < V < 1.9 V  
Control Inputs  
Control Inputs  
CDE0  
INV/NON  
CDE1  
0.7 V < V < 1.9 V  
I
CDE0  
INV/NON  
CDE1  
0.7 V < V < 1.9 V  
I
I
INV/NON  
CDE1  
L
H
H
H
L
L
H
L
CDE2  
CDE2  
CDE2  
H
(a)  
(b)  
(C)  
Figure 10. Logic Diagrams  
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
1A  
1B–  
1A  
1B–  
1B–  
1DE/RE  
1DE/RE  
1A  
2A  
3A  
4A  
5A  
6A  
7A  
8A  
1B+  
1B+  
2B–  
1B+  
2B–  
2A  
2A  
2B–  
2B+  
2DE/RE  
2DE/RE  
2B+  
3B–  
2B+  
3B–  
3A  
3A  
3B–  
3B+  
3DE/RE  
3DE/RE  
3B+  
4B–  
3B+  
4B–  
4A  
4A  
4B–  
4B+  
4DE/RE  
4DE/RE  
4B+  
5B–  
4B+  
5B–  
5A  
5A  
6A  
7A  
8A  
5B–  
5B+  
5DE/RE  
5B+  
5B+  
6B–  
6A  
6B–  
6B+  
6B–  
6B+  
6DE/RE  
6B+  
7B–  
7A  
7B–  
7B+  
7B–  
7B+  
7DE/RE  
7B+  
8B–  
8A  
8B–  
8B+  
8B–  
8B+  
8DE/RE  
8B+  
9B–  
9A  
9A  
9B–  
9B+  
9B–  
9B+  
9DE/RE  
9DE/RE  
9A  
9DE/RE  
9B+  
Control Inputs  
CDE0 V < 0.5 V  
INV/NON  
Control Inputs  
CDE0 V < 0.5 V  
INV/NON  
Control Inputs  
I
I
CDE0  
INV/NON  
CDE1  
0.7 V < V < 1.9 V  
I
L
L
H
L
L
L
H
H
H
CDE1  
CDE2  
CDE1  
CDE2  
CDE2  
(c)  
(b)  
(a)  
Figure 11. Logic Diagrams  
8
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
1A  
2A  
1B–  
1B+  
1A  
2A  
1B–  
1B+  
1A  
1B–  
1DE/RE  
1B+  
2B–  
2B–  
2B+  
2A  
2B–  
2B+  
2DE/RE  
2B+  
3B–  
3A  
4A  
3B–  
3B+  
3B–  
3B+  
3A  
4A  
5A  
6A  
3A  
3DE/RE  
3B+  
4B–  
4B–  
4B+  
4B–  
4B+  
4A  
4DE/RE  
4B+  
5B–  
5A  
5B–  
5B–  
5B+  
5A  
5DE/RE  
5DE/RE  
5B+  
6B–  
5B+  
6B–  
6A  
6B–  
6B+  
6A  
6DE/RE  
6DE/RE  
6B+  
7B–  
6B+  
7B–  
7A  
7A  
8A  
7B–  
7B+  
7A  
7DE/RE  
7DE/RE  
7B+  
8B–  
7B+  
8B–  
8A  
8B–  
8B+  
8A  
8DE/RE  
8DE/RE  
8B+  
9B–  
8B+  
9B–  
9A  
9A  
9B–  
9B+  
9A  
9DE/RE  
9DE/RE  
9DE/RE  
9B+  
9B+  
Control Inputs  
CDE0 V < 0.5 V  
INV/NON  
Control Inputs  
CDE0 V < 0.5 V  
INV/NON  
Control Inputs  
CDE0 V < 0.5 V  
INV/NON  
I
I
I
L
H
L
L
H
L
L
CDE1  
CDE2  
CDE1  
CDE2  
H
H
CDE1  
CDE2  
(a)  
(b)  
(c)  
Figure 12. Logic Diagrams  
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
1B–  
1B+  
1A  
1A  
2A  
1B–  
1B+  
1A  
2A  
1B–  
1DE/RE  
1B+  
2B–  
2A  
2B–  
2B+  
2B–  
2B+  
2DE/RE  
2B+  
3B–  
3B–  
3B+  
3B–  
3B+  
3A  
3A  
4A  
3A  
4A  
5A  
6A  
3DE/RE  
3B+  
4B–  
4B–  
4B+  
4A  
4B–  
4B+  
4DE/RE  
4B+  
5B–  
5B–  
5A  
6A  
7A  
8A  
5A  
5B–  
5B+  
5DE/RE  
5B+  
5B+  
6B–  
6A  
6B–  
6B+  
6B–  
6B+  
6DE/RE  
6B+  
7B–  
7A  
7B–  
7B+  
7A  
8A  
7B–  
7B+  
7DE/RE  
7B+  
8B–  
8A  
8B–  
8B+  
8B–  
8B+  
8DE/RE  
8B+  
9B–  
9B–  
9B+  
9A  
9DE/RE  
9A  
9A  
9B–  
9B+  
9DE/RE  
9DE/RE  
9B+  
Control Inputs  
CDE0 V < 0.5 V  
INV/NON  
Control Inputs  
CDE0 V < 0.5 V  
INV/NON  
Control Inputs  
CDE0 V < 0.5 V  
INV/NON  
I
I
I
H
H
H
H
H
L
H
L
CDE1  
CDE2  
CDE1  
CDE2  
CDE1  
CDE2  
H
(b)  
(b)  
(a)  
Figure 13. Logic Diagrams  
10  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
1A  
1B–  
1B+  
High Z  
High Z  
High Z  
2A  
2B–  
2B+  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
3B–  
3B+  
3A  
High Z  
High Z  
4A  
4B–  
4B+  
High Z  
High Z  
5A  
5B–  
5B+  
High Z  
High Z  
6A  
6B–  
6B+  
High Z  
High Z  
7A  
7B–  
7B+  
High Z  
High Z  
8A  
8B–  
8B+  
High Z  
High Z  
9A  
9B–  
9B+  
High Z  
High Z  
Control Inputs  
CDE0  
INV/NON  
CDE1  
V > 2.5 V  
I
X
X
X
CDE2  
Figure 14. Logic Diagrams  
11  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
input and output equivalent schematic diagrams  
CDE1, CDE2, DE/RE Inputs  
A and INV/NON Inputs  
10uA  
V
CC  
V
CC  
Input  
10uA  
Input  
CDE0 Input  
A Output  
V
CC  
V
CC  
Input  
A
B+ Input  
B– Input  
I
ref  
I
ref  
37  
37 Ω  
BP  
BN  
I
ref  
I
ref  
113 Ω  
113 Ω  
V
CC  
V
CC  
V
CC  
15 Ω  
15 Ω  
15 Ω  
113 Ω  
12  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
Terminal Functions  
’LVDM976 ’LVDM977  
TERMINAL  
I/O  
Termination  
DESCRIPTION  
Logic  
Level  
Logic  
Level  
NAME  
1A – 9A  
NO.  
4,6,8,10,  
19,21,23,  
25,27  
CMOS  
TTL  
I/O  
Pullup  
1A – 9A carry data to and from the communication controller.  
1B – 9B  
29,31,33,  
35,37,46,  
48,50,52  
LVD or  
TTL  
LVD or  
TTL  
I/O  
I/O  
None  
None  
1Bto 9Bare the signals to and from the data bus. When  
INV/NON is low, the logic sense is the opposite that of the A  
input (inverted). When INV/NON is high, the logic sense is the  
same as the A input (noninverted).  
+
+
1B – 9B  
30,32,34,  
36,38,47,  
49,51,53  
LVD or  
GND  
LVD or  
GND  
When in the LVD mode, 1B+ – 9B+ are signals to or from the  
data bus and follow the same logic sense as the A input when  
INV/NON is low (noninverted). The logic sense is opposite that  
of the A input (inverted) when INV/NON is high. When in  
single-ended mode, these terminals become  
connection through a transistor and do not switch.  
a ground  
CDE0  
54  
Trinary  
Trinary  
Input  
None  
CDE0 is the common driver enable 0. With the driver enabled  
and the CDE0 input less than 0.5 V, the driver output is  
single-ended mode. With the driver enabled and the CDE0  
input between 0.7 V and 1.9 V the driver output is LVD mode.  
All drivers are disabled when the input is greater than 2.4 V.  
CDE1  
CDE2  
55  
56  
CMOS  
CMOS  
CMOS  
TTL  
TTL  
TTL  
Input  
Input  
Input  
Pulldown  
Pulldown  
Pulldown  
CDE1 is the common driver enable 1. When CDE1 is high,  
drivers 1 – 4 are enabled  
CDE2 is the common driver enable 2. When CDE2 is high,  
drivers 5 to 8 are enabled.  
1DE/RE –  
9DE/RE  
5,7,9,11,  
20,22,24,  
26,28  
1DE/RE – 9DE/RE are direction controls that transmit data to  
the bus when it is high and CDE0 is below 2.2 V. Data is  
received from the bus when 1DE/RE – 9DE/RE, CDE1, and  
CDE2 are low.  
GND  
2,3,13,14,  
15,16,17,  
40,41,42,  
43,44  
NA  
NA  
Power  
NA  
GND is the circuit ground.  
INV/NON  
1
CMOS  
NA  
CMOS  
NA  
Input  
Pullup  
NA  
A high-level input to INV/NON inverts the logic to and  
from the A terminals. (i.e., the voltage at A terminal and  
the corresponding Bterminal are in phase.)  
V
CC  
12,18,39,  
45  
Power  
Supply voltage  
13  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
absolute maximum ratings over operating free-air temperature (unless otherwise noted)  
Supply voltage range, V  
(see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 7 V  
CC  
Input voltage range, V (A, INV/NON) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to V  
+ 0.5 V  
I
CC  
(DE/RE, B+, B–, CDE0, CDE1, CDE2) . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to 5.25 V  
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table  
Storage temperature range, T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 C to 150°C  
stg  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C  
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and  
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not  
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
NOTE 1: All voltage values are with respect to GND unless otherwise noted.  
DISSIPATION RATING TABLE  
25°C DERATING FACTOR  
T
A
T = 70°C  
A
POWER RATING  
PACKAGE  
POWER RATING  
ABOVE T = 25°C  
A
DGG  
978 mW  
10.8 mW/°C  
492 mW  
recommended operating conditions (see Figure 15)  
MIN NOM  
4.75  
MAX  
UNIT  
Supply voltage, V  
CC  
5
5.25  
V
SN75LVDM976  
SN75LVDM977  
SN75LVDM976  
SN75LVDM977  
Differential receiver  
0.7 V  
CC  
2
High-level input voltage, V  
V
V
IH  
0.3 V  
CC  
0.8  
Low-level input voltage, V  
IL  
Differential input voltage, |V  
ID  
Common-mode input voltage, V  
|
0.03  
0.7  
3.6  
1.8  
–125  
–7  
V
V
IC  
Differential output voltage bias, V  
OD(bias)  
Differential  
–100  
mV  
Single-ended driver  
Receiver  
High-level output current, I  
mA  
mA  
OH  
–2  
Single-ended driver  
Receiver  
48  
Low-level output current, I  
OL  
2
Differential load impedance, Z  
40  
0
65  
L
Operating free-air temperature, T  
A
70  
°C  
14  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
electrical characteristics over recommended operating free-air temperature range (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
50  
UNIT  
CDE1 and CDE2  
INV/NON  
I
I
High-level input current  
µA  
IH  
–50  
50  
CDE1 and CDE2  
INV/NON  
Low-level input current  
µA  
mA  
pF  
IL  
50  
7
Disabled  
LVD drivers enabled,  
No load  
No load  
No load  
26  
I
Supply current  
Single-ended drivers enabled,  
LVD receivers enabled,  
10  
CC  
26  
Singled-ended receivers enabled, No load  
V = 0.2 sin (2 π (1E06)t) + 0.5 ± 0.01 V  
7
C
Input capacitance  
Bus terminal  
9.5  
I
I
C Difference in input capacitance between B+ and B–  
0.2  
I
All typical values are at V  
= 5 V, T = 25°C.  
A
CC  
DIFFSENS (CDE0) receiver electrical characteristics over recommended operating free-air  
temperature range (unless otherwise noted)  
PARAMETER  
Input threshold voltage  
TEST CONDITIONS  
MIN TYP  
MAX  
0.7  
UNIT  
V
V
0.5  
1.9  
0.6  
2.1  
IT1  
V
Input threshold voltage  
Input current  
2.4  
IT2  
I
I
0 V V 2.7 V  
±1  
µA  
µA  
I
I
Power-off input current  
V
CC  
= 0,  
0 V V 2.7 V  
±1  
I(OFF)  
I
All typical values are at V  
= 5 V, T = 25°C.  
A
CC  
15  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
LVD driver electrical characteristics over recommended operating free-air temperature range  
(unless otherwise noted)  
TYP  
PARAMETER  
TEST CONDITIONS  
MIN  
MAX  
UNIT  
270  
460  
780  
V
= 0.96 V, V  
= 0.53 V,  
I(1)  
See Figure 16  
I(2)  
0.69|V  
0.69|V  
|+ 50  
|+ 50  
1.45|V  
1.45|V  
|– 65  
|– 65  
Driver differential high-level out-  
put voltage  
OD(L)  
270  
OD(L)  
780  
V
mV  
OD(H)  
500  
V
= 1.96 V, V  
= 1.53 V,  
= 0.53 V,  
= 1.53 V,  
I(1)  
See Figure 16  
I(2)  
I(2)  
I(2)  
OD(L)  
260  
OD(L)  
640  
V
= 0.96 V, V  
I(1)  
See Figure 16  
400  
400  
1.2  
Driver differential low-level output  
voltage  
V
V
mV  
OD(L)  
V
= 1.96 V, V  
I(1)  
See Figure 16  
260  
1.1  
640  
1.5  
Steady-state common-mode out-  
put voltage  
V
OC(SS)  
Change in steady-state common-  
mode output voltage between  
logic states  
V
= 1.41 V, V  
= 0.99 V,  
I(1)  
See Figure 17  
I(2)  
V  
±50  
±120  
mV  
OC(SS)  
OC(PP)  
Peak-to-peak common-mode  
output voltage  
V
80  
150  
mV  
A
High-level input current  
DE/RE  
–7  
8
V
V
= 3.3 V (’976)  
= 2 V (’977)  
IH  
IH  
I
µA  
IH  
50  
A
Low-level input current  
DE/RE  
30  
V
IL  
V
IL  
= 1.6 V (’976)  
= 0.8 V (’977)  
I
IL  
µA  
I
I
I
Power-off output current  
V
= 0, 0 V V 2.5 V  
±1  
±24  
±1  
µA  
mA  
µA  
O(OFF)  
CC  
O
Short-circuit output current  
High-impedance output current  
0 V V 2.5 V  
O
OS  
V
O
= 0 or 2.5 V  
OZ  
All typical values are at V  
= 5 V, T = 25°C.  
A
CC  
LVD driver switching characteristics over recommended operating conditions (unless otherwise  
noted) (See Figure 16)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
8.8  
8.8  
6
UNIT  
ns  
t
t
t
t
t
t
t
t
Propagation delay time, low-to-high level output  
Propagation delay time, high-to-low level output  
Differential output signal rise time  
2.9  
2.9  
1
PLH  
PHL  
r
ns  
V
V
= 5 V,  
= 0.99 V,  
V
T
= 1.41 V,  
= 25°C  
CC  
I2  
I1  
3
3
ns  
A
Differential output signal fall time  
1
6
ns  
f
Pulse skew (|t  
– t  
PHL PLH  
|)  
3.7  
5.9  
50  
ns  
sk(p)  
sk(lim)  
PHZ  
en  
Skew limit  
ns  
Propagation delay time, high-level to high-impedance output  
Enable time, receiver to driver  
ns  
V
= 1.41 V,  
V
I2  
= 0.99 V,  
I1  
See Figure 18  
33  
ns  
All typical values are at V  
= 5 V, T = 25°C.  
A
CC  
is the maximum delay time difference between any two drivers on any two devices operating at the same supply voltage and the same  
t
sk(lim)  
ambient temperature.  
16  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
single-ended driver electrical characteristics over recommended operating conditions (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
= –7 mA, See Figure 19  
MIN  
TYP  
MAX  
3.24  
3.7  
UNIT  
I
I
2
V
V
V
OH  
V
High-level output voltage  
B– output  
B– output  
B+  
OH  
OL  
= 0 mA  
= 5 V,  
OH  
V
I
= 48 mA  
0.5  
CC  
OL  
V
Low-level output voltage  
I
= –25 mA  
= 25 mA  
–0.5  
0.5  
OL  
OL  
V
I
A
DE/RE  
A
–7  
8
V
V
= 3.3 V (’976),  
= 2 V (’977)  
IH  
IH  
I
I
High-level input current  
Low-level input current  
µA  
µA  
IH  
50  
–30  
V
IL  
V
IL  
= 1.6 V (’976),  
= 0.8 V (’977)  
IL  
DE/RE  
B–  
I
I
Power-off output current  
V
CC  
= 0,  
0 V V 5.25 V  
±1  
±1  
µA  
µA  
O(OFF)  
O
High-impedance output current  
V
O
= 0 or V  
CC  
OZ  
single-ended driver switching characteristics over recommended operating conditions (unless  
otherwise noted)  
PARAMETER  
Propagation delay time, low-to-high level output  
Propagation delay time, high-to-low level output  
Differential output signal rise time  
TEST CONDITIONS  
MIN TYP  
MAX  
8.2  
8.2  
4
UNIT  
ns  
t
t
t
t
t
t
t
t
2.7  
2.7  
0.5  
0.5  
PLH  
PHL  
r
ns  
V
T
= 5 V,  
CC  
= 25°C,  
ns  
A
See Figure 19  
Differential output signal fall time  
4
ns  
f
Pulse skew (|t  
– t  
PHL PLH  
|)  
3.4  
5.5  
50  
ns  
sk(p)  
sk(lim)  
en  
Skew limit  
ns  
Enable time, receiver to driver  
ns  
See Figure 20  
Propagation delay time, low-level to high-impedance output  
30  
ns  
PLZ  
All typical values are at V  
= 5 V, T = 25°C.  
A
CC  
is the maximum delay time difference between any two drivers on any two devices operating at the same supply voltage and the same  
t
sk(lim)  
ambient temperature.  
LVD receiver electrical characteristics over recommended operating conditions (unless otherwise noted)  
PARAMETER  
Positive-going differential input voltage threshold  
Negative-going differential input voltage threshold  
High-level output voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
30  
UNIT  
mV  
mV  
V
V
V
V
V
IT+  
IT–  
OH  
OL  
See Figure 21  
–30  
I
I
= –2 mA  
= 2 mA  
3.7  
OH  
Low-level output voltage  
0.5  
±1  
±1  
V
OL  
I
I
Input current, B+ or B–  
V = 0 V to 2.5 V  
µA  
µA  
I
I
Power-off Input current, B+ or B–  
V
= 0,  
V = 0 V to 2.5 V  
I
I(OFF)  
CC  
V
IH  
V
IH  
= 3.3 V (’976),  
= 2 V (’977)  
I
IH  
High-level input current, DE/RE  
50  
µA  
V
V
= 1.6 V (’976),  
= 0.8 V (’977)  
IL  
IL  
I
I
Low-level input current, DE/RE  
High-impedance output current  
8
µA  
µA  
IL  
V
O
= 0 or V  
CC  
±30  
OZ  
17  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
LVD receiver switching characteristics over recommended operating conditions (unless  
otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP  
MAX  
10  
10  
3
UNIT  
ns  
t
t
t
t
t
t
t
t
t
Propagation delay time, low-to-high level output  
Propagation delay time, high-to-low level output  
4.5  
4.5  
PLH  
PHL  
sk(p)  
r
ns  
V
T
= 5 V,  
CC  
= 25°C,  
Pulse skew (|t  
– t  
PHL PLH  
|)  
ns  
A
See Figure 21  
Output signal rise time  
Output signal fall time  
8
ns  
8
ns  
f
Skew limit  
5.5  
42  
20  
26  
ns  
sk(lim)  
PHZ  
PLZ  
en  
Propagation delay time, high-level to high-impedance output  
Propagation delay time, low-level to high-impedance output  
Enable time, driver to receiver  
ns  
See Figure 18  
ns  
ns  
All typical values are at V  
= 5 V, T = 25°C.  
A
CC  
is the maximum delay time difference between any two drivers on any two devices operating at the same supply voltage and the same  
t
sk(lim)  
ambient temperature.  
single-ended receiver electrical characteristics over recommended operating conditions (unless otherwise  
noted)  
PARAMETER  
Positive-going input voltage threshold  
Negative-going input voltage threshold  
High-level output voltage  
TEST CONDITIONS  
MIN  
TYP  
1.6  
1.1  
4.6  
0.3  
MAX  
UNIT  
V
V
IT+  
V
IT–  
V
OH  
V
OL  
B–  
B–  
1.9  
1
V
I
I
= –2 mA  
= 2 mA  
3.7  
V
OH  
Low-level output voltage  
0.5  
V
OL  
I
Input current  
B–  
B–  
V = 0 to V  
±1  
µA  
I
I
CC  
= 0 V,  
V
CC  
V = 0 to 5.25 V  
I
Power-off Input current  
High-level input current  
±1  
µA  
µA  
I(OFF)  
IH  
I
V
IH  
V
IH  
= 3.3 V (’976),  
= 2 V (’977)  
I
DE/RE  
DE/RE  
50  
V
IL  
V
IL  
= 1.6 V (’976),  
= 0.8 V (’977)  
I
I
Low-level input current  
8
µA  
µA  
IL  
High-impedance output current  
V
O
= 0 or V  
CC  
–30  
OZ  
single-ended receiver switching characteristics over recommended operating conditions (unless otherwise  
noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
7
TYP  
MAX  
12.5  
12.5  
3.5  
8
UNIT  
ns  
t
t
t
t
t
t
t
t
t
Propagation delay time, low-to-high level output  
Propagation delay time, high-to-low level output  
PLH  
PHL  
sk(p)  
r
7
ns  
V
T
= 5 V,  
CC  
= 25°C,  
Pulse skew (|t  
– t  
PHL PLH  
|)  
ns  
A
See Figure 22  
Output signal rise time  
Output signal fall time  
ns  
8
ns  
f
Skew limit  
5.5  
20  
ns  
sk(lim)  
PHZ  
PLZ  
en  
Propagation delay time, high-level to high-impedance output  
Propagation delay time, low-level to high-impedance output  
Enable time, driver to receiver  
ns  
See Figure 20  
30  
ns  
48  
ns  
t
is the maximum delay time difference between any two drivers on any two devices operating at the same supply voltage and the same  
sk(lim)  
ambient temperature.  
18  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
PARAMETER MEASUREMENT INFORMATION  
I
+
OB  
B+  
I
I
A
I
V
OD  
OB  
V
V
OB  
OB  
2
V
OB+  
B–  
V
OC  
V
I
V
OB–  
Figure 15. Voltage and Current Definitions  
50 Ω  
100 Ω  
Input  
5 V  
A
B–  
V1  
DE/RE  
CDE0  
CDE1  
CDE2  
C
C
= 10 pF  
= 10 pF  
+
L
L
1.3 V  
V
OD  
75 Ω  
Open  
Open  
B+  
0 V or 5 V  
INV/NON  
V2  
100 Ω  
+
0.7 V  
(’976)  
CC  
2 V (’977)  
INPUT  
Solid line is INV/NON at 0 V.  
Dashed line is INV/NON at 5 V.  
0.3 V (’976)  
CC  
0.8 V (’977)  
t
t
PHL  
PLH  
100%  
80%  
V
OUTPUT  
OD(H)  
0 V  
V
OD(L)  
20%  
0%  
t
t
r
f
NOTES: A. All input pulses are supplied by a generator having the following characteristics: t or t < 1 ns, pulse repetition rate (PRR) = 10 Mpps,  
r
f
pulsewidth = 50 ns ±5 ns, Z = 50 .  
o
B.  
C includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.  
L
Figure 16. Differential Output Signal Test Circuit, Timing, and Voltage Definitions  
19  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
PARAMETER MEASUREMENT INFORMATION  
V1  
50 Ω  
100 Ω  
Input  
5 V  
A
V
L
OC  
B–  
B+  
37.5 Ω  
DE/RE  
CDE0  
1.3 V  
Open  
CDE1  
C
= 50 pF  
Open  
CDE2  
37.5 Ω  
100 Ω  
0 V or 5 V  
INV/NON  
V2  
0.7 V  
(’976)  
CC  
2 V (’977)  
Input  
0.3 V (’976)  
CC  
0.8 V (’977)  
V
OC(PP)  
V
OC(SS)  
Output  
NOTES: A. All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 10 Mpps,  
r
f
pulsewidth = 50 ns ±5 ns, Z = 50 .  
o
B.  
C includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.  
L
C. The measurement of V  
is made on test equipment with a –3 dB bandwidth of at least 300 MHz.  
OC(PP)  
Figure 17. Test Circuit and Definitions for the Driver Common-Mode Output Voltage  
20  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
PARAMETER MEASUREMENT INFORMATION  
V1  
100 Ω  
C
= 50 pF  
L
C
= 50 pF  
A
L
B–  
37.5 Ω  
37.5 Ω  
620 Ω  
V
V
OD  
Input  
1.3 V  
DE/RE  
CDE0  
B+  
C = 50 pF  
L
Open  
CDE1  
Open  
CDE2  
0 V or 5 V  
INV/NON  
100 Ω  
V2  
TEST CIRCUIT  
V at 5 V, INV/NON at 0 V  
V at 0 V, INV/NON at 5 V  
0.7 V  
2 V (’977)  
(’976)  
CC  
0.7 V  
2 V (’977)  
(’976)  
CC  
Input  
50%  
50%  
0.3 V  
(’976)  
0.3 V  
(’976)  
CC  
0.8 V (’977)  
CC  
0.8 V (’977)  
t
t
t
t
en(d)  
PHZ(d)  
en(d)  
PHZ(d)  
0.4 V  
0.4 V  
V
OD  
0 V  
0 V  
–0.12 V  
–0.12 V  
t
t
en(d)  
t
t
en(r)  
en(d)  
en(r)  
5 V  
5 V  
V
A
1.4 V  
1.4 V  
0.2 V  
0.2 V  
VOLTAGE WAVEFORMS  
NOTES: A. All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 1 Mpps,  
r
f
pulsewidth = 500 ns ±50 ns, Z = 50 .  
C includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.  
L
o
B.  
Figure 18. LVD Transceiver Enable and Disable Time Test Circuit and Definitions  
21  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
PARAMETER MEASUREMENT INFORMATION  
50 Ω  
Input  
0 V  
A
I
O
DE/RE  
CDE0  
CDE1  
CDE2  
INV/NON  
47 Ω  
B–  
0 V  
Open  
C
= 10 pF  
+
L
Open  
2.5 V  
V
O
0 V or 5 V  
0.7 V  
(’976)  
CC  
2 V (’977)  
Solid line is INV/NON  
at a high-level input.  
INPUT  
0.3 V (’976)  
CC  
0.8 V (’977)  
Dashed line is INV/NON  
at a low-level input.  
t
t
PHL  
PLH  
100%  
80%  
OUTPUT  
1.4 V  
20%  
0%  
t
t
r
f
NOTES: A. All input pulses are supplied by a generator having the following characteristics: t or t < 1 ns, pulse repetition rate (PRR) = 10 Mpps,  
r
f
pulsewidth = 50 ns ±5 ns, Z = 50 .  
o
B.  
C includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.  
L
Figure 19. Single-Ended Driver Switching Test Circuit  
22  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
PARAMETER MEASUREMENT INFORMATION  
C
= 50 pF  
A
L
V
A
47 Ω  
B–  
V
620 Ω  
Input  
0 V  
DE/RE  
C
= 10 pF  
+
L
CDE0  
2.5 V  
V
B
Open  
CDE1  
Open  
CDE2  
0 V or 5 V  
INV/NON  
TEST CIRCUIT  
V and INV/NON at 5 V  
V and INV/NON at 0 V  
0.7 V  
50%  
0.7 V  
50%  
CC  
CC  
CC  
CC  
Input  
0.3 V  
0.3 V  
t
PHZ(r)  
t
en(r)  
t
t
en(r)  
PLZ(r)  
V
OL  
V
A
0.5 V  
V
OL  
0.5 V  
t
t
t
t
PLZ(d)  
PLZ(d)  
en(d)  
en(d)  
V
B
V
OL  
V
OL  
0.5 V  
0.5 V  
VOLTAGE WAVEFORMS  
NOTES: A. All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 1 Mpps,  
r
f
pulsewidth = 500 ns ±50 ns, Z = 50 .  
C includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.  
L
o
B.  
Figure 20. Single-Ended Transceiver Enable and Disable Timing Measurements  
23  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
PARAMETER MEASUREMENT INFORMATION  
50 Ω  
I
IB+  
I
O
V
ID  
V
IB  
C
= 15 pF  
L
50 Ω  
V
O
I
IB–  
V
IB–  
0 V  
1.3 V  
DE/RE  
CDE0  
Open  
CDE1  
Open  
CDE2  
0 or 5 V  
INV/NON  
TEST CIRCUIT  
V
1.4 V  
1 V  
IB  
V
IB–  
0.4 V  
0 V  
V
ID  
–0.4 V  
t
t
PLH  
PHL  
Solid line is INV/NON  
at a high-level input.  
V
OH  
80%  
20%  
50%  
V
O
V
OL  
Dashed line is INV/NON  
at a low-level input.  
t
f
t
r
VOLTAGE WAVEFORMS  
NOTES: A. Note: All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate  
r
f
(PRR) = 10 Mpps, pulsewidth = 50 ns ±5 ns, Z = 50 .  
C includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.  
L
o
B.  
Figure 21. LVD Receiver Switching Characteristic Test Circuit  
24  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
PARAMETER MEASUREMENT INFORMATION  
Input  
GND  
GND  
Open  
Open  
B–  
I
O
DE/RE  
CDE0  
CDE1  
CDE2  
INV/NON  
A
C
= 15 pF  
L
V
O
GND or V  
CC  
2 V  
1.4 V  
0.8 V  
Solid line is INV/NON at a high-level input.  
Dashed line is INV/NONat a low-level input.  
INPUT  
t
t
PLH  
PHL  
V
OH  
100%  
80%  
OUTPUT  
–1.4 V  
20%  
0%  
V
OL  
t
t
f
r
NOTES: A. All input pulses are supplied by a generator having the following characteristics: t or t < 1 ns, pulse repetition rate (PRR) = 10 Mpps,  
r
f
pulsewidth = 50 ns ±5 ns.  
includes instrumentation and fixture capacitance within 0,06 m of the D.U.T.  
B.  
C
L
Figure 22. Single-Ended Receiver Timing Test Circuit  
25  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
APPLICATION INFORMATION  
U1  
‘LVDM976  
8.2 k, 1/8 W, 5%  
0.022 µF, 6 V, 10%  
CDE0  
DIFFSENS  
U2  
‘LVDM976  
CDE0  
U3  
‘LVDM976  
CDE0  
Figure 23. Low-Pass Filter for Connecting DIFFSENS to CDE0  
26  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
SN75LVDM976, SN75LVDM977  
9-CHANNEL DUAL-MODE TRANSCEIVERS  
SLLS292B – APRIL 1998 – REVISED JANUARY 2000  
MECHANICAL INFORMATION  
DGG (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
48 PIN SHOWN  
0,27  
0,17  
M
0,08  
0,50  
48  
25  
6,20  
6,00  
8,30  
7,90  
0,15 NOM  
Gage Plane  
0,25  
1
24  
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
1,20 MAX  
0,05 MIN  
PINS **  
48  
56  
64  
DIM  
A MAX  
12,60  
12,40  
14,10  
13,90  
17,10  
16,90  
A MIN  
4040078/F 12/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
27  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue  
any product or service without notice, and advise customers to obtain the latest version of relevant information  
to verify, before placing orders, that information being relied on is current and complete. All products are sold  
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those  
pertaining to warranty, patent infringement, and limitation of liability.  
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in  
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent  
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily  
performed, except those mandated by government requirements.  
Customers are responsible for their applications using TI components.  
In order to minimize risks associated with the customer’s applications, adequate design and operating  
safeguards must be provided by the customer to minimize inherent or procedural hazards.  
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent  
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other  
intellectual property right of TI covering or relating to any combination, machine, or process in which such  
semiconductor products or services might be or are used. TI’s publication of information regarding any third  
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.  
Copyright 2000, Texas Instruments Incorporated  

相关型号:

SN75LVDM977DGGG4

9-Channel LVD-SCSI Transceiver 56-TSSOP 0 to 70
TI

SN75LVDM977DGGR

9-CHANNEL DUAL-MODE TRANSCEIVERS
TI

SN75LVDM977DGGRG4

9 LINE TRANSCEIVER, PDSO56, 0.50 MM PITCH, PLASTIC, TSSOP-56
TI

SN75LVDM977DLG4

9 LINE TRANSCEIVER, PDSO56, GREEN, PLASTIC, SSOP-56
TI

SN75LVDM977DLR

9 LINE TRANSCEIVER, PDSO56, GREEN, PLASTIC, SSOP-56
TI

SN75LVDM977DLRG4

9 LINE TRANSCEIVER, PDSO56, GREEN, PLASTIC, SSOP-56
TI

SN75LVDS050

HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS
TI

SN75LVDS050D

HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS
TI

SN75LVDS050DG4

HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS
TI

SN75LVDS050DR

HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS
TI

SN75LVDS050DRG4

HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS
TI

SN75LVDS051

HIGH-SPEED DIFFERENTIAL LINE DRIVERS AND RECEIVERS
TI