SN75LVPE5421 [TI]

具有集成式 2:1 多路复用器的 PCIe® 5.0 32Gbps 4 通道线性转接驱动器;
SN75LVPE5421
型号: SN75LVPE5421
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成式 2:1 多路复用器的 PCIe® 5.0 32Gbps 4 通道线性转接驱动器

PC 驱动 复用器 驱动器
文件: 总35页 (文件大小:2483K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
SN75LVPE5421 2:1 多路复用器PCIe® 5.0 32Gbps 4 通道线性转接驱动器  
1 特性  
3 说明  
• 具有集成2:1 多路复用器的四通PCIe 5.0 线性  
转接驱动器或中继器  
• 此线性转接驱动器与协议无关可兼PCIe、  
UPICCIXNVLinkDisplayPortSASSATA  
XFI  
SN75LVPE5421 是一款具有集成式多路复用器的四通  
道线性转接驱动器。这款低功耗高性能线性转接驱动器  
专为支持 PCIe 5.0 和其他速率高达 32Gbps 的接口而  
设计。  
SN75LVPE5421 接收器部署了连续时间线性均衡器  
(CTLE)可提供高频增强。均衡器可以打开由于 PCB  
布线或电缆等互连介质引起的码间串扰 (ISI) 而完全关  
闭的输入眼图。在 PCIe 链路训练期间线性转接驱动  
器与根复合体 (RC) 和端点 (EP) 之间的无源通道作为  
一个整体接受训练以达到理想的发送和接收均衡设  
从而实现出色的电气链路。该器件具有低通道间串  
扰、低附加抖动和极低的回波损耗因此在链路中几乎  
可作为无源元件。这款器件具有内部线性稳压器对板  
上电源噪声具有高抗扰度从而为高速数据路径提供纯  
净电源。  
• 单3.3V 电源可使PCIe 电源轨  
4 通道运行时有功功率低720mW  
• 无需散热器  
• 频率16GHz 支持高24dB 的均衡功能  
• 出色RX/TX RL8-16GHz -10dB)  
55fs RMS 的低附加随机抖动PRBS 数据)  
90ps 低延迟  
• 自动接收器检测和无缝支PCIe 链路训练  
• 通过引脚控制SMBus/I2C 进行器件配置。  
• 通过引脚选择多路复用器  
• 内部稳压器具有抗电源噪声能力  
• 高速量产测试可确保制造可靠性  
SN75LVPE5421 在量产期间实施了高速测试从而确  
保可靠的高产量制造。此器件还具有低交流和直流增益  
变化可在各种平台部署中提供一致的均衡功能。  
• 通过一个或多个器件支x4x8 x16 总线宽度  
• 可提供配套多路信号分离器产SN75LVPE5412  
0°C 85°C 温度范围  
封装信息(1)  
3.5mm × 9mm 42 0.5mm WQFN 封装  
封装尺寸标称值)  
器件型号  
封装  
2 应用  
SN75LVPE5421  
RUA (WQFN, 42)  
3.50 mm × 9.00 mm  
台式计算机和主板  
显示面板游戏机  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
机架式服务器微服务器和塔式服务器  
高性能计算硬件加速器  
数据存储网络附加存储  
存储区域网(SAN) 和主机总线适配(HBA) 卡  
网络接口(NIC)  
PCIe Card  
x16  
Slot  
x8  
4-Ch  
4-Ch  
Connector-B  
RXB 8-ch  
TXA  
RXA  
x8  
RX 8-ch  
LVPE5421  
4 Ch 2:1 Mux  
4-Ch  
4-Ch  
RX  
TX  
CPU  
TX 8-ch  
TXB 8-ch  
LVPE5412  
4 Ch 1:2 De-mux  
4-Ch  
4-Ch  
h
c
h
c
-
8
PCIe Card  
TXB  
RXB  
-
8
XA  
T
RXA  
x8  
Slot  
Connector-A  
x8  
De-multiplexer  
Multiplexer  
PCIe Lane Muxing  
应用用例  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SNLS692  
 
 
 
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
Table of Contents  
7.3 Feature Description...................................................13  
7.4 Device Functional Modes..........................................15  
7.5 Programming............................................................ 15  
8 Application and Implementation..................................20  
8.1 Application Information............................................. 20  
8.2 Typical Applications.................................................. 20  
9 Power Supply Recommendations................................24  
10 Layout...........................................................................24  
10.1 Layout Guidelines................................................... 24  
10.2 Layout Example...................................................... 24  
11 Device and Documentation Support..........................26  
11.1 接收文档更新通知................................................... 26  
11.2 支持资源..................................................................26  
11.3 Trademarks............................................................. 26  
11.4 Electrostatic Discharge Caution..............................26  
11.5 术语表..................................................................... 26  
12 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information....................................................7  
6.5 DC Electrical Characteristics...................................... 7  
6.6 High Speed Electrical Characteristics.........................8  
6.7 SMBUS/I2C Timing Charateristics..............................9  
6.8 Typical Characteristics..............................................10  
6.9 Typical Jitter Characteristics..................................... 11  
7 Detailed Description......................................................12  
7.1 Overview...................................................................12  
7.2 Functional Block Diagram.........................................12  
Information.................................................................... 26  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2021) to Revision A (October 2022)  
Page  
Changed the Reset value for the 7-4 Bit in the DEVICE_ID0 Register (Offset = 0xF0) table...........................16  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: SN75LVPE5421  
 
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
1
38  
38  
RXA0P  
RXA0N  
RXB0P  
1
GAIN/SDA  
RSVD1  
2
2
37  
37  
TX0P  
TX0N  
3
3
36  
36  
4
4
35 RXB0N  
35  
5
34  
34  
RXA1P  
RXA1N  
RXB1P  
RXB1N  
GND  
VCC  
GND  
5
6
6
33  
33  
TX1P  
TX1N  
7
7
32  
32  
8
8
31  
31  
EP=GND  
9
9
30  
30  
GND  
RXA2P  
RXA2N  
RXB2P  
RXB2N  
TX2P 10  
10  
29  
29  
11  
28  
28  
TX2N  
RSVD2  
VCC  
11  
12  
12  
27  
27  
13  
13  
26  
26  
TX3P  
TX3N  
14  
14  
25  
25  
RXA3P  
RXA3N  
15  
15  
24  
24  
16  
GND 16  
23  
23 RXB3P  
SEL  
17  
17  
22  
RXB3N  
22  
5-1. RUA Package, 42-Pin WQFN (Top View)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: SN75LVPE5421  
 
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
5-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
Sets device control configuration modes. The 5-level IO pin is defined in 7-1.  
The pin can be exercised at device power up or in normal operation mode.  
L0: Pin Mode device control configuration is done solely by strap pins.  
L1 or L2: SMBus/I2C Mode device control configuration is done by an external  
controller with SMBus/I2C primary. This pin along with ADDR pin sets devices  
secondary address.  
MODE  
41  
I, 5-level  
L3 and L4 (Float): RESERVED TI internal test modes.  
EQ0 /ADDR  
EQ1  
40  
20  
I, 5-level  
I, 5-level  
In Pin Mode:  
The EQ0 and EQ1 pins sets receiver linear equalization CTLE (AC gain) for all  
channels according to 7-2. These pins are sampled at device power-up only.  
In SMBus/I2C Mode:  
The ADDR pin in conjunction with MODE pin sets SMBus / I2C secondary address  
according to 7-5. The pin is sampled at device power-up only.  
In Pin Mode:  
Flat gain (broadbad gain DC and AC) from the input to the output of the device  
for all channels. Note: the device also provides AC (high frequency) gain in the  
form of equalization controlled by EQ pins or SMBus/I2C registers. The pin is  
sampled at device power-up only.  
GAIN /SDA  
GND  
1
I, 5-level / IO  
In SMBus/I2C Mode:  
3.3 V SMBus/I2C data. External pullup resistor such as 4.7 krequired for  
operation.  
EP, 6, 9, 16,  
21, 30, 39  
P
Ground reference for the device.  
EP: the Exposed Pad at the bottom of the QFN package. It is used as the GND  
return for the device. The EP should be connected to one or more ground planes  
through the low resistance path. A via array provides a low impedance path to  
GND. The EP also improves thermal dissipation.  
PD  
18  
I, 3.3-V LVCMOS 2-level logic controlling the operating state of the redriver. Active in both Pin Mode  
and SMBus/I2C Mode. The pin is used part of PCIe RX_DET state machine as  
outlined in 7-4.  
High: power down for all channels  
Low: power up, normal operation for all channels  
RSVD1, 2  
2, 12  
42  
Reserved pins for best signal integrity performance connect the pins to GND.  
Alternate option would be 0 resistors from pins to GND.  
RX_DET /SCL  
I, 5-level / IO  
In Pin Mode:  
Sets receiver detect state machine options according to 7-4. The pin is sampled  
at device power-up only.  
In SMBus/I2C Mode:  
3.3 V SMBus/I2C clock. External pullup resistor such as 4.7 krequired for  
operation.  
RXA0N  
RXA0P  
RXA1N  
RXA1P  
RXA2N  
RXA2P  
RXA3N  
RXA3P  
RXB0N  
RXB0P  
RXB1N  
RXB1P  
RXB2N  
RXB2P  
37  
38  
33  
34  
28  
29  
24  
25  
35  
36  
31  
32  
26  
27  
I
I
I
I
I
I
I
I
I
I
I
I
I
I
Inverting differential RX input Port A, Channel 0.  
Noninverting differential RX input Port A, Channel 0.  
Inverting differential RX input Port A, Channel 1.  
Noninverting differential RX input Port A, Channel 1.  
Inverting differential RX input Port A, Channel 2.  
Noninverting differential RX input Port A, Channel 2.  
Inverting differential RX input Port A, Channel 3.  
Noninverting differential RX input Port A, Channel 3.  
Inverting differential RX input Port B, Channel 0.  
Noninverting differential RX input Port B, Channel 0.  
Inverting differential RX input Port B, Channel 1.  
Noninverting differential RX input Port B, Channel 1.  
Inverting differential RX input Port B, Channel 2.  
Noninverting differential RX input Port B, Channel 2.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: SN75LVPE5421  
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
RXB3N  
RXB3P  
SEL  
NO.  
22  
I
I
Inverting differential RX input Port B, Channel 3.  
Noninverting differential RX input Port B, Channel 3.  
23  
17  
I, 3.3 V LVCMOS Selects the mux path. Active in both Pin Mode and SMBus/I2C Mode. The pin has  
a weak internal pull-down resistor. Note: the SEL pin must be exercised in system  
implementations for mux selection between Port A vs Port B. The pin is used for  
PCIe RX_DET state machine as outlined in 7-4.  
L: Port A selected.  
H: Port B selected.  
TX0N  
TX0P  
TX1N  
TX1P  
TX2N  
TX2P  
TX3N  
TX3P  
TEST  
VCC  
4
3
O
O
O
O
O
O
O
O
O
P
Inverting differential TX output, Channel 0.  
Noninverting differential TX output, Channel 0.  
Inverting differential TX output, Channel 1.  
Noninverting differential TX output, Channel 1.  
Inverting differential TX output, Channel 2.  
Noninverting differential TX output, Channel 2.  
Inverting differential TX output, Channel 3.  
Noninverting differential TX output, Channel 3.  
TI internal test pin. Keep no connect.  
8
7
11  
10  
15  
14  
19  
5, 13  
Power supply, VCC = 3.3 V ± 10%. The VCC pins on this device should be  
connected through a low-resistance path to the board VCC plane.  
(1) I = input, O = output, P = power, GND = ground  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: SN75LVPE5421  
 
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.5  
0.5  
0.5  
0.5  
0.5  
MAX  
4.0  
UNIT  
V
VCCABSMAX  
VIOCMOS,ABSMAX  
VIO5LVL,ABSMAX  
VIOHS-RX,ABSMAX  
VIOHS-TX,ABSMAX  
TJ,ABSMAX  
Supply voltage (VCC)  
3.3 V LVCMOS and open drain I/O voltage  
5-level input I/O voltage  
4.0  
V
2.75  
3.2  
V
High-speed I/O voltage (RXnP, RXnN)  
High-speed I/O voltage (TXnP, TXnN)  
Junction temperature  
V
2.75  
150  
150  
V
°C  
°C  
Tstg  
Storage temperature range  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute maximum ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality,  
performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged device model (CDM), per ANSI/ESDA/JEDEC JS-002(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±2 kV  
may actually have higher performance.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
DC plus AC power should not  
exceed these limits  
VCC  
NVCC  
Supply voltage, VCC to GND  
Supply noise tolerance  
3.0  
3.3  
3.6  
V
DC to <50 Hz, sinusoidal1  
250  
100  
33  
mVpp  
mVpp  
mVpp  
50 Hz to 500 kHz, sinusoidal1  
500 kHz to 2.5 MHz, sinusoidal1  
Supply noise, >2.5 MHz,  
sinusoidal1  
10  
mVpp  
TRampVCC  
VCC supply ramp time  
From 0 V to 3.0 V  
0.150  
100  
115  
85  
ms  
°C  
°C  
TJ  
Operating junction temperature  
Operating ambient temperature  
Minimum pulse width required for  
0
0
TA  
PWLVCMOS the device to detect a valid signal PD and SEL  
on LVCMOS inputs  
200  
μs  
SMBus/I2C SDA and SCL open  
drain termination voltage  
Supply voltage for open drain  
pull-up resistor  
VCCSMBUS  
FSMBus  
3.6  
V
SMBus/I2C clock (SCL) frequency  
in SMBus secondary mode  
10  
400  
kHz  
Source differential launch  
amplitude  
VIDLAUNCH  
DR  
800  
1
1200  
32  
mVpp  
Gbps  
Data rate  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: SN75LVPE5421  
 
 
 
 
 
 
 
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
6.4 Thermal Information  
SN75LVPE54  
THERMAL METRIC(1)  
UNIT  
21  
RUA, 42 Pins  
RθJA-High K  
RθJC(top)  
RθJB  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
26.1  
14.1  
8.7  
/W  
/W  
/W  
/W  
/W  
/W  
Junction-to-board thermal resistance  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
1.6  
ψJT  
8.6  
ψJB  
RθJC(bot)  
2.6  
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report.  
6.5 DC Electrical Characteristics  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Power  
PACT  
Device active power  
All channels enabled (PD = L)  
All channels disabled (PD = H)  
720  
23  
970  
36  
mW  
mW  
Device power consumption in standby  
power mode  
PSTBY  
Control IO  
VIH  
High level input voltage  
Low level input voltage  
High level output voltage  
Low level output voltage  
SDA, SCL, PD, SEL pins  
2.1  
2.1  
V
V
V
V
VIL  
SDA, SCL, PD, SEL pins  
1.08  
VOH  
Rpull-up = 4.7 k(SDA, SCL pins)  
IOL = 4 mA (SDA, SCL pins)  
VOL  
0.4  
100  
10  
Input high leakage current for SEL  
pins  
IIH,SEL  
VInput = VCC, for SEL pin  
µA  
IIH  
IIL  
Input high leakage current  
Input low leakage current  
VInput = VCC, (SCL, SDA, PD pins)  
µA  
µA  
VInput = 0 V, (SCL, SDA, PD, SEL pins)  
-10  
Input high leakage current for fail safe VInput = 3.6 V, VCC = 0 V, (SCL, SDA,  
IIH,FS  
200  
10  
µA  
pF  
input pins  
PD, SEL pins)  
CIN-CTRL  
Input capacitance  
SCL, SDA, PD, SEL pins  
1.6  
5 Level IOs (MODE, GAIN, EQ1, EQ0, RX_DET pins)  
IIH_5L Input high leakage current, 5 level IOs VIN = 2.5 V  
µA  
µA  
Input low leakage current for all 5 level  
IOs except MODE.  
IIL_5L  
VIN = GND  
VIN = GND  
-10  
Input low leakage current for MODE  
pin  
IIL_5L,MODE  
-200  
µA  
Receiver  
VRX-DC-CM  
ZRX-DC  
RX DC common mode voltage  
Rx DC single-ended impedance  
Device is in active or standby state  
Inputs are at VRX-DC-CM voltage  
1.4  
50  
V
ZRX-HIGH-IMP- DC input CM input impedance during  
20  
kΩ  
Reset or power-down  
DC-POS  
Transmitter  
Impedance of Tx during active  
signaling, VID, diff = 1 Vpp  
ZTX-DIFF-DC  
VTX-DC-CM  
ITX-SHORT  
DC differential Tx impedance  
Tx DC common mode Voltage  
Tx short circuit current  
100  
1.0  
70  
V
Total current the Tx can supply when  
shorted to GND  
mA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: SN75LVPE5421  
 
 
 
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
6.6 High Speed Electrical Characteristics  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Receiver  
50 MHz to 1.25 GHz  
-22  
-22  
-22  
-16  
-9  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
1.25 GHz to 2.5 GHz  
2.5 GHz to 4.0 GHz  
4.0 GHz to 8.0 GHz  
8.0 GHz to 16 GHz  
50 MHz to 2.5 GHz  
2.5 GHz to 8.0 GHz  
8.0 GHz to 16 GHz  
RLRX-DIFF  
Input differential return loss  
-20  
-14  
-8  
RLRX-CM  
Input common-mode return loss  
Receive-side pair-to-pair isolation  
Pair-to-pair isolation (SDD21) between  
two adjacent receiver pairs from 10  
MHz to 16 GHz.  
XTRX  
-55  
dB  
Transmitter  
Measured with lowest EQ, GAIN = L4;  
PRBS-7, 32 Gbps, over at least  
106 bits using a bandpass filter from 30  
kHz to 500 MHz  
Tx AC peak-to-peak common mode  
voltage  
VTX-AC-CM-PP  
50  
mVpp  
mV  
Measured while Tx is sensing whether  
a low-impedance receiver is present.  
No load is connected to the driver  
output  
VTX-RCV-  
Amount of voltage change allowed  
during receiver detection  
0
600  
DETECT  
50 MHz to 1.25 GHz  
1.25 GHz to 2.5 GHz  
2.5 GHz to 4.0 GHz  
4.0 GHz to 8.0 GHz  
8.0 GHz to 16 GHz  
50 MHz to 2.5 GHz  
2.5 GHz to 8.0 GHz  
8.0 GHz to 16 GHz  
-22  
-22  
-21  
-15  
-9  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
RLTX-DIFF  
Output differential return loss  
-16  
-12  
-11  
RLTX-CM  
Output common-mode return loss  
Transmit-side pair-to-pair isolation  
Minimum pair-to-pair isolation  
(SDD21) between two adjacent  
transmitter pairs from 10 MHz to 16  
GHz.  
XTTX  
-45  
90  
dB  
Device Datapath  
Input-to-output latency (propagation  
For either low-to-high or high-to-low  
transition.  
TPLHD/PHLD  
130  
20  
ps  
ps  
delay) through a data channel  
Between any two lanes within a single  
transmitter.  
LTX-SKEW  
Lane-to-lane output skew  
Jitter through redriver minus the  
calibration trace. 32 Gbps PRBS15.  
800 mVpp-diff input swing.  
TRJ-DATA  
Additive random jitter with data  
55  
35  
fs  
fs  
Jitter through redriver minus the  
calibration trace. 32 GHz clock. 800  
mVpp-diff input swing.  
Intrinsic additive random jitter with  
clock  
TRJ-INTRINSIC  
Jitter through redriver minus the  
calibration trace. 32 Gbps PRBS15.  
800 mVpp-diff input swing.  
JITTERTOTAL-  
Additive total jitter with data  
1.0  
0.1  
ps  
ps  
DATA  
Jitter through redriver minus the  
calibration trace. 16 GHz clock. 800  
mVpp-diff input swing.  
JITTERTOTAL-  
Intrinsic additive total jitter with clock  
INTRINSIC  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: SN75LVPE5421  
 
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
6.6 High Speed Electrical Characteristics (continued)  
over operating free-air temperature and voltage range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
Minimum EQ, GAIN1/0=L0  
Minimum EQ, GAIN1/0=L1  
Minimum EQ, GAIN1/0=L2  
Minimum EQ, GAIN1/0=L3  
Minimum EQ, GAIN1/0=L4 (Float)  
MIN  
TYP  
-5.6  
-3.8  
-1.2  
2.6  
MAX  
UNIT  
dB  
dB  
Broadband DC and AC flat gain - input  
to output, measured at DC  
FLAT-GAIN  
EQ-MAX16G  
dB  
dB  
0.6  
dB  
EQ boost at max setting (EQ INDEX = AC gain at 16 GHz relative to gain at  
24  
1700  
930  
dB  
19)  
100 MHz.  
LINEARITY-  
DC  
Output DC linearity  
at 0 dB flat gain  
mVpp  
mVpp  
LINEARITY-  
AC  
Output AC linearity at 32 Gbps  
at 0 dB flat gain  
6.7 SMBUS/I2C Timing Charateristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Secondary Mode  
Pulse width of spikes which must be  
suppressed by the input filter  
tSP  
50  
ns  
µs  
Hold time (repeated) START condition.  
After this period, the first clock pulse is  
generated  
tHD-STA  
0.6  
tLOW  
LOW period of the SCL clock  
HIGH period of the SCL clock  
1.3  
0.6  
µs  
µs  
THIGH  
Set-up time for a repeated START  
condition  
tSU-STA  
0.6  
µs  
tHD-DAT  
TSU-DAT  
Data hold time  
Data setup time  
0
µs  
µs  
0.1  
Rise time of both SDA and SCL  
signals  
tr  
120  
2
ns  
Pull-up resistor = 4.7 kΩ, Cb = 10 pF  
Pull-up resistor = 4.7 kΩ, Cb = 10 pF  
tf  
Fall time of both SDA and SCL signals  
Set-up time for STOP condition  
ns  
µs  
tSU-STO  
0.6  
1.3  
Bus free time between a STOP and  
START condition  
tBUF  
µs  
tVD-DAT  
tVD-ACK  
Cb  
Data valid time  
0.9  
0.9  
µs  
µs  
pF  
Data valid acknowledge time  
Capacitive load for each bus line  
400  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: SN75LVPE5421  
 
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
6.8 Typical Characteristics  
6-1 shows typical EQ gain curves versus frequency for different EQ settings. 6-2 shows EQ gain variation over  
temperature for maximum EQ setting of 19. 6-3 shows typical differential return loss for Rx and Tx pins.  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
-5  
EQ=0  
EQ=1  
EQ=2  
EQ=3  
EQ=4  
EQ=5  
EQ=6  
EQ=7  
EQ=8  
EQ=9  
EQ=10  
EQ=11  
EQ=12  
EQ=13  
EQ=14  
EQ=15  
EQ=16  
EQ=17  
EQ=18  
EQ=19  
-5  
-10  
-15  
-20  
Temperature = 25 C  
Temperature = 0 C  
Temperature = 85 C  
-10  
-15  
0
5
10  
15  
20  
25  
30  
35  
40  
0
5
10  
15  
20  
25  
30  
35  
40  
Frequency (GHz)  
Frequency (GHz)  
6-1. Typical EQ Boost vs Frequency  
6-2. Typical EQ Boost vs Frequency at Different Temperature  
with EQ=19  
5
0
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
RX SD11  
TX SD22  
PCIe 5.0 Mask  
0
5
10  
15  
20  
25  
30  
35  
40  
Frequency (GHz)  
6-3. Typical Differential Return Loss  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: SN75LVPE5421  
 
 
 
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
6.9 Typical Jitter Characteristics  
6-4, 6-5, and 6-6 illustrate eye diagrams at source, through calibration traces, and through SN75LVPE5421  
respectively.  
6-4. 32 Gbps 800 mV PRBS15 Source (1 dB Loss)  
6-5. Through Calibration Trace (6.5 dB Loss)  
6-6. Through SN75LVPE5421 (6.5 dB loss and DUT EQ=0)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: SN75LVPE5421  
 
 
 
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The SN75LVPE5421 is a four channel linear redriver with ingrated multiplexer (mux). The low-power high-  
performance linear repeater or redriver is designed to support PCIe 1.0, 2.0, 3.0, 4.0, and 5.0. The device is a  
protocol agnostic linear redriver that can operate for other AC-coupled interface up to 32 Gbps.  
The signal channels of the SN75LVPE5421 operate independently from one another. Each channel includes a  
continuous-time linear equalizer (CTLE) and a linear output driver, which together compensate for a lossy  
transmission channel between the source transmitter and the final receiver. The linearity of the data path is  
specifically designed to preserve any transmit equalization while keeping PCIe receiver's (either from Root  
Complex or Endpoint) equalization effective.  
The SN75LVPE5421 can be configured in two different ways:  
Pin Mode device control configuration is done solely by strap pins. Pin mode is expected to be good enough  
for many system implementation needs.  
SMBus/I2C Secondary Mode provides most flexibility. Requires an external SMBus/I2C primary device to  
configure SN75LVPE5421 though writing to its secondary address.  
7.2 Functional Block Diagram  
One of Four 2:1 Mul plexer Modules  
RX Detect  
Term  
Term  
RXAnP  
RXAnN  
TXnP  
TXnN  
Linear  
Driver  
CTLE  
CTLE  
RXBnP  
RXBnN  
Term  
Select  
mux  
control  
RX  
Detect  
Control  
Driver  
Control  
CTLE  
Control  
VCC  
Voltage Regulator  
Power-  
On Reset  
Always-On  
10 MHz  
Shared Digital Core  
GAIN/SDA  
RX_DET/SCL  
Shared Digital  
GND  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: SN75LVPE5421  
 
 
 
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Five-Level Control Inputs  
The SN75LVPE5421 has five 5-level inputs pins (EQ1, EQ0, GAIN, MODE, and RX_DET) that are used to  
control the configuration of the device. These 5-level inputs use a resistor divider to help set the 5 valid levels  
and provide a wider range of control settings. External resistors must be of 10% tolerance or better. The EQ0,  
EQ1, GAIN, and RX_DET pins are sampled at power-up only. The MODE pin can be exercised at device power  
up or in normal operation mode.  
7-1. 5-Level Control Pin Settings  
LEVEL  
L0  
SETTING  
1 kto GND  
8.25 kto GND  
24.9 kto GND  
75 kto GND  
F (Float)  
L1  
L2  
L3  
L4  
7.3.2 Linear Equalization  
The SN75LVPE5421 receivers feature a continuous-time linear equalizer (CTLE) that applies high-frequency  
boost and low-frequency attenuation to help equalize the frequency-dependent insertion loss effects of a passive  
channel. The receivers implement two stage linear equilizer for wide range of equalization capability. The  
equalizer stages also provide flexibility to make subtle modifications of mid-frequency boost for best EQ gain  
profile match with wide range of channel media characteristics. The EQ profile control feature is only available in  
SMBus/I2C Mode. In Pin Mode the settings are optimized for FR4 traces.  
7-2 shows available equalization boost through EQ control pins or SMBus/I2C registers. In Pin Control mode  
EQ1 and EQ0 pins set equalization boost for all channels. In I2C Mode individual channels can be independently  
programmed for EQ boost.  
7-2. Equalization Control Settings  
EQUALIZATION SETTING  
SMBus/I2C Mode  
TYPICAL EQ BOOST (dB)  
Pin Mode  
0
1
L0  
L0  
L0  
L0  
L0  
L1  
L1  
L1  
L1  
L1  
L2  
L2  
L2  
L0  
L1  
L2  
L3  
L4  
L0  
L1  
L2  
L3  
L4  
L0  
L1  
L2  
0
1
3
7
7
0
1
2
3
4
5
6
8
0
0
0
0
1
0
0
0
0
0
1
1
1
0
0
0
0
0
1
1
1
3
3
7
7
7
1
1
1
1
1
0
0
0
0
0
0
0
0
2.0  
4.0  
4.0  
6.0  
2
5.0  
8.0  
3
7.0  
10.0  
12.0  
12.0  
13.0  
14.0  
15.0  
15.5  
16.0  
17.0  
17.5  
4
8.0  
5
7.0  
6
7.5  
7
8.0  
8
9.0  
9
10.0  
10.5  
11.0  
12.0  
10  
11  
12  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: SN75LVPE5421  
 
 
 
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
7-2. Equalization Control Settings (continued)  
EQUALIZATION SETTING  
SMBus/I2C Mode  
TYPICAL EQ BOOST (dB)  
Pin Mode  
13  
14  
15  
16  
17  
18  
19  
L2  
L2  
L3  
L3  
L3  
L3  
L3  
L3  
L4  
L0  
L1  
L2  
L3  
L4  
10  
10  
11  
12  
13  
14  
15  
1
2
3
4
5
6
7
7
0
0
0
0
0
0
0
12.5  
13.0  
14.0  
15.0  
16.0  
16.5  
17.0  
18.5  
19.0  
20.0  
21.0  
22.0  
23.0  
24.0  
15  
15  
15  
15  
15  
15  
7.3.3 Flat Gain  
The GAIN pin can be used to set the overall datapath flat gain (broadband gain including high frequency) of the  
SN75LVPE5421 when the device is in Pin Mode. The pin GAIN sets the Flat-Gain for all channels. In I2C Mode  
each channel can be independently set. 7-3 shows flat gain control configuration settings. The default  
recommendation for most systems will be GAIN = L4 (float) that provides flat gain of 0 dB.  
The flat gain and equalization of the SN75LVPE5421 must be set such that the output signal swing at DC and  
high frequency does not exceed the DC and AC linearity ranges of the devices, respectively.  
7-3. Flat Gain Configuration Settings  
Pin Mode  
GAIN  
I2C Mode  
flat_gain_2:0  
Flat Gain  
L0  
L1  
0
1
3
7
5
5.6 dB  
3.8 dB  
1.2 dB  
L2  
L3  
+2.6 dB  
L4 (float)  
+0.6 dB (default recommendation)  
7.3.4 Receiver Detect State Machine  
The SN75LVPE5421 deploys an RX detect state machine that governs the RX detection cycle as defined in the  
PCI express specifications. At device power up or through manually triggered event using PD or SEL pin or  
writing to the relevant I2C/SMBus register, the redriver determines whether or not a valid PCI express  
termination is present at the far end of the link. The RX_DET pin of SN75LVPE5421 provides additional flexibility  
for system designers to appropriately set the device in desired mode according to 7-4. For the PCIe  
application the RX_DET pin can be left floating for default settings.  
Note: power up ramp or PD/SEL event triggers RX detect for all four channels. In applications where  
SN75LVPE5421 channels are used for multiple PCIe links, the RX detect function can be performed for  
individual channels through writing in appropriate I2C/SMBus registers.  
7-4. Receiver Detect State Machine Settings  
PD  
RX_DET  
RX Common-mode Impedance  
COMMENTS  
PCI Express RX detection state machine is disabled.  
Recommended for non PCIe interface use case where the  
SN75LVPE5421 is used as buffer with equalization.  
L
L0  
Always 50 Ω  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: SN75LVPE5421  
 
 
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
7-4. Receiver Detect State Machine Settings (continued)  
PD  
RX_DET  
RX Common-mode Impedance  
COMMENTS  
L
L1  
Pre Detect: Hi-Z  
Outputs polls until 3 consecutive valid detections  
Post Detect: 50 Ω.  
L
L
L2  
L3  
Pre Detect: Hi-Z  
Post Detect: 50 Ω.  
Outputs polls until 2 consecutive valid detections  
Reserved  
Pre Detect: Hi-Z  
Post Detect: 50 Ω.  
TX polls every 150 µs until valid termination is detected. RX CM  
impedance held at Hi-Z until detection Reset by asserting PD high  
for 200 µs then low. Recommended default setting for PCIe.  
Pre Detect: Hi-Z  
Post Detect: 50 Ω.  
L
L4 (Float)  
X
H
Hi-Z  
Reset Channels and set their RX impedance to Hi-Z  
7.4 Device Functional Modes  
7.4.1 Active PCIe Mode  
The device is in normal operation with PCIe state machine enabled by RX_DET = L4 (float). This mode is  
recommended for PCIe use cases. In this mode, the PD pin is driven low in a system (for example, by PCIe  
connector PRSNT signal). In this mode, the device redrives and equalizes PCIe RX or TX signals to provide  
better signal integrity.  
7.4.2 Active Buffer Mode  
The device is in normal operation with PCIe state machine disabled by RX_DET = L0. This mode is  
recommended for non-PCIe use cases. In this mode, the device is working as a buffer to provide linear  
equalization to improve signal integrity.  
7.4.3 Standby Mode  
The device is in standby mode invoked by PD = H. In this mode, the device is in standby mode conserving  
power.  
7.5 Programming  
7.5.1 Pin Mode  
The SN75LVPE5421 can be fully configured through pin-strap pins. In this mode the device uses 2-level and 5-  
level pins for device control and signal integrity optimum settings.  
7.5.2 SMBUS/I2C Register Control Interface  
If MODE = L2 (SMBus / I2C secondary control mode), the SN75LVPE5421 is configured for best signal integrity  
through a standard I2C or SMBus interface that may operate up to 400 kHz. The secondary address of the  
SN75LVPE5421 is determined by the pin strap settings on the ADDR and MODE pins. 7-5 provides the eight  
possible secondary addresses (7-bit) for each channel banks of the device. In SMBus/I2C modes the SCL, SDA  
pins must be pulled up to a 3.3 V supply with a pull-up resistor. The value of the resistor depends on total bus  
capacitance. 4.7 kΩis a good first approximation for a bus capacitance of 10 pF.  
7-5. SMBUS/I2C Secondary Address Settings  
7-bit Secondary Address  
Channels 0-1  
7-bit Secondary Address  
Channels 2-3  
MODE  
ADDR  
L1  
L1  
L1  
L1  
X
L0  
L1  
L2  
L3  
L4  
L0  
L1  
0x18  
0x1A  
0x19  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
Reserved  
0x20  
Reserved  
0x21  
L2  
L2  
0x22  
0x23  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: SN75LVPE5421  
 
 
 
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
7-5. SMBUS/I2C Secondary Address Settings (continued)  
7-bit Secondary Address  
Channels 0-1  
7-bit Secondary Address  
MODE  
ADDR  
Channels 2-3  
L2  
L2  
L2  
L3  
0x24  
0x26  
0x25  
0x27  
The SN75LVPE5421 has two types of registers:  
Shared Registers: These registers can be accessed at any time and are used for device-level configuration,  
status read back, control, or to read back the device ID information.  
Channel Registers: These registers are used to control and configure specific features for each individual  
channel. All channels have the same register set and can be configured independent of each other or  
configured as a group through broadcast writes to Bank 0 or Bank 1.  
The SN75LVPE5421 features two banks of channels, Bank 0 (Channels 0-1) and Bank 1 (Channels 2-), each  
featuring a separate register set and requiring a unique SMBus secondary address.  
Channel Registers Base  
Address  
Channel Bank 0 Access  
Channel Bank 1 Access  
0x00  
0x20  
0x40  
0x60  
0x80  
Channel 0 registers  
Channel 0 registers  
Channel 1 registers  
Channel 1 registers  
Channel 2 registers  
Channel 2 registers  
Channel 3 registers  
Channel 3 registers  
Broadcast write channel Bank 0 registers,  
read channel 0 registers  
Broadcast write channel Bank 1 registers,  
read channel 2 registers  
0xE0  
Bank 0 Share registers  
Bank 1 Share registers  
7.5.2.1 Shared Registers  
7-6. General Registers (Offset = 0xE2)  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
rst_i2c_regs  
R
0x0  
Reserved  
6
R/W/SC  
0x0  
Device reset control: Reset all I2C registers to default values  
(self-clearing).  
5
rst_i2c_mas  
RESERVED  
R/W/SC  
R
0x0  
Reset I2C Primary (self-clearing).  
4-0  
0x0000  
Reserved  
7-7. DEVICE_ID0 Register (Offset = 0xF0)  
Bit  
7-4  
3
Field  
Type  
Reset  
0x0001  
0x1  
Description  
RESERVED  
device_id0_3  
device_id0_2  
device_id0_1  
RESERVED  
R
Reserved  
R
Device ID0 [3:1]: 101  
see MSB  
2
R
0x0  
1
R
0x1  
see MSB  
0
R
X
Reserved  
7-8. DEVICE_ID1 Register (Offset = 0xF1)  
Bit  
7
Field  
Type  
Reset  
0x0  
0x0  
0x1  
0x0  
0x1  
0x0  
Description  
device_id[7]  
device_id[6]  
device_id[5]  
device_id[4]  
device_id[3]  
device_id[2]  
R
Device ID 0010 1000: SN75LVPE5421  
6
R
see MSB  
see MSB  
see MSB  
see MSB  
see MSB  
5
R
4
R
3
R
2
R
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: SN75LVPE5421  
 
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
7-8. DEVICE_ID1 Register (Offset = 0xF1) (continued)  
Bit  
1
Field  
Type  
Reset  
Description  
device_id[1]  
device_id[0]  
R
0x0  
see MSB  
see MSB  
0
R
0x1  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: SN75LVPE5421  
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
7.5.2.2 Channel Registers  
7-9. RX Detect Status Register (Channel Register Base + Offset = 0x00)  
Bit  
Field  
Type  
Reset  
Description  
7
RX_det_comp_p  
R
0x0  
RX Detect positive data pin status:  
0: Not detected  
1: Detected the value is latched  
6
RX_det_comp_n  
RESERVED  
R
R
0x0  
0x0  
RX Detect negative data pin status:  
0: Not detected  
1: Detected the value is latched  
5-0  
Reserved  
7-10. EQ Gain Control Register (Channel Register Base + Offset = 0x01)  
Bit  
Field  
Type  
Reset  
Description  
7
eq_stage1_bypass  
R/W  
0x0  
Enable EQ stage 1 bypass:  
0: Bypass disabled  
1: Bypass enabled  
6
5
4
3
2
1
0
eq_stage1_3  
eq_stage1_2  
eq_stage1_1  
eq_stage1_0  
eq_stage2_2  
eq_stage2_1  
eq_stage2_0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
EQBoost stage 1 control  
See 7-2 for details  
EQ Boost stage 2 control  
See 7-2 for details  
7-11. EQ Gain / Flat Gain Control Register (Channel Register Base + Offset = 0x03)  
Bit  
7
Field  
Type  
Reset  
0x0  
0x0  
0x0  
0x0  
0x0  
0x1  
0x0  
0x1  
Description  
RESERVED  
eq_profile_3  
eq_profile_2  
eq_profile_1  
eq_profile_0  
flat_gain_2  
flat_gain_1  
flat_gain_0  
R
Reserved  
6
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
EQ mid-frequency boost profile  
5
See 7-2 for details  
4
3
2
Flat gain select:  
1
See 7-3 for details  
0
7-12. RX Detect Control Register (Channel Register Base + Offset = 0x04)  
Bit  
7-3  
2
Field  
Type  
Reset  
Description  
RESERVED  
mr_RX_det_man  
R
0x0  
Reserved  
R/W  
0x0  
Manual override of RX_detect_p/n decision:  
0: RX detect state machine is enabled  
1: RX detect state machine is overridden always valid RX  
termination detected  
1
0
en_RX_det_count  
sel_RX_det_count  
R/W  
R/W  
0x0  
0x0  
Enable additional RX detect polling  
0: Additional RX detect polling disabled  
1: Additional RX detect polling enabled  
Select number of valid RX detect polls gated by  
en_RX_det_count = 1  
0: Device transmitters poll until 2 consecutive valid detections  
1: Device transmitters poll until 3 consecutive valid detections  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: SN75LVPE5421  
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
7-13. PD Override Register (Channel Register Base + Offset = 0x05)  
Bit  
Field  
Type  
Reset  
Description  
7
device_en_override  
R/W  
0x0  
Enable power down overrides thorugh SMBus/I2C  
0: Manual override disabled  
1: Manual override enabled  
6-0  
device_en  
R/W  
0x111111  
Manual power down of redriver various blocks gated by  
device_en_override = 1  
111111: All blocks are enabled  
000000: All blocks are disabled  
7-14. RX Detect Reset Register (Channel Register Base + Offset = 0x0A)  
Bit  
7-3  
2
Field  
Type  
Reset  
Description  
RESERVED  
mr_RX_det_rst  
R
0x0  
Reserved  
R/W  
0x0  
RX Detect state machine reset. Toggle the bit if RX Detect  
machine needs to be reset in I2C mode  
0: state machine is not reset  
1: RX detect state machine is reset  
1-0  
RESERVED  
R/W  
0x0  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: SN75LVPE5421  
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
8 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
8.1 Application Information  
The SN75LVPE5421 is a high-speed linear repeater with integrated mux. The device extends the reach of  
differential channels impaired by loss from transmission media like PCBs and cables. It can be deployed in a  
variety of different systems. The following sections outline typical applications and their associated design  
considerations.  
8.2 Typical Applications  
The SN75LVPE5421 is a PCI Express linear redriver that can also be configured as interface agnostic redriver  
by disabling its RX detect feature. The device can be used in a wide range of interfaces including:  
PCI Express  
Ultra Path Interconnect (UPI)  
SATA  
SAS  
DisplayPort  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: SN75LVPE5421  
 
 
 
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
8.2.1 PCIe x8 Lane Switching  
The SN75LVPE5412 and SN75LVPE5421 can be used to switch PCIe lanes from a CPU into one of the two  
PCIe CEM connectors. 8-1 shows a simplified schematic for the following configuration:  
Two SN75LVPE5412 demultiplex eight TX channels from the CPU into one of the two PCIe slots.  
Two SN75LVPE5421 multiplex eight RX channels from one of the two PCIe slots to CPU.  
Mux selection  
Float  
SEL  
RX_DET  
Linear  
Driver  
RXnP  
RXnN  
TXAnP  
TXAnN  
CTLE  
8 TX Chan  
8 Lanes  
System Level  
Power Control  
1 of 4  
channels  
Linear  
Driver  
PD  
TXBnP  
TXBnN  
GPIO mode  
1 k  
PCIe  
Slot  
A
MODE  
pin strap control  
for DC gain  
GAIN  
GND  
LVPE5412  
PCIe Redriver Demux  
Pin strap to  
fine tune  
EQ gain  
EQ0  
EQ1  
settings  
VCC  
RSVD1,2  
VCC  
0.1  
(2x)  
F
1
F
Minimum  
recommended  
decoupling  
X8 Slot  
Two LVPE5412  
Two LVPE5421  
Mux selection  
SEL  
CPU  
(RC)  
Float  
RX_DET  
Linear  
Driver  
TXnP  
TXnN  
RXAnP  
RXAnN  
CTLE  
8 RX Chan  
8 Lanes  
1 of 4  
channels  
System Level  
Power Control  
RXBnP  
RXBnN  
CTLE  
PD  
PCIe  
Slot  
B
Optional pin strap  
control for DC gain  
GPIO mode  
GAIN  
MODE  
LVPE5421  
PCIe Redriver Mux  
Pin strap to  
fine tune  
EQ gain  
EQ0  
EQ1  
1 k  
GND  
settings  
VCC  
RSVD1,2  
VCC  
Minimum  
recommended  
decoupling  
1
F
0.1  
(2x)  
F
X16 Slot  
8 Lanes  
8-1. Simplified Schematic for PCIe Lane Switching  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: SN75LVPE5421  
 
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
8.2.1.1 Design Requirements  
As with any high-speed design, there are many factors which influence the overall performance. The following  
list indicates critical areas for consideration during design:  
Use 85 Ωimpedance traces when interfacing with PCIe CEM connectors. Length matching on the P and N  
traces should be done on the single-ended segments of the differential pair.  
Use a uniform trace width and trace spacing for differential pairs.  
Place AC-coupling capacitors near to the receiver end of each channel segment to minimize reflections.  
For Gen 3.0, 4.0, and 5.0, AC-coupling capacitors of 220 nF are recommended, set the maximum body size  
to 0402, and add a cutout void on the GND plane below the landing pad of the capacitor to reduce parasitic  
capacitance to GND.  
Back-drill connector vias and signal vias to minimize stub length.  
Use reference plane vias to ensure a low inductance path for the return current.  
8.2.1.2 Detailed Design Procedure  
In PCIe Gen 3.0, 4.0, and 5.0 applications, the specification requires RX-TX link training to establish and  
optimize signal conditioning settings at 8.0, 16.0, and 32.0 Gbps, respectively. In link training, the RX partner  
requests a series of FIR pre-shoot and de-emphasis coefficients (10 presets) from the TX partner. The RX  
partner includes CTLE and DFE. The link training would pre-condition the signal, with an equalized link between  
the Root Complex and Endpoint.  
Note: there is no link training in PCIe Gen 1.0 (2.5 Gbps) or PCIe Gen 2.0 (5.0 Gbps) applications. The  
SN75LVPE5421 is placed in between the TX and RX. It helps extend the PCB trace reach distance by boosting  
the attenuated signals with its equalization, which allows the user to recover the signal by the downstream RX  
more easily.  
For operation in Gen 5.0, 4.0, and 3.0 links, the SN75LVPE5421 transmit outputs are designed to pass the TX  
Preset signaling onto the RX for the PCIe Gen 5.0, 4.0, and 3.0 link to train and optimize the equalization  
settings. The suggested setting for the device is GAIN = L4 (default). Adjustments to the EQ setting should be  
performed based on the channel loss to optimize the eye opening in the RX partner. The TX equalization presets  
or CTLE and DFE coefficients in the RX can also be adjusted to further improve the eye opening.  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: SN75LVPE5421  
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
8.2.2 Protocol Agnostic Linear Redriver for High Speed Interfaces  
The SN75LVPE5421 can be used as a four channel protocol agnostic linear redriver multiplexer (mux) for data  
rates up to 32 Gbps. To use the device in a non-PCIe application, the RX_DET pin must be pin-strapped to GND  
with 1 kΩresistor (L0).  
This section explains how the SN75LVPE5421 can be used in DisplayPort (DP) application. The device is a  
linear redriver which is agnostic to DP link training. The DP link training negotiation between a display source  
and sink stays effective through the device. The redriver becomes part of the electrical channel along with  
passive traces, cables, and so forth, resulting in optimum source and sink parameters for best electrical link.  
8-2 shows a simplified schematic for DisplayPort multiplexing application using SN75LVPE5421. Auxiliary and  
Hot plug detect (HPD) are muxed outside of the device. If system use case requires implementing DP power  
states, then the device must be controlled by the I2C.  
AUXAp  
For brevity AUX  
biasing is not shown  
AUXAn  
HPDA  
AUXp  
TS3A5223  
AUXn  
HPD  
2-Ch 2:1 mux  
AUXBp  
AUXBn  
HPDB  
Demux control  
AUXAp  
SEL  
AUXAn  
HPDA  
RX_DET  
DisplayPort  
Port A  
1 k  
GND  
Linear  
Driver  
RXAnP  
RXAnN  
TXnP  
TXnN  
CTLE  
CTLE  
3.3 V  
59 k  
DisplayPort  
Sink  
AUXp  
1 of 4  
channels  
RXBnP  
RXBnN  
PD  
AUXn  
HPD  
DisplayPort  
Port B  
AUXBp  
0.1  
100 k  
HPD  
F
AUXBn  
HPDB  
GPIO mode  
1 k  
MODE  
LVPE5421  
DP Main Link Redriver  
2:1 Mux  
Optional pin strap  
control for DC gain  
GAIN  
GND  
EQ0  
EQ1  
Pin strap to fine tune  
EQ gain settings  
VCC  
VCC  
0.1  
(2x)  
F
1
F
Minimum  
recommended  
decoupling  
8-2. Simplified Schematic for DisplayPort Multiplexer Application  
The inverted DisplayPort HPD signal can be used to put the device into standby mode by using its PD pin. Note:  
in a DisplayPort link a sink can use HPD line to create an interrupt for its link partner source. If HPD signal is  
used for power management, then an RC filter must be installed to filter out HPD interrupt signals.  
The SN75LVPE5421 can similarly be used for other AC-coupled high speed interfaces. Care must be taken to  
understand the specifications of the interface to ensure feasibility.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: SN75LVPE5421  
 
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
9 Power Supply Recommendations  
Follow these general guidelines when designing the power supply:  
1. The power supply should be designed to provide the operating conditions outlined in the recommended  
operating conditions section in terms of DC voltage, AC noise, and start-up ramp time.  
2. The SN75LVPE5421 does not require any special power supply filtering, such as ferrite beads, provided that  
the recommended operating conditions are met. Only standard supply decoupling is required. Typical supply  
decoupling consists of a 0.1 µF capacitor per VCC pin, one 1.0 µF bulk capacitor per device, and one 10 µF  
bulk capacitor per power bus that delivers power to one or more devices. The local decoupling (0.1 µF)  
capacitors must be connected as close to the VCC pins as possible and with minimal path to the device  
ground pad.  
10 Layout  
10.1 Layout Guidelines  
The following guidelines should be followed when designing the layout:  
1. Decoupling capacitors should be placed as close to the VCC pins as possible. Placing the decoupling  
capacitors directly underneath the device is recommended if the board design permits.  
2. High-speed differential signals TXnP/TXnN and RXnP/RXnN should be tightly coupled, skew matched, and  
impedance controlled.  
3. Vias should be avoided when possible on the high-speed differential signals. When vias must be used, take  
care to minimize the via stub, either by transitioning through most or all layers or by back drilling.  
4. GND relief can be used (but is not required) beneath the high-speed differential signal pads to improve  
signal integrity by counteracting the pad capacitance.  
5. GND vias should be placed directly beneath the device connecting the GND plane attached to the device to  
the GND planes on other layers. This has the added benefit of improving thermal conductivity from the  
device to the board.  
10.2 Layout Example  
10-1 shows SN75LVPE5421 layout example.  
10-1. SN75LVPE5421 Layout Example  
10-2 shows a layout illustration where two SN75LVPE5412 and two SN75LVPE5421 are used to switch 8  
lanes between the two PCIe slots.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: SN75LVPE5421  
 
 
 
 
 
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
10-2. Layout Example for PCIe Lane Muxing Application  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: SN75LVPE5421  
 
SN75LVPE5421  
ZHCSN44A DECEMBER 2021 REVISED OCTOBER 2022  
www.ti.com.cn  
11 Device and Documentation Support  
11.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
11.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
11.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
PCIe® is a registered trademark of PCI-SIG.  
所有商标均为其各自所有者的财产。  
11.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
11.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
12 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: SN75LVPE5421  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-May-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SN75LVPE5421RUAR  
SN75LVPE5421RUAT  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
RUA  
RUA  
42  
42  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
0 to 85  
0 to 85  
5PR421  
5PR421  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-May-2022  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SN75LVPE5421RUAT  
WQFN  
RUA  
42  
250  
180.0  
16.4  
3.8  
9.3  
1.0  
8.0  
16.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
9-Aug-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
WQFN RUA 42  
SPQ  
Length (mm) Width (mm) Height (mm)  
210.0 185.0 35.0  
SN75LVPE5421RUAT  
250  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RUA 42  
9 x 3.5, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226504/A  
www.ti.com  
PACKAGE OUTLINE  
RUA0042A  
WQFN - 0.8 mm max height  
S
C
A
L
E
1
.
8
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.6  
3.4  
A
B
PIN 1 INDEX AREA  
9.1  
8.9  
0.8  
0.6  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.05 0.1  
2X 1.5  
SYMM  
(0.1) TYP  
EXPOSED  
THERMAL PAD  
21  
18  
17  
22  
SYMM  
43  
2X 8  
7.55 0.1  
0.3  
0.2  
1
38  
42X  
42  
39  
38X 0.5  
0.1  
C A B  
0.5  
0.3  
42X  
PIN 1 ID  
0.05  
4219139/A 03/2020  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RUA0042A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.05)  
SYMM  
SEE SOLDER MASK  
DETAIL  
42X (0.6)  
42X (0.25)  
42  
39  
1
38X (0.5)  
38  
(3.525) TYP  
(R0.05) TYP  
(
0.2) TYP  
VIA  
1.17 TYP  
SYMM  
43  
(7.55) (8.8)  
17  
22  
18  
21  
(0.775)  
TYP  
(3.3)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4219139/A 03/2020  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RUA0042A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(0.56) TYP  
42X (0.6)  
42X (0.25)  
42  
39  
1
38X (0.5)  
38  
(R0.05) TYP  
(0.585)  
TYP  
43  
SYMM  
(8.8)  
12X (0.97)  
22  
17  
21  
18  
12X (0.92)  
SYMM  
(3.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE: 12X  
EXPOSED PAD 43  
69% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
4219139/A 03/2020  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

UL1042

UL1042 - Uk砤d zr體nowa縪nego mieszacza iloczynowego

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV201

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14

IC-SM-VIDEO AMP

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TA

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

ZXFV201N14TC

QUAD VIDEO AMPLIFIER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV302N16

IC-SM-4:1 MUX SWITCH

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

ZXFV4089

VIDEO AMPLIFIER WITH DC RESTORATION

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ZETEX