SNLVDS9638DGNG4 [TI]

HIGH-SPEED DIFFERENTIAL LINE DRIVERS; 高速差分线路驱动器
SNLVDS9638DGNG4
型号: SNLVDS9638DGNG4
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

HIGH-SPEED DIFFERENTIAL LINE DRIVERS
高速差分线路驱动器

驱动器
文件: 总29页 (文件大小:1057K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SN55LVDS31, SN65LVDS31  
SN65LVDS3487, SN65LVDS9638  
www.ti.com  
SLLS261LJULY 1997REVISED JULY 2007  
HIGH-SPEED DIFFERENTIAL LINE DRIVERS  
FEATURES  
SN55LVDS31 . . . J OR W  
SN65LVDS31 . . . D OR PW  
(Marked as LVDS31 or 65LVDS31)  
(TOP VIEW)  
Meet or Exceed the Requirements of ANSI  
TIA/EIA-644 Standard  
Low-Voltage Differential Signaling With  
Typical Output Voltage of 350 mV and 100-  
Load  
1A  
1Y  
1Z  
VCC  
4A  
4Y  
4Z  
G
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
Typical Output Voltage Rise and Fall Times of  
500 ps (400 Mbps)  
G
2Z  
2Y  
3Z  
Typical Propagation Delay Times of 1.7 ns  
Operate From a Single 3.3-V Supply  
2A  
GND  
10 3Y  
3A  
9
Power Dissipation 25 mW Typical Per Driver  
at 200 MHz  
SN55LVDS31FK  
(TOP VIEW)  
Driver at High Impedance When Disabled or  
With VCC = 0  
Bus-Terminal ESD Protection Exceeds 8 kV  
Low-Voltage TTL (LVTTL) Logic Input Levels  
3
2
1
20 19  
1Z  
G
4Y  
4Z  
NC  
G
4
5
6
7
8
18  
Pin Compatible With AM26LS31, MC3487, and  
μA9638  
17  
16  
15  
14  
NC  
2Z  
2Y  
Cold Sparing for Space and High Reliability  
Applications Requiring Redundancy  
3Z  
9
10 11 12 13  
DESCRIPTION  
The SN55LVDS31, SN65LVDS31, SN65LVDS3487,  
and SN65LVDS9638 are differential line drivers that  
implement the electrical characteristics of low-voltage  
differential signaling (LVDS). This signaling  
technique lowers the output voltage levels of 5-V  
differential standard levels (such as TIA/EIA-422B) to  
reduce the power, increase the switching speeds,  
and allow operation with a 3.3-V supply rail. Any of  
the four current-mode drivers will deliver a minimum  
differential output voltage magnitude of 247 mV into  
a 100-load when enabled.  
SN65LVDS3487D  
(Marked as LVDS3487 or 65LVDS3487)  
(TOP VIEW)  
1A  
1Y  
1Z  
VCC  
4A  
4Y  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
1,2EN  
2Z  
4Z  
3,4EN  
3Z  
2Y  
2A  
GND  
10 3Y  
3A  
9
The intended application of these devices and  
signaling technique is both point-to-point and  
multidrop (one driver and multiple receivers) data  
transmission over controlled impedance media of  
approximately 100 . The transmission media may  
be printed-circuit board traces, backplanes, or  
cables. The ultimate rate and distance of data  
transfer is dependent upon the attenuation  
characteristics of the media and the noise coupling  
to the environment.  
SN65LVDS9638D (Marked as DK638 or LVDS38)  
SN65LVDS9638DGN (Marked as L38)  
SN65LVDS9638DGK (Marked as AXG)  
(TOP VIEW)  
VCC  
1A  
2A  
1Y  
1Z  
2Y  
2Z  
1
2
3
4
8
7
6
5
GND  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
PowerPAD is a trademark of Texas Instruments.  
PRODUCTION DATA information is current as of publication date.  
Copyright © 1997–2007, Texas Instruments Incorporated  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
SN55LVDS31, SN65LVDS31  
SN65LVDS3487, SN65LVDS9638  
www.ti.com  
SLLS261LJULY 1997REVISED JULY 2007  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
DESCRIPTION (CONTINUED)  
The SN65LVDS31, SN65LVDS3487, and SN65LVDS9638 are characterized for operation from –40°C to 85°C.  
The SN55LVDS31 is characterized for operation from –55°C to 125°C.  
AVAILABLE OPTIONS  
PACKAGE(1)  
TA  
SMALL OUTLINE  
CHIP CARRIER  
(FK)  
CERAMIC DIP  
(J)  
FLAT PACK  
(W)  
MSOP  
(D)  
(PW)  
SN65LVDS31D  
SN65LVDS3487D  
SN65LVDS9638D  
SN65LVDS31PW  
–40°C to 85°C  
–55°C to 125°C  
SN65LVDS9638DGN  
SN65LVDS9638DGK  
SNJ55LVDS31W  
SN55LVDS31W  
SNJ55LVDS31FK  
SNJ55LVDS31J  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
logic symbol†  
’LVDS31 logic diagram (positive logic)  
SN55LVDS31, SN65LVDS31  
1  
4
G
12  
4
G
2
3
G
G
EN  
1
1Y  
1Z  
12  
1A  
6
5
2
3
1Y  
1Z  
7
2Y  
2Z  
1
2A  
3A  
4A  
1A  
10  
11  
6
5
2Y  
2Z  
3Y  
3Z  
4Y  
4Z  
9
3Y  
3Z  
7
2A  
3A  
4A  
10  
11  
14  
13  
14  
13  
9
15  
4Y  
4Z  
15  
This symbol is in accordance with ANSI/IEEE Std 91-1984 and  
IEC Publication 617-12.  
2
Submit Documentation Feedback  
SN55LVDS31, SN65LVDS31  
SN65LVDS3487, SN65LVDS9638  
www.ti.com  
SLLS261LJULY 1997REVISED JULY 2007  
logic symbol†  
SN65LVDS3487 logic diagram  
(positive logic)  
SN65LVDS3487  
EN  
4
2
3
1Y  
1Z  
1
1,2EN  
1A  
2
3
6
5
1
1Y  
1Z  
2Y  
2Z  
4
7
1A  
1,2EN  
2A  
6
5
2Y  
2Z  
7
2A  
10  
11  
9
3Y  
3Z  
12  
3A  
3,4EN  
EN  
10  
11  
14  
13  
12  
15  
3,4EN  
4A  
9
3Y  
3Z  
4Y  
4Z  
3A  
14  
13  
4Y  
4Z  
15  
4A  
This symbol is in accordance with ANSI/IEEE Std 91-1984 and  
IEC Publication 617-12.  
logic symbol†  
SN65LVDS9638 logic diagram  
(positive logic)  
SN65LVDS9638  
8
8
1Y  
2
1A  
7
2
3
1Y  
1Z  
2Y  
2Z  
1Z  
1A  
2A  
7
6
5
6
2Y  
2Z  
3
2A  
5
This symbol is in accordance with ANSI/IEEE Std 91-1984 and  
IEC Publication 617-12.  
3
Submit Documentation Feedback  
SN55LVDS31, SN65LVDS31  
SN65LVDS3487, SN65LVDS9638  
www.ti.com  
SLLS261LJULY 1997REVISED JULY 2007  
FUNCTION TABLES  
SN55LVDS31, SN65LVDS31(1)  
ENABLES  
OUTPUTS  
INPUT  
A
G
H
H
X
X
L
G
X
X
L
Y
H
L
Z
L
H
L
H
L
H
H
L
L
L
H
Z
H
H
X
H
X
L
Z
L
Open  
Open  
H
X
L
(1) H = high level, L = low level, X = irrelevant, Z = high impedance  
(off)  
SN65LVDS3487(1)  
OUTPUTS  
INPUT A  
ENABLE EN  
Y
H
L
Z
L
H
L
H
H
L
H
Z
H
X
Z
L
Open  
H
(1) H = high level, L = low level, X = irrelevant, Z = high impedance  
(off)  
SN65LVDS9638(1)  
OUTPUTS  
INPUT A  
Y
H
L
Z
L
H
L
H
H
Open  
L
(1) H = high level, L = low level  
4
Submit Documentation Feedback  
SN55LVDS31, SN65LVDS31  
SN65LVDS3487, SN65LVDS9638  
www.ti.com  
SLLS261LJULY 1997REVISED JULY 2007  
EQUIVALENT INPUT AND OUTPUT SCHEMATIC DIAGRAMS  
EQUIVALENT OF EACH A INPUT  
EQUIVALENT OF G, G, 1,2EN OR 3,4EN INPUTS  
TYPICAL OF ALL OUTPUTS  
V
CC  
V
CC  
V
CC  
50  
50 Ω  
Input  
Input  
7 V  
10 kΩ  
5 Ω  
Y or Z  
Output  
7 V  
300 kΩ  
7 V  
ABSOLUTE MAXIMUM RATINGS(1)  
over operating free-air temperature range (unless otherwise noted)  
UNIT  
VCC  
VI  
Supply voltage range(2)  
–0.5 V to 4 V  
Input voltage range  
–0.5 V to VCC + 0.5 V  
See Dissipation Rating Table  
260°C  
Continuous total power dissipation  
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds  
Storage temperature range  
Tstg  
–65°C to 150°C  
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating  
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) All voltages, except differential I/O bus voltages, are with respect to the network ground terminal.  
DISSIPATION RATING TABLE  
T
A 25°C  
DERATING FACTOR(1)  
ABOVE TA = 25°C  
TA = 70°C  
POWER RATING  
TA = 85°C  
POWER RATING  
TA = 125°C  
POWER RATING  
PACKAGE  
POWER RATING  
D (8)  
D (16)  
DGK  
DGN(2)  
FK  
725 mW  
5.8 mW/°C  
7.6 mW/°C  
3.4 mW/°C  
17.1 mW/°C  
11.0 mW/°C  
11.0 mW/°C  
6.2 mW/°C  
8.0 mW/°C  
464 mW  
608 mW  
272 mW  
1.37 W  
377 mW  
494 mW  
221 mW  
1.11 W  
950 mW  
425 mW  
2.14 W  
1375 mW  
1375 mW  
774 mW  
880 mW  
880 mW  
496 mW  
640 mW  
715 mW  
715 mW  
402 mW  
520 mW  
275 mW  
275 mW  
J
PW (16)  
W
1000 mW  
200 mW  
(1) This is the inverse of the junction-to-ambient thermal resistance when board-mounted and with no air flow.  
(2) The PowerPAD™ must be soldered to a thermal land on the printed-circuit board. See the application note PowerPAD Thermally  
Enhanced Package (SLMA002).  
5
Submit Documentation Feedback  
SN55LVDS31, SN65LVDS31  
SN65LVDS3487, SN65LVDS9638  
www.ti.com  
SLLS261LJULY 1997REVISED JULY 2007  
RECOMMENDED OPERATING CONDITIONS  
MIN NOM  
MAX UNIT  
VCC  
VIH  
VIL  
Supply voltage  
3
2
3.3  
3.6  
V
V
V
High-level input voltage  
Low-level input voltage  
0.8  
85  
SN65 prefix  
SN55 prefix  
–40  
–55  
TA  
Operating free-air temperature  
°C  
125  
SN55LVDS31 ELECTRICAL CHARACTERISTICS  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
VOD  
Differential output voltage magnitude  
RL = 100 ,  
RL = 100 ,  
See Figure 2  
See Figure 2  
247  
–50  
340  
454  
50  
mV  
mV  
ΔVOD  
Change in differential output voltage  
magnitude between logic states  
VOC(SS)  
ΔVOC(SS)  
VOC(PP)  
Steady-state common-mode output voltage  
See Figure 3  
See Figure 3  
See Figure 3  
1.125  
–50  
1.2 1.375  
50  
V
Change in steady-state common-mode output  
voltage between logic states  
mV  
mV  
Peak-to-peak common-mode output voltage  
50  
9
150  
20  
35  
1
VI = 0.8 V or 2 V, Enabled, No load  
ICC  
Supply current  
VI = 0.8 or 2 V,  
RL = 100 , Enabled  
25  
mA  
VI = 0 or VCC  
,
Disabled  
0.25  
4
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = 2  
20  
10  
–24  
±12  
±1  
μA  
μA  
VIL = 0.8 V  
0.1  
–4  
VO(Y) or VO(Z) = 0  
VOD = 0  
IOS  
Short-circuit output current  
mA  
IOZ  
High-impedance output current  
Power-off output current  
Input capacitance  
VO = 0 or 2.4 V  
VCC = 0,  
μA  
μA  
pF  
IO(OFF)  
Ci  
VO = 2.4 V  
±4  
3
(1) All typical values are at TA = 25°C and with VCC = 3.3 V.  
SN55LVDS31 SWITCHING CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX UNIT  
tPLH  
tPHL  
tr  
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
Differential output signal rise time (20% to 80%)  
Differential output signal fall time (80% to 20%)  
Pulse skew (|tPHL – tPLH|)  
0.5  
1
1.4  
1.7  
0.5  
0.5  
0.3  
0.3  
5.4  
2.5  
8.1  
7.3  
4
4.5  
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.4  
0.4  
RL = 100 , CL = 10 pF,  
See Figure 2  
tf  
1
tsk(p)  
tsk(o)  
tPZH  
tPZL  
tPHZ  
tPLZ  
0.6  
0.6  
15  
15  
17  
15  
Channel-to-channel output skew(2)  
Propagation delay time, high-impedance-to-high-level output  
Propagation delay time, high-impedance-to-low-level output  
Propagation delay time, high-level-to-high-impedance output  
Propagation delay time, low-level-to-high-impedance output  
See Figure 4  
(1) All typical values are at TA = 25°C and with VCC = 3.3 V.  
(2) tsk(o) is the maximum delay time difference between drivers on the same device.  
6
Submit Documentation Feedback  
SN55LVDS31, SN65LVDS31  
SN65LVDS3487, SN65LVDS9638  
www.ti.com  
SLLS261LJULY 1997REVISED JULY 2007  
SN65LVDSxxxx ELECTRICAL CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
SN65LVDS31  
SN65LVDS3487  
SN65LVDS9638  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN TYP(1) MAX  
VOD  
Differential output voltage magnitude  
RL = 100 ,  
RL = 100 ,  
See Figure 2  
See Figure 2  
247  
340 454  
mV  
mV  
Change in differential output voltage  
magnitude between logic states  
ΔVOD  
–50  
50  
1.37  
VOC(SS) Steady-state common-mode output voltage  
See Figure 3  
See Figure 3  
1.125  
–50  
1.2  
5
V
ΔVOC(S Change in steady-state common-mode output  
50  
mV  
mV  
voltage between logic states  
S)  
VOC(PP) Peak-to-peak common-mode output voltage  
See Figure 3  
50 150  
VI = 0.8 V or 2 V,  
VI = 0.8 or 2 V,  
Enabled, No load  
RL = 100 , Enabled  
Disabled  
9
25  
20  
35  
1
SN65LVDS31,  
SN65LVDS3487  
mA  
ICC  
Supply current  
VI = 0 or VCC  
,
0.25  
4.7  
9
No load  
8
SN65LVDS9638 VI = 0.8 V or 2 V  
mA  
RL = 100 Ω  
13  
20  
10  
IIH  
IIL  
High-level input current  
Low-level input current  
VIH = 2  
4
μA  
μA  
VIL = 0.8 V  
VO(Y) or VO(Z) = 0  
VOD = 0  
0.1  
–4 –24  
IOS  
Short-circuit output current  
mA  
±12  
IOZ  
High-impedance output current  
Power-off output current  
Input capacitance  
VO = 0 or 2.4 V  
VCC = 0,  
±1  
μA  
μA  
pF  
IO(OFF)  
Ci  
VO = 2.4 V  
±1  
3
(1) All typical values are at TA = 25°C and with VCC = 3.3 V.  
SN65LVDSxxxx SWITCHING CHARACTERISTICS  
over recommended operating conditions (unless otherwise noted)  
SN65LVDS31  
SN65LVDS3487  
SN65LVDS9638  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN TYP(1)  
MAX  
tPLH  
tPHL  
tr  
Propagation delay time, low-to-high-level output  
Propagation delay time, high-to-low-level output  
Differential output signal rise time (20% to 80%)  
Differential output signal fall time (80% to 20%)  
Pulse skew (|tPHL – tPLH|)  
0.5  
1
1.4  
1.7  
0.5  
0.5  
0.3  
0
2
2.5  
0.6  
0.6  
0.6  
0.3  
800  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ps  
ns  
ns  
ns  
ns  
0.4  
0.4  
RL = 100 , CL = 10 pF,  
See Figure 2  
tf  
tsk(p)  
tsk(o)  
Channel-to-channel output skew(2)  
tsk(pp) Part-to-part skew(3)  
tPZH  
tPZL  
tPHZ  
tPLZ  
Propagation delay time, high-impedance-to-high-level output  
5.4  
2.5  
8.1  
7.3  
Propagation delay time, high-impedance-to-low-level output  
Propagation delay time, high-level-to-high-impedance output  
Propagation delay time, low-level-to-high-impedance output  
15  
See Figure 4  
15  
15  
(1) All typical values are at TA = 25°C and with VCC = 3.3 V.  
(2) tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the  
same direction while driving identical specified loads.  
(3) tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices  
operate with the same supply voltages, same temperature, and have identical packages and test circuits.  
7
Submit Documentation Feedback  
SN55LVDS31, SN65LVDS31  
SN65LVDS3487, SN65LVDS9638  
www.ti.com  
SLLS261LJULY 1997REVISED JULY 2007  
PARAMETER MEASUREMENT INFORMATION  
I
OY  
Y
Z
I
I
A
V
V
OD  
I
OZ  
V
OY  
V
OC  
(V + V )/2  
V
I
OY  
OZ  
OZ  
Figure 1. Voltage and Current Definitions  
2 V  
Input  
1.4 V  
0.8 V  
t
t
PLH  
PHL  
Y
Z
Input  
(see Note A)  
100  
± 1%  
100%  
80%  
V
OD  
V
OD  
C
= 10 pF  
L
0
(2 Places)  
(see Note B)  
20%  
0%  
t
f
t
r
NOTES: A. All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 50 Mpps,  
r
f
pulse width = 10 ± 0.2 ns.  
B. C includes instrumentation and fixture capacitance within 6 mm of the D.U.T.  
L
Figure 2. Test Circuit, Timing, and Voltage Definitions for the Differential Output Signal  
49.9 Ω ± 1% (2 Places)  
3 V  
Y
A
Input  
(see Note A)  
A
0
V
OC(PP)  
(see Note C)  
Z
V
OC(SS)  
V
OC  
C
L
= 10 pF  
V
OC  
(2 Places)  
(see Note B)  
NOTES: A. All input pulses are supplied by a generator having the following characteristics: t or t 1 ns, pulse repetition rate (PRR) = 50 Mpps,  
r
f
pulse width = 10 ± 0.2 ns.  
B. C includes instrumentation and fixture capacitance within 6 mm of the D.U.T.  
L
C. The measurement of V  
is made on test equipment with a –3-dB bandwidth of at least 300 MHz.  
OC(PP)  
Figure 3. Test Circuit and Definitions for the Driver Common-Mode Output Voltage  
8
Submit Documentation Feedback  
SN55LVDS31, SN65LVDS31  
SN65LVDS3487, SN65LVDS9638  
www.ti.com  
SLLS261LJULY 1997REVISED JULY 2007  
PARAMETER MEASUREMENT INFORMATION (continued)  
49.9 Ω ± 1% (2 Places)  
Y
Z
0.8 V or 2 V  
Inputs  
(see Note A)  
1.2 V  
G
C
= 10 pF  
V
OY  
V
OZ  
L
G
(2 Places)  
(see Note B)  
1,2EN or 3,4EN  
2 V  
1.4 V  
G, 1,2EN,  
OR 3,4EN  
0.8 V  
2 V  
1.4 V  
0.8 V  
G
t
t
t
PZH  
PHZ  
V
OY  
or  
A at 2 V, G at V and Input to G  
CC  
or  
G at GND and Input to G for ’LVDS31 Only  
100%, 1.4 V  
50%  
V
OZ  
0%, 1.2 V  
t
PZL  
PLZ  
A at 0.8 V, G at V and Input to G  
CC  
or  
G at GND and Input to G for ’LVDS31 Only  
100%, 1.2 V  
50%  
0%, 1 V  
V
OZ  
or  
V
OY  
NOTES: A. All input pulses are supplied by a generator having the following characteristics: t or t < 1 ns, pulse repetition rate (PRR) = 0.5 Mpps,  
r
f
pulse width = 500 ± 10 ns.  
B. C includes instrumentation and fixture capacitance within 6 mm of the D.U.T.  
L
Figure 4. Enable-/Disable-Time Circuit and Definitions  
9
Submit Documentation Feedback  
SN55LVDS31, SN65LVDS31  
SN65LVDS3487, SN65LVDS9638  
www.ti.com  
SLLS261LJULY 1997REVISED JULY 2007  
TYPICAL CHARACTERISTICS  
SN55LVDS31, SN65LVDS31  
SUPPLY CURRENT  
vs  
LOW-TO-HIGH PROPAGATION DELAY TIME  
vs  
FREQUENCY  
FREE-AIR TEMPERATURE  
35  
33  
31  
29  
27  
25  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
Four Drivers Loaded Per  
Figure 3 and Switching  
Simultaneously  
V
= 3.6 V  
CC  
V
CC  
= 3.3 V  
V
CC  
= 3 V  
V
= 3 V  
CC  
V
CC  
= 3.3 V  
23  
21  
V
= 3.6 V  
CC  
19  
1.1  
1
17  
15  
50  
100  
150  
200  
−40 −20  
0
20  
40  
60  
80  
100  
f − Frequency − MHz  
T
A
− Free-Air Temperature − °C  
Figure 5.  
Figure 6.  
HIGH-TO-LOW PROPAGATION DELAY TIME  
vs  
FREE-AIR TEMPERATURE  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
V
CC  
= 3 V  
V
= 3.3 V  
CC  
V
= 3.6 V  
CC  
1.1  
1
−40 −20  
0
20  
40  
60  
80  
100  
T
A
− Free-Air Temperature − °C  
Figure 7.  
10  
Submit Documentation Feedback  
SN55LVDS31, SN65LVDS31  
SN65LVDS3487, SN65LVDS9638  
www.ti.com  
SLLS261LJULY 1997REVISED JULY 2007  
APPLICATION INFORMATION  
The devices are generally used as building blocks for high-speed point-to-point data transmission where ground  
differences are less than 1 V. Devices can interoperate with RS-422, PECL, and IEEE-P1596. Drivers/receivers  
approach ECL speeds without the power and dual supply requirements.  
TRANSMISSION DISTANCE  
vs  
SIGNALING RATE  
100  
30% Jitter  
(see Note A)  
10  
5% Jitter  
(see Note A)  
1
24 AWG UTP 96  
(PVC Dielectric)  
0.1  
10  
100  
1000  
Signaling Rate − Mbps  
A. This parameter is the percentage of distortion of the unit interval (UI) with a pseudorandom data pattern.  
Figure 8. Typical Transmission Distance Versus Signaling Rate  
3.3 V  
1
16  
1A  
V
CC  
0.1 µF  
0.001 µF  
(see Note A)  
(see Note A)  
2
3
15  
14  
1Y  
1Z  
G
4A  
4Y  
4Z  
G
Z
= 100 Ω  
= 100 Ω  
O
O
Z
O
= 100 Ω  
4
5
13  
12  
V
CC  
2Z  
See Note B  
Z
6
7
11  
10  
9
2Y  
3Z  
3Y  
Z
O
= 100 Ω  
2A  
8
GND  
3A  
NOTES: A. Place a 0.1-µF and a 0.001-µF Z5U ceramic, mica, or polystyrene dielectric, 0805 size, chip capacitor between V and the ground  
CC  
plane. The capacitors should be located as close as possible to the device terminals.  
B. Unused enable inputs should be tied to V or GND, as appropriate.  
CC  
Figure 9. Typical Application Circuit Schematic  
11  
Submit Documentation Feedback  
SN55LVDS31, SN65LVDS31  
SN65LVDS3487, SN65LVDS9638  
www.ti.com  
SLLS261LJULY 1997REVISED JULY 2007  
APPLICATION INFORMATION (continued)  
1/4 ’LVDS31  
Strb/Data_TX  
Tp Bias on  
Twisted-Pair A  
Strb/Data_Enable  
TP  
TP  
’LVDS32  
55  
5 kΩ  
Data/Strobe  
55 Ω  
3.3 V  
20 kΩ  
500 Ω  
500 Ω  
VG on  
Twisted-Pair B  
1 Arb_RX  
20 kΩ  
3.3 V  
20 kΩ  
500 Ω  
500 Ω  
2 Arb_RX  
20 kΩ  
3.3 V  
Twisted-Pair B Only  
Port_Status  
7 kΩ  
7 kΩ  
10 kΩ  
3.3 kΩ  
NOTES: A. Resistors are leadless, thick film (0603), 5% tolerance.  
B. Decoupling capacitance is not shown, but recommended.  
C.  
V
CC  
is 3 V to 3.6 V.  
D. The differential output voltage of the ’LVDS31 can exceed that specified by IEEE1394.  
Figure 10. 100-Mbps IEEE 1394 Transceiver  
12  
Submit Documentation Feedback  
SN55LVDS31, SN65LVDS31  
SN65LVDS3487, SN65LVDS9638  
www.ti.com  
SLLS261LJULY 1997REVISED JULY 2007  
APPLICATION INFORMATION (continued)  
0.01 µF  
3.6 V  
1
16  
1A  
V
CC  
5 V  
0.1 µF  
1N645  
(see Note A)  
(2 places)  
2
3
15  
14  
1Y  
1Z  
G
4A  
4Y  
4Z  
G
Z
Z
= 100 Ω  
= 100 Ω  
O
Z
O
= 100 Ω  
4
5
13  
12  
V
CC  
2Z  
See Note B  
O
6
7
11  
10  
2Y  
3Z  
3Y  
Z
O
= 100 Ω  
2A  
9
8
GND  
3A  
A. Place a 0.1-μF Z5U ceramic, mica, or polystyrene dielectric, 0805 size, chip capacitor between VCC and the ground  
plane. The capacitor should be located as close as possible to the device terminals.  
B. Unused enable inputs should be tied to VCC or GND, as appropriate.  
Figure 11. Operation With 5-V Supply  
COLD SPARING  
Systems using cold sparing have a redundant device electrically connected without power supplied. To support  
this configuration, the spare must present a high-input impedance to the system so that it does not draw  
appreciable power. In cold sparing, voltage may be applied to an I/O before and during power up of a device.  
When the device is powered off, VCC must be clamped to ground and the I/O voltages applied must be within the  
specified recommended operating conditions.  
RELATED INFORMATION  
IBIS modeling is available for this device. Contact the local TI sales office or the TI Web site at www.ti.com for  
more information.  
For more application guidelines, see the following documents:  
Low-Voltage Differential Signaling Design Notes (SLLA014)  
Interface Circuits for TIA/EIA-644 (LVDS) (SLLA038)  
Reducing EMI With LVDS (SLLA030)  
Slew Rate Control of LVDS Circuits (SLLA034)  
Using an LVDS Receiver With RS-422 Data (SLLA031)  
Evaluating the LVDS EVM (SLLA033)  
13  
Submit Documentation Feedback  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Oct-2007  
PACKAGING INFORMATION  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
LCCC  
CDIP  
CFP  
Drawing  
5962-9762101Q2A  
5962-9762101QEA  
5962-9762101QFA  
5962-9762101VFA  
SN55LVDS31W  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
FK  
J
20  
16  
16  
16  
16  
16  
1
1
1
1
1
TBD  
TBD  
TBD  
TBD  
TBD  
POST-PLATE N / A for Pkg Type  
A42 SNPB  
A42 SNPB  
A42 SNPB  
A42 SNPB  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
N / A for Pkg Type  
W
W
W
D
CFP  
CFP  
SN65LVDS31D  
SOIC  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS31DG4  
SN65LVDS31DR  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
16  
16  
16  
16  
16  
16  
16  
16  
16  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS31DRG4  
SN65LVDS31NSR  
SN65LVDS31NSRG4  
SN65LVDS31PW  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SO  
NS  
NS  
PW  
PW  
PW  
PW  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SO  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
TSSOP  
TSSOP  
TSSOP  
TSSOP  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS31PWG4  
SN65LVDS31PWR  
SN65LVDS31PWRG4  
90 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
2000 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS31QPWQ1  
SN65LVDS31QPWRQ1  
SN65LVDS3487D  
OBSOLETE TSSOP  
OBSOLETE TSSOP  
PW  
PW  
D
16  
16  
16  
TBD  
TBD  
Call TI  
Call TI  
Call TI  
Call TI  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
SOIC  
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS3487DG4  
SN65LVDS3487DR  
SOIC  
D
D
16  
16  
16  
8
40 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS3487DRG4  
SN65LVDS9638D  
SOIC  
D
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SOIC  
D
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS9638DG4  
SN65LVDS9638DGK  
SN65LVDS9638DGKG4  
SN65LVDS9638DGKR  
SN65LVDS9638DGKRG4  
SN65LVDS9638DGN  
SOIC  
D
8
75 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
MSOP  
MSOP  
MSOP  
MSOP  
MSOP-  
DGK  
DGK  
DGK  
DGK  
DGN  
8
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
8
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
9-Oct-2007  
Orderable Device  
Status (1)  
Package Package  
Pins Package Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)  
Qty  
Type  
Drawing  
Power  
PAD  
no Sb/Br)  
SN65LVDS9638DGNR  
ACTIVE  
ACTIVE  
MSOP-  
Power  
PAD  
DGN  
DGN  
8
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS9638DGNRG4  
MSOP-  
Power  
PAD  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS9638DR  
ACTIVE  
ACTIVE  
SOIC  
D
D
8
8
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SN65LVDS9638DRG4  
SOIC  
2500 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
SNJ55LVDS31FK  
SNJ55LVDS31J  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
LCCC  
CDIP  
CFP  
FK  
J
20  
16  
16  
8
1
1
1
TBD  
TBD  
TBD  
POST-PLATE N / A for Pkg Type  
A42 SNPB  
A42 SNPB  
N / A for Pkg Type  
N / A for Pkg Type  
SNJ55LVDS31W  
SNLVDS9638DGNG4  
W
MSOP-  
Power  
PAD  
DGN  
80 Green (RoHS & CU NIPDAU Level-1-260C-UNLIM  
no Sb/Br)  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in  
a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2)  
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check  
http://www.ti.com/productcontent for the latest availability information and additional product content details.  
TBD: The Pb-Free/Green conversion plan has not been defined.  
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements  
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered  
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.  
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and  
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS  
compatible) as defined above.  
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame  
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)  
(3)  
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder  
temperature.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is  
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the  
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take  
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on  
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited  
information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI  
to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Nov-2007  
TAPE AND REEL BOX INFORMATION  
Device  
Package Pins  
Site  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) (mm) Quadrant  
(mm)  
330  
330  
330  
330  
330  
330  
330  
(mm)  
16  
SN65LVDS31DR  
SN65LVDS31NSR  
SN65LVDS31PWR  
SN65LVDS3487DR  
SN65LVDS9638DGKR  
SN65LVDS9638DGNR  
SN65LVDS9638DR  
D
NS  
PW  
D
16  
16  
16  
16  
8
SITE 27  
SITE 41  
SITE 60  
SITE 60  
SITE 35  
SITE 35  
SITE 60  
6.5  
8.2  
6.67  
6.5  
5.3  
5.3  
6.4  
10.3  
10.5  
5.4  
2.1  
2.5  
1.6  
2.1  
1.4  
1.4  
2.1  
8
12  
8
16  
16  
12  
16  
12  
12  
12  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
16  
12  
16  
10.3  
3.4  
8
DGK  
DGN  
D
12  
8
8
12  
3.4  
8
8
12  
5.2  
8
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Nov-2007  
Device  
Package  
Pins  
Site  
Length (mm) Width (mm) Height (mm)  
SN65LVDS31DR  
SN65LVDS31NSR  
SN65LVDS31PWR  
SN65LVDS3487DR  
SN65LVDS9638DGKR  
SN65LVDS9638DGNR  
SN65LVDS9638DR  
D
NS  
PW  
D
16  
16  
16  
16  
8
SITE 27  
SITE 41  
SITE 60  
SITE 60  
SITE 35  
SITE 35  
SITE 60  
342.9  
346.0  
346.0  
346.0  
358.0  
358.0  
346.0  
336.6  
346.0  
346.0  
346.0  
335.0  
335.0  
346.0  
28.58  
33.0  
29.0  
33.0  
35.0  
35.0  
29.0  
DGK  
DGN  
D
8
8
Pack Materials-Page 2  
MECHANICAL DATA  
MLCC006B – OCTOBER 1996  
FK (S-CQCC-N**)  
LEADLESS CERAMIC CHIP CARRIER  
28 TERMINAL SHOWN  
A
B
NO. OF  
TERMINALS  
**  
18 17 16 15 14 13 12  
MIN  
MAX  
MIN  
MAX  
0.342  
(8,69)  
0.358  
(9,09)  
0.307  
(7,80)  
0.358  
(9,09)  
19  
20  
11  
10  
9
20  
28  
44  
52  
68  
84  
0.442  
(11,23)  
0.458  
(11,63)  
0.406  
(10,31)  
0.458  
(11,63)  
21  
B SQ  
22  
0.640  
(16,26)  
0.660  
(16,76)  
0.495  
(12,58)  
0.560  
(14,22)  
8
A SQ  
23  
0.739  
(18,78)  
0.761  
(19,32)  
0.495  
(12,58)  
0.560  
(14,22)  
7
24  
25  
6
0.938  
(23,83)  
0.962  
(24,43)  
0.850  
(21,6)  
0.858  
(21,8)  
5
1.141  
(28,99)  
1.165  
(29,59)  
1.047  
(26,6)  
1.063  
(27,0)  
26 27 28  
1
2
3
4
0.080 (2,03)  
0.064 (1,63)  
0.020 (0,51)  
0.010 (0,25)  
0.020 (0,51)  
0.010 (0,25)  
0.055 (1,40)  
0.045 (1,14)  
0.045 (1,14)  
0.035 (0,89)  
0.045 (1,14)  
0.035 (0,89)  
0.028 (0,71)  
0.022 (0,54)  
0.050 (1,27)  
4040140/D 10/96  
NOTES: A. All linear dimensions are in inches (millimeters).  
B. This drawing is subject to change without notice.  
C. This package can be hermetically sealed with a metal lid.  
D. The terminals are gold plated.  
E. Falls within JEDEC MS-004  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
MECHANICAL DATA  
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999  
PW (R-PDSO-G**)  
PLASTIC SMALL-OUTLINE PACKAGE  
14 PINS SHOWN  
0,30  
0,19  
M
0,10  
0,65  
14  
8
0,15 NOM  
4,50  
4,30  
6,60  
6,20  
Gage Plane  
0,25  
1
7
0°8°  
A
0,75  
0,50  
Seating Plane  
0,10  
0,15  
0,05  
1,20 MAX  
PINS **  
8
14  
16  
20  
24  
28  
DIM  
3,10  
2,90  
5,10  
4,90  
5,10  
4,90  
6,60  
6,40  
7,90  
9,80  
9,60  
A MAX  
A MIN  
7,70  
4040064/F 01/97  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.  
D. Falls within JEDEC MO-153  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements,  
improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.  
Customers should obtain the latest relevant information before placing orders and should verify that such information is current and  
complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s  
standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should  
provide adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask  
work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services  
are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such  
products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under  
the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an  
unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties  
may be subject to additional restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service  
voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business  
practice. TI is not responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would  
reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement  
specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications  
of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related  
requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any  
applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its  
representatives against any damages arising out of the use of TI products in such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is  
solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in  
connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products  
are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any  
non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Amplifiers  
Data Converters  
DSP  
Applications  
Audio  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/audio  
Automotive  
Broadband  
Digital Control  
Military  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/military  
Interface  
interface.ti.com  
logic.ti.com  
Logic  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
Optical Networking  
Security  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
microcontroller.ti.com  
www.ti-rfid.com  
www.ti.com/lpw  
Telephony  
Low Power  
Wireless  
Video & Imaging  
Wireless  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2007, Texas Instruments Incorporated  

相关型号:

SNLVDT3486BDRG4

HIGH-SPEED DIFFERENTIAL RECEIVERS
TI

SNM-100-BK-G

.050 MICRO STRIPS
SAMTEC

SNM-100-BK-T

Interconnection Device, ROHS COMPLIANT
SAMTEC

SNM14

Wire Terminal
AMPHENOL

SNM54246J

IC,DECODER/DRIVER,STD-TTL,DIP,16PIN,CERAMIC
TI

SNM54246W

IC,DECODER/DRIVER,STD-TTL,FP,16PIN,CERAMIC
TI

SNM54247J

IC,DECODER/DRIVER,STD-TTL,DIP,16PIN,CERAMIC
TI

SNM5446AJ

IC,DECODER/DRIVER,STD-TTL,DIP,16PIN,CERAMIC
TI

SNM5448W

IC,DECODER/DRIVER,STD-TTL,FP,16PIN,CERAMIC
TI

SNM54LS347W

IC,DECODER/DRIVER,LS-TTL,FP,16PIN,CERAMIC
TI

SNM54LS440J

IC,BUS EXCHANGER,LS-TTL,DIP,20PIN,CERAMIC
TI

SNM55116J

IC,LINE TRANSCEIVER,BIPOLAR,1 DRIVER,1 RCVR,DIP,16PIN,CERAMIC
TI