SRC4184IPAGR [TI]

4 通道异步采样速率转换器 | PAG | 64 | -40 to 85;
SRC4184IPAGR
型号: SRC4184IPAGR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

4 通道异步采样速率转换器 | PAG | 64 | -40 to 85

商用集成电路 转换器
文件: 总45页 (文件大小:625K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SRC4184  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
4-Channel, Asynchronous Sample Rate Converter  
D
INPUT-TO-OUTPUT SAMPLING RATIO  
READBACK (SOFTWARE MODE ONLY)  
FD EATURES  
AUTOMATIC SENSING OF INPUT-TO-OUTPUT  
SAMPLING RATIO  
D
POWER-DOWN MODES  
D
SUPPORTS OPERATION FROM A SINGLE +1.8V  
OR +3.3V POWER SUPPLY  
D
D
D
WIDE INPUT-TO-OUTPUT SAMPLING RANGE:  
16:1 to 1:16  
D
AVAILABLE IN A TQFP-64 PACKAGE  
SUPPORTS INPUT AND OUTPUT SAMPLING  
RATES UP TO 212kHz  
DYNAMIC RANGE: 128dB (−60dbFS Input,  
BW = 20Hz to f /2, A-Weighted)  
AD PPLICATIONS  
s
DIGITAL MIXING CONSOLES  
D
THD+N: −125dB (0dbFS Input, BW = 20Hz to f /2)  
s
HIGH-PERFORMANCE, LINEAR PHASE DIGITAL  
FILTERING  
D
D
D
D
DIGITAL AUDIO WORKSTATIONS  
AUDIO DISTRIBUTION SYSTEMS  
BROADCAST STUDIO EQUIPMENT  
GENERAL DIGITAL AUDIO PROCESSING  
D
D
D
FLEXIBLE AUDIO SERIAL PORTS:  
− Master or Slave Mode Operation  
− Supports I2S, Left-Justified, Right-Justified,  
and TDM Data Formats  
− TDM Mode Allows Daisy-Chaining of Up to  
Four Devices  
DESCRIPTION  
The SRC4184 is a four-channel, asynchronous sample  
rate converter (ASRC), designed for professional and  
broadcast audio applications. The SRC4184 combines a  
wide input-to-output sampling ratio with outstanding  
dynamic range and ultra low distortion. The input and  
output serial ports support the most common audio data  
formats, as well as a time division multiplexed (TDM)  
format. This allows the SRC4184 to interface to a wide  
range of audio data converters, digital audio receivers and  
transmitters, and digital signal processors.  
SUPPORTS 24-, 20-, 18-, or 16-BIT INPUT AND  
OUTPUT DATA:  
− All Output Data is Dithered from the Internal  
28-Bit Data Path  
D
D
SERIAL PERIPHERAL INTERFACE (SPI)PORT  
SUPPORTS REGISTER READ AND WRITE  
OPERATIONS IN SOFTWARE MODE  
BYPASS MODE:  
− Routes Input Port Data Directly to the Output  
Port  
The SRC4184 may be operated in Hardware mode as a  
standalone pin-programmed device, with dedicated  
control pins for serial port mode, audio data format, soft  
mute, bypass, and digital filtering functions. Alternatively,  
the SRC4184 may be operated in Software mode, where  
a four-wire serial peripheral interface (SPI) port provides  
access to internal control and status registers.  
D
D
D
FOUR GROUP DELAY OPTIONS FOR THE  
INTERPOLATION FILTER  
DIRECT DOWNSAMPLING OPTION FOR THE  
DECIMATION FILTER  
DIGITAL DE-EMPHASIS FILTER:  
− User-Selectable for 32kHz, 44.1kHz, and  
48kHz Sampling Rates  
The SRC4184 operates from either a +1.8V core supply or  
a +3.3V core supply. When operating from +3.3V, the  
+1.8V required by the core logic is derived from an internal  
voltage regulator. The SRC4184 also requires a digital I/O  
supply, which operates from +1.65V to +3.6V. The  
SRC4184 is available in a TQFP-64 package.  
D
D
SOFT MUTE FUNCTION  
PROGRAMMABLE DIGITAL OUTPUT  
ATTENUATION (SOFTWARE MODE ONLY):  
− 256 Steps: 0dB to −127.5dB with 0.5dB Steps  
U.S. Patent No. 7,262,716.  
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments  
semiconductor products and disclaimers thereto appears at the end of this data sheet.  
All trademarks are the property of their respective owners.  
ꢀꢁ ꢂ ꢃꢄ ꢅ ꢆꢇ ꢂꢈ ꢃ ꢉꢆꢉ ꢊꢋ ꢌꢍ ꢎ ꢏꢐ ꢑꢊꢍꢋ ꢊꢒ ꢓꢔ ꢎ ꢎ ꢕꢋꢑ ꢐꢒ ꢍꢌ ꢖꢔꢗ ꢘꢊꢓ ꢐꢑꢊ ꢍꢋ ꢙꢐ ꢑꢕꢚ ꢀꢎ ꢍꢙꢔ ꢓꢑꢒ  
ꢓ ꢍꢋ ꢌꢍꢎ ꢏ ꢑꢍ ꢒ ꢖꢕ ꢓ ꢊ ꢌꢊ ꢓ ꢐ ꢑꢊ ꢍꢋꢒ ꢖ ꢕꢎ ꢑꢛꢕ ꢑꢕ ꢎ ꢏꢒ ꢍꢌ ꢆꢕꢜ ꢐꢒ ꢇꢋꢒ ꢑꢎ ꢔꢏ ꢕꢋꢑ ꢒ ꢒꢑ ꢐꢋꢙ ꢐꢎ ꢙ ꢝ ꢐꢎ ꢎ ꢐ ꢋꢑꢞꢚ  
ꢀꢎ ꢍ ꢙꢔꢓ ꢑ ꢊꢍ ꢋ ꢖꢎ ꢍ ꢓ ꢕ ꢒ ꢒ ꢊꢋ ꢟ ꢙꢍ ꢕ ꢒ ꢋꢍꢑ ꢋꢕ ꢓꢕ ꢒꢒ ꢐꢎ ꢊꢘ ꢞ ꢊꢋꢓ ꢘꢔꢙ ꢕ ꢑꢕ ꢒꢑꢊ ꢋꢟ ꢍꢌ ꢐꢘ ꢘ ꢖꢐ ꢎ ꢐꢏ ꢕꢑꢕ ꢎ ꢒꢚ  
Copyright 2004, Texas Instruments Incorporated  
www.ti.com  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
This integrated circuit can be damaged by ESD. Texas  
Instruments recommends that all integrated circuits be  
(1)  
ABSOLUTE MAXIMUM RATINGS  
Core Supply Voltage  
handledwith appropriate precautions. Failure to observe  
proper handling and installation procedures can cause damage.  
VDD18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3V to +2.0V  
VDD33 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3V to +4.0V  
ESD damage can range from subtle performance degradation to  
complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could  
cause the device not to meet its published specifications.  
Digital I/O Supply Voltage, V . . . . . . . . . . . . . . . . −0.3V to +4.0V  
IO  
Digital Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . −0.3V to +4.0V  
Operating Case Temperature Range, T . . . . . . . . −40°C to +85°C  
C
Storage Temperature Range, T  
. . . . . . . . . . . −65°C to +150°C  
STG  
(1)  
Stresses above these ratings may cause permanent damage.  
Exposure to absolute maximum conditions for extended periods  
may degrade device reliability. These are stress ratings only, and  
functional operation of the device at these or any other conditions  
beyond those specified is not supported.  
ORDERING INFORMATION  
For the most current package and ordering information, see the Package Option Addendum located at the end of this data  
sheet.  
ELECTRICAL CHARACTERISTICS  
All specifications at T = +25°C, VDD33 = +3.3V, V = +3.3V, REGEN = High, and VDD18 floating, unless otherwise noted.  
A
IO  
SRC4184  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
DYNAMIC PERFORMANCE  
Resolution  
24  
Bits  
kHz  
kHz  
Input Sampling Frequency, f  
4
4
212  
212  
sIN  
Output Sampling Frequency, f  
sOUT  
INPUT/OUTPUT SAMPLING RATIO  
Upsampling  
1:16  
16:1  
Downsampling  
DYNAMIC RANGE  
BW = 20Hz to f  
/2, −60dBFS Input  
sOUT  
f
= 1kHz, A-Weighted  
IN  
44.1kHz:48kHz  
48kHz:44.1kHz  
48kHz:96kHz  
44.1kHz:192kHz  
96kHz:48kHz  
192kHz:12kHz  
192kHz:32kHz  
192kHz:48kHz  
32kHz:48kHz  
12kHz:192kHz  
128  
128  
128  
128  
128  
128  
128  
128  
128  
128  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
TOTAL HARMONIC DISTORTION + NOISE  
BW = 20Hz to f  
/2, −60dBFS Input  
= 1kHz, Unweighted  
sOUT  
f
IN  
44.1kHz:48kHz  
48kHz:44.1kHz  
−125  
−125  
−125  
−125  
−125  
−125  
−125  
−125  
−125  
−125  
0
dB  
dB  
48kHz:96kHz  
dB  
44.1kHz:192kHz  
96kHz:48kHz  
dB  
dB  
192kHz:12kHz  
dB  
192kHz:32kHz  
dB  
192kHz:48kHz  
dB  
32kHz:48kHz  
dB  
12kHz:192kHz  
dB  
Interchannel Gain Mismatch  
Interchannel Phase Deviation  
dB  
0
degrees  
(1)  
(2)  
(3)  
(4)  
(5)  
Dynamic performance is measured with an Audio Precision System Two Cascade or Cascade Plus test system.  
f
f
= min (f ).  
, f  
sMIN  
sIN sOUT  
= max (f , f  
).  
sMAX  
sIN sOUT  
Power-supply current for power-down modes is measured without loading.  
Dynamic current is measured with active loading and the excercized output pins equal to 2mA.  
2
ꢠ ꢁꢅ ꢡꢢ ꢣꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
ELECTRICAL CHARACTERISTICS (continued)  
All specifications at T = +25°C, VDD33 = +3.3V, V = +3.3V, REGEN = High, and VDD18 floating, unless otherwise noted.  
A
IO  
SRC4184  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
DIGITAL ATTENUATION  
Software Mode Only  
Minimum  
Maximum  
0
dB  
dB  
dB  
dB  
−127.5  
0.5  
Step Size  
Mute Attenuation  
24-Bit Word Length  
−128  
DIGITAL INTERPOLATION FILTER CHARACTERISTICS  
Passband  
0.4535 × f  
Hz  
sIN  
Passband Ripple  
0.007  
dB  
Transition Band  
0.4535 × f  
0.5465 × f  
−128  
0.5465 × f  
Hz  
sIN  
sIN  
sIN  
Stop Band  
Hz  
Stop Band Attenuation  
dB  
Group Delay (64 sample buffer)  
Group Delay (64 sample buffer)  
Group Delay (32 sample buffer)  
Group Delay (32 sample buffer)  
Group Delay (16 sample buffer)  
Group Delay (16 sample buffer)  
Group Delay (8 sample buffer)  
Group Delay (8 sample buffer)  
Decimation Filter Enabled  
Direct Downsampling Enabled  
Decimation Filter Enabled  
Direct Downsampling Enabled  
Decimation Filter Enabled  
Direct Downsampling Enabled  
Decimation Filter Enabled  
Direct Downsampling Enabled  
102.53125/f  
seconds  
seconds  
seconds  
seconds  
seconds  
seconds  
seconds  
seconds  
sIN  
sIN  
sIN  
sIN  
102/f  
sIN  
70.53125/f  
70/f  
sIN  
54.53125/f  
54/f  
sIN  
46.53125/f  
46/f  
sIN  
DIGITAL DECIMATION FILTER CHARACTERISTICS  
Passband  
0.4535×f  
sOUT  
Hz  
dB  
Hz  
Hz  
dB  
Passband Ripple  
0.008  
Transition Band  
0.4535×f  
sOUT  
0.5465 ×f  
sOUT  
Stop Band  
0.5465×f  
sOUT  
Stop Band Attenuation  
Group Delay  
−128  
Decimation Filter  
Decimation Filter Enabled  
36.46875/f  
0
seconds  
seconds  
sOUT  
Direct Downsampling  
Direct Downsampling Enabled  
DIGITAL DE-EMPHASIS  
De-Emphasis Error for f = 32kHz, 44.1kHz, or  
48kHz  
s
De-Emphasis Enabled  
0.001  
dB  
DIGITAL I/O CHARACTERISTICS  
High-Level Input Voltage  
Low-Level Input Voltage  
High-Level Input Current  
Low-Level Input Current  
High-Level Output Voltage  
Low-Level Output Voltage  
Input Capacitance  
V
0.7 × V  
V
IO  
0.3 × V  
V
V
IH  
IO  
V
0
IL  
IO  
IO  
I
0.5  
0.5  
10  
µA  
µA  
V
IH  
I
10  
IL  
V
I
= −4mA  
= +4mA  
0.8 × V  
V
OH  
O
O
IO  
IO  
V
I
0
0.2 × V  
V
OL  
C
3
pF  
IN  
SWITCHING CHARACTERISTICS  
Reference Clock Timing  
(2)(3)  
RCKI Frequency  
128 × f  
50  
MHz  
ns  
sMIN  
RCKI Period  
t
20  
1/(128× f  
)
RCKIP  
sMIN  
RCKI Pulsewidth High  
RCKI Pulsewidth Low  
Reset Timing  
t
0.4 × t  
0.4 × t  
ns  
RCKIH  
RCKIP  
RCKIP  
t
ns  
RCKIL  
RST Pulsewidth Low  
Delay Following RST Rising Edge  
Input Serial Port Timing  
LRCKI to BCKI Setup Time  
BCKI Pulsewidth High  
BCKI Pulsewidth Low  
SDIN Data Setup Time  
SDIN Data Hold Time  
t
500  
ns  
RSTL  
Software Mode Only  
500  
µs  
t
10  
10  
10  
10  
10  
ns  
ns  
ns  
ns  
ns  
LRIS  
t
SIH  
t
SIL  
t
LDIS  
LDIH  
t
(1)  
(2)  
(3)  
(4)  
(5)  
Dynamic performance is measured with an Audio Precision System Two Cascade or Cascade Plus test system.  
f
f
= min (f ).  
, f  
sMIN  
sIN sOUT  
= max (f , f  
).  
sMAX  
sIN sOUT  
Power-supply current for power-down modes is measured without loading.  
Dynamic current is measured with active loading and the excercized output pins equal to 2mA.  
3
ꢠ ꢁꢅꢡ ꢢ ꢣ ꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
ELECTRICAL CHARACTERISTICS (continued)  
All specifications at T = +25°C, VDD33 = +3.3V, V = +3.3V, REGEN = High, and VDD18 floating, unless otherwise noted.  
A
IO  
SRC4184  
TYP  
PARAMETER  
CONDITIONS  
MIN  
MAX  
UNITS  
SWITCHING CHARACTERISTICS (continued)  
Output Serial Port Timing  
SDOUT Data Delay Time  
SDOUT Data Hold Time  
BCKO Pulsewidth High  
BCKO Pulsewidth Low  
TDM Mode Timing  
t
10  
ns  
ns  
ns  
ns  
DOPD  
t
2
10  
5
DOH  
t
SOH  
t
SOL  
LRCKO Setup Time  
t
10  
10  
10  
10  
ns  
ns  
ns  
ns  
LROS  
LRCKO Hold Time  
t
LROH  
TDMI Data Setup Time  
TDMI Data Hold Time  
SPI Timing  
t
TDMS  
t
TDMH  
CCLK Frequency  
25  
MHz  
ns  
CDATA Setup Time  
t
12  
8
CDS  
CDH  
CDATA Hold Time  
t
ns  
CS Falling to CCLK Rising  
CCLK Falling to CS Rising  
CCLK Falling to CDOUT Data Valid  
CS Rising to CDOUT High Impedance  
t
15  
12  
ns  
CSCR  
t
ns  
CFCS  
t
5
5
ns  
CFDO  
t
ns  
CSZ  
(4, 5)  
POWER SUPPLIES  
Operating Voltage  
VDD18  
REGEN = 0  
REGEN = 1  
+1.65  
+3.0  
+1.8  
+3.3  
+3.3  
+2.0  
+3.6  
+3.6  
V
V
V
VDD33  
V
+1.65  
IO  
Supply Current  
VDD18 = +1.8V, V = +1.8V, REGEN = 0  
IO  
IDD, Hard Power-Down  
IDD, Soft Power-Down  
IDD, Dynamic  
RST = 0, No Clocks  
100  
100  
µA  
µA  
mA  
µA  
µA  
mA  
PDN Bit = 0, No Clocks  
100  
80  
f
= 96kHz, f = 192kHz  
sIN  
sOUT  
IIO, Hard Power-Down  
IIO, Soft Power-Down  
IIO, Dynamic  
RST = 0, No Clocks  
PDN Bit = 0, No Clocks  
100  
6
f
= 96kHz, f  
= 192kHz  
sIN  
sOUT  
Total Power Dissipation  
VDD18 = +1.8V, V = +1.8V, REGEN = 0  
IO  
P
P
P
, Hard Power-Down  
, Soft Power-Down  
, Dynamic  
RST = 0, No Clocks  
1
mW  
µW  
mW  
D
D
D
PDN Bit = 0, No Clocks  
360  
155  
f
= f  
= 192kHz  
sIN sOUT  
Supply Current  
VDD33 = +3.3V, V = +3.3V, REGEN = 1  
IO  
IDD, Hard Power-Down  
IDD, Soft Power-Down  
IDD, Dynamic  
RST = 0, No Clocks  
100  
100  
µA  
mA  
mA  
µA  
µA  
mA  
PDN Bit = 0, No Clocks  
6
f
f
= 96kHz, f  
= 192kHz  
90  
sIN  
sOUT  
IIO, Hard Power-Down  
IIO, Soft Power-Down  
IIO, Dynamic  
RST = 0, No Clocks  
PDN Bit = 0, No Clocks  
100  
6
= 96kHz, f  
= 192kHz  
sIN  
sOUT  
Total Power Dissipation  
VDD33 = +3.3V, V = +3.3V, REGEN = 1  
IO  
P
P
P
, Hard Power-Down  
, Soft Power-Down  
, Dynamic  
RST = 0, No Clocks  
1
mW  
mW  
mW  
D
D
D
PDN Bit = 0, No Clocks  
21  
f
= f  
= 192kHz  
320  
sIN sOUT  
(1)  
Dynamic performance is measured with an Audio Precision System Two Cascade or Cascade Plus test system.  
(2)  
(3)  
(4)  
(5)  
f
f
= min (f ).  
, f  
sMIN  
sIN sOUT  
= max (f , f  
).  
sMAX  
sIN sOUT  
Power-supply current for power-down modes is measured without loading.  
Dynamic current is measured with active loading and the excercized output pins equal to 2mA.  
4
ꢠ ꢁꢅ ꢡꢢ ꢣꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
PIN CONFIGURATION  
Top View  
TQFP  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
IFMTA0  
IFMTA1  
IFMTA2  
OFMTA0  
OFMTA1  
OWLA0  
OWLA1  
BYPA  
1
2
3
4
5
6
7
8
9
48 IFMTB0  
47  
46  
45  
IFMTB1  
IFMTB2  
OFMTB0  
44 OFMTB1  
43 OWLB0  
42  
41  
40  
OWLB1  
BYPB  
SRC4184  
LGRPA0  
LGRPB0  
LGRPA1 10  
39 LGRPB1  
11  
12  
13  
38  
37  
36  
DDNA  
DEMA0  
DEMA1  
DDNB  
DEMB0  
DEMB1 (CDOUT)  
MODEA0 14  
MODEA1 15  
35 MODEB0 (CS)  
34 MODEB1 (CCLK)  
16  
33  
MODEB2 (CDIN)  
MODEA2  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
5
ꢠ ꢁꢅꢡ ꢢ ꢣ ꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
PIN DESCRIPTIONS  
PIN #  
NAME  
I/O  
DESCRIPTION  
(1)  
(1)  
(1)  
1
2
IFMTA0  
IFMTA1  
IFMTA2  
OFMTA0  
OFMTA1  
OWLA0  
OWLA1  
BYPA  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Output  
Input  
Input  
Input  
Input  
Ground  
Power  
Input  
Power  
Input  
Input  
Output  
Output  
Input  
Input  
Input  
I/O  
SRC A Audio Input Data Format  
SRC A Audio Input Data Format  
SRC A Audio Input Data Format  
3
(1)  
(1)  
4
SRC A Audio Output Data Format  
SRC A Audio Output Data Format  
5
(1)  
(1)  
6
SRC A Audio Output Data Word Length  
SRC A Audio Output Data Word Length  
SRC A Bypass Mode (Active High)  
7
8
(1)  
9
LGRPA0  
LGRPA1  
DDNA  
SRC A Low Group Delay Mode  
(1)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24, 25  
26  
27, 28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
SRC A Low Group Delay Mode  
(1)  
SRC A Direct Downsampling Mode (Active High)  
(1)  
DEMA0  
SRC A Digital De-Emphasis Filter Mode  
SRC A Digital De-Emphasis Filter Mode  
(1)  
DEMA1  
(1)  
(1)  
(1)  
MODEA0  
MODEA1  
MODEA2  
RATIOA  
RDYA  
SRC A Serial Port Mode  
SRC A Serial Port Mode  
SRC A Serial Port Mode  
SRC A Ratio Flag  
SRC A Ready Flag (Active Low)  
SRC A Output Soft Mute  
MUTEA  
RCKIA  
SRC A Reference Clock  
RST  
Reset and Power-Down (Active Low)  
H/S  
Control Mode (0 = Software, 1 = Hardware)  
Digital Ground  
DGND  
VDD33  
Core Supply, +3.3V. Required when REGEN is high. When REGEN is low, VDD33 must be left unconnected.  
REGEN  
VDD18  
Voltage Regulator Enable (Active High)  
Core Supply, +1.8V. Required when REGEN is low. When REGEN is high, VDD18 must be left unconnected.  
RCKIB  
SRC B Reference Clock  
SRC B Output Soft Mute  
SRC B Ready Flag (Active Low)  
SRC B Ratio Flag  
MUTEB  
RDYB  
RATIOB  
MODEB2 or CDIN  
MODEB1 or CCLK  
MODEB0 or CS  
DEMB1 or CDOUT  
DEMB0  
(1)  
(2)  
SRC B Serial Port Mode or SPI Port Serial Data Input  
(1)  
(1)  
(2)  
or SPI Port Data Clock  
SRC B Serial Port Mode  
SRC B Serial Port Mode  
(2)  
or SPI Port Chip Select (Active Low)  
(1)  
(2)  
SRC B Digital De-Emphasis Filter Mode  
SRC B Digital De-Emphasis Filter Mode  
or SPI Port Serial Data Output  
(1)  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
I/O  
(1)  
DDNB  
SRC B Direct Downsampling Mode (Active High)  
(1)  
(1)  
LGRPB1  
LGRPB0  
BYPB  
SRC B Low Group Delay Mode  
SRC B Low Group Delay Mode  
SRC B Bypass Mode (Active High)  
SRC B Audio Output Data Word Length  
SRC B Audio Output Data Word Length  
(1)  
(1)  
OWLB1  
OWLB0  
OFMTB1  
OFMTB0  
IFMTB2  
IFMTB1  
IFMTB0  
SDOUTB  
BCKOB  
LRCKOB  
TDMIB  
(1)  
SRC B Audio Output Data Format  
SRC B Audio Output Data Format  
(1)  
(1)  
SRC B Audio Input Data Format  
SRC B Audio Input Data Format  
SRC B Audio Input Data Format  
SRC B Audio Output Data  
(1)  
(1)  
SRC B Audio Output Bit Clock  
I/O  
SRC B Audio Output Left/Right or Word Clock  
SRC B TDM Input Data (TDM Format Only)  
SRC B Audio Input Bit Clock  
Input  
I/O  
BCKIB  
LRCKIB  
SDINB  
I/O  
SRC B Audio Input Left/Right or Word Clock  
SRC B Audio Input Data  
Input  
Power  
Ground  
Input  
I/O  
V
Digital I/O Supply, +1.65V to +3.6V  
Digital Ground  
IO  
DGND  
SDINA  
SRC A Audio Input Data  
LRCKIA  
BCKIA  
SRC A Audio Input Left/Right or Word Clock  
SRC A Audio Input Bit Clock  
I/O  
TDMIA  
Input  
I/O  
SRC A TDM Input Data (TDM Format Only)  
SRC A Audio Output Left/Right or Word Clock  
SRC A Audio Output Bit Clock  
LRCKOA  
BCKOA  
SDOUTA  
I/O  
Output  
SRC A Audio Output Data  
(1)  
(2)  
Disabled in Software control mode.  
Disabled in Hardware control mode.  
6
ꢠ ꢁꢅ ꢡꢢ ꢣꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
TYPICAL CHARACTERISTICS  
All specifications at T = +25°C, VDD33 = +3.3V, V = +3.3V, REGEN = High, and VDD18 floating, unless otherwise noted.  
A
IO  
FFT PLOT  
FFT PLOT  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
20  
100  
1k  
10k 16k  
20  
100  
1k  
10k 16k  
Frequency (Hz)  
Frequency (Hz)  
FFT PLOT  
FFT PLOT  
0
60  
70  
80  
90  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
20  
100  
1k  
10k  
22k  
20  
100  
1k  
10k  
22k  
Frequency (Hz)  
Frequency (Hz)  
FFT PLOT  
FFT PLOT  
0
60  
70  
80  
90  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
20  
100  
1k  
10k  
24k  
20  
100  
1k  
10k  
24k  
Frequency (Hz)  
Frequency (Hz)  
7
ꢠ ꢁꢅꢡ ꢢ ꢣ ꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
TYPICAL CHARACTERISTICS (continued)  
All specifications at T = +25°C, VDD33 = +3.3V, V = +3.3V, REGEN = High, and VDD18 floating, unless otherwise noted.  
IO  
A
FFT PLOT  
FFT PLOT  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
20  
100  
1k  
10k 16k  
20  
100  
1k  
10k 16k  
Frequency (Hz)  
Frequency (Hz)  
FFT PLOT  
FFT PLOT  
0
60  
70  
80  
90  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
20  
100  
1k  
10k  
22k  
20  
100  
1k  
10k  
22k  
Frequency (Hz)  
Frequency (Hz)  
FFT PLOT  
FFT PLOT  
0
60  
70  
80  
90  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
20  
100  
1k  
10k  
24k  
20  
100  
1k  
10k  
24k  
Frequency (Hz)  
Frequency (Hz)  
8
ꢠ ꢁꢅ ꢡꢢ ꢣꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
TYPICAL CHARACTERISTICS (continued)  
All specifications at T = +25°C, VDD33 = +3.3V, V = +3.3V, REGEN = High, and VDD18 floating, unless otherwise noted.  
IO  
A
FFT PLOT  
FFT PLOT  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
20  
100  
1k  
10k  
44k  
20  
100  
1k  
10k  
44k  
Frequency (Hz)  
Frequency (Hz)  
FFT PLOT  
FFT PLOT  
0
60  
70  
80  
90  
fsIN:fsOUT = 44.1kHz:192kHz  
fIN = 1kHz  
10  
20  
30  
40  
50  
60  
70  
80  
90  
with 0dBFS Amplitude  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
20  
100  
1k  
10k  
96k  
20  
100  
1k  
10k  
96k  
Frequency (Hz)  
Frequency (Hz)  
FFT PLOT  
FFT PLOT  
0
60  
70  
80  
90  
fsIN:fsOUT = 48kHz:32kHz  
fIN = 1kHz  
with 0dBFS Amplitude  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
20  
100  
1k  
10k 16k  
20  
100  
1k  
10k 16k  
Frequency (Hz)  
Frequency (Hz)  
9
ꢠ ꢁꢅꢡ ꢢ ꢣ ꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
TYPICAL CHARACTERISTICS (continued)  
All specifications at T = +25°C, VDD33 = +3.3V, V = +3.3V, REGEN = High, and VDD18 floating, unless otherwise noted.  
IO  
A
FFT PLOT  
FFT PLOT  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
20  
100  
1k  
10k  
22k  
24k  
48k  
20  
100  
1k  
10k  
22k  
Frequency (Hz)  
Frequency (Hz)  
FFT PLOT  
FFT PLOT  
0
60  
70  
80  
90  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
20  
100  
1k  
10k  
20  
100  
1k  
10k  
24k  
Frequency (Hz)  
Frequency (Hz)  
FFT PLOT  
FFT PLOT  
0
60  
70  
80  
90  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
20  
100  
1k  
10k  
20  
100  
1k  
10k  
48k  
Frequency (Hz)  
Frequency (Hz)  
10  
ꢠ ꢁꢅ ꢡꢢ ꢣꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
TYPICAL CHARACTERISTICS (continued)  
All specifications at T = +25°C, VDD33 = +3.3V, V = +3.3V, REGEN = High, and VDD18 floating, unless otherwise noted.  
IO  
A
FFT PLOT  
FFT PLOT  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
20  
100  
1k  
10k  
96k  
20  
100  
1k  
10k  
96k  
Frequency (Hz)  
Frequency (Hz)  
FFT PLOT  
FFT PLOT  
0
60  
70  
80  
90  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
20  
100  
1k  
10k  
22k  
20  
100  
1k  
10k  
22k  
Frequency (Hz)  
Frequency (Hz)  
FFT PLOT  
FFT PLOT  
0
60  
70  
80  
90  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
20  
100  
1k  
10k  
24k  
20  
100  
1k  
10k  
24k  
Frequency (Hz)  
Frequency (Hz)  
11  
ꢠ ꢁꢅꢡ ꢢ ꢣ ꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
TYPICAL CHARACTERISTICS (continued)  
All specifications at T = +25°C, VDD33 = +3.3V, V = +3.3V, REGEN = High, and VDD18 floating, unless otherwise noted.  
A
IO  
FFT PLOT  
FFT PLOT  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
20  
100  
1k  
10k  
48k  
20  
100  
1k  
10k  
48k  
Frequency (Hz)  
Frequency (Hz)  
FFT PLOT  
FFT PLOT  
0
60  
70  
80  
90  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
20  
100  
1k  
10k  
96k  
20  
100  
1k  
10k  
96k  
Frequency (Hz)  
Frequency (Hz)  
FFT PLOT  
FFT PLOT  
0
60  
70  
80  
90  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
20  
100  
1k  
10k  
22k  
20  
100  
1k  
10k  
22k  
Frequency (Hz)  
Frequency (Hz)  
12  
ꢠ ꢁꢅ ꢡꢢ ꢣꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
TYPICAL CHARACTERISTICS (continued)  
All specifications at T = +25°C, VDD33 = +3.3V, V = +3.3V, REGEN = High, and VDD18 floating, unless otherwise noted.  
IO  
A
FFT PLOT  
FFT PLOT  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
20  
100  
1k  
10k  
24k  
20  
100  
1k  
10k  
24k  
Frequency (Hz)  
Frequency (Hz)  
FFT PLOT  
FFT PLOT  
0
60  
70  
80  
90  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
20  
100  
1k  
10k  
48k  
20  
100  
1k  
10k  
48k  
Frequency (Hz)  
Frequency (Hz)  
FFT PLOT  
FFT PLOT  
0
60  
70  
80  
90  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
20  
100  
1k  
10k  
96k  
20  
100  
1k  
10k  
96k  
Frequency (Hz)  
Frequency (Hz)  
13  
ꢠ ꢁꢅꢡ ꢢ ꢣ ꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
TYPICAL CHARACTERISTICS (continued)  
All specifications at T = +25°C, VDD33 = +3.3V, V = +3.3V, REGEN = High, and VDD18 floating, unless otherwise noted.  
IO  
A
FFT PLOT  
FFT PLOT  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
20  
100  
1k  
10k  
10k  
10k  
24k  
24k  
24k  
20  
100  
1k  
10k  
22k  
Frequency (Hz)  
Frequency (Hz)  
FFT PLOT  
FFT PLOT  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
20  
100  
1k  
20  
100  
1k  
10k  
48k  
Frequency (Hz)  
Frequency (Hz)  
FFT PLOT  
FFT PLOT  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
20  
100  
1k  
20  
100  
1k  
10k  
96k  
Frequency (Hz)  
Frequency (Hz)  
14  
ꢠ ꢁꢅ ꢡꢢ ꢣꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
TYPICAL CHARACTERISTICS (continued)  
All specifications at T = +25°C, VDD33 = +3.3V, V = +3.3V, REGEN = High, and VDD18 floating, unless otherwise noted.  
A
IO  
THD+N vs INPUT AMPLITUDE  
THD+N vs INPUT AMPLITUDE  
120  
122  
124  
126  
128  
130  
132  
134  
136  
138  
140  
142  
144  
146  
148  
150  
152  
154  
156  
158  
160  
120  
122  
124  
126  
128  
130  
132  
134  
136  
138  
140  
142  
144  
146  
148  
150  
152  
154  
156  
158  
160  
140  
120  
100  
80  
60  
40  
20  
20  
20  
0
0
0
140  
120  
100  
80  
60  
40  
20  
20  
20  
0
0
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
THD+N vs INPUT AMPLITUDE  
THD+N vs INPUT AMPLITUDE  
120  
122  
124  
126  
128  
130  
132  
134  
136  
138  
140  
142  
144  
146  
148  
150  
152  
154  
156  
158  
160  
120  
122  
124  
126  
128  
130  
132  
134  
136  
138  
140  
142  
144  
146  
148  
150  
152  
154  
156  
158  
160  
40  
140  
120  
100  
80  
60  
40  
140  
120  
100  
80  
60  
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
THD+N vs INPUT AMPLITUDE  
THD+N vs INPUT AMPLITUDE  
120  
122  
124  
126  
128  
130  
132  
134  
136  
138  
140  
142  
144  
146  
148  
150  
152  
154  
156  
158  
160  
120  
122  
124  
126  
128  
130  
132  
134  
136  
138  
140  
142  
144  
146  
148  
150  
152  
154  
156  
158  
160  
40  
140  
120  
100  
80  
60  
40  
140  
120  
100  
80  
60  
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
15  
ꢠ ꢁꢅꢡ ꢢ ꢣ ꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
TYPICAL CHARACTERISTICS (continued)  
All specifications at T = +25°C, VDD33 = +3.3V, V = +3.3V, REGEN = High, and VDD18 floating, unless otherwise noted.  
A
IO  
THD+N vs INPUT AMPLITUDE  
THD+N vs INPUT FREQUENCY  
120  
122  
124  
126  
128  
130  
132  
134  
136  
138  
140  
142  
144  
146  
148  
150  
152  
154  
156  
158  
160  
120  
122  
124  
126  
128  
130  
132  
134  
136  
138  
140  
142  
144  
146  
148  
150  
152  
154  
156  
158  
160  
20  
140  
120  
100  
80  
60  
40  
0
20  
100  
1k  
10k 20k  
Input Amplitude (dBFS)  
Input Frequency (Hz)  
THD+N vs INPUT FREQUENCY  
THD+N vs INPUT FREQUENCY  
120  
122  
124  
126  
128  
130  
132  
134  
136  
138  
140  
142  
144  
146  
148  
150  
152  
154  
156  
158  
160  
120  
122  
124  
126  
128  
130  
132  
134  
136  
138  
140  
142  
144  
146  
148  
150  
152  
154  
156  
158  
160  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Input Frequency (Hz)  
Input Frequency (Hz)  
THD+N vs INPUT FREQUENCY  
THD+N vs INPUT FREQUENCY  
120  
122  
124  
126  
128  
130  
132  
134  
136  
138  
140  
142  
144  
146  
148  
150  
152  
154  
156  
158  
160  
120  
122  
124  
126  
128  
130  
132  
134  
136  
138  
140  
142  
144  
146  
148  
150  
152  
154  
156  
158  
160  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Input Frequency (Hz)  
Input Frequency (Hz)  
16  
ꢠ ꢁꢅ ꢡꢢ ꢣꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
TYPICAL CHARACTERISTICS (continued)  
All specifications at T = +25°C, VDD33 = +3.3V, V = +3.3V, REGEN = High, and VDD18 floating, unless otherwise noted.  
A
IO  
THD+N vs INPUT FREQUENCY  
THD+N vs INPUT FREQUENCY  
120  
122  
124  
126  
128  
130  
132  
134  
136  
138  
140  
142  
144  
146  
148  
150  
152  
154  
156  
158  
160  
120  
122  
124  
126  
128  
130  
132  
134  
136  
138  
140  
142  
144  
146  
148  
150  
152  
154  
156  
158  
160  
20  
100  
1k  
10k  
40k  
20  
100  
1k  
10k  
80k  
Input Frequency (Hz)  
Input Frequency (Hz)  
LINEARITY  
LINEARITY  
0
10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
10 0  
150  
130  
110  
90  
70  
50  
30  
10 0  
150  
130  
110  
90  
70  
50  
30  
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
LINEARITY  
LINEARITY  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
100  
110  
120  
130  
140  
150  
10 0  
150  
130  
110  
90  
70  
50  
30  
10 0  
150  
130  
110  
90  
70  
50  
30  
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
17  
ꢠ ꢁꢅꢡ ꢢ ꢣ ꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
TYPICAL CHARACTERISTICS (continued)  
All specifications at T = +25°C, VDD33 = +3.3V, V = +3.3V, REGEN = High, and VDD18 floating, unless otherwise noted.  
A
IO  
FREQUENCY RESPONSE  
FREQUENCY RESPONSE  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
100  
110  
120  
130  
140  
150  
130
140  
150  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32  
Input Frequency (kHz)  
0
5
10  
15  
20  
25  
30  
35  
40  
45 50  
Input Frequency (kHz)  
FREQUENCY RESPONSE  
PASS BAND RIPPLE  
0
10  
20  
0
0.005  
0.010  
0.015  
0.020  
0.025  
0.030  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
0
5
10 15 20 25 30 35 40 45 50 55 60  
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15  
Input Frequency (kHz)  
Input Frequency (kHz)  
PASS BAND RIPPLE  
PASS BAND RIPPLE  
0
0
0.005  
0.010  
0.015  
0.020  
0.025  
0.030  
0.005  
0.010  
0.015  
0.020  
0.025  
0.030  
0
2
4
6
8
10 12 14 16 18 20 22  
0
5
10  
15  
20  
25  
30  
35  
40 45  
Input Frequency (kHz)  
Input Frequency (kHz)  
18  
ꢠ ꢁꢅ ꢡꢢ ꢣꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
TYPICAL CHARACTERISTICS (continued)  
All specifications at T = +25°C, VDD33 = +3.3V, V = +3.3V, REGEN = High, and VDD18 floating, unless otherwise noted.  
IO  
A
PASS BAND RIPPLE  
0
0.005  
0.010  
0.015  
0.020  
0.025  
0.030  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
Input Frequency (kHz)  
19  
ꢠ ꢁꢅꢡ ꢢ ꢣ ꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
A bypass mode is included, which allows audio data to be  
passed directly from the input port to the output port,  
bypassing the ASRC function. The bypass option is useful  
for passing through compressed or encoded audio data,  
as well as non-audio data (that is, control or status  
information).  
PRODUCT OVERVIEW  
The SRC4184 is a four-channel, asynchronous sample  
rate converter (ASRC), implemented as two stereo  
sections, referred to as SRC A and SRC B. Operation at  
input and output sampling frequencies up to 212kHz is  
supported, with a continuous input/output sampling ratio  
range of 16:1 to 1:16. Excellent dynamic range and  
THD+N are achieved by employing high-performance,  
linear-phase digital filtering with better than 128dB of  
image rejection. The digital filters provide settings for lower  
latency processing, including low group delay options for  
the interpolation filter and a direct downsampling option for  
the decimation filter. Digital de-emphasis filtering is  
included, supporting 32kHz, 44.1kHz, and 48kHz  
sampling frequencies.  
A soft mute function is available for the SRC4184 in both  
Hardware and Software modes. Digital output attenuation  
is available only in Software mode. Both soft mute and  
digital attenuation functions provide artifact-free  
operation. The mute attenuation is typically −128dB, while  
the digital attenuation function is adjustable from 0dB to  
−127.5dB in 0.5dB steps.  
The SRC4184 includes a four-wire SPI port, which is used  
to access on-chip control and status registers in Software  
mode. The SPI port facilitates interfacing to microproces-  
sors or digital signal processors that support synchronous  
serial peripherals. In Hardware mode, dedicated control  
pins are provided for the majority of the SRC4184  
functions. These pins can be hard-wired or driven by logic  
or host control.  
The audio input and output ports support standard audio  
data formats, as well as a time division multiplexed (TDM)  
format. Word lengths of 24-, 20-, 18-, and 16-bits are  
supported. Input and output ports may operate in Slave  
mode, deriving their word and bit clocks from external input  
and output devices. Alternatively, one port may operate in  
Master mode while the other remains in Slave mode. In  
Master mode, the LRCK and BCK clocks are derived from  
the reference clock inputs, either RCKIA or RCKIB. The  
flexible configuration options for the input and output ports  
allow connections to a variety of audio data converters,  
digital audio interface devices, and digital signal  
processors.  
FUNCTIONAL BLOCK DIAGRAM  
Figure 1 shows a functional block diagram of the  
SRC4184. The SRC4184 is segmented into two stereo  
SRC sections, referred to as SRC A and SRC B. Each  
section can operate independently from the other. Each  
section has individual sets of configuration pins in  
Hardware mode, and separate banks of control and status  
registers in Software mode.  
LRCKOA  
LRCKIA  
Input  
Digital  
Decimation  
Filter  
Output  
Serial  
Port  
Digital  
De−Emphasis and  
Interpolation Filters  
BCKOA  
SDOUTA  
TDMIA  
Serial  
Port  
ReSampler  
BCKIA  
SDINA  
fsIN  
fsOUT  
Rate  
Estimator  
RDYA  
RATIOA  
RCKIA  
IFMTB0  
IFMTB1  
IFMTB2  
OFMTB0  
OFMTB1  
OWLB0  
OWLB1  
BYPB  
LGRPA0  
LGRPA1  
DDNA  
LGRPB0  
LGRPB1  
DDNB  
IFMTA0  
IFMTA1  
IFMTA2  
OFMTA0  
OFMTA1  
OWLA0  
OWLA1  
BYPA  
Control  
SRC B  
DEMA0  
DEMA1  
MODEA0  
MODEA1  
MODEA2  
MUTEA  
DEMB0  
Control  
SRC A  
DEMB1 (CDOUT)  
MODEB0 (CS)  
MODEB1 (CCLK)  
MODEB2 (CDIN)  
MUTEB  
SPI Port  
and  
Reset  
H/S  
RST  
LRCKOB  
BCKOB  
SDOUTB  
TDMIB  
LRCKIB  
BCKIB  
SDINB  
Input  
Serial  
Port  
Digital  
Decimation  
Filter  
Output  
Serial  
Port  
Digital  
De−Emphasis and  
Interpolation Filters  
ReSampler  
VIO  
DGND  
fsIN  
fsOUT  
Rate  
Estimator  
VDD18 (2)  
VDD33 (2)  
DGND  
RDYB  
RATIOB  
RCKIB  
REGEN  
Figure 1. Functional Block Diagram  
20  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
Operation for SRC A and SRC B is identical. Audio data  
is received at the input serial port, clocked by either the  
audio source device in Slave mode, or by the SRC4184 in  
Master mode. The output port data is clocked by either the  
audio output device in Slave mode, or by the SRC4184 in  
Master mode. The input data is passed through  
interpolation filters that upsample the data, which is then  
passed on to the re-sampler. The rate estimator compares  
the input and output sampling frequencies by comparing  
LRCKI, LRCKO, and a reference clock. The results of the  
rate estimation are utilized to configure the re-sampler  
coefficients and data pointers.  
reference clock does not have to be a multiple of the input  
or output sampling rates. The maximum reference clock  
input frequency is 50MHz for RCKIA and RCKIB.  
SRC4184  
RCKI1  
20  
RCKI2  
29  
From External  
Clock Source(s)  
50MHz Max  
The output of the re-sampler is passed on to either the  
decimation filter or direct downsampler function. The  
decimation filter performs downsampling and anti-alias  
filtering functions, and is required when the output  
sampling frequency is equal to or lower than the input  
sampling frequency. The direct downsampler function  
does not provide any filtering, and may be used in cases  
when the output sampling frequency is greater than the  
input sampling frequency. The advantage of the direct  
downsampling function is a significant reduction in the  
group delay associated with the decimation function,  
allowing lower latency processing.  
tRCKIP  
tRCKIP > 20ns min  
tRCKIH > 0.4 tRCKIP  
tRCKIL > 0.4 tRCKIP  
RCKI  
tRCKIH  
tRCKIL  
Figure 2. Reference Clock Input Connections and  
Timing Requirements  
RESET AND POWER-DOWN OPERATION  
The SRC4184 may be reset using the RST input (pin 21).  
There is no internal power-on reset, so the user should  
force a reset sequence after power-up in order to initialize  
the device. In order to force a reset, the reference clock  
inputs must be active, with external clock sources  
supplying a valid reference clock signal (refer to Figure 2).  
The user must assert RST low for a minimum of 500ns and  
then bring RST high again to force a reset. The reset  
function affects both SRC A and SRC B. Figure 3 shows  
the reset timing for the SRC4184.  
REFERENCE CLOCK  
The SRC4184 includes two reference clock inputs, one  
each for SRC A and SRC B. The reference clocks are  
applied at the RCKIA (pin 20) and RCKIB (pin 29) inputs,  
respectively. The reference clock is required for the rate  
estimator function, as well as for the input or output serial  
ports when configured in Master mode.  
Figure 2 illustrates the reference clock connections and  
requirements for the SRC4184. When either the input or  
output port is configured in Master mode, the reference  
clock may operate at 128fs, 256fs, or 512fs, where fs is the  
desired sampling rate for the Master mode port. When both  
the input and output port are configured in Slave mode, the  
In Software mode, there is a 500ms delay after the RST  
rising edge due to internal logic requirements. The  
customer should wait a minimum 500ms after the RST  
rising edge before attempting to write to the SPI port of the  
SRC4184 in Software mode.  
RCKI  
RST  
tRSTL > 500ns  
Figure 3. Reset Pulsewidth Requirement  
21  
ꢠ ꢁꢅꢡ ꢢ ꢣ ꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
The SRC4184 also supports two power-down modes. The  
entire SRC4184 may be powered down by forcing and  
holding the RST input low. This is referred to as a Hard  
Power-Down, and the SRC4184 consumes the least  
amount of power in this mode.  
the reference clock input for the corresponding SRC  
section, either RCKIA or RCKIB. Only one port can be set  
to Master mode at any given time, as indicated in Table 1.  
Table 1. Setting the Serial Port Modes (x = A or B)  
MODEx2  
MODEx1  
MODEx0  
SERIAL PORT MODE  
In Software mode, there is an additional Soft Power-Down  
available, utilizing the PDN bit in Control Register 1. Soft  
Power-Down is enabled when the PDN bit is set to 0. Since  
SRC A and SRC B have their own separate register banks,  
they may be set to Soft Power-Down mode individually.  
During Soft Power-Down, the SPI port and control  
registers remain active for write and read access. The  
internal voltage regulator also remains active if the  
REGEN pin is forced high and +3.3V is applied at the  
VDD33 pin.  
0
0
0
Both Input and Output Ports are  
Slave mode  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
Output Port is Master Mode with  
RCKIx = 128f  
S
Output Port is Master Mode with  
RCKIx = 512f  
S
Output Port is Master Mode with  
RCKIx = 256f  
S
Both Input and Output Ports are  
Slave mode  
Input Port is Master Mode with  
RCKIx = 128f  
S
Input Port is Master Mode with  
RCKIx = 512f  
S
Soft Power-Down mode consumes more power than the  
Hard Power-Down mode. Refer to the Electrical  
Characteristics tables in this data sheet for supply current  
and power dissipation specifications for both modes.  
Input Port is Master Mode with  
RCKIx = 256f  
S
INPUT PORT OPERATION  
Finally, there is one very important item to remember when  
using Software mode. The default state of the PDN bit is  
0, meaning that the SRC4184 will default to the Soft  
Power-Down state for both SRC A and SRC B after  
power-up or reset. The user must set the PDN bit to 1 for  
both the SRC A and SRC B control register banks in order  
to enable normal operation for both SRC sections.  
The audio input port is a three-wire synchronous serial  
interface that may operate in either Slave or Master mode.  
The SDINA (pin 58) and SDINB (pin 55) are the serial  
audio data inputs for SRC A and SRC B, respectively.  
Audio data is input at these pins in one of three standard  
audio data formats: Philips I2S, Left-Justified, or  
Right-Justified. The audio data word length may be up to  
24-bits for I2S and Left-Justified formats, while the  
Right-Justified format supports 16-, 18-, 20-, or 24-bit data.  
The audio data is always Binary Two’s Complement with  
the MSB first. Refer to Figure 4 for the input data formats  
and Figure 5 for the critical timing parameters, which are  
also listed in the Electrical Characteristics table.  
AUDIO SERIAL PORT MODES  
The SRC4184 supports seven serial port modes for the  
SRC A and SRC B sections, which are shown in Table 1.  
In Hardware mode, the audio port mode is selected using  
the MODEA0 (pin 14), MODEA1 (pin 15), and MODEA2  
(pin 16) inputs for SRC A, while the MODEB0 (pin 35),  
MODEB1 (pin 34), and MODEB2 (pin 33) inputs are used  
for SRC B.  
The bit clock is either an input or output at BCKIA (pin 60)  
and BCKIB (pin 53). In Slave mode, the bit clock is  
configured as an input pin, and may operate at rates from  
32fs to 128fs,with a minimum of one clock cycle per data  
bit. In Master mode, bit clock operates at a fixed rate of  
64fs.  
In Software mode, the audio serial port modes are  
selected using the MODE[2:0] bits in Control Register 1 for  
the SRC A and SRC B register banks. The default setting  
for Software mode is both input and output ports set to  
Slave mode.  
The left/right word clock, LRCKIA (pin 59) and LRCKIB  
(pin 54), may be configured as an input or output pin. In  
Slave mode, left/right clock is an input pin, while in Master  
mode the left/right clock is an output pin. In either case, the  
clock rate is equal to fs, the input sampling frequency. The  
LRCKI duty cycle is fixed to 50% for Master mode  
operation.  
In Slave mode, the port LRCK and BCK clocks are  
configured as inputs, and receive their clocks from an  
external audio device. In Master mode, the LRCK and  
BCK clocks are configured as outputs, being derived from  
22  
ꢠ ꢁꢅ ꢡꢢ ꢣꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
Left Channel  
Right Channel  
LRCKI  
BCKI  
SDIN  
MSB  
LSB  
MSB  
LSB  
(a) Left−Justified Data Format  
LRCKI  
BCKI  
SDIN  
MSB  
LSB  
MSB  
LSB  
(b) Right−Justified Data Format  
LRCKI  
BCKI  
SDIN  
MSB  
LSB  
MSB  
LSB  
(c) I2S Data Format  
1/fS  
Figure 4. Input Data Formats  
input port data format for SRC A. IFMTB0 (pin 48), IFMTB1  
(pin 47), and IFMTB2 (pin 46) are utilized to set the input  
port data format for SRC B.  
LRCKI  
tLRIS  
tSIH  
Table 2. Input Port Data Format Selection (x = A or B)  
BCKI  
SDIN  
IFMTx2 IFMTx1 IFMTx0  
INPUT PORT DATA FORMAT  
tLDIS  
tSIL  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
24-Bit Left-Justified  
2
24-Bit I S  
Unused  
Unused  
16-Bit Right-Justified  
18-Bit Right-Justified  
20-Bit Right-Justified  
24-Bit Right-Justified  
tLDIH  
Figure 5. Input Port Timing  
In Software mode, the IFMT[2:0] bits in Control Register 3  
are used to select the data format for the SRC A and  
SRC B register banks. The default format is 24-Bit  
Left-Justified.  
Table 2 illustrates the data format selection for the input  
port. For Hardware mode, the IFMTA0 (pin 1), IFMTA1  
(pin 2), and IFMTA2 (pin 3) inputs are utilized to set the  
23  
ꢠ ꢁꢅꢡ ꢢ ꢣ ꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
data bit. The exception is the TDM mode, where the BCKO  
must operate at N × 64fs, where N is equal to the number  
of SRC sections cascaded on the TDM bus. In Master  
mode, the bit clock operates at a fixed rate of 64fs for all  
data formats except TDM, where BCKO operates at the  
reference clock frequency. Additional information  
regarding TDM mode operation is included in the  
Applications Information section of this data sheet.  
OUTPUT PORT OPERATION  
The audio output port is a four-wire synchronous serial  
interface that may operate in either Slave or Master mode.  
SDOUTA (pin 64) and SDOUTB (pin 49) are the serial  
audio data outputs for SRC A and SRC B, respectively.  
Audio data is output at these pins in one of four data  
formats: Philips I2S, Left-Justified, Right-Justified, or  
TDM. The audio data word length may be 16-, 18-, 20-, or  
24-bits. For all word lengths, the data is triangular PDF  
dithered from the internal 28-bit data path. The data  
formats (with the exception of TDM mode) are shown in  
Figure 7, while critical timing parameters are shown in  
Figure 6 and listed in the Electrical Characteristics table.  
The TDM format and timing are shown in Figure 15 and  
Figure 16, respectively, while examples of standard TDM  
configurations are shown in Figure 17 and Figure 18.  
LRCKO  
tSOH  
BCKO  
tSOL  
tDOPD  
SDOUT  
The bit clock is either input or output at BCKOA (pin 63)  
and BCKOB (pin 50). In Slave mode, the bit clock is  
configured as an input pin, and may operate at rates from  
32fs to 128fs, with a minimum of one clock cycle for each  
tDOH  
Figure 6. Output Port Timing  
Left Channel  
Right Channel  
LRCKO  
BCKO  
MSB  
LSB  
MSB  
LSB  
SDOUT  
(a) Left−Justified Data Format  
LRCKO  
BCKO  
MSB  
LSB  
MSB  
LSB  
SDOUT  
(b) Right−Justified Data Format  
LRCKO  
BCKO  
MSB  
LSB  
MSB  
LSB  
SDOUT  
(c) I2S Data Format  
1/fS  
Figure 7. Output Data Formats  
24  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
The left/right word clock, LRCKOA (pin 62) and LRCKOB  
(pin 51), may be configured as an input or output pin. In  
Slave mode, the left/right clock is an input pin, while in  
Master mode it is an output pin. In either case, the clock  
rate is equal to fs, the output sampling frequency. The clock  
duty cycle is fixed to 50% for I2S, Left-Justified, and  
Right-Justified formats in Master mode. The pulse width is  
fixed to 32-bit clock cycles for the TDM format in Master  
mode.  
passing through compressed or encoded audio data, as  
well as non-audio data (that is, control or status  
information).  
INTERPOLATION FILTER GROUP DELAY  
OPTIONS  
The SRC4184 provides four group delay options for the  
digital interpolation filter, as shown in Table 4. These  
options allow the user to tailor the group delay for a given  
application by selecting the number of input samples  
buffered prior to the re-sampling function.  
Table 3 illustrates data format selection for the output port.  
In Hardware mode, the OFMTA0 (pin 4), OFMTA1 (pin 5),  
OWLA0 (pin 6), and OWLA1 (pin 7) inputs are utilized to  
set the output port data format and word length for SRC A.  
The OFMTB0 (pin 45), OFMTB1 (pin 44), OWLB0 (pin 43),  
and OWLB1 (pin 42) inputs are utilized to set the output  
port data format and word length for SRC B.  
Table 4. Low Group Delay Configuration  
(x = A or B)  
LGRPx1  
LGRPx0  
BUFFER SIZE  
0
0
1
1
0
1
0
1
64 Samples  
32 Samples  
16 Samples  
8 Samples  
Table 3. Output Port Data Format/Word Length  
Selection (x = A or B)  
OFMTx1 OFMTx0  
OUTPUT PORT DATA FORMAT  
In Hardware mode, the LGRPA0 (pin 9) and LGRPA1  
(pin 10) inputs are used to select the group delay for  
SRC A, while LGRPB0 (pin 40) and LGRPB1 (pin 39)  
inputs are used for SRC B.  
0
0
1
1
0
1
0
1
Left-Justified  
2
I S  
TDM  
Right-Justified  
In Software mode, the LGRP[1:0] bits in Control Register 2  
are used for the SRC A and SRC B register banks. The 64  
sample buffer option is selected by default in Software  
mode.  
OWLx1  
OWLx0  
OUTPUT PORT DATA WORD LENGTH  
0
0
1
1
0
1
0
1
24 Bits  
20 Bits  
18 Bits  
16 Bits  
DIRECT DOWNSAMPLING OPTION  
The SRC4184 decimation function allows the selection of  
a direct downsampling option, as shown in Table 5. Unlike  
the decimation filter, the direct downsampler does not  
provide anti-alias filtering. This makes the direct  
downsampler suitable for applications where the output  
sample rate is higher than the input sample rate. The  
advantage of the direct downsampler is that there is no  
group delay associated with the decimation function.  
In Software mode, the OFMT[1:0] and OWL[1:0] bits in  
Control Register 3 are used to select the data format and  
word length for the SRC A and SRC B register banks. The  
default format is Left-Justified data with a default word  
length of 24-bits.  
BYPASS MODE  
The SRC4184 includes a bypass function for both SRC A  
and SRC B, which routes the input port data directly to the  
output port, bypassing the sample rate conversion block.  
Bypass mode may be invoked by forcing BYPA (pin 8) or  
BYPB (pin 41) high in either Hardware or Software mode.  
In Software mode, the bypass function may also be  
accessed using the BYPASS bit in Control Register 1 for  
the SRC A and SRC B register banks. For normal SRC  
operation, the bypass pins and control bits should be set  
to 0.  
Table 5. Decimation Function Configuration  
(x = A or B)  
DDNx  
DECIMATION FUNCTION  
0
1
Decimation Filter Enabled  
Direct Downsampler Enabled  
In Hardware mode, the DDNA (pin 11) input is used to  
select the direct downsampler for SRC A, while the DDNB  
(pin 38) input is used for SRC B.  
In Software mode, the DDN bit in Control Register 2 is  
used to select the direct downsampler for the SRC A and  
SRC B register banks. The decimation filter is selected by  
default, with direct downsampling disabled.  
No dithering is applied to the output data in Bypass mode,  
and the digital attenuation, de-emphasis, and soft mute  
functions are also unavailable. Bypass mode is useful for  
25  
ꢠ ꢁꢅꢡ ꢢ ꢣ ꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
The TRACK bit in Control Register 1 is used to select  
Independent or Tracking attenuation modes. When  
TRACK = 0, the Left and Right channels are controlled  
independently. When TRACK = 1, the attenuation setting  
for the Left channel is also used for the Right channel,  
providing a tracking function. The digital attenuation mode  
is set to Independent by default.  
DIGITAL DE-EMPHASIS FILTER  
The SRC4184 includes digital de-emphasis filtering  
following the input serial ports. The de-emphasis filter  
processes audio data that has been pre-emphasized  
using the 50/15µs transfer function, commonly used in  
consumer and professional audio systems. Pre-emphasis  
is utilized to increase the amplitude of the higher frequency  
components within the audio band. The de-emphasis filter  
normalizes the frequency response over the audio band.  
READY OUTPUT  
The SRC4184 includes active low ready outputs for both  
SRC A and SRC B. The outputs are designated RDYA  
(pin 18) and RDYB (pin 31). The ready output is provided  
from the rate estimator block, with a low output state  
indicating that the input-to-output sampling frequency ratio  
has been determined and that the coefficients and address  
pointers for the re-sampling block have been updated. The  
ready signal may be used as a flag output for an external  
indicator or host.  
The SRC4184 supports three sampling frequencies for the  
de-emphasis filter: 32kHz, 44.1kHz, and 48kHz. The  
de-emphasis filter can also be disabled. Table 6 shows the  
configuration table for the de-emphasis filter options.  
Table 6. Digital De-Emphasis Filter Configuration  
(x = A or B)  
DEMx1  
DEMx0  
DE-EMPHASIS FILTER FUNCTION  
0
0
1
1
0
1
0
1
Disabled  
48kHz Input Sample Rate  
44.1kHz Input Sample Rate  
32kHz Input Sample Rate  
RATIO OUTPUT  
The SRC4184 includes a sampling ratio flag output for  
both SRC A and SRC B. The outputs are designated  
RATIOA (pin 17) and RATIOB (pin 32). When the ratio  
output is low, it indicates that the output sampling  
frequency is lower than the input sampling frequency.  
When ratio output is high, it indicates that the output  
sampling frequency is higher than the input sampling  
frequency. The ratio output can be used as a flag output for  
either an external indicator or host.  
In Hardware mode, the DEMA0 (pin 12) and DEMA1  
(pin 13) inputs are used to select the de-emphasis filter for  
SRC A, while DEMB0 (pin 37) and DEMB1 (pin 36) inputs  
are used for SRC B.  
In Software mode, the DEM[1:0] bits in Control Register 2  
are used to select the de-emphasis filter in both the SRC A  
and SRC B register banks. De-emphasis filtering is  
disabled by default in Software mode.  
SAMPLING RATIO READBACK  
(Software Mode Only)  
In Software mode, Control Registers 6 and 7 in either the  
SRC A and SRC B register banks function as status  
registers, which contain the integer and fractional part of  
the input-to-output sampling ratio, or fsIN:fsOUT. Given that  
fsOUT or fsIN is known, the unknown sampling rate can be  
computed using the contents of Registers 6 and 7. This  
function may be useful for controlling end application  
display or control processes. Refer to the Control Register  
Definition section of this datasheet for additional  
information regarding Registers 6 and 7.  
SOFT MUTE FUNCTION  
The soft mute function of the SRC4184 may be invoked by  
forcing the MUTEA (pin 19) or MUTEB (pin 30) inputs high.  
In Software mode, the mute function may also be  
accessed using the MUTE bit in Control Register 1 for  
either the SRC A and SRC B register banks. The soft mute  
function slowly attenuates the output signal level down to  
an all zeros output. For normal output, the soft mute  
function should be disabled by forcing the control pin or bit  
low. The soft mute function is disabled by default in  
Software mode.  
SERIAL PERIPHERAL INTERFACE (SPI)  
PORT  
(Software Mode Only)  
DIGITAL ATTENUATION  
(Software Mode Only)  
The SPI port is a four-wire synchronous serial interface  
used to access the on-chip control registers of the  
SRC4184. The interface is comprised of a serial data clock  
input, CCLK (pin 34); a serial data input, CDIN (pin 33); a  
serial data output, CDOUT (pin 36); and an active low  
chip-select input, CS (pin 35). The CDOUT pin is a tri-state  
output and is forced to a high impedance state when the  
CS input is forced high.  
The SRC4184 includes independent digital attenuation for  
the Left and Right audio channels in Software mode. The  
attenuation ranges from 0dB (unity gain) to −127.5dB in  
0.5dB steps. The attenuation settings are programmed  
using Control Register 4 and Control Register 5 for either  
the SRC A and SRC B register banks. The attenuation  
setting is programmed to 0dB (unity gain) by default.  
26  
ꢠ ꢁꢅ ꢡꢢ ꢣꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
Figure 8 illustrates the protocol for register write and read  
operations via the SPI port. Figure 9 shows the critical  
timing parameters for the SPI port interface, which are  
listed in the Electrical Characteristics table.  
As shown in Figure 8, a write or read operation starts by  
bringing the CS input low. Bytes 0, 1, and 2 are then written  
to write or read a single register. Byte 2 is not needed for  
reading registers, so the CDIN pin can be forced low after  
Byte 0 for a read operation. Bringing the CS input high after  
the third byte will write or read a single register address.  
However, if CS remains low after writing or reading the first  
control or status byte, the port will automatically increment  
the address by 1, allowing successive addresses to be  
written or read sequentially. The address is automatically  
incremented by 1 after each byte is written or read, as long  
as the CS input remains low. This is referred to as  
Auto-Increment operation, and is always enabled for the  
SPI port.  
Byte 0 indicates the register bank, register address, and  
read/write status for the operation. The functions  
contained within this byte are clearly shown in Figure 8. It  
should be noted that either one or both of the SRC A and  
SRC B register banks may be written to in the same  
operation, but only one bank can be selected at any time  
for a read operation. Byte 1 is a don’t care byte. This byte  
is included in the protocol in order to maintain compatibility  
with current and future Texas Instruments’ digital audio  
interface products, including the DIT4096, DIT4192, and  
SRC4193. Bytes 0 and 1 are followed by register data  
bytes.  
CS  
Keep CS = 0 to enable the auto−increment mode.  
Register Data  
Set CS = 1 here to write/read one register location.  
Header  
CDIN  
Byte 0  
Hi−Z  
Byte 1  
Hi−Z  
Byte 2  
Byte 3  
Byte N  
Register Data  
CDOUT  
Data for A[2:0]  
Data for A[2:0] + 1  
Data for A[2:0] + N  
CCLK  
Byte Definition:  
MSB  
RWB  
LSB  
A0  
0
0
SB  
SA  
A2  
A1  
Byte 0:  
Register  
Bank Select  
Register  
Address  
Set to 0.  
Set to 0 for Write; set to 1 for Read.  
SB SA Write Access Read Access  
0
0
1
1
0
1
0
1
Disabled  
SRC A  
SRC B  
Disabled  
SRC A  
SRC B  
SRC B  
Byte 1: Don’t Care  
Byte 2 through Byte N: Register Data  
SRC A and B  
Figure 8. SPI Protocol for the SRC4184  
tCFCS  
CSB  
tCSCR  
tCDS  
CCLK  
tCDH  
CDIN  
Hi−Z  
Hi−Z  
tCSZ  
CDOUT  
tCFDO  
Figure 9. SPI Port Timing  
27  
ꢠ ꢁꢅꢡ ꢢ ꢣ ꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
CONTROL REGISTER MAP  
(Software Mode Only)  
The control register map for the SRC4184 is shown in Table 7. There are two identical register banks, one for SRC A and  
one for SRC B, each conforming to the register map shown in Table 7.  
Register 0 is reserved for factory use and defaults to all zeros upon reset. The user should avoid writing to or reading this  
register, as unexpected operation may result if Register 0 is programmed to an arbitrary value.  
Register 1 through Register 5 contain control bits, which are programmed to configure specific internal functions.  
Register 1 through Register 5 are available for write or read access. Register 6 and Register 7 contain the integer and  
fractional parts of the fsIN:fsOUT sampling ratio and are read only status registers.  
Table 7. Control Register Map for Either the SRC A or SRC B Register Banks  
REGISTER ADDRESS  
(HEX)  
D7  
(MSB)  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
1
2
3
4
5
6
7
0
PDN  
0
OWL1  
AL7  
AR7  
SRI4  
SRF7  
0
TRACK  
0
OWL0  
AL6  
AR6  
SRI3  
SRF6  
0
0
0
0
0
BYPASS  
DEM0  
0
AL3  
AR3  
0
0
0
MUTE  
DEM1  
OFMT0  
AL4  
AR4  
SRI1  
SRF4  
MODE2  
DDN  
IFMT2  
AL2  
AR2  
SRF10  
SRF2  
MODE1  
LGRP1  
IFMT1  
AL1  
AR1  
SRF9  
SRF1  
MODE0  
LGRP0  
IFMT0  
AL0  
AR0  
SRF8  
SRF0  
OFMT1  
AL5  
AR5  
SRI2  
SRF5  
SRI0  
SRF3  
28  
ꢠ ꢁꢅ ꢡꢢ ꢣꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
CONTROL REGISTER DEFINITIONS  
(Software Mode Only)  
This section contains descriptions for each control and status register available in Software mode. Reset defaults are also  
shown for each register bit.  
Register 1. System Control Register  
D7  
D0  
(MSB)  
(LSB)  
D6  
D5  
D4  
D3  
D2  
D1  
PDN  
TRACK  
0
MUTE  
BYPASS  
MODE2  
MODE1  
MODE0  
MODE[2:0] Audio Serial Port Mode  
These bits are used to select the Slave or Master mode status of the input and output serial ports.  
MODE2  
MODE1  
MODE0  
AUDIO SERIAL PORT MODE  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Both Serial Ports are in Slave Mode (default)  
Output Serial Port is Master with RCKI = 128f  
Output Serial Port is Master with RCKI = 512f  
Output Serial Port is Master with RCKI = 256f  
Both Serial Ports are in Slave Mode  
s
s
s
Input Serial Port is Master with RCKI = 128f  
Input Serial Port is Master with RCKI = 512f  
Input Serial Port is Master with RCKI = 256f  
s
s
s
BYPASS  
Bypass Mode  
This bit is logically OR’d with the bypass input (BYPA or BYPB) for the corresponding SRC section.  
BYPASS  
FUNCTION  
0
1
Bypass Mode disabled with normal ASRC operation. (default)  
Bypass Mode enabled with data routed directly from the input port to the output port, bypass-  
ing the ARSC function.  
MUTE  
Output Soft Mute  
This bit is logically OR’d with the MUTE input (MUTEA or MUTEB) for the corresponding SRC section.  
MUTE  
OUTPUT MUTE FUNCTION  
0
1
Soft mute disabled. (default)  
Soft mute enabled with output data attenuated to all 0s  
TRACK  
Digital Attenuation Tracking  
TRACK  
ATTENUATION TRACKING  
0
Tracking Off: Attenuation for the Left and Right channels is controlled independently by Con-  
trol Register 4 and Control Register 5. (default)  
1
Tracking On: Left channel attenuation setting is used for both channels.  
PDN  
Power-Down  
Setting this bit to 0 will force the corresponding SRC section into Soft Power-Down mode. All other register  
settings are preserved and the SPI port remains active. Setting this bit to 1 will power-up the corresponding  
SRC section using the current register settings.  
This bit defaults to 0 on power-up or reset. It must be programmed to 1 by the user in order to enable normal  
operation for the corresponding SRC section.  
29  
ꢠ ꢁꢅꢡ ꢢ ꢣ ꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
Register 2. Digital Filter Control Register  
D7  
D0  
(MSB)  
(LSB)  
D6  
D5  
D4  
D3  
D2  
D1  
0
0
0
DEM1  
DEM0  
DDN  
LGRP1  
LGRP0  
LGRP0  
LGRP1  
Interpolation Filter Group Delay  
These bits are used to select the number of input samples to be stored in the data buffer before the re-sampler  
starts to process the data. This has a direct impact on the group delay or latency of the interpolation filter.  
LGRP1  
LGRP0  
GROUP DELAY  
0
0
1
1
0
1
0
1
64 Samples (default)  
32 Samples  
16 Samples  
8 Samples  
DDN  
Decimation Filtering/Direct DownSampling  
The DDN bit is used to enable or disable the direct downsampling function of the decimation block.  
DDN  
DECIMATION FILTER OPERATION  
0
Decimation filter enabled. (default)  
(Must be used when f  
is less than or equal to f .)  
sOUT  
sIN  
1
Direct downsampling enabled without filtering.  
(May be enabled when f  
is greater than f .)  
sOUT  
sIN  
DEM0  
DEM1  
Digital De-Emphasis Filtering  
These bits are used to configure the digital de-emphasis filter function.  
DEM1  
DEM0  
DE-EMPHASIS FILTER  
0
0
1
1
0
1
0
1
Disabled (default)  
48kHz Input Sampling Rate  
44.1kHz Input Sampling Rate  
32kHz Input Sampling Rate  
30  
ꢠ ꢁꢅ ꢡꢢ ꢣꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
Register 3. Audio Data Format Register  
D7  
D0  
(MSB)  
(LSB)  
D6  
D5  
D4  
D3  
D2  
D1  
OWL1  
OWL0  
OFMT1  
OFMT0  
0
IFMT2  
IFMT1  
IFMT0  
IFMT[2:0]  
Input Serial Port Data Format  
These bits are utilized to select the audio data format for the input serial port.  
IFMT2  
IFMT1  
IFMT0  
INPUT FORMAT  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
24-Bit, Left-Justified (default)  
2
24-Bit, I S  
Reserved  
Reserved  
Right-Justified, 16-Bit Data  
Right-Justified, 18-Bit Data  
Right-Justified, 20-Bit Data  
Right-Justified, 24-Bit Data  
OFMT[1:0] Output Port Data Format  
These bits are utilized to select the audio data format for the output serial port.  
OFMT1  
OFMT0  
OUTPUT FORMAT  
0
0
1
1
0
1
0
1
Left-Justified (default)  
2
I S  
TDM  
Right-Justified  
OWL[1:0]  
Output Port Data Word Length  
OWL1  
OWL0  
OUTPUT WORD LENGTH  
0
0
1
1
0
1
0
1
24-Bits (default)  
20-Bits  
18-Bits  
16-Bits  
31  
ꢠ ꢁꢅꢡ ꢢ ꢣ ꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
Register 4. Digital Output Attenuation Register—Left Channel  
D7  
D0  
(MSB)  
(LSB)  
D6  
D5  
D4  
D3  
D2  
D1  
AL7  
AL6  
AL5  
AL4  
AL3  
AL2  
AL1  
AL0  
This register is utilized to program the digital output attenuation for the Left output channel of the  
corresponding SRC section.  
Register defaults to 00h, or 0dB (unity gain).  
Output Attenuation (dB) = −N × 0.5, where N = AL[7:0]DEC  
Register 5. Digital Output Attenuation Register—Right Channel  
D7  
D0  
(MSB)  
(LSB)  
D6  
D5  
D4  
D3  
D2  
D1  
AR7  
AR6  
AR5  
AR4  
AR3  
AR2  
AR1  
AR0  
This register is utilized to program the digital output attenuation for the Right output channel of the  
corresponding SRC section. When the TRACK bit in Control Register 1 is set to 1, the Left Channel  
attenuation setting will also be used to set the Right Channel attenuation.  
Register defaults to 00h, or 0dB (unity gain).  
Output Attenuation (dB) = −N × 0.5, where N = AR[7:0]DEC  
Register 6. Sampling Ratio (read only)  
D7  
D0  
(MSB)  
(LSB)  
D6  
D5  
D4  
D3  
D2  
D1  
SRI4  
SRI3  
SRI2  
SRI1  
SRI0  
SRF10  
SRF9  
SRF8  
Register 7. Sampling Ratio (read only)  
D7  
D0  
(MSB)  
(LSB)  
D6  
D5  
D4  
D3  
D2  
D1  
SRF7  
SRF6  
SRF5  
SRF4  
SRF3  
SRF2  
SRF1  
SRF0  
The contents of Register 6 and Register 7 indicate the input-to-output sampling ratio, and can be used to  
determine either the input or output sampling rates when one of the two rates is known.  
Bits SRI[4:0] comprise the integer portion of the input-to-output sampling ratio.  
Bits SRF[10:0] comprise the fractional portion of the input-to-output sampling ratio.  
The contents of Register 6 and Register 7 are updated when Register 6 is read. Register 6 must always be  
read first in order to obtain the latest ratio data for both registers.  
32  
ꢠ ꢁꢅ ꢡꢢ ꢣꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
Figure 12 illustrates the power-supply options for the  
SRC4194. When utilizing +3.3V for the core supply, the  
REGEN input (pin 26) must be driven high in order to  
enable the on-chip linear voltage regulator. The VDD33  
pins are supplied with +3.3V and the VDD18 pins are left  
unconnected.  
APPLICATIONS INFORMATION  
This section provides practical applications information for  
hardware and systems engineers who will be designing  
the SRC4184 into their end equipment.  
TYPICAL CONNECTIONS  
Recommended power supply bypass capacitor values are  
shown in Figure 10 through Figure 12. Ceramic capacitors  
(X7R chip type) are recommended for the 0.1µF  
capacitors, while the 10µF capacitors may be tantalum or  
multi-layer X7R ceramic chip type, or through-hole or  
surface mount aluminum electrolytic capacitors.  
Figure 10 and Figure 11 illustrate typical connection  
diagrams for Hardware and Software modes, respectively.  
In Hardware mode, dedicated pins are controlled using  
external logic circuitry, hardwiring pins high or low, or by  
using the general-purpose I/O pins of a microprocessor or  
DSP. In Software mode, the SRC4194 is controlled via the  
4-wire SPI port and optional GPIO from either a  
microprocessor or DSP.  
When utilizing +1.8V for the core supply, the REGEN input  
(pin 26) must be driven low in order to disable the on-chip  
linear voltage regulator. The VDD18 pins are supplied with  
+1.8V and the VDD33 pins are left unconnected.  
SRC4184  
64  
63  
49  
SDOUTA  
SDOUTB  
BCKOB  
LRCKOB  
TDMIB  
50  
51  
52  
53  
54  
55  
BCKOA  
LRCKOA  
TDMIA  
BCKIA  
62  
Digital  
61  
Digital  
Audio I/O  
(DIR, DIT, DSP)  
Audio I/O  
(DIR, DIT, DSP)  
60  
BCKIB  
59  
58  
LRCKIA  
SDINA  
LRCKIB  
SDINB  
57  
56  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
DGND  
VIO  
IFMTB0  
IFMTB1  
IFMTB2  
OFMTB0  
OFMTB1  
OWLB0  
OWLB1  
BYPB  
µ
µ
0.1 F  
10 F  
+
1
2
IFMTA0  
IFMTA1  
IFMTA2  
OFMTA0  
OFMTA1  
OWLA0  
OWLA1  
BYPA  
3
VIO  
4
Supply  
5
6
LGRPB0  
LGRPB1  
DDNB  
Control Logic,  
7
µ
P, o r  
8
Hardwired I/O  
9
LGRPA0  
LGRPA1  
DDNA  
DEMB0  
DEMB1  
MODEB0  
MODEB1  
MODEB2  
RATIOB  
RDYB  
Control Logic,  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
µ
P, o r  
Hardwired I/O  
DEMA0  
DEMA1  
MODEA0  
MODEA1  
MODEA2  
RATIOA  
RDYA  
MUTEB  
29  
RCKIB  
From Reference Source Clock  
Refer to Figure 12  
MUTEA  
28  
27  
VDD18  
VDD18  
20  
RCKIA  
From Reference Clock Source  
From System or External Reset  
21  
22  
RST  
H/S  
23  
24  
25  
26  
DGND  
VDD33  
VDD33  
REGEN  
Refer to Figure 12  
Figure 10. Typical Pin Connections for Hardware Mode Operation  
33  
ꢠ ꢁꢅꢡ ꢢ ꢣ ꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
SRC4184  
SDOUTA  
64  
63  
62  
61  
60  
59  
58  
49  
50  
51  
52  
53  
54  
55  
SDOUTB  
BCKOB  
LRCKOB  
TDMIB  
BCKOA  
LRCKOA  
TDMIA  
BCKIA  
Digital  
Audio I/O  
Digital  
Audio I/O  
(DIR, DIT, DSP)  
(DIR, DIT, DSP)  
BCKIB  
LRCKIA  
SDINA  
LRCKIB  
SDINB  
57  
56  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
DGND  
VIO  
IFMTB0  
IFMTB1  
IFMTB2  
OFMTB0  
OFMTB1  
OWLB0  
OWLB1  
BYPB  
µ
µ
0.1 F  
10 F  
+
1
2
IFMTA0  
IFMTA1  
IFMTA2  
OFMTA0  
OFMTA1  
OWLA0  
OWLA1  
BYPA  
3
VIO  
4
Supply  
5
6
LGRPB0  
LGRPB1  
DDNB  
7
8
9
LGRPA0  
LGRPA1  
DDNA  
DEMB0  
CDOUT  
CS  
Host Processor  
with SPI Port  
and GPIO  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
DEMA0  
DEMA1  
MODEA0  
MODEA1  
MODEA2  
RATIOA  
RDYA  
CCLK  
CDIN  
To/From Host Processor  
RATIOB  
RDYB  
MUTEB  
29  
RCKIB  
From Reference Source Clock  
Refer to Figure 12  
MUTEA  
28  
27  
VDD18  
VDD18  
20  
RCKIA  
From Reference Clock Source  
From System or External Reset or Host Processor  
21  
22  
RST  
H/S  
23  
24  
25  
26  
DGND  
VDD33  
VDD33  
REGEN  
Refer to Figure 12  
Figure 11. Typical Pin Connections for Software Mode Operation  
+3.3V  
10µF  
Install jumper JMP1 and associated bypass capacitors  
only if +3.3V will be used as the core voltage.  
SRC4184  
+
24  
25  
0.1µF  
VDD33  
VDD33  
23  
DGND  
µ
10 F  
+
27  
28  
0.1µF  
VDD18  
VDD18  
Install jumper JMP2 and associated bypass capacitors  
only if +1.8V will be used as the core voltage.  
+1.8V  
26  
Drive Low when using a +1.8V core supply at the VDD18 pins.  
Drive High when using a +3.3V core supply at the VDD33 pin  
in order to enable the on−chip +1.8V linear voltage regulator.  
REGEN  
Figure 12. Core Power-Supply Connection Options  
34  
ꢠ ꢁꢅ ꢡꢢ ꢣꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
Figure 14 shows the interface between the SRC4184  
output port and the DIT4096 or DIT4192 audio serial port.  
Once again, the VIO supplies for both the SRC4184 and  
DIT4096/4192 are set to +3.3V for interface compatibility.  
INTERFACING TO DIGITAL AUDIO  
RECEIVERS AND TRANSMITTERS  
The SRC4184 input and output ports are designed to  
interface to a variety of audio devices, including receivers  
and transmitters commonly used for AES/EBU, S/PDIF,  
and CP1201 communications. Texas Instruments  
manufactures the DIR1703 digital audio interface receiver  
and DIT4096/4192 digital audio transmitters to address  
these applications.  
SRC4184  
DIT4096, DIT4192  
LRCKO  
SYNC  
SCLK  
SDATA  
TX+  
AES3, S/PDIF  
OUTPUT  
TX  
BCKO  
SDOUT  
RCKI  
Figure 13 illustrates interfacing the DIR1703 to the  
SRC4184 input port. The DIR1703 operates from a single  
+3.3V supply, which requires that the VIO supply (pin 56)  
for the SRC4184 to be set to +3.3V for interface  
compatibility.  
MCLK  
REF Clock  
Generator  
DIR1703  
SRC4184  
DIT Clock  
Generator  
RS−422  
Receiver  
LRCKO  
LRCKI  
Clock  
Select  
BCKO  
DATA  
SCKO  
BCKI  
SDIN  
AES3, S/PDIF  
Input  
RCV  
DIN  
Assumes VIO = +3.3V for SRC4184 and DIT4096, DIT4192  
RCLI  
Figure 14. Interfacing the SRC4184 to the  
DIT4096/4192 Digital Audio Interface Receiver  
Like the SRC4184 output ports, the DIT4096 and DIT4192  
audio serial port may be configured as a Master or Slave.  
In cases where the SRC4184 output port is set to Master  
mode and the DIT4096/4192 is configured as the Slave, it  
is recommended to use the reference clock source for the  
corresponding section of the SRC4184 as the master  
clock source for the DIT4096/4192. This will ensure that  
the transmitter audio serial port clocks, SYNC and SCLK,  
are synchronized to the master clock source.  
Clock  
Generator  
Clock  
Select  
Assumes VIO = +3.3V for SRC4184  
Figure 13. Interfacing the SRC4184 to the  
DIR1703 Digital Audio Interface Receiver  
35  
ꢠ ꢁꢅꢡ ꢢ ꢣ ꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
daisy-chain. For Master mode, the output BCKO  
frequency is fixed to the reference clock input frequency.  
The number of devices that can be daisy-chained in TDM  
mode is dependent upon the output sampling frequency  
and the bit clock frequency, leading to the following  
numerical relationship:  
TDM APPLICATIONS  
The SRC4184 supports a TDM output mode, which allows  
multiple devices to be daisy-chained together to create a  
serial frame. Each device occupies one sub-frame within  
a frame, and each sub-frame carries two channels (Left  
followed by Right). Each sub-frame is 64 bits long, with 32  
bits allotted for each channel. The audio data for each  
channel is left-justified within the allotted 32 bits. Figure 16  
illustrates the TDM frame format, while Figure 15 shows  
TDM input timing parameters, which are listed in the  
Electrical Characteristics table of this data sheet.  
Number of Daisy-Chained SRC Sections = (fBCKO/fs)/64  
Where:  
f
BCKO = Output Port Bit Clock (BCKO), 27MHz maximum  
fs = Output Port Sampling (or LRCKO) Frequency, 212kHz  
maximum.  
tLROS  
This relationship holds true for both Slave and Master  
modes.  
LRCKO  
tLROH  
Figure 17 and Figure 18 illustrate typical connection  
schemes for TDM mode. Although the TMS320C671x  
DSP family is shown as the audio processing engine in  
these figures, other TI digital signal processors with a  
multi-channel buffered serial port (McBSP) may also  
function with this arrangement. Interfacing to processors  
from other manufacturers is also possible. Refer to the  
timing diagrams this data sheet, along with the equivalent  
serial port timing diagrams shown in the DSP data sheet  
to determine compatibility.  
BCKO  
tTDMS  
TDMI  
tTDMH  
Figure 15. Input Timing for TDM Mode  
The frame rate is equal to the output sampling frequency,  
fs. The BCKO frequency for the TDM interface is N × 64fs,  
where N is the number of SRC sections included in the  
LRCKO  
BCKO  
SDOUT  
Left  
Right  
Left  
Right  
Left  
Right  
Sub−Frame 1  
Sub−Frame 2  
One Frame = 1/fs  
Sub−Frame N  
N = Number of Daisy−Chained Devices  
One Sub−Frame contains 64 bits, with 32 bits per channel.  
For each channel, the audio data is Left−Justified, MSB−first format, with the word length determined by the OWL[1:0] pins/bits.  
Figure 16. TDM Frame Format  
36  
ꢠ ꢁꢅ ꢡꢢ ꢣꢡ  
www.ti.com  
SBFS026B − JUNE 2004 − REVISED SEPTEMBER 2007  
SRC4184  
SRC2 Section  
Slave #2  
SRC4184  
SRC1 Section  
Slave #1  
SRC4184  
Slave #N  
TMS320C671x  
McBSP  
TDMI  
SDOUT  
TDMI  
SDOUT  
TDMI  
SDOUT  
DRn  
n = 0 or 1  
LRCKO  
BCKO  
RCKI  
LRCKO  
BCKO  
RCKI  
LRCKO  
BCKO  
RCKI  
FSRn  
CLKRn  
CLKIN or CLKSn  
Clock  
Generator  
Figure 17. TDM Interface where All Devices are Slaves  
SRC4184  
SRC4184  
SRC1 Section  
Master  
SRC2 Section  
Slave  
SRC4184  
Slave #1  
TMS320C671x  
McBSP  
TDMI  
SDOUT  
TDMI  
SDOUT  
TDMI  
SDOUT  
DRn  
n = 0 or 1  
LRCKO  
BCKO  
RCKI  
LRCKO  
BCKO  
RCKI  
LRCKO  
BCKO  
RCKI  
FSRn  
CLKRn  
CLKIN or CLKSn  
Clock  
Generator  
Figure 18. TDM Interface where One Device is Master to Multiple Slaves  
37  
Revision History  
DATE  
REV  
PAGE  
SECTION  
Front Page  
DESCRIPTION  
9/07  
B
1
Added U.S. patent number.  
:
NOTE Page numbers for previous revisions may differ from page numbers in the current version.  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SRC4184IPAG  
SRC4184IPAGG4  
SRC4184IPAGR  
SRC4184IPAGT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
TQFP  
TQFP  
TQFP  
TQFP  
PAG  
PAG  
PAG  
PAG  
64  
64  
64  
64  
160  
160  
RoHS & Green  
RoHS & Green  
NIPDAU  
Level-4-260C-72 HR  
Level-4-260C-72 HR  
Level-4-260C-72 HR  
Level-4-260C-72 HR  
-40 to 85  
-40 to 85  
-40 to 85  
-40 to 85  
SRC4184I  
NIPDAU  
NIPDAU  
NIPDAU  
SRC4184I  
SRC4184I  
SRC4184I  
1500 RoHS & Green  
250 RoHS & Green  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Oct-2022  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SRC4184IPAGR  
TQFP  
PAG  
64  
1500  
330.0  
24.4  
13.0  
13.0  
1.5  
16.0  
24.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Oct-2022  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TQFP PAG 64  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
SRC4184IPAGR  
1500  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Oct-2022  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
SRC4184IPAG  
PAG  
PAG  
TQFP  
TQFP  
64  
64  
160  
160  
8 x 20  
8 x 20  
150  
150  
315 135.9 7620 15.2  
315 135.9 7620 15.2  
13.1  
13.1  
13  
13  
SRC4184IPAGG4  
Pack Materials-Page 3  
MECHANICAL DATA  
MTQF006A – JANUARY 1995 – REVISED DECEMBER 1996  
PAG (S-PQFP-G64)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
48  
M
0,08  
33  
49  
32  
64  
17  
0,13 NOM  
1
16  
7,50 TYP  
Gage Plane  
10,20  
SQ  
9,80  
0,25  
12,20  
SQ  
0,05 MIN  
11,80  
0°7°  
1,05  
0,95  
0,75  
0,45  
Seating Plane  
0,08  
1,20 MAX  
4040282/C 11/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022, Texas Instruments Incorporated  

相关型号:

SRC4184IPAGRG4

SPECIALTY CONSUMER CIRCUIT, PQFP64, GREEN, PLASTIC, TQFP-64
TI

SRC4184IPAGT

4 通道异步采样速率转换器 | PAG | 64 | -40 to 85
TI

SRC4184IPAGTG4

4-Channel, Asynchronous Sample Rate Converter 64-TQFP -40 to 85
TI

SRC4190

192kHz Stereo Asynchronous Sample Rate Converters
BB

SRC4190

192kHz Stereo Asynchronous Sample Rate Converters
TI

SRC4190-Q1

192-kHz STEREO ASYNCHRONOUS SAMPLE-RATE CONVERTER
TI

SRC4190IDB

192kHz Stereo Asynchronous Sample Rate Converters
BB

SRC4190IDB

192kHz Stereo Asynchronous Sample Rate Converters
TI

SRC4190IDBR

192kHz Stereo Asynchronous Sample Rate Converters
BB

SRC4190IDBR

192kHz Stereo Asynchronous Sample Rate Converters
TI

SRC4190IDBRQ1

192-kHz STEREO ASYNCHRONOUS SAMPLE-RATE CONVERTER
TI

SRC4192

192kHz Stereo Asynchronous Sample Rate Converters
BB