SRC4392IPFB [TI]

高端组合采样速率转换器 | PFB | 48 | -40 to 85;
SRC4392IPFB
型号: SRC4392IPFB
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

高端组合采样速率转换器 | PFB | 48 | -40 to 85

PC 商用集成电路 转换器
文件: 总95页 (文件大小:1382K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
Two-Channel, Asynchronous Sample Rate Converter with  
Integrated Digital Audio Interface Receiver and Transmitter  
Check for Samples: SRC4392  
1
FEATURES  
234  
Two-Channel Asynchronous Sample Rate  
Converter (SRC)  
Digital Audio Interface Receiver (DIR)  
PLL Lock Range Includes Sampling Rates  
from 20kHz to 216kHz  
Dynamic Range with –60dB Input (A-  
Weighted): 144dB typical  
Includes Four Differential Input Line  
Receivers and an Input Multiplexer  
Total Harmonic Distortion and Noise  
(THD+N) with Full-Scale Input: –140dB  
typical  
Bypass Multiplexer Routes Line Receiver  
Outputs to Line Driver and Buffer Outputs  
Supports Audio Input and Output Data  
Word Lengths Up to 24 Bits  
Block-Sized Data Buffers for Both Channel  
Status and User Data  
Supports Input and Output Sampling  
Frequencies Up to 216kHz  
Automatic Detection of Non-PCM Audio  
Streams (DTS CD/LD and IEC 61937  
formats)  
Automatic Detection of the Input-to-Output  
Sampling Ratio  
Audio CD Q-Channel Sub-Code Decoding  
and Data Buffer  
Wide Input-to-Output Conversion Range:  
16:1 to 1:16 Continuous  
Status Registers and Interrupt Generation  
for Flag and Error Conditions  
Excellent Jitter Attenuation Characteristics  
Digital De-Emphasis Filtering for 32kHz,  
44.1kHz, and 48kHz Input Sampling Rates  
Low Jitter Recovered Clock Output  
Two Audio Serial Ports (Ports A and B)  
Digital Output Attenuation and Mute  
Functions  
Synchronous Serial Interface to External  
Signal Processors, Data Converters, and  
Logic  
Output Word Length Reduction  
Status Registers and Interrupt Generation  
for Sampling Ratio and Ready Flags  
Slave or Master Mode Operation with  
Sampling Rates up to 216kHz  
Digital Audio Interface Transmitter (DIT)  
Supports Left-Justified, Right-Justified, and  
Philips I2S™ Data Formats  
Supports Sampling Rates Up to 216kHz  
Supports Audio Data Word Lengths Up to  
24 Bits  
Includes Differential Line Driver and  
CMOS Buffered Outputs  
Four General-Purpose Digital Outputs  
Block-Sized Data Buffers for Both Channel  
Status and User Data  
Multifunction Programmable Via Control  
Registers  
Status Registers and Interrupt Generation  
for Flag and Error Conditions  
Extensive Power-Down Support  
User-Selectable Serial Host Interface: SPI or  
Philips I2C™  
Functional Blocks May Be Disabled  
Individually When Not In Use  
Provides Access to On-Chip Registers and  
Data Buffers  
Operates From +1.8V Core and +3.3V I/O  
Power Supplies  
Packages:  
U.S. Patent No. 7,262,716  
QFN-40  
Small TQFP-48 Package, Compatible with  
the SRC4382 and DIX4192  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of  
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
Dolby is a registered trademark of Dolby Laboratories.  
2
3
4
I2C, I2S are trademarks of Koninklijke Philips Electronics N.V.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2005–2012, Texas Instruments Incorporated  
 
 
 
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
The DIR and DIT are compatible with the AES3,  
S/PDIF, IEC 60958, and EIAJ CP-1201 interface  
standards. The audio serial ports, DIT, and SRC may  
be operated at sampling rates up to 216kHz. The DIR  
lock range includes sampling rates from 20kHz to  
216kHz.  
APPLICATIONS  
DIGITAL AUDIO RECORDERS AND  
MIXING DESKS  
DIGITAL AUDIO INTERFACES FOR  
COMPUTERS  
DIGITAL AUDIO ROUTERS AND  
DISTRIBUTION SYSTEMS  
The SRC4392 is configured using on-chip control  
registers and data buffers, which are accessed  
through either a 4-wire serial peripheral interface  
(SPI) port, or a 2-wire Philips I2C bus interface.  
Status registers provide access to a variety of flag  
and error bits, which are derived from the various  
function blocks. An open drain interrupt output pin is  
provided, and is supported by flexible interrupt  
reporting and mask options via control register  
settings. A master reset input pin is provided for  
initialization by a host processor or supervisory  
functions.  
BROADCAST STUDIO EQUIPMENT  
DVD/CD RECORDERS  
SURROUND SOUND DECODERS AND  
A/V RECEIVERS  
CAR AUDIO SYSTEMS  
DESCRIPTION  
The SRC4392 is a highly-integrated CMOS device  
designed for use in professional and broadcast digital  
audio systems. The SRC4392 combines a high-  
performance, two-channel, asynchronous sample rate  
converter (SRC) with a digital audio interface receiver  
(DIR) and transmitter (DIT), two audio serial ports,  
and flexible distribution logic for interconnection of the  
function block data and clocks.  
The SRC4392 requires a +1.8V core logic supply, in  
addition to a +3.3V supply for powering portions of  
the DIR, DIT, and line driver and receiver functions. A  
separate logic I/O supply supports operation from  
+1.65V to +3.6V, providing compatibility with low  
voltage logic interfaces typically found on digital  
signal processors and programmable logic devices.  
The SRC4392 is available in a QFN-40 and a lead-  
free, TQFP-48 package. The TQFN-48 is pin- and  
register-compatible with the Texas Instruments  
SRC4382 and DIX4192 products.  
2
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
 
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with  
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more  
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.  
ORDERING INFORMATION(1)  
SPECIFIED  
PACKAGE  
DESIGNATOR  
TEMPERATURE  
RANGE  
PACKAGE  
MARKING  
ORDERING  
NUMBER  
TRANSPORT MEDIA,  
QUANTITY  
PRODUCT  
PACKAGE  
SRC4392IPFBT  
SRC4392IPFBR  
SRC4392RKP  
SRC4392RKPR  
Tape and Reel, 250  
Tape and Reel, 2000  
Tape and Reel, 250  
Tape and Reel, 2000  
TQFP-48  
PFB  
RKP  
–40°C to +85°C  
–40°C to +85°C  
SRC4392I  
SRC4392  
SRC4392  
QFN-40  
(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI  
web site at www.ti.com.  
ABSOLUTE MAXIMUM RATINGS(1)  
Power Supplies  
VDD18  
–0.3V to +2.0V  
–0.3V to +4.0V  
–0.3V to +4.0V  
–0.3V to +4.0V  
VDD33  
VIO  
VCC  
Digital Input Voltage: Digital Logic  
RXCKI, MUTE, CPM, CS, CCLK, CDIN, CDOUT, INT, RST, MCLK, BLS, SYNC, BCKA,  
BCKB, LRCKA, LRCKB, SDINA, SDINB  
–0.3V to (VIO + 0.3V)  
Line Receiver Input Voltage (per pin)  
RX1+, RX1–, RX2+, RX2–, RX3+, RX3–, RX4+, RX4–  
Input Current (all pins except power and ground)  
Ambient Operating Temperature  
(VDD33 + 0.3) VPP  
±10mA  
–40°C to +85°C  
–65°C to +150°C  
Storage Temperature  
(1) These limits are stress ratings only. Stresses beyond these limits may result in permanent damage. Extended exposure to absolute  
maximum ratings may degrade device reliability. Normal operation or performance at or beyond these limits is not specified or ensured.  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Links: SRC4392  
 
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
ELECTRICAL CHARACTERISTICS: General, SRC, DIR, and DIT  
All specifications are at TA = +25°C, VDD18 = +1.8V, VDD33 = +3.3V, VIO = +3.3V, and VCC = +3.3V, unless otherwise noted.  
SRC4392  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL I/O CHARACTERISTICS  
(All I/O Pins Except Line Receivers and Line Driver)  
High-Level Input Voltage, VIH  
Low-Level Input Voltage, VIL  
High-Level Input Current, IIH  
Low-Level Input Current, VIL  
High-Level Output Voltage, VOH  
Low-Level Output Voltage, VOL  
Input Capacitance, CIN  
0.7 × VIO  
0
VIO  
0.3 × VIO  
10  
V
V
0.5  
0.5  
μA  
μA  
V
10  
IO = –4mA  
IO = +4mA  
0.8 × VIO  
0
VIO  
0.2 × VIO  
V
3
pF  
LINE RECEIVER INPUTS  
(RX1+, RX1–, RX2+, RX2–, RX3+, RX3–, RX4+, RX4–)  
Voltage across a given  
differential input pair  
Differential Input Sensitivity, VTH  
Input Hysteresis, VHY  
150  
200  
mV  
mV  
150  
5.4  
LINE DRIVER OUTPUTS  
(TX+, TX–)  
Differential Output Voltage, VTXO  
RL = 110Across TX+ and TX–  
VPP  
MASTER CLOCK INPUT  
Master Clock Input (MCLK) Frequency, fMCLK  
Master Clock Input (MCLK) Duty Cycle, fMCLKD  
ASYNCHRONOUS SAMPLE RATE CONVERTER (SRC)  
Input or Output Sampling Rate, fSIN or fSOUT  
Input-to-Output Sampling Ratio  
1
27.7  
55  
MHz  
%
45  
4
216  
kHz  
1:16  
16:1  
Interchannel Gain Mismatch  
0
0
dB  
Interchannel Phase Mismatch  
Degrees  
Dynamic Range (no weighting filter applied)(1)  
BW = 22Hz to fSOUT/2,  
f = 997Hz at –60dBFS  
fSIN:fSOUT = 12kHz:192kHz  
fSIN:fSOUT = 44.1kHz:44.1kHz  
fSIN:fSOUT = 44.1kHz:48kHz  
fSIN:fSOUT = 44.1kHz:96kHz  
fSIN:fSOUT = 44.1kHz:192kHz  
fSIN:fSOUT = 48kHz:44.1kHz  
fSIN:fSOUT = 48kHz:48kHz  
fSIN:fSOUT = 48kHz:96kHz  
fSIN:fSOUT = 48kHz:192kHz  
fSIN:fSOUT = 96kHz:44.1kHz  
fSIN:fSOUT = 96kHz:48kHz  
fSIN:fSOUT = 96kHz:96kHz  
fSIN:fSOUT = 96kHz:192kHz  
fSIN:fSOUT = 192kHz:12kHz  
fSIN:fSOUT = 192kHz:44.1kHz  
fSIN:fSOUT = 192kHz:48kHz  
fSIN:fSOUT = 192kHz:96kHz  
fSIN:fSOUT = 192kHz:192kHz  
138  
141  
141  
141  
138  
141  
141  
141  
138  
142  
142  
142  
138  
141  
142  
142  
142  
138  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
(1) Measured with an Audio Precision SYS-2722 192kHz test system with the input and output sampling frequencies asynchronous to one  
another. A-weighted dynamic range specifications will be improved by approximately 2dB to 3dB when compared to the results without  
A-weighting applied.  
4
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
ELECTRICAL CHARACTERISTICS: General, SRC, DIR, and DIT (continued)  
All specifications are at TA = +25°C, VDD18 = +1.8V, VDD33 = +3.3V, VIO = +3.3V, and VCC = +3.3V, unless otherwise  
noted.  
SRC4392  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Total Harmonic Distortion + Noise (THD+N)(2)  
BW = 22Hz to fSOUT/2,  
f = 997Hz at 0dBFS  
fSIN:fSOUT = 12kHz:192kHz  
fSIN:fSOUT = 44.1kHz:44.1kHz  
fSIN:fSOUT = 44.1kHz:48kHz  
fSIN:fSOUT = 44.1kHz:96kHz  
fSIN:fSOUT = 44.1kHz:192kHz  
fSIN:fSOUT = 48kHz:44.1kHz  
fSIN:fSOUT = 48kHz:48kHz  
fSIN:fSOUT = 48kHz:96kHz  
fSIN:fSOUT = 48kHz:192kHz  
fSIN:fSOUT = 96kHz:44.1kHz  
fSIN:fSOUT = 96kHz:48kHz  
fSIN:fSOUT = 96kHz:96kHz  
fSIN:fSOUT = 96kHz:192kHz  
fSIN:fSOUT = 192kHz:12kHz  
fSIN:fSOUT = 192kHz:44.1kHz  
fSIN:fSOUT = 192kHz:48kHz  
fSIN:fSOUT = 192kHz:96kHz  
fSIN:fSOUT = 192kHz:192kHz  
Digital Interpolation Filter Characteristics  
Passband  
–137  
–140  
–140  
–140  
–137  
–140  
–140  
–140  
–137  
–141  
–141  
–140  
–137  
–140  
–141  
–141  
–141  
–137  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
0.4535 × fSIN  
±0.007  
Hz  
Passband Ripple  
dB  
Transition Band  
0.4535 × fSIN  
0.5465 × fSIN  
–144  
0.5465 × fSIN  
Hz  
Stop Band  
Hz  
Stop Band Attenuation  
dB  
Group Delay (64 samples pre-buffered)  
Group Delay (64 samples pre-buffered)  
Group Delay (32 samples pre-buffered)  
Group Delay (32 samples pre-buffered)  
Group Delay (16 samples pre-buffered)  
Group Delay (16 samples pre-buffered)  
Group Delay (8 samples pre-buffered)  
Group Delay (8 samples pre-buffered)  
Digital Decimation Filter Characteristics  
Passband  
Decimation filter enabled  
Direct down-sampling enabled  
Decimation filter enabled  
102.53125/fSIN  
102/fSIN  
Seconds  
Seconds  
Seconds  
Seconds  
Seconds  
Seconds  
Seconds  
Seconds  
70.53125/fSIN  
70/fSIN  
Direct down-sampling enabled  
Decimation filter enabled  
54.53125/fSIN  
54/fSIN  
Direct down-sampling enabled  
Decimation filter enabled  
46.53125/fSIN  
46/fSIN  
Direct down-sampling enabled  
0.4535 × fSOUT  
±0.008  
Hz  
dB  
Passband Ripple  
Transition Band  
0.4535 × fSOUT  
0.5465 × fSOUT  
–143  
0.5465 × fSOUT  
Hz  
Stop Band  
Hz  
Stop Band Attenuation  
dB  
Group Delay  
Decimation filter enabled  
36.46875/fSOUT  
0
Seconds  
Seconds  
Group Delay  
Direct down-sampling enabled  
Digital De-Emphasis Filter Characteristics  
Filter Error for All Settings  
De-emphasis filter enabled  
0.001  
dB  
(2) Measured with an Audio Precision SYS-2722 192kHz test system with the input and output sampling frequencies asynchronous to one  
another.  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
ELECTRICAL CHARACTERISTICS: General, SRC, DIR, and DIT (continued)  
All specifications are at TA = +25°C, VDD18 = +1.8V, VDD33 = +3.3V, VIO = +3.3V, and VCC = +3.3V, unless otherwise  
noted.  
SRC4392  
PARAMETER  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
DIGITAL AUDIO INTERFACE RECEIVER (DIR)  
PLL Lock Range  
20  
3.5  
45  
216  
27.7  
55  
kHz  
MHz  
%
Reference Clock Input (RXCKI) Frequency, fRXCKI  
Reference Clock Input (RXCKI) Duty Cycle, fRXCKID  
Recovered Clock Output (RXCKO) Frequency, fRXCKO  
Recovered Clock Output (RXCKO) Duty Cycle, fRXCKOD  
Recovered Clock Output (RXCKO) Intrinsic Jitter  
DIGITAL AUDIO INTERFACE TRANSMITTER (DIT)  
Intrinsic Output Jitter  
3.5  
45  
27.7  
55  
MHz  
%
Measured cycle-to-cycle  
Measured cycle-to-cycle  
250  
200  
ps RMS  
ps RMS  
ELECTRICAL CHARACTERISTICS: Audio Serial Ports  
All specifications are at TA = +25°C, VDD18 = +1.8V, VDD33 = +3.3V, VIO = +3.3V, and VCC = +3.3V, unless otherwise noted.  
SRC4392  
PARAMETER  
AUDIO SERIAL PORTS (Port A and Port B)  
LRCK Clock Frequency, fLRCK  
CONDITIONS  
MIN  
TYP  
MAX  
216  
UNITS  
0
kHz  
%
LRCK Clock Duty Cycle, tLRCKD  
50  
BCK Clock Frequency, fBCK  
0
13.824  
MHz  
ns  
BCK High Pulse Width, tBCKH  
10  
10  
10  
10  
BCK Low Pulse Width, tBCKL  
ns  
Audio Data Input (SDIN) Setup Time, tAIS  
Audio Data Input (SDIN) Hold Time, tAISH  
Audio Data Output (SDOUT) Delay, tADD  
ns  
ns  
10  
ns  
ELECTRICAL CHARACTERISTICS: SPI Interface  
All specifications are at TA = +25°C, VDD18 = +1.8V, VDD33 = +3.3V, VIO = +3.3V, and VCC = +3.3V, unless otherwise noted.  
SRC4392  
PARAMETER  
HOST INTERFACE: SPI Mode  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Serial Clock (CCLK) Frequency, fCCLK  
CS Falling to CCLK Rising, tCSCR  
CCLK Falling to CS Rising, tCFCS  
CDIN Data Setup Time, tCDS  
0
8
7
7
6
40  
MHz  
ns  
ns  
ns  
CDIN Data Hold Time, tCDH  
ns  
CCLK Falling to CDOUT Data Valid, tCFDO  
CS Rising to CDOUT High-Impedance, tCSZ  
3
3
ns  
ns  
6
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
 
 
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
ELECTRICAL CHARACTERISTICS: I2C Standard and Fast Modes  
All specifications are at TA = +25°C, VDD18 = +1.8V, VDD33 = +3.3V, VIO = +3.3V, and VCC = +3.3V, unless otherwise noted.  
SRC4392  
PARAMETER  
HOST INTERFACE: I2C Standard Mode(1)  
SCL Clock Frequency, fSCL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
0
4
100  
kHz  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
μs  
pF  
V
Hold Time Repeated START Condition, tHDSTA  
Low Period of SCL Clock, tLOW  
4.7  
4
High Period of SCL Clock, tHIGH  
Setup Time Repeated START Condition, tSUSTA  
Data Hold Time, tHDDAT  
4.7  
0(2)  
250  
3.45(3)  
Data Setup Time, tSUDAT  
Rise Time for Both SDA and SDL, tR  
Fall Time for Both SDA and SDL, tF  
Setup Time for STOP Condition, tSUSTO  
Bus Free Time Between START and STOP, tBUF  
Capacitive Load for Each Bus Line, CB  
Noise Margin at Low Level (including hysteresis), VNL  
Noise Margin at High Level (including hysteresis), VNH  
HOST INTERFACE: I2C Fast Mode(1)  
SCL Clock Frequency, fSCL  
1000  
300  
4
4.7  
400  
400  
0.1 × VIO  
0.2 × VIO  
V
0
0.6  
kHz  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
μs  
ns  
pF  
V
Hold Time Repeated START Condition, tHDSTA  
Low Period of SCL Clock, tLOW  
1.3  
High Period of SCL Clock, tHIGH  
0.6  
Setup Time Repeated START Condition, tSUSTA  
Data Hold Time, tHDDAT  
0.6  
0(2)  
100(4)  
20 + 0.2CB  
20 + 0.2CB  
0.6  
0.9(3)  
Data Setup Time, tSUDAT  
(5)  
(5)  
Rise Time for Both SDA and SDL, tR  
Fall Time for Both SDA and SDL, tF  
Setup Time for STOP Condition, tSUSTO  
Bus Free Time Between START and STOP, tBUF  
Spike Pulse Width Suppressed by Input Filter, tSP  
Capacitive Load for Each Bus Line, CB  
Noise Margin at Low Level (including hysteresis), VNL  
Noise Margin at High Level (including hysteresis), VNH  
300  
300  
1.3  
0
50  
400  
0.1 × VIO  
0.2 × VIO  
V
(1) All values referred to the VIH minimum and VIL maximum levels listed in the Digital I/O Characteristics section of the Electrical  
Characteristics: General, SRC, DIR, and DIT table.  
(2) A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the VIH minimum input level) to bridge the  
undefined region of the falling edge of SCL.  
(3) The maximum tHDDAT has only to be met if the device does not stretch the Low period (tLOW) of the SCL signal.  
(4) A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement that tSUDAT be 250ns minimum must  
then be met. For the SRC4392, this is automatically the case, since the device does not stretch the Low period of the SCL signal.  
(5) CB is defined as the total capacitance of one bus line in picofarads (pF). If mixed with High-Speed mode devices, faster fall times are  
allowed.  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Links: SRC4392  
 
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
ELECTRICAL CHARACTERISTICS: Power Supplies  
All specifications are at TA = +25°C, VDD18 = +1.8V, VDD33 = +3.3V, VIO = +3.3V, and VCC = +3.3V, unless otherwise noted.  
SRC4392  
PARAMETER  
POWER SUPPLIES  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Recommended Supply Voltage Range  
VDD18  
+1.65  
+3.0  
+1.8  
+3.3  
+3.3  
+3.3  
+1.95  
+3.6  
+3.6  
+3.6  
V
V
V
V
VDD33  
VIO  
+1.65  
+3.0  
VCC  
Supply Current: Initial Startup  
All Blocks Powered Down by Default  
VDD18 = +1.8V  
IDD18S  
90  
1
μA  
μA  
μA  
μA  
IDD33S  
VDD33 = +3.3V  
IIOS  
VIO = +3.3V  
270  
1
ICCS  
VCC = +3.3V  
Supply Current: Quiescent  
All Blocks Powered Up with No Clocks Applied  
VDD18 = +1.8V  
IDD18Q  
3.1  
0.5  
mA  
mA  
mA  
mA  
IDD33Q  
VDD33 = +3.3V  
IIOQ  
VIO = +3.3V  
0.27  
6.6  
ICCQ  
VCC = +3.3V  
Supply Current: Dynamic  
All Blocks Powered Up, fS = 48kHz  
VDD18 = +1.8V  
IDD18D  
23  
14  
43  
8
mA  
mA  
mA  
mA  
IDD33D  
IIOD(1)  
VDD33 = +3.3V  
VIO = +3.3V  
ICCD  
VCC = +3.3V  
Supply Current: High Sampling Rate  
IDD18H  
All Blocks Powered Up, fS = 192kHz  
VDD18 = +1.8V  
58  
15  
44  
8
mA  
mA  
IDD33H  
IIOH(1)  
VDD33 = +3.3V  
VIO = +3.3V  
mA  
ICCH  
VCC = +3.3V  
mA  
Total Power Dissipation: Initial Startup  
Total Power Dissipation: Quiescent  
Total Power Dissipation: Dynamic  
Total Power Dissipation: High Sampling Rate  
All Blocks Powered Down by Default  
All Blocks Powered Up with No Clocks Applied  
All Blocks Powered Up, fS = 48kHz  
All Blocks Powered Up, fS = 192kHz  
1
mW  
mW  
mW  
mW  
30  
256  
326  
(1) The typical VIO supply current is measured using the SRC4392EVM evaluation module with loading from the DAIMB mother-board  
circuitry. VIO supply current will be dependent upon the loading on the logic output pins.  
8
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
TIMING DIAGRAMS  
LRCK  
tBCKH  
BCK  
tAIS  
tBCKL  
SDIN  
tAIH  
tAOD  
SDOUT  
Figure 1. Audio Serial Port Timing  
tCFCS  
CS  
tCSCR  
tCDS  
CCLK  
CDIN  
tCDH  
Hi Z  
Hi Z  
tCSZ  
CDOUT  
tCFDO  
Figure 2. SPI Interface Timing  
tF  
SDA  
tSUDAT  
tHDSTA  
tSP  
tR  
tBUF  
tLOW  
tR  
tF  
SCL  
tHDSTA  
tSUSTA  
tSUSTO  
tHDDAT  
tHIGH  
S
R
P
S
S = Start Condition  
R = Repeated Start Condition  
P = Stop Condition  
Figure 3. I2C Standard and Fast Mode Timing  
PIN CONFIGURATIONS  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Links: SRC4392  
 
 
 
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
PFB PACKAGE  
TQFP-48  
(Top View)  
RKP PACKAGE  
QFN-40  
(Top View)  
48 47 46 45 44 43 42 41 40 39 38 37  
40 39 38 37 36 35 34 33 32 31  
RX1+  
RX1-  
RX2+  
RX2-  
RX3+  
RX3-  
RX4+  
RX4-  
VCC  
1
2
3
4
5
6
7
8
9
36 SYNC  
35 BLS  
BCKB  
RX1+  
RX1-  
RX2+  
RX2-  
RX3+  
VCC  
1
2
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
SYNC  
BLS  
34 AESOUT  
33 VDD33  
32 TX+  
3
AESOUT  
VDD33  
TX+  
4
31 TX-  
5
30 DGND2  
29 GPO4  
28 GPO3  
27 GPO2  
26 GPO1  
25 MCLK  
6
TX-  
7
DGND2  
GPO2  
GPO1  
MCLK  
AGND 10  
LOCK 11  
AGND  
8
9
LOCK  
RXCKO 12  
RXCKO  
10  
13 14 15 16 17 18 19 20 21 22 23 24  
11 12 13 14 15 16 17 18 19 20  
NC = No Connection  
NC = No connection.  
PIN DESCRIPTIONS  
PIN NO.  
NAME  
PFB  
34  
RKP  
28  
8
I/O  
DESCRIPTION  
AESOUT  
AGND  
BCKA  
Output  
Ground  
I/O  
DIT buffered AES3-encoded data  
10  
DIR comparator and PLL power-supply ground  
Audio serial Port A bit clock  
37  
31  
1
BCKB  
48  
I/O  
Audio serial Port B bit clock  
Substrate ground, connect to AGND (pin 10 for PFB package, pin 8 for  
RKP package)  
BGND  
44  
37  
Ground  
BLS  
35  
20  
21  
22  
29  
16  
17  
18  
I/O  
Input  
Input  
I/O  
DIT block start clock  
Serial data clock for SPI mode or I2C mode  
SPI port serial data input or programmable slave address for I2C mode  
CCLK or SCL  
CDIN orA1  
SPI port serial data output (3-state output) or serial data I/O for I2C  
mode  
CDOUT or SDA  
Control port mode  
CPM  
18  
19  
14  
15  
Input  
Input  
(0 = SPI mode, 1 = I2C mode)  
CS or A0  
Chip select (active low) for SPI mode or programmable slave address  
for I2C mode  
DGND1  
DGND2  
DGND3  
GPO1  
GPO2  
GPO3  
GPO4  
INT  
16  
30  
43  
26  
27  
28  
29  
23  
11  
12  
24  
36  
22  
23  
19  
9
Ground  
Ground  
Ground  
Output  
Output  
Output  
Output  
Output  
Output  
Digital core ground  
DIR line receiver bias and DIT line driver digital ground  
Logic I/O ground  
General-purpose output 1  
General-purpose output 2  
General-purpose output 3  
General-purpose output 4  
Interrupt flag (open-drain, active low)  
DIR PLL lock flag (active low)  
LOCK  
10  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
 
 
 
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
PIN DESCRIPTIONS (continued)  
PIN NO.  
NAME  
PFB  
38  
47  
25  
14  
41  
15  
24  
1
RKP  
32  
40  
21  
20  
2
I/O  
I/O  
DESCRIPTION  
Audio serial Port A Left/Right clock  
LRCKA  
LRCKB  
MCLK  
MUTE  
NC  
I/O  
Audio serial Port B left/right clock  
Master clock  
Input  
Input  
SRC output mute (active high)  
No internal signal connection, internally bonded to ESD pad  
SRC ready flag (active low)  
RDY  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
Input  
Input  
Output  
Output  
Output  
Output  
Output  
Power  
Power  
Power  
Power  
RST  
Reset (active low)  
RX1+  
RX1–  
RX2+  
RX2–  
RX3+  
RX3–  
RX4+  
RX4–  
RXCKI  
RXCKO  
SDINA  
SDINB  
SDOUTA  
SDOUTB  
SYNC  
TX+  
Line receiver 1, noninverting input  
Line receiver 1, inverting input  
Line receiver 2, noninverting input  
Line receiver 2, inverting input  
Line receiver 3, noninverting input  
Line receiver 3, inverting input  
Line receiver 4, noninverting input  
Line receiver 4, inverting input  
DIR reference clock  
2
3
3
4
4
5
5
6
6
11  
10  
33  
39  
34  
38  
30  
26  
25  
27  
35  
13  
7
7
8
13  
12  
39  
46  
40  
45  
36  
32  
31  
33  
42  
17  
9
DIR recovered master clock (3-state output)  
Audio serial Port A data input  
Audio serial Port B data input  
Audio serial Port A data output  
Audio serial Port B data output  
DIT internal sync clock  
DIT line driver noninverting output  
DIT line driver inverting output  
DIR line receiver bias and DIT line driver supply, +3.3V nominal  
Logic I/O supply, +1.65V to +3.6V  
Digital core supply, +1.8V nominal  
DIR comparator and PLL power supply, +3.3V nominal  
TX–  
VDD33  
VIO  
VDD18  
VCC  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
TYPICAL CHARACTERISTICS  
All specifications are at TA = +25°C, VDD18 = +1.8V, VDD33 = +3.3V, VIO = +3.3V, and VCC = +3.3V, unless otherwise noted.  
THD+N vs INPUT SAMPLING RATE  
(fSOUT = 44.1kHz and fIN = 997Hz at 0dBFS)  
THD+N vs INPUT SAMPLING RATE  
(fSOUT = 48kHz and fIN = 997Hz at 0dBFS)  
-130  
-132  
-134  
-136  
-138  
-140  
-142  
-144  
-146  
-148  
-150  
-130  
-132  
-134  
-136  
-138  
-140  
-142  
-144  
-146  
-148  
-150  
32  
52  
72  
92  
112  
132  
152  
172  
192  
32  
52  
72  
92  
112  
132  
152  
172  
192  
Sampling Rate (kHz)  
Sampling Rate (kHz)  
Figure 4.  
Figure 5.  
THD+N vs INPUT SAMPLING RATE  
THD+N vs INPUT SAMPLING RATE  
(fSOUT = 96kHz and fIN = 997Hz at 0dBFS)  
(fSOUT = 192kHz and fIN = 997Hz at 0dBFS)  
-130  
-132  
-134  
-136  
-138  
-140  
-142  
-144  
-146  
-148  
-150  
-130  
-132  
-134  
-136  
-138  
-140  
-142  
-144  
-146  
-148  
-150  
32  
52  
72  
92  
112  
132  
152  
172  
192  
32  
52  
72  
92  
112  
132  
152  
172  
192  
Sampling Rate (kHz)  
Sampling Rate (kHz)  
Figure 6.  
Figure 7.  
THD+N vs INPUT FREQUENCY  
(fSIN:fSOUT = 44.1kHz:44.1kHz and  
Input Amplitude = 0dBFS)  
THD+N vs INPUT FREQUENCY  
(fSIN:fSOUT = 44.1kHz:48kHz and  
Input Amplitude = 0dBFS)  
-120  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Input Frequency (Hz)  
Input Frequency (Hz)  
Figure 8.  
Figure 9.  
12  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
TYPICAL CHARACTERISTICS (continued)  
All specifications are at TA = +25°C, VDD18 = +1.8V, VDD33 = +3.3V, VIO = +3.3V, and VCC = +3.3V, unless otherwise  
noted.  
THD+N vs INPUT FREQUENCY  
(fSIN:fSOUT = 44.1kHz:96kHz and  
Input Amplitude = 0dBFS)  
THD+N vs INPUT FREQUENCY  
(fSIN:fSOUT = 44.1kHz:192kHz and  
Input Amplitude = 0dBFS)  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Input Frequency (Hz)  
Input Frequency (Hz)  
Figure 10.  
Figure 11.  
THD+N vs INPUT FREQUENCY  
THD+N vs INPUT FREQUENCY  
(fSIN:fSOUT = 48kHz:44.1kHz and Input Amplitude = 0dBFS)  
(fSIN:fSOUT = 48kHz:48kHz and Input Amplitude = 0dBFS)  
-120  
-120  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Input Frequency (Hz)  
Input Frequency (Hz)  
Figure 12.  
Figure 13.  
THD+N vs INPUT FREQUENCY  
THD+N vs INPUT FREQUENCY  
(fSIN:fSOUT = 48kHz:96kHz and Input Amplitude = 0dBFS)  
-120  
(fSIN:fSOUT = 48kHz:192kHz and Input Amplitude = 0dBFS)  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Input Frequency (Hz)  
Input Frequency (Hz)  
Figure 14.  
Figure 15.  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
All specifications are at TA = +25°C, VDD18 = +1.8V, VDD33 = +3.3V, VIO = +3.3V, and VCC = +3.3V, unless otherwise  
noted.  
THD+N vs INPUT FREQUENCY  
THD+N vs INPUT FREQUENCY  
(fSIN:fSOUT = 96kHz:44.1kHz and Input Amplitude = 0dBFS)  
(fSIN:fSOUT = 96kHz:48kHz and Input Amplitude = 0dBFS)  
-120  
-120  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Input Frequency (Hz)  
Input Frequency (Hz)  
Figure 16.  
Figure 17.  
THD+N vs INPUT FREQUENCY  
THD+N vs INPUT FREQUENCY  
(fSIN:fSOUT = 96kHz:96kHz and Input Amplitude = 0dBFS)  
-120  
(fSIN:fSOUT = 96kHz:192kHz and Input Amplitude = 0dBFS)  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
20  
100  
1k  
10k  
40k  
20  
100  
1k  
10k  
40k  
Input Frequency (Hz)  
Input Frequency (Hz)  
Figure 18.  
Figure 19.  
THD+N vs INPUT FREQUENCY  
(fSIN:fSOUT = 192kHz:44.1kHz and  
Input Amplitude = 0dBFS)  
THD+N vs INPUT FREQUENCY  
(fSIN:fSOUT = 192kHz:48kHz and  
Input Amplitude = 0dBFS)  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
20  
100  
1k  
10k 20k  
20  
100  
1k  
10k 20k  
Input Frequency (Hz)  
Input Frequency (Hz)  
Figure 20.  
Figure 21.  
14  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
TYPICAL CHARACTERISTICS (continued)  
All specifications are at TA = +25°C, VDD18 = +1.8V, VDD33 = +3.3V, VIO = +3.3V, and VCC = +3.3V, unless otherwise  
noted.  
THD+N vs INPUT FREQUENCY  
THD+N vs INPUT FREQUENCY  
(fSIN:fSOUT = 192kHz:96kHz and Input Amplitude = 0dBFS)  
(fSIN:fSOUT = 192kHz:192kHz and Input Amplitude = 0dBFS)  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-120  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
20  
100  
1k  
10k  
40k  
20  
100  
1k  
10k  
80k  
Input Frequency (Hz)  
Input Frequency (Hz)  
Figure 22.  
Figure 23.  
THD+N vs INPUT AMPLITUDE  
(fSIN:fSOUT = 44.1kHz:44.1kHz and  
Input Frequency = 997Hz)  
THD+N vs INPUT AMPLITUDE  
(fSIN:fSOUT = 44.1kHz:48kHz and  
Input Frequency = 997Hz)  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-140  
-120  
-100  
-80  
-60  
-40  
-20  
0
-140  
-120  
-100  
-80  
-60  
-40  
-20  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
Figure 24.  
Figure 25.  
THD+N vs INPUT AMPLITUDE  
(fSIN:fSOUT = 44.1kHz:96kHz and Input Frequency = 997Hz)  
THD+N vs INPUT AMPLITUDE  
(fSIN:fSOUT = 44.1kHz:192kHz and Input Frequency = 997Hz)  
-120  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-140  
-120  
-100  
-80  
-60  
-40  
-20  
0
-140  
-120  
-100  
-80  
-60  
-40  
-20  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
Figure 26.  
Figure 27.  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
All specifications are at TA = +25°C, VDD18 = +1.8V, VDD33 = +3.3V, VIO = +3.3V, and VCC = +3.3V, unless otherwise  
noted.  
THD+N vs INPUT AMPLITUDE  
THD+N vs INPUT AMPLITUDE  
(fSIN:fSOUT = 48kHz:44.1kHz and Input Frequency = 997Hz)  
(fSIN:fSOUT = 48kHz:48kHz and Input Frequency = 997Hz)  
-120  
-120  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-140  
-120  
-100  
-80  
-60  
-40  
-20  
0
-140  
-120  
-100  
-80  
-60  
-40  
-20  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
Figure 28.  
Figure 29.  
THD+N vs INPUT AMPLITUDE  
THD+N vs INPUT AMPLITUDE  
(fSIN:fSOUT = 48kHz:96kHz and Input Frequency = 997Hz)  
-120  
(fSIN:fSOUT = 48kHz:192kHz and Input Frequency = 997Hz)  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-140  
-120  
-100  
-80  
-60  
-40  
-20  
0
-140  
-120  
-100  
-80  
-60  
-40  
-20  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
Figure 30.  
Figure 31.  
THD+N vs INPUT AMPLITUDE  
(fSIN:fSOUT = 96kHz:44.1kHz and Input Frequency = 997Hz)  
THD+N vs INPUT AMPLITUDE  
(fSIN:fSOUT = 96kHz:48kHz and Input Frequency = 997Hz)  
-120  
-120  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-140  
-120  
-100  
-80  
-60  
-40  
-20  
0
-140  
-120  
-100  
-80  
-60  
-40  
-20  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
Figure 32.  
Figure 33.  
16  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
TYPICAL CHARACTERISTICS (continued)  
All specifications are at TA = +25°C, VDD18 = +1.8V, VDD33 = +3.3V, VIO = +3.3V, and VCC = +3.3V, unless otherwise  
noted.  
THD+N vs INPUT AMPLITUDE  
THD+N vs INPUT AMPLITUDE  
(fSIN:fSOUT = 96kHz:96kHz and Input Frequency = 997Hz)  
-120  
(fSIN:fSOUT = 96kHz:192kHz and Input Frequency = 997Hz)  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-140  
-120  
-100  
-80  
-60  
-40  
-20  
0
-140  
-120  
-100  
-80  
-60  
-40  
-20  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
Figure 34.  
Figure 35.  
THD+N vs INPUT AMPLITUDE  
(fSIN:fSOUT = 192kHz:44.1kHz and Input Frequency = 997Hz)  
THD+N vs INPUT AMPLITUDE  
(fSIN:fSOUT = 192kHz:48kHz and Input Frequency = 997Hz)  
-120  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-140  
-120  
-100  
-80  
-60  
-40  
-20  
0
-140  
-120  
-100  
-80  
-60  
-40  
-20  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
Figure 36.  
Figure 37.  
THD+N vs INPUT AMPLITUDE  
(fSIN:fSOUT = 192kHz:96kHz and Input Frequency = 997Hz)  
THD+N vs INPUT AMPLITUDE  
(fSIN:fSOUT = 192kHz:192kHz and Input Frequency = 997Hz)  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-120  
-120  
-120  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-124  
-128  
-132  
-136  
-140  
-144  
-148  
-152  
-156  
-160  
-140  
-120  
-100  
-80  
-60  
-40  
-20  
0
-140  
-120  
-100  
-80  
-60  
-40  
-20  
0
Input Amplitude (dBFS)  
Input Amplitude (dBFS)  
Figure 38.  
Figure 39.  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
All specifications are at TA = +25°C, VDD18 = +1.8V, VDD33 = +3.3V, VIO = +3.3V, and VCC = +3.3V, unless otherwise  
noted.  
FFT PLOT  
FFT PLOT  
(fSIN:fSOUT = 44.1kHz:44.1kHz and  
Input Frequency = 997Hz at 0dBFS)  
(fSIN:fSOUT = 44.1kHz:48kHz and  
Input Frequency = 997Hz at 0dBFS)  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
20  
100  
1k  
10k  
22k  
20  
20  
20  
100  
1k  
10k  
24k  
96k  
24k  
Frequency (Hz)  
Frequency (Hz)  
Figure 40.  
Figure 41.  
FFT PLOT  
FFT PLOT  
(fSIN:fSOUT = 44.1kHz:96kHz and  
Input Frequency = 997Hz at 0dBFS)  
(fSIN:fSOUT = 44.1kHz:192kHz and  
Input Frequency = 997Hz at 0dBFS)  
-0  
-20  
-0  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
20  
100  
1k  
48k  
100  
1k  
10k  
10k  
Frequency (Hz)  
Frequency (Hz)  
Figure 42.  
Figure 43.  
FFT PLOT  
FFT PLOT  
(fSIN:fSOUT = 48kHz:44.1kHz and  
Input Frequency = 997Hz at 0dBFS)  
(fSIN:fSOUT = 48kHz:48kHz and  
Input Frequency = 997Hz at 0dBFS)  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
20  
100  
1k  
10k  
22k  
100  
1k  
10k  
Frequency (Hz)  
Frequency (Hz)  
Figure 44.  
Figure 45.  
18  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
TYPICAL CHARACTERISTICS (continued)  
All specifications are at TA = +25°C, VDD18 = +1.8V, VDD33 = +3.3V, VIO = +3.3V, and VCC = +3.3V, unless otherwise  
noted.  
FFT PLOT  
FFT PLOT  
(fSIN:fSOUT = 48kHz:96kHz and  
Input Frequency = 997Hz at 0dBFS)  
(fSIN:fSOUT = 48kHz:192kHz and  
Input Frequency = 997Hz at 0dBFS)  
-0  
-20  
-0  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
20  
20  
20  
100  
1k  
48k  
22k  
48k  
20  
20  
20  
100  
1k  
96k  
24k  
96k  
10k  
10k  
Frequency (Hz)  
Frequency (Hz)  
Figure 46.  
Figure 47.  
FFT PLOT  
FFT PLOT  
(fSIN:fSOUT = 96kHz:44.1kHz and  
Input Frequency = 997Hz at 0dBFS)  
(fSIN:fSOUT = 96kHz:48kHz and  
Input Frequency = 997Hz at 0dBFS)  
-0  
-20  
-0  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
100  
1k  
10k  
100  
1k  
10k  
Frequency (Hz)  
Frequency (Hz)  
Figure 48.  
Figure 49.  
FFT PLOT  
FFT PLOT  
(fSIN:fSOUT = 96kHz:96kHz and  
Input Frequency = 997Hz at 0dBFS)  
(fSIN:fSOUT = 96kHz:192kHz and  
Input Frequency = 997Hz at 0dBFS)  
-0  
-20  
-0  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
100  
1k  
100  
1k  
10k  
10k  
Frequency (Hz)  
Frequency (Hz)  
Figure 50.  
Figure 51.  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
TYPICAL CHARACTERISTICS (continued)  
All specifications are at TA = +25°C, VDD18 = +1.8V, VDD33 = +3.3V, VIO = +3.3V, and VCC = +3.3V, unless otherwise  
noted.  
FFT PLOT  
FFT PLOT  
(fSIN:fSOUT = 192kHz:44.1kHz and  
Input Frequency = 997Hz at 0dBFS)  
(fSIN:fSOUT = 192kHz:48kHz and  
Input Frequency = 997Hz at 0dBFS)  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
20  
100  
1k  
10k  
24k  
20  
100  
1k  
10k  
22k  
Frequency (Hz)  
Frequency (Hz)  
Figure 52.  
Figure 53.  
FFT PLOT  
FFT PLOT  
(fSIN:fSOUT = 192kHz:96kHz and  
(fSIN:fSOUT = 192kHz:192kHz and  
Input Frequency = 997Hz at 0dBFS)  
Input Frequency = 997Hz at 0dBFS)  
-0  
-20  
-0  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
-100  
-120  
-140  
-160  
-180  
-200  
20  
100  
1k  
48k  
20  
100  
1k  
96k  
10k  
10k  
Frequency (Hz)  
Frequency (Hz)  
Figure 54.  
Figure 55.  
IMD  
IMD  
(fSIN:fSOUT = 44.1kHz:48kHz, SMPTE/DIN 1:1, 10kHz and  
(fSIN:fSOUT = 48kHz:44.1kHz, SMPTE/DIN 1:1, 10kHz and  
11kHz, and –0.1dB Input Amplitude)  
11kHz, and –0.1dB Input Amplitude)  
0
0
-20  
-40  
-60  
-80  
-20  
-40  
-60  
-80  
-100  
-100  
-120  
-140  
-160  
-180  
-200  
-120  
-140  
-160  
-180  
-200  
0
2
4
6
8
10 12 14 16 18 20 22 24  
Frequency (kHz)  
0
2
4
6
8
10 12 14 16 18 20  
22  
Frequency (kHz)  
Figure 56.  
Figure 57.  
20  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
TYPICAL CHARACTERISTICS (continued)  
All specifications are at TA = +25°C, VDD18 = +1.8V, VDD33 = +3.3V, VIO = +3.3V, and VCC = +3.3V, unless otherwise  
noted.  
IMD  
(fSIN:fSOUT = 96kHz:48kHz, SMPTE/DIN 1:1, 10kHz and 11kHz, and –0.1dB Input Amplitude)  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
-200  
0
2
4
6
8
10 12 14 16 18 20 22 24  
Frequency (kHz)  
Figure 58.  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
PRODUCT OVERVIEW  
The SRC4392 is a two-channel asynchronous sample rate converter (SRC) with an integrated digital audio  
interface receiver and transmitter (DIR and DIT). Two audio serial ports, Port A and Port B, support input and  
output interfacing to external data converters, signal processors, and logic devices. On-chip routing logic  
provides for flexible interconnection between the five functional blocks. The audio serial ports, DIT, and SRC may  
be operated at sampling rates up to 216kHz. The DIR is specified for a PLL lock range that includes sampling  
rates from 20kHz to 216kHz. All function blocks support audio data word lengths up to 24 bits.  
The SRC4392 requires an external host processor or logic for configuration control. The SRC4392 includes a  
user-selectable serial host interface, which operates as either a 4-wire serial peripheral interface (SPI) port or a  
2-wire Philips I2C bus interface. The SPI port operates at bit rates up to 40MHz. The I2C bus interface may be  
operated in standard or fast modes, supporting operation at 100kbps and 400kbps, respectively. The SPI and I2C  
interfaces provide access to internal control and status registers, as well as the buffers utilized for the DIR and  
DIT channel status and user data.  
The asynchronous SRC is based upon the successful SRC4192 core from Texas Instruments. The SRC in the  
SRC4392 has been further enhanced to provide exceptional jitter attenuation characteristics, helping to improve  
overall application performance. The SRC operates over a wide input-to-output sampling ratio range, from 1:16  
to 16:1 continuous. The input-to-output sampling ratio is determined automatically by the SRC rate estimation  
circuitry, with the digital re-sampler parameters being updated in real-time without the need for programming.  
Interpolation and decimation filter delay are user-selectable. Additional SRC features include de-emphasis  
filtering, output word length reduction, output attenuation and muting, and input-to-output sampling ratio readback  
via status registers.  
The digital interface receiver (DIR) includes four differential input line receiver circuits, suitable for balanced or  
unbalanced cable interfaces. Interfacing to optical receiver modules and CMOS logic devices is also supported.  
The outputs of the line receivers are connected to a 1-of-4 data selector, referred to as the receiver input  
multiplexer, which is utilized to select one of the four line receiver outputs for processing by the DIR core. The  
outputs of the line receivers are also connected to a second data selector, the bypass multiplexer, which may be  
used to route input data streams to the DIT CMOS output buffer and differential line driver functions. This  
configuration provides a bypass signal path for AES3-encoded input data streams.  
The DIR core decodes the selected input stream data and separates the audio, channel status, user, validity, and  
parity data. Channel status and user data is stored in block-sized buffers, which may be accessed via the SPI or  
I2C serial host interface, or routed directly to the general-purpose output pins (GPO1 through GPO4). The validity  
and parity bits are processed to determine error status. The DIR core recovers a low jitter master clock, which  
may be utilized to generate word and bit clocks using on-chip or external logic circuitry.  
The digital interface transmitter (DIT) encodes digital audio input data into an AES3-formatted output data  
stream. Two DIT outputs are provided, including a differential line driver and a CMOS output buffer. Both the line  
driver and buffer include 1-of-2 input data selectors, which are utilized to choose either the output of the DIT  
AES3 encoder, or the output of the bypass multiplexer. The line driver output is suitable for balanced or  
unbalanced cable interfaces, while the CMOS output buffer supports interfacing to optical transmitter modules  
and external logic or line drivers. The DIT includes block-sized data buffers for both channel status and user  
data. These buffers are accessed via either the SPI or I2C host interface, or may be loaded directly from the DIR  
channel status and user data buffers.  
The SRC4392 includes four general-purpose digital outputs, or GPO pins. The GPO pins may be configured as  
simple logic outputs, which may be programmed to either a low or high state. Alternatively, the GPO pins may be  
connected to one of 14 internal logic nodes, allowing them to serve as functional, status, or interrupt outputs. The  
GPO pins provide added utility in applications where hardware access to selected internal logic signals may be  
necessary.  
22  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
Figure 59 shows a simplified functional block diagram for the SRC4392. Additional details for each function block  
will be covered in respective sections of this datasheet.  
SRC4392  
CPM  
CS or A0  
CCLK or SCL  
CDIN or A1  
CDOUT or SDA  
INT  
RST  
GPO1  
GPO2  
GPO3  
GPO4  
SDINA  
Host  
SDOUTA  
LRCKA  
BCKA  
Audio Serial  
Port A  
Interface  
(SPI or I2C)  
and  
General-  
Purpose  
Outputs  
SDINB  
SDOUTB  
LRCKB  
BCKB  
Audio Serial  
Port B  
Control and Status  
Registers  
RXCKO  
LOCK  
DIR C and U  
Data Buffers  
RX1+  
RX1-  
RX2+  
DIT C and U  
Data Buffers  
Digital  
Interface  
Receiver (DIR)  
RX2-  
RX3+  
MCLK  
Master  
Clock  
Distribution  
RXCKI  
From RXCKO  
RX3-  
RX4+  
RX4-  
TX+  
TX-  
Digital  
Interface  
Transmitter  
(DIT)  
AESOUT  
VDD18  
DGND1  
VDD33  
DGND2  
VIO  
DGND3  
VCC  
AGND  
BLS  
SYNC  
Power  
Asynchronous  
Sample Rate  
Converter  
(SRC)  
RDY  
MUTE  
Internally Tied  
to Substrate  
BGND  
Figure 59. Functional Block Diagram  
RESET OPERATION  
The SRC4392 includes an asynchronous active low reset input, RST (pin 24), which may be used to initialize the  
internal logic at any time. The reset sequence forces all registers and buffers to their default settings. The reset  
low pulse width must be a minimum of 500ns in length. The user should not attempt a write or read operation  
using either the SPI or I2C port for at least 500μs after the rising edge of RST. See Figure 60 for the reset timing  
sequence of the SRC4392.  
In addition to reset input, the RESET bit in control register 0x01 may be used to force an internal reset, whereby  
all registers and buffers are forced to their default settings. Refer to the Control Registers section for details  
regarding the RESET bit function.  
Upon reset initialization, all functional blocks of the SRC4392 default to the power-down state, with the exception  
of the SPI or I2C host interface and the corresponding control registers. The user may then program the  
SRC4392 to the desired configuration, and release the desired function blocks from the power-down state  
utilizing the corresponding bits in control register 0x01.  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
23  
Product Folder Links: SRC4392  
 
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
Write or Read  
via  
SPI or I2C  
1
RST  
0
500ns (min)  
500ms (min)  
Figure 60. Reset Sequence Timing  
MASTER AND REFERENCE CLOCKS  
The SRC4392 includes two clock inputs, MCLK (pin 25) and RXCKI (pin 13). The MCLK clock input is typically  
used as the master clock source for the audio serial ports, the DIT, and/or the SRC. The MCLK may also be  
utilized as the reference clock for the DIR. The RXCKI clock input is typically used for the DIR reference clock  
source, although it may also be used as the master or reference clock source for the audio serial ports and/or the  
SRC.  
In addition to the MCLK and RXCKI clock sources, the DIR core recovers a master clock from the AES3-  
encoded input data stream. This clock is suitable for use as a master or system clock source in many  
applications. The recovered master clock output, RXCKO (pin 12), may be utilized as the master or reference  
clock source for the audio serial ports, the DIT, and/or the SRC, as well as external audio devices.  
The master clock frequency for the audio serial ports (Port A and Port B) depends on the Slave or Master mode  
configuration of the port. In Slave mode, the ports do not require a master clock, as the left/right word and bit  
clocks are inputs, sourced from an external audio device serving as the serial bus timing master. In Master  
mode, the serial ports derive the left/right word and bit clock outputs from the selected master clock source,  
MCLK, RXCKI, or RXCKO. The left/right word clock rate is derived from the selected master clock source using  
one of four clock divider settings (divide by 128, 256, 384, or 512). Refer to the Audio Serial Port Operation  
section for additional details.  
The DIT always requires a master clock source, which may be either the MCLK input, or the DIR recovered clock  
output, RXCKO. Like the audio serial ports, the DIT output frame rate is derived from the selected master clock  
using one of four clock divider settings (divide by 128, 256, 384, or 512). Refer to the Digital Interface Transmitter  
(DIT) Operation section for additional details.  
The DIR reference clock may be any frequency that meets the PLL1 setup requirements, described in the  
Control Registers section. Typically, a common audio system clock rate, such as 11.2896MHz, 12.288MHz,  
22.5792MHz, or 24.576MHz, may be used for this clock.  
The SRC reference clock rate may be any frequency up to 27.7MHz, and does not have to be related to or  
synchronous with the input or output sampling rates. The MCLK, RXCKI, or RXCKO clocks may be utilized as  
the reference clock source for the SRC. Refer to the Asynchronous Sample Rate Converter (SRC) Operation  
section for additional details.  
It is recommended that the clock sources for MCLK and RXCKI input be generated by low-jitter crystal oscillators  
for optimal performance. In general, phase-locked loop (PLL) clock synthesizers should be avoided, unless they  
are designed and/or specified for low clock jitter.  
24  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
AUDIO SERIAL PORT OPERATION  
The SRC4392 includes two audio serial ports, Port A and Port B. Both ports are 4-wire synchronous serial  
interfaces, supporting simultaneous input and output operation. Since each port has only one pair of left/right  
word and bit clocks, the input and output sampling rates are identical. A simplified block diagram is shown in  
Figure 61.  
The audio serial ports may be operated at sampling rates up to 216kHz, and support audio data word lengths up  
to 24 bits. Philips I2S, Left-Justified, and Right-Justified serial data formats are supported. Refer to Figure 62.  
The left/right word clock (LRCKA or LRCKB) and the bit clock (BCKA or BCKB) may be configured for either  
Master or Slave mode operation. In Master mode these clocks are outputs, derived from the selected master  
clock source using internal clock dividers. The master clock source may be 128, 256, 384, or 512 times the audio  
input/output sampling rate, with the clock divider being selected using control register bits for each port. In Slave  
mode the left/right word and bit clocks are inputs, being sourced from an external audio device acting as the  
serial bus master.  
The LRCKA or LRCKB clocks operate at the input/output sampling rate, fS. The BCKA and BCKB clock rates are  
fixed at 64 times the left/right word clock rate in Master mode. For Slave mode, the minimum BCKA and BCKB  
clock rate is determined by the audio data word length multiplied by two, since there are two audio data channels  
per left/right word clock period. For example, if the audio data word length is 24 bits, the bit clock rate must be at  
least 48 times the left/right word clock rate, allowing one bit clock period for each data bit in the serial bit stream.  
Serial audio data is clocked into the port on the rising edge of the bit clock, while data is clocked out of the port  
on the falling edge of the bit clock. Refer to the Electrical Characteristics: Audio Serial Ports table for parametric  
information and Figure 1 for a timing diagram related to audio serial port operation.  
The audio serial ports are configured using control registers 0x03 through 0x06. Refer to the Control Registers  
section for descriptions of the control register bits.  
CLK[1:0]  
M/S  
DIV[1:0]  
MCLK  
RXCKI  
Master  
Master  
Clock  
Source  
Mode  
Clock  
Generation  
RXCKO  
SDINA (pin 39) or SDINB (pin 46)  
LRCKA (pin 38) or LRCKB (pin 47)  
BCKA (pin 37) or BCKB (pin 48)  
Audio Data  
Serial  
Input  
Internal Clocks  
Port A  
Data  
Source  
Port B  
DIR  
Serial  
Output  
SDOUTA (pin 40) or SDOUTB (pin 45)  
SRC  
OUTS[1:0]  
MUTE  
FMT[1:0]  
Figure 61. Audio Serial Port Block Diagram  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
25  
Product Folder Links: SRC4392  
 
 
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
Channel 1 (Left Channel)  
Channel 2 (Right Channel)  
LRCKA  
LRCKB  
BCKA  
BCKB  
Audio  
MSB  
LSB  
MSB  
LSB  
Data  
(a) Left-Justified Data Format  
LRCKA  
LRCKB  
BCKA  
BCKB  
Audio  
Data  
MSB  
LSB  
MSB  
LSB  
(b) Right-Justified Data Format  
LRCKA  
LRCKB  
BCKA  
BCKB  
Audio  
Data  
MSB  
LSB  
MSB  
LSB  
(c) I2S Data Format  
1/fs  
Figure 62. Audio Data Formats  
OVERVIEW OF THE AES3 DIGITAL AUDIO INTERFACE PROTOCOL  
This section introduces the basics of digital audio interface protocols pertaining to the transmitter (DIT) and  
receiver (DIR) blocks of the SRC4392. Emphasis is placed upon defining the basic terminology and  
characteristics associated with the AES3-2003 standard protocol, the principles of which may also be applied to  
a number of consumer-interface variations, including S/PDIF, IEC-60958, and EIAJ CP-1201. It is assumed that  
the reader is familiar with the AES3 and S/PDIF interface formats. Additional information is available from the  
sources listed in the Reference Documents section.  
The AES3-2003 standard defines a technique for two-channel linear PCM data transmission over 110shielded  
twisted-pair cable. The AES-3id document extends the AES3 interface to applications employing 75coaxial  
cable connections. In addition, consumer transmission variants, such as those defined by the S/PDIF, IEC  
60958, and CP-1201 standards, utilize the same encoding techniques but with different physical interfaces or  
transmission media. Channel status data definitions also vary between professional and consumer interface  
implementations.  
26  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
For AES3 transmission, data is encoded into frames, with each frame containing two subframes of audio and  
status data, corresponding to audio Channels 1 and 2 (or Left and Right, respectively, for stereophonic audio).  
Figure 63 shows the AES3 frame and subframe formatting. Each subframe includes four bits for the preamble,  
up to 24 bits for audio and/or auxiliary data, one bit indicating data validity (V), one bit for channel status data  
(C), one bit for user data (U), and one bit for setting parity (P).  
The 4-bit preamble is used for synchronization and identification of blocks and subframes. The X and Y preamble  
codes are used to identify the start of the Channel 1 and Channel 2 subframes, as shown in Figure 63. However,  
the X preamble for the first subframe of every 192 frames is replaced by the Z preamble, which identifies the  
start of a new block of channel status and user data.  
Block Start  
Frame 191  
Frame 0  
Y
Frame 1  
Y
X
Channel 1  
Y
Channel 2  
Z
Channel 1  
Channel 2  
X
Channel 1  
Channel 2  
One Sub Frame  
Bits: 0  
3 4  
7 8  
27 28 29 30 31  
MSB  
Audio or  
Aux Data  
Preamble  
Audio Data  
V U C P  
Validity Bit  
User Data  
Channel Status Data  
Parity Bit  
Figure 63. AES3 Frame and Subframe Encoding  
One block is comprised of 192 frames of data. This format translates to 192 bits each for channel status and  
user data for each channel. The 192 bits are organized into 24 data bytes, which are defined by the AES3-2003  
and consumer standards documents. The AES18 standard defines recommended usage and formatting of the  
user data bits, while consumer applications may utilize the user data for other purposes. The SRC4392 also  
includes block-sized transmitter and receiver channel status and user data buffers, which have 24 bytes each for  
the channel status and user data assigned to audio Channels 1 and 2. Refer to the Channel Status and User  
Data Buffer Maps section for the organization of the buffered channel status and user data for the receiver and  
transmitter functions.  
The audio data for Channel 1 and Channel 2 may be up to 24 bits in length, and occupies bits 4 through 27 of  
the corresponding subframe. Bit 4 is the LSB while bit 27 is the MSB. If only 20 bits are required for audio data,  
then bits 8 through 27 are utilized for audio data, while bits 4 though 7 are utilized for auxiliary data bits.  
The validity (V) bit indicates whether or not the audio sample word being transmitted is suitable for digital-to-  
analog (D/A) conversion or further digital processing at the receiver end of the connection. If the validity bit is 0,  
then the audio sample is suitable for conversion or additional processing. If the validity bit is 1, then the audio  
sample is not suitable for conversion or additional processing.  
The parity (P) bit is set to either a 0 or 1, such that bits 4 through 31 carry an even number of ones and zeros for  
even parity. The DIT block in the SRC4392 automatically manages the parity bit, setting it to a 0 or 1 as needed.  
The DIR block checks the parity of bits 4 though 31 and generates a parity error if odd parity is detected.  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
27  
Product Folder Links: SRC4392  
 
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
The binary non-return to zero (NRZ) formatted audio and status source data for bits 4 through 31 of each  
subframe are encoded utilizing a Biphase Mark format for transmission. This format allows for clock recovery at  
the receiver end, as well as making the interface insensitive to the polarity of the balanced cable connections.  
The preambles at the start of each subframe are encoded to intentionally violate the Biphase Mark formatting,  
making their detection by the receiver reliable, as well as avoiding the possibility of audio and status data  
imitating the preambles. Figure 64 shows the Biphase Mark and preamble encoding.  
Although the AES3 standard originally defined transmission for sampling rates up to 48kHz, the interface is  
capable of handling higher sampling rates, given that attention is paid to cable length and impedance matching.  
Equalization at the receiver may also be required, depending on the cable and matching factors. It is also  
possible to transmit and decode more than two channels of audio data utilizing the AES3 or related consumer  
interfaces. Special encoding and/or compression algorithms are utilized to support multiple channels, including  
the Dolby® AC-3, DTS, MPEG-1/2, and other data reduced audio formats.  
Clock  
(2x Source Bit Rate)  
Source Data  
1
Coding  
Insert Preamble  
Code Below  
0
(NRZ)  
AES3 Channel  
Coding  
(Biphase Mark)  
1
0
Preamble Z (Block Start)  
Preceding State, from the Parity bit of the previous Frame.  
Preamble Coding  
Preceding State:  
0
1
Preamble:  
Channel Coding:  
11100010  
11100100  
Channel Coding: Description:  
X
Y
Z
00011101  
00011011  
00010111  
Channel 1 Subframe  
Channel 2 Subframe  
Channel 1 Subframe and Block Start  
11101000  
Figure 64. Biphase Mark Encoding  
DIGITAL INTERFACE TRANSMITTER (DIT) OPERATION  
The DIT encodes a given two-channel or data-reduced audio input stream into an AES3-encoded output stream.  
In addition to the encoding function, the DIT includes differential line driver and CMOS buffered output functions.  
The line driver is suitable for driving balanced or unbalanced line interfaces, while the CMOS buffered output is  
designed to drive external logic or line drivers, as well as optical transmitter modules. Figure 65 illustrates the  
functional block diagram for the DIT.  
The input of the DIT receives the audio data for Channels 1 and 2 from one of four possible sources: Port A, Port  
B, the DIR, or the SRC. By default, Port A is selected as the source. The DIT also requires a master clock  
source, which may be provided by either the MCLK input (pin 25) or RXCKO (the DIR recovered master clock  
output). A master clock divider is utilized to select the frame rate for the AES3-encoded output data. The  
TXDIV[1:0] bits in control register 0x07 are utilized to select divide by 128, 256, 384, or 512 operation.  
Channel status and user data for Channels 1 and 2 are input to the AES3 encoder via the corresponding  
Transmitter Access (TA) data buffers. The TA data buffers are in turn loaded from the User Access (UA) buffers,  
which are programmed via the SPI or I2C host interface, or loaded from the DIR Receiver Access (RA) data  
buffers. The source of the channel status and user data is selected utilizing the TXCUS[1:0] bits in control  
register 0x09. When the DIR is selected as the input source, the channel status and user data output from the  
DIT is delayed by one block in relation to the audio data.  
The validity (V) bit may be programmed using one of two sources. The VALSEL bit in control register 0x09 is  
utilized to select the validity data source for the DIT block. The default source is the VALID bit in control register  
0x07, which is written via the SPI or I2C host interface. The validity bit may also be transferred from the AES3  
decoder output of the DIR, where the V bit for the DIT subframes tracks the decoded DIR value frame by frame.  
The parity (P) bit will always be generated by the AES3 encoder internal parity generator logic, such that bits 4  
through 31 of the AES3-encoded subframe are even parity.  
28  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
 
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
The AES3 encoder output is connected to the output line driver and CMOS buffer source multiplexers. As shown  
in Figure 65, the source multiplexers allow the line driver or buffer to be driven by the AES3-encoded data from  
the DIT, or by the bypass multiplexer, which is associated with the outputs of the four differential input line  
receivers preceding the DIR core. The bypass multiplexer allows for one of the four line receiver outputs to be  
routed to the line driver or buffer output, thereby providing a bypass mode of operation. Both the line driver and  
CMOS output buffer include output disables, set by the TXOFF and AESOFF bits in control register 0x08. When  
the outputs are disabled, they are forced to a low logic state.  
The AES3 encoder includes an output mute function that sets all bits for both the Channel 1 and 2 audio and  
auxiliary data to zero. The preamble, V, U, and C bits are unaffected, while the P bit is recalculated. The mute  
function is controlled using the TXMUTE bit in control register 0x08.  
TXDIV[1:0]  
TXCLK  
Master  
Clock  
Source  
MCLK  
AESMUX  
AESOFF  
RXCKO  
AESOUT  
(pin 34)  
TXIS[1:0]  
Port A  
Port B  
DIR  
LDMUX  
TXOFF  
Data  
Source  
SRC  
TX+ (pin 32)  
AES3  
Encoder  
User Access  
(UA) Buffers  
Transmitter Access  
(TA) Buffers  
TX- (pin 31)  
From Receiver  
Access (RA) Buffer  
To/From SPI or I2C  
Host Interface  
From  
Bypass  
Channel  
Status  
Channel  
Status  
Multiplexer  
Output  
From Receiver  
Access (RA) Buffer  
To/From SPI or I2C  
Host Interface  
BLS (pin 35)  
SYNC (pin 36)  
User  
Data  
User  
Data  
TXCUS[1:0] TXBTD  
TXMUTE  
BLSM  
Figure 65. Digital Interface Transmitter (DIT) Functional Block Diagram  
The AES3 encoder includes a block start input/output pin, BLS (pin 35). The BLS pin may be programmed as an  
input or output. The input/output state of the BLS pin is programmed using the BLSM bit in control register 0x07.  
By default, the BLS pin is configured as an input.  
As an input, the BLS pin may be utilized to force a block start condition, whereby the start of a new block of  
channel status and user data is initiated by generating a Z preamble for the next frame of data. The BLS input  
must be synchronized with the DIT internal SYNC clock. This clock is output on SYNC (pin 36). The SYNC clock  
rising edge is aligned with the start of each frame for the AES3-encoded data output by the DIT. Figure 66  
illustrates the format required for an external block start signal, as well as indicating the format when the BLS pin  
is configured as an output. When the BLS pin is an output, the DIT generates the block start signal based upon  
the internal SYNC clock.  
For details regarding DIT control and status registers, as well as channel status and user data buffers, refer to  
the Control Registers and Channel Status and User Data Buffer Maps sections.  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
29  
Product Folder Links: SRC4392  
 
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
Block Start  
(Frame 0 starts here)  
SYNC  
BLS  
(input)  
BLS  
(output)  
Figure 66. DIT Block Start Timing  
DIGITAL INTERFACE RECEIVER (DIR) OPERATION  
The DIR performs AES3 decoding and clock recovery and provides the differential line receiver functions. The  
lock range of the DIR includes frame/sampling rates from 20kHz to 216kHz. Figure 67 shows the functional block  
diagram for the DIR.  
Four differential line receivers are utilized for signal conditioning the encoded input data streams. The receivers  
can be externally configured for either balanced or unbalanced cable interfaces, as well as interfacing with  
CMOS logic level inputs from optical receivers or external logic circuitry. See Figure 68 for a simplified schematic  
for the line receiver. External connections are discussed in the Receiver Input Interfacing section.  
To SPI or I2C Host Interface  
Reference  
Clock  
Source  
MCLK  
RXCKI  
Channel  
Status  
User  
Data  
User Access  
(UA) Buffers  
PLL1  
To  
DIT  
To  
DIT  
RXCLK  
RX1+ (pin 1)  
RXMUX[1:0]  
Channel  
Status  
User  
Data  
AES3  
Decoder  
RX1- (pin 2)  
Receiver  
Access  
(RA) Buffers  
RX2+ (pin 3)  
RX2- (pin 4)  
RX3+ (pin 5)  
RX3- (pin 6)  
Pulse  
Generator  
Data Stream  
De-Mux  
Error and  
Status Outputs  
RX4+ (pin 7)  
RX4- (pin 8)  
To DIT Buffer  
and Line Driver  
BYPMUX[1:0]  
PLL2  
128fS  
256fS  
512fS  
Ch.1  
(Left) (Right)  
Audio Audio  
Ch.2  
LOCK  
(pin 11)  
Clock  
Receiver  
Sync  
Generator  
RXCKO  
(pin 12)  
Divider  
Divide by  
1, 2, 4, or 8  
RXCKOF[1:0]  
RCV_SYNC  
RXCKO  
Figure 67. Digital Interface Receiver (DIR) Functional Block Diagram  
30  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
 
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
VDD33  
24kW  
24kW  
3kW  
3kW  
RX+  
To Receiver  
Input and Bypass  
Multiplexers  
RX-  
24kW  
24kW  
DGND2  
Figure 68. Differential Line Receiver Circuit  
The outputs of the four line receivers are connected to two 1-of-4 data selectors: the receiver input multiplexer  
and the bypass multiplexer. The input multiplexer selects one of the four line receiver outputs as the source for  
the AES3-encoded data stream to be processed by the DIR core. The bypass multiplexer is utilized to route a  
line receiver output to either the DIT line driver or CMOS buffered outputs, thereby bypassing all other internal  
circuitry. The bypass function is useful for simple signal distribution and routing applications.  
The DIR requires a reference clock, supplied by an external source applied at either the RXCKI (pin 13) or MCLK  
(pin 25) clock inputs. PLL1 multiplies the reference clock to a higher rate, which is utilized as the oversampling  
clock for the AES3 decoder. The decoder samples the AES3-encoded input stream in order to extract all of the  
audio and status data. The decoded data stream is sent on to a de-multiplexer, where audio and status data are  
separated for further processing and buffering. The pulse generator circuitry samples the encoded input data  
stream and generates a clock that is 16 times the frame/sampling rate (or fS). The 16fS clock is then processed  
by PLL2, which further multiplies the clock rate and provides low-pass filtering for jitter attenuation. The available  
PLL2 output clock rates include 512fS, 256fS, and 128fS. The maximum available PLL2 output clock rate for a  
given input sampling rate is estimated by internal logic and made available for readback via status register 0x13.  
The output of PLL2 may be divided by a factor of two, four, or eight, or simply passed through to the recovered  
master clock output, RXCKO (pin 12). The RXCKO clock is also be routed internally to other function blocks,  
where it may be further divided to create left/right word and bit clocks. The RXCKO output may be disabled and  
forced to a high-impedance state by means of a control register bit, allowing other tri-state buffered clocks to be  
tied to the same external circuit node, if needed. By default, the RXCKO output (pin 12) is disabled and forced to  
a high-impedance state.  
Figure 69 illustrates the frequency response of PLL2. Jitter attenuation starts at approximately 50kHz. Peaking is  
nominally 1dB, which is within the 2dB maximum allowed by the AES3 standard. The receiver jitter tolerance plot  
for the DIR is illustrated in Figure 70, along with the required AES3 jitter tolerance template. The DIR jitter  
tolerance satisfies the AES3 requirements, as well as the requirements set forth by the IEC60958-3 specification.  
Figure 70 was captured using a full-scale 24-bit, two-channel, AES3-encoded input stream with a 48kHz frame  
rate.  
The decoded audio data, along with the internally-generated sync clocks, may be routed to other function blocks,  
including Port A, Port B, the SRC, and/or the DIT. The decoded channel status and user data is buffered in the  
corresponding Receiver Access (RA) data buffers, then transferred to the corresponding User Access (UA) data  
buffers, where it may be read back through either the SPI or I2C serial host interface. The contents of the RA  
buffers may also be transferred to the DIT UA data buffers; see Figure 65. The channel status and user data bits  
may also be output serially through the general-purpose output pins, GPO[4:1]. Figure 71 illustrates the output  
format for the GPO pins when used for this purpose, along with the DIR block start (BLS) and frame  
synchronization (SYNC) clocks. The rising edges of the DIR SYNC clock output are aligned with the start of each  
frame for the received AES3 data.  
The DIR includes a dedicated, active low AES3 decoder and PLL2 lock output, named LOCK (pin 11). The lock  
output is active only when both the AES3 decoder and PLL2 indicate a lock condition. Additional DIR status flags  
may be output at the general-purpose output (GPO) pins, or accessed through the status registers via the SPI or  
I2C host interface. Refer to the General-Purpose Digital Outputs and Control Registers sections for additional  
information regarding the DIR status functions.  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
31  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
2
0
-2  
-4  
-6  
-8  
-10  
-12  
-14  
-16  
-18  
-20  
100  
101  
102  
103  
104  
105  
106  
Jitter Frequency (Hz)  
Figure 69. DIR Jitter Attenuation Characteristics  
-10  
-20  
5
2
Input Jitter Amplitude  
-30  
1
-40  
Output Jitter Amplitude  
500m  
200m  
100m  
50m  
20m  
10m  
5m  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
THD+N  
2m  
1m  
20  
100  
1k  
10k  
100k  
Sinusoidal Jitter Frequency (Hz)  
Figure 70. DIR Jitter Tolerance Plot  
Block Start  
(Frame 0 Starts Here)  
BLS  
(output)  
SYNC  
(output)  
C or U data  
(output)  
Ch. 1 Ch. 2 Ch. 1 Ch. 2 Ch. 1 Ch. 2 Ch. 1 Ch. 2  
Bit 0  
Bit 1  
Bit 2  
Bit 4  
¼
Figure 71. DIR Channel Status and User Data Serial Output Format Via the GPO Pins  
32  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
ASYNCHRONOUS SAMPLE RATE CONVERTER (SRC) OPERATION  
The asynchronous SRC provides conversion from an arbitrary input sampling rate to a desired output sampling  
rate. The input and output sampling rates may be equal or different, within the bounds of a 1:16 to 16:1 input-to-  
output sampling ratio range. The input and output data sources may be completely asynchronous to one another;  
synchronous operation is also supported. The input-to-output sampling ratio is determined automatically using  
internal rate estimation logic, with the re-sampler being updated in real time without the need for programming.  
The SRC supports input and output sampling rates up to 216kHz, with audio data word lengths up to 24 bits. A  
functional block diagram for the SRC is shown in Figure 72.  
MUTE (pin 14)  
DDN  
TRACK  
AL[7:0]  
DEM[1:0]  
IGRP[1:0]  
SRCIS[1:0]  
AUTODEM  
AR[7:0]  
OWL[1:0]  
Audio Data Output  
Port A  
Port B  
DIR  
De-Emphasis  
Filter  
Interpolation  
Filter  
Decimation  
Filter  
Re-Sampler  
INT_SYNC  
From Port A, Port B, or DIT  
fSIN  
fSOUT  
Rate  
Estimator  
MCLK  
RXCKI  
Reference Clock  
RXCKO  
SRI[4:0]  
SRF[10:0]  
RATIO  
SRCCLK[1:0]  
RDY (pin 15)  
Figure 72. Asynchronous Sample Rate Converter (SRC) Functional Block Diagram  
The SRC receives a digital audio input from one of three data sources: Port A, Port B, or the DIR. By default,  
Port A is selected as the input source for the SRC. The output of the SRC may be connected to Port A, Port B,  
and/or the DIT.  
The SRC requires a reference clock, which may be sourced from either the MCLK (pin 25) or RXCKI (pin 13)  
clock inputs, or from the RXCKO recovered master clock output from the DIR block. The reference clock is  
utilized by the rate estimator to determine the input-to-output sampling ratio. By default, MCLK is selected as the  
reference clock source for the SRC.  
As part of the SRC rate estimation and re-sampling functions, two digital servo loops are employed, one for the  
input side and one for the output side. The servo loops operate in two modes: Fast and Slow. When a change in  
one or both of the sampling rates occurs, the servo loop(s) enter(s) Fast mode operation. When a servo loop has  
settled in Fast mode, it will then switch to Slow mode. When both the input and output servo loops have switched  
to Slow mode, the RDY output (pin 15) is forced low, indicating that the SRC has completed the rate estimation  
process.  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
33  
Product Folder Links: SRC4392  
 
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
The input and output servo-loop frequency responses are shown in Figure 73 and Figure 74, respectively. The  
filter response for each servo loop rolls off at 80dB per decade. The servo loop corner frequencies scale  
proportionally with input or output sampling rates. The low corner frequency and sharp roll-off provide excellent  
jitter attenuation for the SRC block.  
0
-50  
Fast Mode  
-100  
Slow Mode  
-150  
fS = 192kHz  
-200  
10-1  
100  
101  
102  
103  
104  
105  
Frequency (Hz)  
Figure 73. Input Digital Servo-Loop Frequency Response  
0
-50  
Fast Mode  
Slow Mode  
-100  
-150  
fS = 192kHz  
-200  
10-2  
10-1  
100  
101  
102  
103  
104  
105  
Frequency (Hz)  
Figure 74. Output Digital Servo-Loop Frequency Response  
The SRC includes output soft muting and digital attenuation functions, providing artifact-free muting and output  
level control for the SRC output data. The mute function forces the SRC output data low by stepping the output  
attenuation from the current setting to an all-zero data output state. The mute function may be controlled by the  
MUTE input (pin 14), or the MUTE bit in control register 0x2D. Both the pin and control bit are active high, with  
the signals being combined by a logic OR function internally to generate the SRC output mute control signal. The  
MUTE control bit in control register 0x2D is disabled by default.  
The digital attenuation is programmable over a 0dB to –127.5dB range in 0.5dB steps, and may be controlled  
independently for the Left and Right channels. The attenuation level is set using control registers; by default, the  
level is 0dB. A tracking function is available, allowing the Left and Right channel attenuation data to be set to the  
same value by simply programming the Left channel attenuation register. The tracking mode is enabled or  
disabled using a control register bit. The tracking function is disabled by default.  
The SRC includes digital de-emphasis filtering for the audio input data. The de-emphasis filter provides  
normalization for 50/15μs pre-emphasized audio data. The de-emphasis filter supports 32kHz, 44.1kHz, and  
48kHz input sampling rates. The filter is controlled by the DEM0, DEM1, and AUTODEM bits in control register  
0x2E. The DEM0 and DEM1 bits allow the user to manually configure the de-emphasis filter operation. By  
default, the de-emphasis filtering is disabled. The AUTODEM bit, when enabled, overrides the setting of the  
34  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
 
 
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
DEM0 and DEM1 bits. The AUTODEM function automatically enables and disables the de-emphasis filter for the  
required sampling rate based upon the setting of the pre-emphasis and sampling frequency channel status bits in  
the AES3 or S/PDIF input data stream, which are decoded by the DIR block. The AUTODEM feature functions  
only when both 50/15μs pre-emphasis and one of the three supported sampling rates (32kHz, 44.1kHz, or  
48kHz) are decoded by the DIR. By default, the de-emphasis filter, including the AUTODEM function, is disabled.  
The group delay of the SRC interpolation function can be programmed to one of four settings. The actual length  
of the interpolation filter is unaltered, but the number of samples pre-buffered in the FIFO prior to the re-sampler  
function can be set to 64, 32, 16, or 8. The FIFO length directly impacts the latency and group delay. By default,  
the number of samples pre-buffered is set to 64.  
The decimation filter includes a direct down-sampling option. This option should only be used in cases where the  
output sampling rate is higher than the input sampling rate. The advantage of using the direct down-sampling  
option is that it results in zero latency operation, as it simply selects one out of every 16 samples from the re-  
sampler output without applying low-pass anti-aliasing filtering. By contrast, the decimation filter response adds  
36.46875 samples of group delay. The disadvantage of the direct down-sampling option is that it cannot be used  
in cases where the output sampling rate is equal to or lower than the input sampling rate, since the lack of low-  
pass filtering results in aliasing. By default, the decimation filter is enabled, as the initial values of the input and  
output sampling rates may be unknown.  
The SRC includes two status registers that contain the integer and fractional parts of the input-to-output sampling  
ratio, which is derived by the SRC rate estimator circuitry. These registers can be read back any time the RDY  
output is low. When either the input or output sampling rate is known, the unknown sampling rate can be  
calculated using the contents of these status registers.  
The SRC provides a simple word length reduction mechanism for reducing 24-bit audio data to 20-, 18-, or 16-bit  
output word lengths. Word length reduction is performed utilizing triangular probability density function (or TPDF)  
dither. The OWL0 and OWL1 bits in control register 0x2F are utilized to set the SRC output word length.  
One note concerning the SRC output word length setting: when using the SRC output as the data source for  
either the Port A or Port B serial data outputs, and the audio serial port data format is set to Right-Justified, the  
word length set for the audio serial port format must match the word length set for the SRC output data.  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
35  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
GENERAL-PURPOSE DIGITAL OUTPUTS  
The SRC4392 includes four general-purpose digital outputs, GPO1 through GPO4 (pins 26 through 29,  
respectively). A GPO pin may be programmed to a static high or low state. Alternatively, a GPO pin may be  
connected to one of 14 internal logic nodes, allowing the GPO pin to inherit the function of the selected signal.  
Control registers 0x1B through 0x1E are utilized to select the function of the GPO pins. For details regarding  
GPO output configuration, refer to the Control Registers section. Table 1 summarizes the available output  
options for the GPO pins.  
Table 1. General-Purpose Output Pin Configurations  
GPOn3  
GPOn2  
GPOn1  
GPOn0  
GPOn FUNCTION  
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
GPOn is forced Low (default).  
GPOn is forced High.  
SRC Interrupt Flag; Active Low  
DIT Interrupt Flag; Active Low  
DIR Interrupt Flag; Active Low  
DIR 50/15μs Emphasis Flag; Active Low  
DIR Non-Audio Data Flag; Active High  
DIR Non-Valid Data Flag; Active High  
DIR Channel Status Data Serial Output  
DIR User Data Serial Output  
DIR Block Start Clock Output  
DIR COPY Bit Output  
(0 = Copyright Asserted, 1 = Copyright Not Asserted)  
1
0
1
1
DIR L (or Origination) Bit Output  
(0 = 1st Generation or Higher,1 = Original)  
1
1
1
1
1
1
1
1
0
0
1
1
0
1
0
1
DIR Parity Error Flag; Active High  
DIR Internal Sync Clock Output; may be used as the data clock for the Channel  
Status and User Data serial outputs.  
DIT Internal Sync Clock  
HOST INTERFACE OPERATION:  
SERIAL PERIPHERAL INTERFACE (SPI) MODE  
The SRC4392 supports a 4-wire SPI port when the CPM input (pin 18) is forced low or tied to ground. The SPI  
port supports high-speed serial data transfers up to 40Mbps. Register and data buffer write and read operations  
are supported.  
The CS input (pin 19) serves as the active low chip select for the SPI port. The CS input must be forced low in  
order to write or read registers and data buffers. When CS is forced high, the data at the CDIN input (pin 21) is  
ignored, and the CDOUT output (pin 22) is forced to a high-impedance state. The CDIN input serves as the serial  
data input for the port; the CDOUT output serves as the serial data output.  
The CCLK input (pin 20) serves as the serial data clock for both the input and output data. Data is latched at the  
CDIN input on the rising edge of CCLK, while data is clocked out of the CDOUT output on the falling edge of  
CCLK.  
Figure 75 illustrates the SPI port protocol. Byte 0 is referred to as the command byte, where the most significant  
bit (or MSB) is the read/write bit. For the R/W bit, a '0' indicates a write operation, while a '1' indicates a read  
operation. The remaining seven bits of the command byte are utilized for the register address targeted by the  
write or read operation. Byte 1 is a don’t care byte, and may be set to all zeroes. This byte is included in order to  
retain protocol compatibility with earlier Texas Instruments digital audio interface and sample rate converter  
products, including the DIT4096, DIT4192, the SRC418x series devices, and the SRC419x series devices.  
The SPI port supports write and read operations for multiple sequential register addresses through the  
implementation of an auto-increment mode. As shown in Figure 75, the auto-increment mode is invoked by  
simply holding the CS input low for multiple data bytes. The register address is automatically incremented after  
each data byte transferred, starting with the address specified by the command byte.  
36  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
 
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
Refer to the Electrical Characteristics: SPI Interface table and Figure 2 for specifications and a timing diagram  
that highlight the key parameters for SPI interface operation.  
Set CS = 1 here to write/read one register location.  
Hold CS = 0 to enable auto-increment mode.  
CS  
Header  
Register Data  
Byte N  
Byte 0  
Hi Z  
Byte 1  
Hi Z  
Byte 2  
Byte 3  
CDIN  
Register Data  
Data for A[6:0] Data for A[6:0]+1  
Data for A[2:0]+N  
CDOUT  
CCLK  
Byte Definition  
MSB  
LSB  
R/W A6 A5 A4 A3 A2 A1 A0  
Byte 0:  
Register Address  
Set to 0 for Write; Set to 1 for Read.  
Byte 1: Don’t Care  
Byte 2 through Byte N: Register Data  
Figure 75. Serial Peripheral Interface (SPI) Protocol for the SRC4392  
HOST INTERFACE OPERATION: PHILIPS I2C MODE  
The SRC4392 supports a 2-wire Philips I2C bus interface when CPM (pin 18) is forced high or pulled up to the  
VIO supply rail. The SRC4392 functions as a Slave-only device on the bus. Standard and Fast modes of  
operation are supported. Standard mode supports data rates up to 100kbps, while Fast mode supports data  
rates up to 400kbps. Fast mode is downward compatible with Standard mode, and these modes are sometimes  
referred to as Fast/Standard, or F/S mode. The I2C Bus Specification (Version 2.1, January 2000), available from  
Philips Semiconductor, provides the details for the bus protocol and implementation. It is assumed that the  
reader is familiar with this specification. Refer to the Electrical Characteristics: I2C Standard and Fast Modes  
table and Figure 3 for specifications and a timing diagram that highlight the key parameters for I2C interface  
operation.  
When the I2C mode is invoked, pin 20 becomes SCL (which serves as the bus clock) and pin 22 becomes SDA  
(which carries the bi-directional serial data for the bus). Pins 19 and 21 become A0 and A1, respectively, and  
function as the hardware configurable portion of the 7-bit slave address.  
The SRC4392 utilizes a 7-bit Slave address, see Figure 76(a). Bits A2 through A6 are fixed and bits A0 and A1  
are hardware programmable using pins 19 and 21, respectively. The programmable bits allow for up to four  
SRC4392 devices to be connected to the same bus. The slave address is followed by the Register Address Byte,  
which points to a specific register or data buffer location in the SRC4392 register map. The register address byte  
is comprised of seven bits for the address, and one bit for enabling or disabling auto-increment operation, see  
Figure 76(b). Auto-increment mode allows multiple sequential register locations to be written to or read back in a  
single operation, and is especially useful for block write and read operations.  
Figure 77 illustrates the protocol for Standard and Fast mode Write operations. When writing a single register  
address, or multiple non-sequential register addresses, the single register write operation of Figure 77(a) may be  
used one or more times. When writing multiple sequential register addresses, the auto-increment mode of  
Figure 77(b) improves efficiency. The register address is automatically incremented by one for each successive  
byte of data transferred.  
Figure 78 illustrates the protocol for Standard and Fast mode Read operations. The current address read  
operation of Figure 78(a) assumes the value of the register address from the previously executed write or read  
operation, and is useful for polling a register address for status changes. Figure 78(b) and Figure 78(c) illustrate  
read operations for one or more random register addresses, with or without auto-increment mode enabled.  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
37  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
First Byte After the START/RESTART Condition  
Slave Address  
MSB  
LSB  
A6  
1
A5  
1
A4  
1
A3  
0
A2 A1  
A1  
A0  
A0 R/W  
0
Set by Pin 19  
Set by Pin 21  
(a) SRC4392 Slave Address  
MSB  
LSB  
A0  
INC A6  
A5  
A4  
A3  
A2  
A1  
Auto-Increment  
0 = Disabled  
1 = Enabled  
(b) Register Address Byte  
Figure 76. SRC4392 Slave Address and Register Address Byte Definitions  
Byte 1  
Slave Address  
with R/W = 0  
Byte 2  
Register Address Byte  
with INC = 0  
Byte 3  
Register  
Data  
S
A
A
A P  
(a) Writing a Single Register  
Byte 1  
Slave Address  
with R/W = 0  
Byte 2  
Register Address Byte  
with INC = 1  
Byte 4  
Register Data  
For Address + 1  
Byte N  
Register Data  
For Address + N  
Byte 3  
Register Data  
S
A
A
A
A
A P  
(b) Writing Multiple Sequential Registers Using Auto-Increment Operation  
Legend  
S = START Condition  
A = Acknowledge  
P = STOP Condition  
Transfer from Master to Slave  
Transfer from Slave to Master  
Figure 77. Fast/Standard Mode Write Operations  
38  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
Byte 1  
Slave Address  
with R/W = 1  
Byte 2  
Register Address Byte  
with INC = 0  
S
A
A P  
(a) Current Address Read, Assumes the Register Address of the Previous  
Byte 1  
Slave Address  
with R/W = 0  
Byte 2  
Register Address Byte  
with INC = 0  
Byte 3  
Slave Address  
with R/W = 1  
Byte 4  
Register Data  
A
A P  
S
A
A R  
(b) Random Read Operation, Auto-Increment Disabled  
Byte 1  
Slave Address  
with R/W = 0  
Byte 2  
Register Address Byte  
with INC = 1  
Byte 3  
Slave Address  
with R/W = 1  
Byte N  
Register Data  
For Address + N  
Byte 4  
Register Data  
S
A
A R  
A
A
A P  
(c) Random Read Operation, Auto-Increment Enabled  
Legend  
S = START Condition  
A = Acknowledge  
A = Not Acknowledge  
R = Repeated START  
P = STOP Condition  
Transfer from Master to Slave  
Transfer from Slave to Master  
Figure 78. Fast/Standard Mode Read Operations  
INTERRUPT OUTPUT  
The SRC4392 includes multiple internal status bits, many of which may be set to trigger an interrupt signal. The  
interrupt signal is output at INT (pin 23), which is an active low, open-drain output. The INT pin requires a pull-up  
resistor to the VIO supply rail. The value of the pull-up is not critical, but a 10kdevice should be sufficient for  
most applications. Figure 79 shows the interrupt output pin connection. The open-drain output allows interrupt  
pins from multiple SRC4392 devices to be connected in a wired OR configuration.  
SRC4392  
MCU, DSP,  
or Logic  
VIO  
Interrupt  
Logic  
10kW  
INT 23  
Interrupt  
Input  
To the INT outputs for  
additional SRC4392 devices  
Figure 79. Interrupt Output Pin Connections  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
39  
Product Folder Links: SRC4392  
 
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
APPLICATIONS INFORMATION  
Typical application diagrams and power-supply connections are presented in this section to aid the customer in  
hardware designs employing the SRC4392 device.  
Figure 80 illustrates typical application connections for the SRC4392 using an SPI host interface. The SPI host  
will typically be a microcontroller, digital signal processor, or a programmable logic device. In addition to  
providing the SPI bus master, the host may be utilized to process interrupt and flag outputs from the SRC4392.  
The audio serial ports are connected to external digital audio devices, which may include data converters, digital  
signal processors, digital audio interface receivers/transmitters, or other logic devices. The DIR inputs and DIT  
outputs are connected to line, optical, or logic interfaces (see the Receiver Input Interfacing and Transmitter  
Output Interfacing sections). Master and DIR reference clock sources are also shown.  
Figure 81 illustrates typical application connections for the SRC4392 using an I2C bus interface. The I2C bus  
master will typically be a microcontroller, digital signal processor, or a programmable logic device. In addition to  
providing the I2C bus master, the host may be used to process interrupt and flag outputs from the SRC4392.  
Pull-up resistors are connected from SCL (pin 20) and SDA (pin 22) to the VIO supply rail. These pull-up  
resistors are required for the open drain outputs of the I2C interface. All other connections to the SRC4392 are  
the same as the SPI host case discussed previously.  
Figure 82 illustrates the recommended power-supply connections and bypassing for the SRC4392. In this case, it  
is assumed that the VIO, VDD33, and VCC supplies are powered from the same +3.3V power source. The  
VDD18 core supply is powered from a separate supply, or derived from the +3.3V supply using a linear voltage  
regulator, as illustrated with the optional regulator circuitry of Figure 82.  
The 0.1μF bypass capacitors are surface-mount X7R ceramic, and should be located as close to the device as  
possible. These capacitors should be connected directly between the supply and corresponding ground pins of  
the SRC4392. The ground pin is then connected directly to the ground plane of the printed circuit board (PCB).  
The larger value capacitors, shown connected in parallel to the 0.1μF capacitors, are recommended. At a  
minimum, there should at least be footprints on the PCB for installation of these larger capacitors, so that  
experiments can be run with and without the capacitors installed, in order to determine the effect on the  
measured performance of the SRC4392. The larger value capacitors can be surface-mount X7R multilayer  
ceramic or tantalum chip.  
The substrate ground, BGND (pin 44), should be connected by a PCB trace to AGND (pin 10). The AGND pin is  
then connected directly to the ground plane. This connection helps to reduce noise in the DIR section of the  
device, aiding the overall jitter and noise tolerance for the receiver.  
A series resistor is shown between the +3.3V supply and VCC (pin 9) connection. This resistor combines with the  
bypass capacitors to create a simple RC filter to remove higher frequency components from the VCC supply. The  
series resistor should be a metal film type for best filtering characteristics. As a substitute for the resistor, a ferrite  
bead can be utilized, although it may have to be physically large in order to contribute to the filtering.  
40  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
SRC4392IPFB  
BCKA  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
SYNC  
BLS  
Audio  
I/O  
Device  
To Host or External Logic  
LRCKA  
SDINA  
SDOUTA  
NC  
AESOUT  
VDD33  
TX+  
To Digital Outputs  
(Line, Optical, Logic)  
VIO  
TX-  
DGND3  
BGND  
SDOUTB  
SDINB  
LRCKB  
BCKB  
DGND2  
GPO4  
GPO3  
GPO2  
GPO1  
MCLK  
Audio  
I/O  
Device  
To Host or External Logic  
1
2
3
4
5
6
7
8
9
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
RX1+  
RX1-  
RX2+  
RX2-  
RX3+  
RX3-  
RX4+  
RX4-  
VCC  
RST  
INT  
CDOUT  
CDIN  
CCLK  
CS  
From Digital Inputs  
(Line, Optical, Logic)  
SPI  
Host  
CPM  
Controller  
VDD18  
DGND1  
RDY  
MUTE  
RXCKI  
10  
11  
12  
AGND  
LOCK  
RXCKO  
DIR Recovered Clock  
Master  
Clock  
10kW  
VIO  
DIR  
Ref Clock  
NOTE: See Figure 82 for power-supply connections. Dashed lines denote optional connections to the host.  
Figure 80. Typical Application Diagram Using SPI Host Interface  
SRC4392IPFB  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
BCKA  
SYNC  
BLS  
AESOUT  
VDD33  
TX+  
Audio  
I/O  
Device  
To Host or External Logic  
LRCKA  
SDINA  
SDOUTA  
NC  
To Digital Outputs  
(Line, Optical, Logic)  
VIO  
TX-  
DGND3  
BGND  
SDOUTB  
SDINB  
LRCKB  
BCKB  
DGND2  
GPO4  
GPO3  
GPO2  
GPO1  
MCLK  
Audio  
I/O  
Device  
To Host or External Logic  
1
2
3
4
5
6
7
8
9
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
RX1+  
RX1-  
RX2+  
RX2-  
RX3+  
RX3-  
RX4+  
RX4-  
VCC  
RST  
INT  
SDA  
A1  
SCL  
A0  
CPM  
VDD18  
DGND1  
RDY  
MUTE  
RXCKI  
From Digital Inputs  
(Line, Optical, Logic)  
I2C  
Host  
Controller  
Tie  
LO or HI  
10  
11  
12  
AGND  
LOCK  
RXCKO  
DIR Recovered Clock  
Master  
Clock  
10kW  
2.7kW  
VIO  
DIR  
Ref Clock  
NOTE: See Figure 82 for power-supply connections. Dashed lines denote optional connections to the host.  
Figure 81. Typical Application Diagram Using I2C Host Interface  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
41  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
+3.3V  
10mF  
+
44  
0.1mF  
R
43  
42  
SRC4392IPFB  
9
33  
30  
+
+
0.1mF  
10mF  
10mF  
0.1mF  
10  
Connect pin 44 to pin 10.  
Pin 10 is then connected to  
the ground plane.  
+3.3V  
TPS79318DBVR  
16  
17  
0.1mF  
1
3
5
4
IN  
EN  
OUT  
NR  
GND  
2
C
+
0.1mF  
0.01mF  
2.2mF  
+1.8V  
Optional Regulator Circuit  
R may be set from 2W to 10W, or replaced by a ferrite bead.  
C may be set to 10mF, or not installed when using the optional regulator circuit.  
Figure 82. Recommended Power-Supply Connections  
DIGITAL AUDIO TRANSFORMER VENDORS  
Transformers are shown in this data sheet for both receiver and transmitter balanced and unbalanced line  
interface implementations. For the Texas Instruments Pro Audio evaluation modules, transformers from Scientific  
Conversion are utilized. In addition to Scientific Conversion, there are other vendors that offer transformer  
products for digital audio interface applications. Please refer to the following manufacturer web sites for details  
regarding their products and services. Other transformer vendors may also be available by searching catalog  
and/or Internet resources.  
Scientific Conversion: http://scientificonversion.com  
Schott Corporation: http://schottcorp.com  
Pulse Engineering: http://pulseeng.com  
42  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
RECEIVER INPUT INTERFACING  
This section details the recommended interfaces for the SRC4392 line receiver inputs. Balanced and unbalanced  
line interfaces, in addition to optical receiver and external logic interfacing, will be discussed.  
For professional digital audio interfaces, 110balanced line interfaces are either required or preferred.  
Transformer coupling is commonly employed to provide isolation and to improve common-mode noise rejection.  
Figure 83 shows the recommended transformer-coupled balanced line receiver interface for the SRC4392. The  
transformer is specified for a 1:1 turn ratio, and should exhibit low inter-winding capacitance for best  
performance. Due to the DC bias on the line receiver inputs, 0.1μF capacitors are utilized for AC-coupling the  
transformer to the line receiver inputs. On the line side of the transformer, an optional 0.1μF capacitor is shown  
for cases where a DC bias may be applied at the transmitter side of the connection. The coupling capacitors  
should be surface-mount ceramic chip type with an X7R or C0G dielectric.  
C(1)  
0.1mF  
1:1  
To RX+  
3
2
Digital Input  
110W Balanced  
1
110W  
To RX-  
XLR  
0.1mF  
(1) Insert a 0.1mF capacitor when blocking common-mode DC voltage.  
Figure 83. Transformer-Coupled Balanced Input Interface  
Unbalanced 75coaxial cable interfaces are commonly employed in consumer and broadcast audio  
applications. Designs with and without transformer line coupling may be utilized. Figure 84(a) shows the  
recommended 75transformer-coupled line interface, which shares many similarities to the balanced design  
shown in Figure 83. Once again, the transformer provides isolation and improved noise rejection. Figure 84(b)  
shows the transformer-free interface, which is commonly used for S/PDIF consumer connections.  
C(1)  
0.1mF  
1:1  
To RX+  
Digital Input  
75W Unbalanced  
(RCA or BNC connector)  
75W  
To RX-  
0.1mF  
(a) Transformer-Coupled Unbalanced Line Interface  
0.1mF  
To RX+  
Digital Input  
75W Unbalanced  
(RCA or BNC connector)  
75W  
To RX-  
0.1mF  
(b) Unbalanced Line Interface Without Transformer  
(1) Insert a 0.1mF capacitor when blocking common-mode DC components.  
Figure 84. Unbalanced Line Input Interfaces  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
43  
Product Folder Links: SRC4392  
 
 
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
Optical interfaces utilizing all-plastic fiber are commonly employed for consumer audio equipment where  
interconnections are less than 10m in length. Optical receiver modules utilized for a digital audio interface  
operate from either a single +3.3V or +5V supply and have a TTL-, CMOS-, or low-voltage CMOS-compatible  
logic output. Interfacing to +3.3V optical receivers is straightforward when the optical receiver supply is powered  
from the SRC4392 VDD33 power source, as shown in Figure 85. For the +5V optical receivers, the output high  
logic level may exceed the SRC4392 line receiver absolute maximum input voltage. A level translator is required,  
placed between the optical receiver output and the SRC4392 line receiver input. Figure 86 shows the  
recommended input circuit when interfacing a +5V optical receiver to the SRC4392 line receiver inputs. The  
Texas Instruments SN74LVC1G125 single buffer IC is operated from the same +3.3V supply used for SRC4392  
VDD33 supply. This buffer includes a +5V tolerant digital input, and provides the logic level translation required  
for the interface.  
VDD33  
All-Plastic  
(5 or 10 meters maximum)  
Optical  
Receiver(1)  
To RX+  
To RX-  
0.1mF  
(1) Toshiba TORX141 or equivalent.  
Figure 85. Interfacing to a +3.3V Optical Receiver Module  
SN74LVC1G125  
or Equivalent  
+5V  
VDD33  
5
2
4
All-Plastic  
(5 or 10 meters maximum)  
Optical  
Receiver(1)  
To RX+  
To RX-  
1
3
0.1mF  
(1) Toshiba TORX173, TORX176, TORX179, or equivalent.  
Figure 86. Interfacing to a +5V Optical Receiver Module  
44  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
 
 
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
The SRC4392 line receivers may also be driven directly from external logic or line receiver devices with TTL or  
CMOS outputs. If the logic driving the line receiver is operated from +3.3V, then logic level translation is not be  
required. However, if the external logic is operated from a power-supply voltage that exceeds the maximum  
VDD33 supply voltage of the SRC4392, or operates from a supply voltage lower than +3.3V, then level  
translation is required. Figure 87 shows the recommended logic level translation methods, utilizing buffers and  
level translators available from Texas Instruments.  
SN74LVC1G125  
or Equivalent  
VDD33  
5
2
4
From +5V Logic  
(TTL or CMOS)  
To RX+  
To RX-  
1
3
0.1mF  
SN74AVC1T45  
or Equivalent  
+1.8V or +2.5V  
VDD33  
1
5
6
3
4
From +1.8V or +2.5V  
CMOS Logic  
To RX+  
To RX-  
2
0.1mF  
Figure 87. CMOS/TTL Input Logic Interface  
TRANSMITTER OUTPUT INTERFACING  
This section details the recommended interfaces for the SRC4392 transmitter line driver and CMOS buffered  
outputs. Balanced and unbalanced line interfaces, in addition to optical transmitter and external logic interfacing,  
will be discussed.  
For professional digital audio interfaces, 110balanced line interfaces are either required or preferred.  
Transformer coupling is commonly employed to provide isolation and to improve common-mode noise  
performance. Figure 88 shows the recommended transformer-coupled balanced line driver interface for the  
SRC4392. The transformer is specified for a 1:1 turn ratio, and should exhibit low inter-winding capacitance for  
best performance. To eliminate residual DC bias, a 0.1μF capacitor is utilized for AC-coupling the transformer to  
the line driver outputs. The coupling capacitor should be a surface-mount ceramic chip type with an X7R or C0G  
dielectric.  
1:1  
110W  
TX+  
3
2
Digital Output  
110W Balanced  
1
TX-  
XLR  
0.1mF  
Figure 88. Transformer-Coupled Balanced Output Interface  
Unbalanced 75coaxial cable interfaces are commonly employed in consumer and broadcast audio  
applications. Designs with and without transformer line coupling may be utilized. Figure 89(a) illustrates the  
recommended 75transformer-coupled line driver interface, which shares many similarities to the balanced  
design shown in Figure 88. Figure 89(b) illustrates the transformer-free line driver interface, which is commonly  
used for S/PDIF consumer connections.  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
45  
Product Folder Links: SRC4392  
 
 
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
1:1  
0.1mF  
R1  
TX+  
Digital Output  
75W Unbalanced  
(RCA or BNC connector)  
R2  
(a) Transformer-Coupled Unbalanced Output  
0.1mF  
R1  
TX+  
Digital Output  
75W Unbalanced  
(RCA or BNC connector)  
R2  
(b) Unbalanced Output Without Transformer  
R1 and R2 are selected to achieve the desired output voltage level while maintaining the required 75W transmitter output impedance.  
The TX+ output impedance is negligible.  
Figure 89. Unbalanced Line Output Interfaces  
Optical interfaces utilizing all-plastic fiber are commonly employed for consumer audio equipment where  
interconnections are less than 10m in length. Most optical transmitter modules utilized for a digital audio interface  
operate from a single +3.3V or +5V supply and have a TTL compatible logic input. The CMOS buffered  
transmitter output of the SRC4392, AESOUT (pin 34), is capable of driving the optical transmitter with VIO supply  
voltages down to +3.0V. If the VIO supply voltage is less than +3.0V, then level translation logic is required to  
drive the optical transmitter input. A good choice for this application is the Texas Instruments SN74AVC1T45  
single bus transceiver. This device features two power-supply rails, one for the input side and one for the output  
side. For this application, the input side supply is powered from the VIO supply, while the output side is powered  
from a +3.3V supply. This will boost the logic high level to a voltage suitable for driving the TTL compatible input  
configuration. Figure 90 shows the recommended optical transmitter interface circuits.  
Optical  
All-Plastic Fiber  
(5 or 10 meters maximum)  
Transmitter(1)  
AESOUT  
VIO  
1
+3.3V  
6
5
If VIO < +3.0V.  
3
4
2
SN74AVC1T45  
or Equivalent  
(1) Toshiba TOTX141, TOTX173, TOTX176, TOTX179, or equivalent.  
Figure 90. Interfacing to an Optical Transmitter Module  
The AESOUT output may also be used to drive external logic or line driver devices directly. Figure 91 illustrates  
the recommended logic interface techniques, including connections with and without level translation. Figure 92  
illustrates an external line driver interface utilizing the Texas Instruments SN75ALS191 dual differential line  
driver. If the VIO supply of the SRC4392 is set from +3.0V to +3.3V, no logic level translation is required between  
the AESOUT output and the line driver input. If the VIO supply voltage is below this range, then the optional logic  
level translation logic of Figure 92 is required. The SN75ALS191 dual line driver is especially useful in  
applications where simultaneous 75and 110line interfaces are required.  
46  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
 
 
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
Direct to external logic  
operating from the VIO supply.  
AESOUT  
+5V  
5
2
4
To +5V Logic  
(VIO supply = +3.0V to +3.3V)  
3
1
SN74AHCT1G125  
or Equivalent  
Figure 91. CMOS/TTL Output Logic Interface  
+5V  
SN75ALS191  
1
8
2
To Balanced or Unbalanced  
Line Interface  
AESOUT  
7
VIO  
+3.3V  
6
1
6
5
5
If VIO < +3.0V.  
3
To Balanced or Unbalanced  
Line Interface  
3
4
2
SN74AVC1T45  
or Equivalent  
1
Figure 92. External Line Driver Interface  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
47  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
REGISTER AND DATA BUFFER ORGANIZATION  
The SRC4392 organizes the on-chip registers and data buffers into four pages. The currently active page is  
chosen by programming the Page Selection Register to the desired page number. The Page Selection Register  
is available on every register page at address 0x7F, allowing easy movement between pages. Table 2 indicates  
the page selection corresponding to the Page Selection Register value.  
Table 2. Register Page Selection  
Page Selection Register Value (Hex)  
Selected Register Page  
00  
01  
02  
03  
Page 0, Control and Status Registers  
Page 1, DIR Channel Status and User Data Buffers  
Page 2, DIT Channel Status and User Data Buffers  
Page 3, Reserved  
Register Page 0 contains the control registers utilized to configure the various function blocks within the  
SRC4392. In addition, status registers are provided for flag and error conditions, with many of the status bits  
capable of generating an interrupt signal when enabled. See Table 3 for the control and status register map.  
Register Page 1 contains the digital interface receiver (or DIR) channel status and user data buffers. These  
buffers correspond to the data contained in the C and U bits of the previously received block of the AES3-  
encoded data stream. The contents of these buffers may be read through the SPI or I2C serial host interface and  
processed as needed by the host system. See Table 5 for the DIR channel status buffer map, and Table 6 for  
the DIR user data buffer map.  
Register Page 2 contains the digital interface transmitter (or DIT) channel status and user data buffers. These  
buffers correspond to the data contained in the C and U bits of the transmitted AES3-encoded data stream. The  
contents of these buffers may be written through the SPI or I2C serial host interface to configure the C and U bits  
of the transmitted AES3 data stream. The buffers may also be read for verification by the host system. See  
Table 7 for the DIT channel status buffer map, and Table 8 for the DIT user data buffer map.  
Register Page 3 is reserved for factory test and verification purposes, and cannot be accessed without an unlock  
code. The unlock code remains private; the test modes disable normal operation of the device, and are not  
useful in customer applications.  
CONTROL REGISTERS  
See Table 3 for the control and status register map of the SRC4392. Register addresses 0x00 and 0x34 through  
0x7E are reserved for factory or future use. All register addresses are expressed as hexadecimal numbers. The  
following pages provide detailed descriptions for each control and status register.  
48  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
 
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
Table 3. Control and Status Register Map (Register Page 0)  
ADDRESS  
(Hex)  
D7  
(MSB)  
D6  
D5  
D4  
PDPA  
0
D3  
PDPB  
0
D2  
PDTX  
TX  
D1  
PDRX  
RX  
D0  
PDSRC  
SRC  
REGISTER GROUP  
Power-Down and Reset  
Global Interrupt Status  
Port A Control  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
7F  
RESET  
0
PDALL  
0
0
0
0
AMUTE  
AOUTS1  
AOUTS0  
0
AM/S  
ACLK1  
BM/S  
BCLK1  
TXIS0  
TXBTD  
0
AFMT2  
ACLK0  
BFMT2  
BCLK0  
BLSM  
AESOFF  
VALSEL  
0
AFMT1  
ADIV1  
BFMT1  
BDIV1  
VALID  
TXMUTE  
TXCUS1  
TSLIP  
MTSLIP  
TBTIM1  
RXMUX1  
RXCKOD0  
J3  
AFMT0  
ADIV0  
BFMT0  
BDIV0  
BSSL  
TXOFF  
TXCUS0  
TBTI  
0
0
0
Port A Control  
0
BMUTE  
BOUTS1  
BOUTS0  
0
Port B Control  
0
0
0
Port B Control  
TXCLK  
TXDIV1  
TXDIV0  
TXIS1  
LDMUX  
0
Transmitter Control  
BYPMUX1  
BYPMUX0  
AESMUX  
Transmitter Control  
0
0
0
Transmitter Control  
0
0
RATIO  
READY  
MREADY  
READYM0  
RXBTD  
LOL  
0
SRC and DIT Status  
0
0
MRATIO  
0
0
MTBTI  
TBTIM0  
RXMUX  
RXCKOE  
J2  
SRC and DIT Interrupt Mask  
SRC and DIT Interrupt Mode  
Receiver Control  
RATIOM1  
RATIOM0  
READYM1  
TSLIPM1  
RXCLK  
RXAMLL  
J5  
TSLIPM0  
0
0
0
0
0
0
P3  
0
RXCKOD1  
J4  
Receiver Control  
P2  
P1  
P0  
Receiver PLL Configuration  
Receiver PLL Configuration  
Receiver PLL Configuration  
Non-PCM Audio Detection  
Receiver Status  
J1  
J0  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
0
0
DTS CD/LD  
RXCKR1  
QCRC  
0
IEC61937  
RXCKR0  
RBTI  
0
0
0
0
0
0
CSCRC  
0
PARITY  
0
VBIT  
BPERR  
0
QCHG  
0
UNLOCK  
0
Receiver Status  
0
OSLIP  
MRBTI  
MOSLIP  
RBTIM0  
BPERRM0  
OSLIPM0  
GPO10  
GPO20  
GPO30  
GPO40  
Q7  
Receiver Status  
MCSCRC  
0
MPARITY  
0
MVBIT  
MBPERR  
0
MQCHG  
0
MUNLOCK  
0
MQCRC  
0
Receiver Interrupt Mask  
Receiver Interrupt Mask  
Receiver Interrupt Mode  
Receiver Interrupt Mode  
Receiver Interrupt Mode  
General-Purpose Out (GPO1)  
General-Purpose Out (GPO2)  
General-Purpose Out (GPO3)  
General-Purpose Out (GPO4)  
Audio CD Q-Channel Sub-Code  
Audio CD Q-Channel Sub-Code  
Audio CD Q-Channel Sub-Code  
Audio CD Q-Channel Sub-Code  
Audio CD Q-Channel Sub-Code  
Audio CD Q-Channel Sub-Code  
Audio CD Q-Channel Sub-Code  
Audio CD Q-Channel Sub-Code  
Audio CD Q-Channel Sub-Code  
Audio CD Q-Channel Sub-Code  
PC Burst Preamble, High Byte  
PC Burst Preamble, Low Byte  
PD Burst Preamble, High Byte  
PD Burst Preamble, Low Byte  
SRC Control  
0
UNLOCKM1  
PARITYM1  
0
QCHGM1  
CSCRCM1  
0
QCHGM0  
CSCRCM0  
0
UNLOCKM0  
PARITYM0  
0
QCRCM1  
VBITM1  
0
QCRCM0  
VBITM0  
0
RBTIM1  
BPERRM1  
OSLIPM1  
GPO11  
GPO21  
GPO31  
GPO41  
Q6  
0
0
0
0
GPO13  
GPO23  
GPO33  
GPO43  
Q4  
GPO12  
GPO22  
GPO32  
GPO42  
Q5  
0
0
0
0
0
0
0
0
0
0
0
0
Q0  
Q1  
Q2  
Q3  
Q8  
Q9  
Q10  
Q18  
Q26  
Q34  
Q42  
Q50  
Q58  
Q66  
Q74  
PC13  
PC05  
PD13  
PD05  
0
Q11  
Q12  
Q13  
Q14  
Q15  
Q16  
Q24  
Q32  
Q40  
Q48  
Q56  
Q64  
Q72  
PC15  
PC07  
PD15  
PD07  
0
Q17  
Q25  
Q33  
Q41  
Q49  
Q57  
Q65  
Q73  
PC14  
PC06  
PD14  
PD06  
TRACK  
0
Q19  
Q20  
Q21  
Q22  
Q23  
Q27  
Q28  
Q29  
Q30  
Q31  
Q35  
Q36  
Q37  
Q38  
Q39  
Q43  
Q44  
Q45  
Q46  
Q47  
Q51  
Q52  
Q53  
Q54  
Q55  
Q59  
Q60  
Q61  
Q62  
Q63  
Q67  
Q68  
Q69  
Q70  
Q71  
Q75  
Q76  
Q77  
Q78  
Q79  
PC12  
PC04  
PD12  
PD04  
MUTE  
DEM1  
0
PC11  
PC03  
PD11  
PD03  
SRCCLK1  
DEM0  
0
PC10  
PC02  
PD10  
PD02  
SRCCLK0  
DDN  
0
PC09  
PC01  
PD09  
PD01  
SRCIS1  
IGRP1  
0
PC08  
PC00  
PD08  
PD00  
SRCIS0  
IGRP0  
0
0
AUTODEM  
0
SRC Control  
OWL1  
AL7  
AR7  
SRI4  
SRF7  
0
OWL0  
AL6  
AR6  
SRI3  
SRF6  
0
SRC Control  
AL5  
AL4  
AL3  
AL2  
AL1  
AL0  
SRC Control  
AR5  
SRI2  
SRF5  
0
AR4  
SRI1  
SRF4  
0
AR3  
AR2  
AR1  
AR0  
SRC Control  
SRI0  
SRF3  
0
SRF10  
SRF2  
0
SRF9  
SRF1  
PAGE1  
SRF8  
SRF0  
PAGE0  
SRC Input: Output Ratio  
SRC Input: Output Ratio  
Page Selection  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
49  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
Register 01: Power-Down and Reset  
Bit 7 (MSB)  
RESET  
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
PDSRC  
PDALL  
PDPA  
PDPB  
PDTX  
PDRX  
PDSRC  
Power-Down for the SRC Function Block  
This bit is utilized to power-down the SRC and associated functions.  
PDSRC  
SRC Power-Down Mode  
0
Enabled (Default)  
Disabled; the SRC function block will operate normally based  
upon the applicable control register settings.  
1
PDRX  
Power-Down for the Receiver Function Block  
This bit is utilized to power-down the DIR and associated functions. All receiver outputs are forced  
low.  
PDRX  
Receiver Power-Down Mode  
0
Enabled (Default)  
Disabled; the Receiver function block will operate normally  
based upon the applicable control register settings.  
1
PDTX  
Power-Down for the Transmitter Function Block  
This bit is utilized to power-down the DIT and associated functions. All transmitter outputs are  
forced low.  
PDTX  
Transmitter Power-Down Mode  
0
Enabled (Default)  
Disabled; the Transmitter function block will operate normally  
based upon the applicable control register settings.  
1
PDPB  
PDPA  
PDALL  
Power-Down for Serial Port B  
This bit is utilized to power-down the audio serial I/O Port B. All port outputs are forced low.  
PDPB  
Port B Power-Down Mode  
0
Enabled (Default)  
Disabled; Port B will operate normally based upon the applicable  
control register settings.  
1
Power-Down for Serial Port A  
This bit is utilized to power-down the audio serial I/O Port A. All port outputs are forced low.  
PDPA  
Port A Power-Down Mode  
0
Enabled (Default)  
Disabled; Port A will operate normally based upon the applicable  
control register settings.  
1
Power-Down for All Functions  
This bit is utilized to power-down all function blocks except the host interface port and the control  
and status registers.  
PDALL  
All Function Power-Down Mode  
0
Enabled (Default)  
50  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
PDSRC  
Power-Down for the SRC Function Block  
Disabled; all function blocks will operate normally based upon  
the applicable control register settings.  
1
RESET  
Software Reset  
This bit is used to force a reset initialization sequence, and is equivalent to forcing an external  
reset via the RST input (pin 24).  
RESET  
Reset Function  
0
1
Disabled (Default)  
Enabled; all control registers will be reset to the default state.  
Register 02: Global Interrupt Status (Read-Only)  
Bit 7 (MSB)  
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
RX  
Bit 0 (LSB)  
SRC  
0
0
0
0
TX  
SRC  
RX  
SRC Function Block Interrupt Status (Active High)  
When set to 1, this bit indicates an active interrupt from the SRC function block. This bit is active  
high. The user should then read status register 0x0A in order to determine which of the sources  
has generated an interrupt.  
Receiver Function Block Interrupt Status (Active High)  
When set to 1, this bit indicates an active interrupt from the DIR function block. This bit is active  
high. The user should then read status registers 0x14 and 0x15 in order to determine which of  
the sources has generated an interrupt.  
TX  
Transmitter Function Block Interrupt Status (Active High)  
When set to 1, this bit indicates an active interrupt from the DIT function block. This bit is active  
high. The user should then read status register 0x0A in order to determine which of the sources  
has generated an interrupt.  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
51  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
Register 03: Port A Control Register 1  
Bit 7 (MSB)  
0
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
AFMT0  
AMUTE  
AOUTS1  
AOUTS0  
AM/S  
AFMT2  
AFMT1  
AFMT[2:0]  
Port A Audio Data Format  
These bits are used to set the audio input and output data format for Port A. Refer to the Audio  
Serial Port Operation section for illustrations of the supported data formats. Refer to the Electrical  
Characteristics: Audio Serial Ports table and Figure 1 for an applicable timing diagram and  
parameters.  
AFMT2  
AFMT1  
AFMT0  
Audio Data Format  
24-Bit Left-Justified (Default)  
24-Bit Philips I2S  
Unused  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Unused  
16-Bit Right-Justified  
18-Bit Right-Justified  
20-Bit Right-Justified  
24-Bit Right-Justified  
Note: When the SRC is selected as the output data source for Port A and the data format for the  
port is set to Right-Justified, the proper word length must be selected in the Port A control  
registers such that it matches the corresponding SRC output data word length. Refer to control  
register 0x2F for the SRC output word length selection.  
AM/S  
Port A Slave/Master Mode  
This bit is used to set the audio clock mode for Port A to either Slave or Master.  
AM/S  
Slave/Master Mode  
0
Slave mode; the LRCK and BCK clocks are inputs generated by an external digital  
audio source. (Default)  
1
Master mode; the LRCK and BCK clocks are outputs, derived from the Port A  
master clock source.  
AOUTS[1:0] Port A Output Data Source  
These bits are used to select the output data source for Port A. The data is output at SDOUTA  
(pin 40).  
AOUTS1  
AOUTS0 Output Data Source  
0
0
1
1
0
1
0
1
Port A Input, for data loop back. (Default)  
Port B Input  
DIR  
SRC  
AMUTE  
Port A Output Mute  
This bit is used to mute the Port A audio data output.  
AMUTE  
Output Mute  
0
1
Disabled; SDOUTA is driven by the output data source. (Default)  
Enabled; SDOUTA is forced low.  
52  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
Register 04: Port A Control Register 2  
Bit 7 (MSB)  
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
ADIV0  
0
0
0
ACLK1  
ACLK0  
ADIV1  
ADIV[1:0]  
Port A Master Clock Divider  
These bits are used to set the master clock divider for generating the LRCKA clock for Port A  
when configured for Master mode operation. BCKA is always set to 64 times the LRCKA clock  
rate in Master mode.  
ADIV1  
ADIV0  
Master Mode Clock Divider  
Divide By 128 (Default)  
Divide By 256  
0
0
1
1
0
1
0
1
Divide By 384  
Divide By 512  
ACLK[1:0]  
Port A Master Clock Source  
These bits are used to set the master clock source for Port A when configured for Master mode  
operation.  
ACLK1  
ACLK0  
Master Clock Source  
MCLK (Default)  
RXCKI  
0
0
1
1
0
1
0
1
RXCKO  
Reserved  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
53  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
Register 05: Port B Control Register 1  
Bit 7 (MSB)  
0
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
BFMT0  
BMUTE  
BOUTS1  
BOUTS0  
BM/S  
BFMT2  
BFMT1  
BFMT[2:0]  
Port B Audio Data Format  
These bits are used to set the audio input and output data format for Port B. Refer to the Audio  
Serial Port Operation section for illustrations of the supported data formats. Refer to the Electrical  
Characteristics: Audio Serial Ports table and Figure 1 for an applicable timing diagram and  
parameters.  
BFMT2  
BFMT1  
BFMT0  
Audio Data Format  
24-Bit Left-Justified (Default)  
24-Bit Philips I2S  
Unused  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Unused  
16-Bit Right-Justified  
18-Bit Right-Justified  
20-Bit Right-Justified  
24-Bit Right-Justified  
Note: When the SRC is selected as the output data source for Port B and the data format for the  
port is set to Right-Justified, the proper word length must be selected in the Port B control  
registers such that it matches the corresponding SRC output data word length. Refer to control  
register 0x2F for the SRC output word length selection.  
BM/S  
Port B Slave/Master Mode  
This bit is used to set the audio clock mode for Port B to either Slave or Master.  
BM/S  
Slave/Master Mode  
0
Slave mode; the LRCK and BCK clocks are generated by an external source.  
(Default)  
1
Master mode; the LRCK and BCK clocks are derived from the Port A master clock  
source.  
BOUTS[1:0] Port B Output Source  
These bits are used to select the output data source for Port B. The data is output at SDOUTB  
(pin 45).  
BOUTS1  
BOUTS0 Output Data Source  
0
0
1
1
0
1
0
1
Port B Input, for data loop back. (Default)  
Port A Input  
DIR  
SRC  
BMUTE  
Port B Output Mute  
This bit is used to mute the Port B audio data output.  
BMUTE  
Output Mute  
0
1
Disabled; SDOUTB is driven by the output data source. (Default)  
Enabled; SDOUTB is forced low.  
54  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
Register 06: Port B Control Register 2  
Bit 7 (MSB)  
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
BDIV0  
0
0
0
BCLK1  
BCLK0  
BDIV1  
BDIV[1:0]  
Port B Master Mode Clock Divider  
These bits are used to set the master clock divider for generating the LRCKB clock for Port B  
when configured for Master mode operation. BCKB is always set to 64 times the LRCKB clock  
rate in Master mode.  
BDIV1  
BDIV0  
Master Mode Clock Divider  
Divide By 128 (Default)  
Divide By 256  
0
0
1
1
0
1
0
1
Divide By 384  
Divide By 512  
BCLK[1:0]  
Port B Master Clock Source  
These bits are used to set the master clock source for Port B when configured for Master mode  
operation.  
BCLK1  
BCLK0  
Master Clock Source  
MCLK (Default)  
RXCKI  
0
0
1
1
0
1
0
1
RXCKO  
Reserved  
Register 07: Transmitter Control Register 1  
Bit 7 (MSB)  
TXCLK  
Bit 6  
TXDIV1  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
BSSL  
TXDIV0  
TXIS1  
TXIS0  
BLSM  
VALID  
BSSL  
Block Start or Asynchronous Data Slip Interrupt Trigger Selection  
This bit is used to select the trigger source for the Transmitter TSLIP status and interrupt bit.  
BSSL  
TSLIP Interrupt Trigger Source  
Data Slip Condition (Default)  
Block Start Condition  
0
1
VALID  
Validity (V) Data Bit  
This bit may be used to set the validity (or V) data bit in the AES3-encoded output. Refer to the  
VALSEL bit in control register 0x09 for V-bit source selection.  
VALID  
Transmitted Validity (V) Bit Data  
Indicates that the transmitted audio data is suitable for conversion to an  
analog signal or for further digital processing. (Default)  
0
Indicates that the transmitted audio data is not suitable for conversion to an  
analog signal or for further digital processing.  
1
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
55  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
BLSM  
Transmitter Block Start Input/Output Mode  
This bit is used to select the input/output mode for the DIT block start pin, BLS (pin 35).  
BLSM  
BLS Pin Mode  
Input (Default)  
Output  
0
1
TXIS[1:0]  
Transmitter Input Data Source  
These bits are used to select the audio data source for the DIT function block.  
TXIS1  
TXIS0  
Output Word Length  
0
0
1
1
0
1
0
1
Port A (Default)  
Port B  
DIR  
SRC  
TXDIV[1:0] Transmitter Master Clock Divider  
These bits are used to select the Transmitter master clock divider, which determines the output  
frame rate.  
TXDIV1  
TXDIV0  
Clock Divider  
0
0
1
1
0
1
0
1
Divide the master clock by 128. (Default)  
Divide the master clock by 256.  
Divide the master clock by 384.  
Divide the master clock by 512.  
TXCLK  
Transmitter Master Clock Source  
This bit is used to select the master clock source for the Transmitter block.  
TXCLK  
Transmitter Master Clock Source  
0
1
MCLK Input (Default)  
RXCKO; the recovered master clock from the DIR function block.  
Register 08: Transmitter Control Register 2  
Bit 7 (MSB)  
BYPMUX1  
Bit 6  
BYPMUX0  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
TXOFF  
AESMUX  
LDMUX  
TXBTD  
AESOFF  
TXMUTE  
TXOFF  
Transmitter Line Driver Output Enable  
This bit is used to enable or disable the TX+ (pin 32) and TX– (pin 31) line driver outputs.  
TXOFF  
Transmitter Line Driver  
0
1
Enabled; the line driver outputs function normally. (Default)  
Disabled; the line driver outputs are forced low.  
TXMUTE  
Transmitter Audio Data Mute  
This bit is used to set the 24 bits of audio and auxiliary data to all zeros for both Channels 1 and  
2.  
TXMUTE  
Transmitter Audio Data Mute  
0
1
Disabled (Default)  
Enabled; the audio data for both Channels 1 and 2 are set to all zeros.  
56  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
AESOFF  
AESOUT Output Enable  
This bit is used to enable or disable the AESOUT (pin 34) buffered AES3-encoded CMOS logic  
level output.  
AESOFF  
AESOUT Output  
0
1
Enabled; the AESOUT pin functions normally. (Default)  
Disabled; the AESOUT pin is forced low.  
TXBTD  
Transmitter C and U Data Buffer Transfer Disable  
This bit is used to enable and disable buffer transfers between the DIT User Access (UA) and  
DIT Transmitter Access (TA) buffers for both channel status (C) and user (U) data.  
Buffer transfers may be disabled, allowing the user to write new C and U data to the UA buffers  
via the SPI or I2C serial host interface. Once updated, UA-to-TA buffer transfers may then be re-  
enabled, allowing the TA buffer to be updated and the new C and U data to be transmitted at the  
start of the next block.  
TXBTD  
User Access (UA) to Transmitter Access (TA) Buffer Transfers  
Enabled (Default)  
0
1
Disabled; allows the user to update DIT C and U data buffers.  
Note: The TXCUS0 and TXCUS1 bits in control register 0x09 must be set to a non-zero value in  
order for DIT UA buffer updates to occur.  
LDMUX  
Transmitter Line Driver Input Source Selection  
This bit is used to select the input source for the DIT differential line driver outputs.  
LDMUX  
Line Driver Input Source  
0
1
DIT AES3 Encoder Output (Default)  
Bypass Multiplexer Output  
AESMUX  
AESOUT CMOS Buffer Input Source Selection  
This bit is used to select the input source for the AESOUT CMOS logic level output.  
AESMUX  
AESOUT Buffer Input Source  
DIT AES3 Encoder Output (Default)  
Bypass Multiplexer Output  
0
1
BYPMUX  
[1:0]  
Bypass Multiplexer Source Selection  
These bits select the line receiver output to be utilized as the Bypass multiplexer data source.  
BYPMUX1  
BYPMUX0  
Line Receiver Output Selection  
0
0
1
1
0
1
0
1
RX1 (Default)  
RX2  
RX3  
RX4  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
57  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
Register 09: Transmitter Control Register 3  
Bit 7 (MSB)  
0
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
TXCUS0  
0
0
0
VALSEL  
TXCUS1  
TXCUS[1:0] Transmitter Channel Status and User Data Source  
These bits select the source of the channel status (or C) data and user (or U) data which is used  
to load the DIT User Access (UA) buffers.  
TXCUS1  
TXCUS0  
DIT UA Buffer Source  
0
0
1
The buffers will not be updated. (Default)  
The buffers are updated via the SPI or I2C host  
interface.  
0
1
0
1
The buffers are updated via the DIR RA buffers.  
The first 10 bytes of the buffers are updated via the SPI  
or I2C host, while the remainder of the buffers are  
updated via the DIR RA buffers.  
1
VALSEL  
Transmitter Validity Bit Source  
This bit is utilized to select the source for the validity (or V) bit in the AES3-encoded output data  
stream.  
VALSEL  
Validity (or V) Bit Source Selection  
0
1
The VALID bit in control register 0x07.  
The V bit is transferred from the DIR block with zero latency.  
58  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
Register 0A: SRC and DIT Status (Read-Only)  
Bit 7 (MSB)  
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
TBTI  
0
RATIO  
READY  
0
0
TSLIP  
TBTI  
Transmitter Buffer Transfer Status, Active High  
When DIT User Access (UA) to Transmitter Access (TA) buffer transfers are enabled (the  
TXBTD bit in control register 0x08 is set to 0), and the TBTI interrupt is unmasked (the MTBTI  
bit in control register 0x0B is set to 1), the TBTI bit will be set to 1 when the UA-to-TA buffer  
transfer has completed. This configuration also causes the INT output (pin 23) to be driven low  
and the TX bit in status register 0x02 to be set to 1, indicating that an interrupt has occurred.  
TSLIP  
Transmitter Source Data Slip Status, Active High  
The TSLIP bit will be set to 1 when either an asynchronous data slip or block start condition is  
detected, and the TSLIP interrupt is unmasked (the MTSLIP bit in control register 0x0B is set  
to 1). The BSSL bit in control register 0x07 is used to set the source for this interrupt.  
The TSLIP bit being forced to 1 will also cause the INT output (pin 23) to be driven low and the  
TX bit in status register 0x02 to be set to 1, indicating that an interrupt has occurred.  
READY  
RATIO  
SRC Rate Estimator Ready Status, Active High  
The READY bit will be set to 1 when the input and output rate estimators have completed the  
Fast mode portion of the rate estimation process, and the READY interrupt is unmasked (the  
MREADY bit in control register 0x0B is set to 1). This will also cause the INT output (pin 23) to  
be driven low and the SRC bit in status register 0x02 to be set to 1, indicating that an interrupt  
has occurred.  
SRC Ratio Status, Active High  
The RATIO bit will be set to 1 when the input sampling rate is higher than the output sampling  
rate, and the RATIO interrupt is unmasked (the MRATIO bit in control register 0x0B is set to  
1). This will also cause the INT output (pin 23) to be driven low and the SRC bit in status  
register 0x02 to be set to 1, indicating that an interrupt has occurred.  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
59  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
Register 0B: SRC and DIT Interrupt Mask Register  
Bit 7 (MSB)  
0
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
MTBTI  
MRATIO  
MREADY  
0
0
MTSLIP  
MBTI  
Transmitter Buffer Transfer Interrupt Mask  
MTBI  
BTI Interrupt Mask  
0
1
BTI interrupt is masked. (Default)  
BTI interrupt is enabled.  
MTSLIP  
MREADY  
MRATIO  
Transmitter TSLIP Interrupt Mask  
MTSLIP  
TSLIP Interrupt Mask  
0
1
TSLIP interrupt is masked. (Default)  
TSLIP interrupt is enabled.  
SRC Ready Interrupt Mask  
MREADY  
READY Interrupt Mask  
0
1
READY interrupt is masked. (Default)  
READY interrupt is enabled.  
SRC Ratio Interrupt Mask  
MRATIO  
RATIO Interrupt Mask  
0
1
RATIO interrupt is masked. (Default)  
RATIO interrupt is enabled.  
60  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
Register 0C: SRC and DIT Interrupt Mode Register  
Bit 7 (MSB)  
RATIOM1  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
TBTIM0  
RATIOM0  
READYM1  
READYM0  
TSLIPM1  
TSLIPM0  
TBTIM1  
TBTIM[1:0] Transmitter Buffer Transfer Interrupt Mode  
These bits are utilized to select the active trigger state for the BTI interrupt.  
TBTIM1  
TBTIM0  
Interrupt Active State  
Rising Edge Active (Default)  
Falling Edge Active  
Level Active  
0
0
1
1
0
1
0
1
Reserved  
TSLIPM[1:0] Transmitter Data Source Slip Interrupt Mode  
These bits are utilized to select the active trigger state for the TSLIP interrupt.  
TSLIPM1  
TSLIPM0  
Interrupt Active State  
Rising Edge Active (Default)  
Falling Edge Active  
Level Active  
0
0
1
1
0
1
0
1
Reserved  
READYM  
[1:0]  
SRC Ready Interrupt Mode  
These bits are utilized to select the active trigger state for the READY interrupt.  
READYM1  
READYM0  
Interrupt Active State  
Rising Edge Active (Default)  
Falling Edge Active  
Level Active  
0
0
1
1
0
1
0
1
Reserved  
RATIOM  
[1:0]  
SRC Ratio Interrupt Mode  
These bits are utilized to select the active trigger state for the RATIO interrupt.  
RATIOM1  
RATIOM0  
Interrupt Active State  
Rising Edge Active (Default)  
Falling Edge Active  
Level Active  
0
0
1
1
0
1
0
1
Reserved  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
61  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
Register 0D: Receiver Control Register 1  
Bit 7 (MSB)  
0
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
RXMUX0  
0
RXBTD  
RXCLK  
0
RXMUX1  
RXMUX[1:0] Receiver Input Source Selection  
These bits are used to select the output of the line receiver to be used as the input data source  
for the DIR core.  
RXMUX1  
RXMUX0  
Input Selection  
RX1 (Default)  
RX2  
0
0
1
1
0
1
0
1
RX3  
RX4  
RXCLK  
RXBTD  
Receiver Reference Clock Source  
This bit is used to select the reference clock source for PLL1 in the DIR core.  
RXCLK  
Receiver Reference Clock  
RXCKI (Default)  
MCLK  
0
1
Receiver C and U Data Buffer Transfer Disable  
This bit is used to enable and disable buffer transfers between the Receiver Access (RA) and  
User Access (UA) buffers for both channel status (C) and user (U) data.  
Buffer transfers are typically disabled to allow the customer to read C and U data from the DIR  
UA buffer via the SPI or I2C serial host interface. Once read, the RA-to-UA buffer transfer can be  
re-enabled to allow the RA buffer to update the contents of the UA buffer in real time.  
RXBTD  
Receiver Access (RA) to User Access (UA) Buffer Transfers  
Enabled (Default)  
0
1
Disabled; the user may read C and U data from the DIR UA buffers.  
62  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
Register 0E: Receiver Control Register 2  
Bit 7 (MSB)  
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
RXCKOE  
0
0
LOL  
RXAMLL  
RXCKOD1  
RXCKOD0  
RXCKOE  
RXCKOE Output Enable  
This bit is used to enable or disable the recovered clock output, RXCKO (pin 12). When disabled,  
the output is set to a high-impedance state.  
RXCKOE  
RXCKO Output State  
0
1
Disabled; the RXCKO output is set to high-impedance. (Default)  
Enabled; the recovered master clock is available at RXCKO.  
RXCKOD  
[1:0]  
RXCKO Output Clock Divider  
These bits are utilized to set the clock divider at the output of PLL2. The output of the divider is  
the RXCKO clock, available internally or at the RXCKO output (pin 12).  
RXCKOD1  
RXCKOD0  
RXCKO Output Divider  
0
0
1
1
0
1
0
1
Passthrough, no division is performed. (Default)  
Divide the PLL2 clock output by 2.  
Divide the PLL2 clock output by 4.  
Divide the PLL2 clock output by 8.  
RXAMLL  
Receiver Automatic Mute for Loss of Lock  
This bit is used to set the automatic mute function for the DIR block when a loss of lock is  
indicated by both the AES3 decoder and PLL2.  
RXAMLL  
Receiver Auto-Mute Function  
0
1
Disabled (Default)  
Enabled; audio data output from the DIR block is forced low for a loss of  
lock condition.  
LOL  
Receiver Loss of Lock Mode for the Recovered Clock (output from PLL2)  
This bit is used to set the mode of operation for PLL2 when a loss of lock condition occurs.  
LOL  
Receiver PLL2 Operation  
0
1
The PLL2 output clock is stopped for a loss of lock condition. (Default)  
The PLL2 output clock free runs when a loss of lock condition occurs.  
Register 0F: Receiver PLL1 Configuration Register 1  
Bit 7 (MSB)  
P3  
Bit 6  
P2  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
J3  
Bit 0 (LSB)  
J2  
P1  
P0  
J5  
J4  
Register 10: Receiver PLL1 Configuration Register 2  
Bit 7 (MSB)  
J1  
Bit 6  
J0  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
D9  
Bit 0 (LSB)  
D8  
D13  
D12  
D11  
D10  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
63  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
Register 11: Receiver PLL1 Configuration Register 3  
Bit 7 (MSB)  
D7  
Bit 6  
D6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
D1  
Bit 0 (LSB)  
D0  
D5  
D4  
D3  
D2  
Registers 0x0F through 0x11 are utilized to program PLL1 in the DIR core. PLL1 multiplies the DIR reference  
clock source to an oversampling rate which is adequate for AES3 decoder operation. PLL1 is programmed  
using the following relationship:  
(CLOCK × K) / P = 98.304MHz  
where:  
CLOCK = frequency of the DIR reference clock source.  
K = J.D, where the integer part J = 1 to 63, and the fractional part D = 0 to 9999.  
P = the pre-divider value, which may be set to any 4-bit value that meets the conditions stated below.  
The following conditions must be met for the values of P, J, and D:  
If D = 0, then:  
If D 0, then:  
2 MHz (CLOCK / P) 20 MHz and 4 J 10 MHz (CLOCK / P) 20 MHz and 4 J  
55.  
11.  
Referring to registers 0x0F through 0x11:  
P is programmed using bits P[3:0].  
J is programmed using bits J[5:0].  
D is programmed using bits D[13:0].  
Table 4 shows values for P, J, and D for common DIR reference clock rates.  
Table 4. PLL1 Register Values for Common Reference Clock Rates  
REFERENCE CLOCK RATE (MHz)  
P
1
1
1
1
2
2
2
J
12  
8
D
0
ERROR (%)  
0.0000  
0.0002  
0.0000  
0.0000  
0.0002  
0.0000  
0.0003  
8.1920  
11.2896  
12.2880  
16.3840  
22.5792  
24.5760  
27.0000  
7075  
0
8
6
0
8
7075  
0
8
7
2818  
Register 12: Non-PCM Audio Detection Status Register (Read-Only)  
Bit 7 (MSB)  
0
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
IEC61937  
0
0
0
0
0
DTS CD/LD  
IEC61937  
This bit is utilized to indicate the detection of an IEC 61937 data reduced audio format (includes  
Dolby AC-3, DTS, etc.) for DVD playback or general transmission purposes.  
IEC61937  
Status  
0
Data is not an IEC61937 format.  
Data is an IEC61937 format. Refer to the PC and PD preamble  
registers (addresses 0x29 through 0x2C) for data type and  
burst length.  
1
DTS CD/LD  
This bit is used to indicate the detection of a DTS encoded audio compact disc (CD) or  
Laserdisc (LD) playback.  
DTS CD/LD  
Status  
0
1
The CD/LD is not DTS encoded.  
DTS CD/LD playback detected.  
64  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
 
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
Register 13: Receiver Status Register 1 (Read-Only)  
Bit 7 (MSB)  
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
RXCKR0  
0
0
0
0
0
RXCKR1  
RXCKR[1:0] Maximum Available Recovered Clock Rate  
These two bits indicate the maximum available RXCKO clock rate based upon the DIR detection  
circuitry, which determines the frame rate of the incoming AES3-encoded bit stream. Based upon  
the estimated frame rate, a maximum rate for the recovered clock output (RXCKO) is determined  
and output from PLL2, as well as being loaded into the RXCKR0 and RXCKR1 status bits.  
The status of the RXCKR0 and RXCKR1 bits may be utilized to determine the programmed value  
for the PLL2 output clock divider, set by the RXCKOD0 and RXCKOD1 bits in control register  
0x0E.  
RXCKR1  
RXCKR0  
Maximum Available RXCKO Rate  
0
0
1
1
0
1
0
1
Clock rate not determined.  
128fS  
256fS  
512fS  
Register 14: Receiver Status Register 2 (Read-Only)  
Bit 7 (MSB)  
CSCRC  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
RBTI  
PARITY  
VBIT  
BPERR  
QCHG  
UNLOCK  
QCRC  
Note: Status bits must be unmasked in control register 0x16 in order for the status interrupts to be generated.  
CSCRC  
PARITY  
VBIT  
Channel Status CRC Status  
CSCRC  
CRC Status  
0
1
No Error  
CRC Error Detected  
Parity Status  
PARITY  
Parity Status  
No Error  
0
1
Parity Error Detected  
Validity Bit Status  
VBIT  
Validity Bit  
0
1
Valid Audio Data Indicated  
Non-Valid Data Indicated  
BPERR  
Bipolar Encoding Error Status  
BPERR  
Bipolar Encoding Status  
No Error  
0
1
Bipolar Encoding Error Detected  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
65  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
QCHG  
Q-Channel Sub-Code Data Change Status  
QCHG  
Q-Channel Data Status  
0
No change in Q-channel sub-code data.  
Q-channel data has changed. May be used to trigger a read of  
the Q-channel sub-code data, registers 0x1F through 0x28.  
1
UNLOCK  
QCRC  
RBTI  
DIR Unlock Error Status  
UNLOCK  
DIR Lock Status  
0
1
No error; the DIR AES3 decoder and PLL2 are locked.  
DIR lock error; the AES3 decoder and PLL2 are unlocked.  
Q-Channel Sub-Code CRC Status  
QCRC  
Q-Channel CRC Status  
0
1
No Error  
Q-channel sub-code data CRC error detected.  
Receiver Buffer Transfer Interrupt Status  
RBTI  
DIR RA Buffer-to-UA Buffer Transfer Status  
Buffer Transfer Incomplete, or No Buffer Transfer Interrupt  
Indicated  
0
1
Buffer Transfer Completed  
Register 15: Receiver Status Register 3 (Read-Only)  
Bit 7 (MSB)  
0
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0
Bit 0 (LSB)  
OSLIP  
0
0
0
0
Note: Status bits must be unmasked in control register 0x17 in order for the status interrupts to be generated.  
OSLIP  
Receiver Output Data Slip Error Status  
OSLIP  
Receiver OSLIP Error Status  
No Error  
0
1
DIR Output Data Slip/Repeat Error Detected  
An OSLIP interrupt is possible when the DIR output is used as the source for either the Port A or Port B audio  
serial port and the port is configured to operate in slave mode. Figure 93 shows the timing associated with the  
OSLIP interrupt.  
When only one audio serial port (Port A or Port B) is sourced by the DIR output, then the OSLIP status bit and  
interrupt applies to that port. If both Port A and Port B are sourced by the DIR output, then the OSLIP status bit  
and interrupt applies to Port A only.  
66  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
AES3 Bit Stream  
Y
X
Y
X
DIR SYNC  
R
L
L
L
R
R
R
L
L
L
R
R
LRCK, Left or Right  
Justified Formats (input)  
LRCK, I2S Format (input)  
±5%  
±5%  
Data Slip or Repeat may occur when the LRCK edges indicated are within the ±5% window.  
Figure 93. DIR Output Slip/Repeat (OSLIP) Behavior  
Register 16: Receiver Interrupt Mask Register 1  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
MRBTI  
MCSCRC  
MPARITY  
MVBIT  
MBPERR  
MQCHG  
MUNLOCK  
MQCRC  
MCSCRC  
Channel Status CRC Error Interrupt Mask  
MCSCRC  
CRC Interrupt  
0
1
Masked (Default)  
Enabled  
MPARITY  
MVBIT  
Parity Error Interrupt Mask  
MPARITY  
Parity Error Interrupt  
Masked (Default)  
Enabled  
0
1
Validity Error Interrupt Mask  
MVBIT  
Validity Error Interrupt  
Masked (Default)  
Enabled  
0
1
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
67  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
MBPERR  
Bipolar Encoding Error Interrupt Mask  
MBPERR  
Bipolar Error Interrupt  
Masked (Default)  
Enabled  
0
1
MQCHG  
Q-Channel Sub-Code Data Change Interrupt Mask  
MQCHG  
Q-Channel Data Change Interrupt  
0
1
Masked (Default)  
Enabled  
MUNLOCK DIR Unlock Error Interrupt Mask  
MUNLOCK  
DIR Unlock Interrupt  
0
1
Masked (Default)  
Enabled  
MQCRC  
MRBTI  
Q-Channel Sub-Code CRC Error Interrupt Mask  
MQCRC  
Q-Channel CRC Error Interrupt  
0
1
Masked (Default)  
Enabled  
Receiver Buffer Transfer Interrupt Mask  
MRBTI  
Receiver Buffer Transfer Interrupt  
0
1
Masked (Default)  
Enabled  
Register 17: Receiver Interrupt Mask Register 2  
Bit 7 (MSB)  
0
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
0
Bit 0 (LSB)  
MOSLIP  
0
0
0
0
MOSLIP  
Receiver Output Data Slip Error Mask  
MOSLIP  
Receiver OSLIP Error Interrupt  
Masked (Default)  
0
1
Enabled  
Register 18: Receiver Interrupt Mode Register 1  
Bit 7 (MSB)  
QCHGM1  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
RBTIM0  
QCHGM0  
UNLOCKM1  
UNLOCKM0  
QCRCM1  
QCRCM0  
RBTIM1  
QCHGM  
[1:0]  
Q-Channel Sub-Code Data Change Interrupt Mode  
QCHGM1  
QCHGM0  
Interrupt Active State  
Rising Edge Active (Default)  
Falling Edge Active  
Level Active  
0
0
1
1
0
1
0
1
Reserved  
68  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
UNLOCKM  
[1:0]  
DIR Unlock Error Interrupt Mode  
UNLOCKM1  
UNLOCKM0  
Interrupt Active State  
0
0
1
1
0
1
0
1
Rising Edge Active (Default)  
Falling Edge Active  
Level Active  
Reserved  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
69  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
QCRCM  
[1:0]  
Q-Channel Sub-Code CRC Error Interrupt Mode  
QCRCM1  
QCRCM0  
Interrupt Active State  
Rising Edge Active (Default)  
Falling Edge Active  
Level Active  
0
0
1
1
0
1
0
1
Reserved  
RBTIM[1:0] Receive Buffer Transfer Interrupt Mode  
RBTIM1  
RBTIM0  
Interrupt Active State  
Rising Edge Active (Default)  
Falling Edge Active  
Level Active  
0
0
1
1
0
1
0
1
Reserved  
Register 19: Receiver Interrupt Mode Register 2  
Bit 7 (MSB)  
CSCRCM1  
Bit 6  
CSCRCM0  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
BPERRM0  
PARITYM1  
PARITYM0  
VBITM1  
VBITM0  
BPERRM1  
CSCRCM  
[1:0]  
Channel Status CRC Error Interrupt Mode  
CSCRCM1  
CSCRCM0  
Interrupt Active State  
Rising Edge Active (Default)  
Falling Edge Active  
Level Active  
0
0
1
1
0
1
0
1
Reserved  
PARITYM  
[1:0]  
Parity Error Interrupt Mode  
PARITYM1  
PARITYM0  
Interrupt Active State  
Rising Edge Active (Default)  
Falling Edge Active  
Level Active  
0
0
1
1
0
1
0
1
Reserved  
VBITM[1:0] Validity Error Interrupt Mode  
VBITM1  
VBITM0  
Interrupt Active State  
Rising Edge Active (Default)  
Falling Edge Active  
Level Active  
0
0
1
1
0
1
0
1
Reserved  
BPERRM  
[1:0]  
Bipolar Encoding Error Interrupt Mode  
BPERRM1  
BPERRM0  
Interrupt Active State  
0
0
Rising Edge Active (Default)  
70  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
0
1
1
1
0
1
Falling Edge Active  
Level Active  
Reserved  
Register 1A: Receiver Interrupt Mode Register 3  
Bit 7 (MSB)  
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
OSLIPM0  
0
0
0
0
0
OSLIPM1  
OSLIPM  
[1:0]  
Receiver Output Data Slip Error Interrupt Mode  
OSLIPM1  
OSLIPM0  
Interrupt Active State  
Rising Edge Active (Default)  
Falling Edge Active  
Level Active  
0
0
1
1
0
1
0
1
Reserved  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
71  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
Register 1B: General-Purpose Output 1 (GPO1) Control Register  
Bit 7 (MSB)  
0
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
GPO10  
0
0
0
GPO13  
GPO12  
GPO11  
GPO[13:10] General-Purpose Output 1 (GPO1) Configuration  
These bits are used to set the state or data source for the general-purpose digital output pin  
GPO1.  
GPO13  
GPO12  
GPO11  
GPO10  
GPO1 Function  
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
GPO1 is Forced Low (Default)  
GPO1 is Forced High  
SRC Interrupt, Active Low  
Transmitter Interrupt, Active Low  
Receiver Interrupt, Active Low  
Receiver 50/15μs Pre-Emphasis, Active  
Low  
0
0
1
1
1
1
1
0
0
0
1
1
0
0
1
0
1
0
1
0
Receiver Non-Audio Data, Active High  
Receiver Non-Valid Data, Active High  
Receiver Channel Status Bit  
Receiver User Data Bit  
Receiver Block Start Clock  
Receiver COPY Bit  
1
1
0
1
1
0
1
0
(0 = Copyright Asserted, 1 = Copyright  
Not Asserted)  
Receiver L-Bit  
(0 = First Generation or Higher, 1 =  
Original)  
1
1
1
1
1
1
0
1
1
1
0
1
Receiver Parity Error, Active High  
Receiver Internal Sync Clock  
Transmitter Internal Sync Clock  
72  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
Register 1C: General-Purpose Output 2 (GPO2) Control Register  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
GPO20  
0
0
0
0
GPO23  
GPO22  
GPO21  
GPO[23:20] General-Purpose Output 2 (GPO2) Configuration  
These bits are used to set the state or data source for the general-purpose digital output pin  
GPO2.  
GPO23  
GPO22  
GPO21  
GPO20  
GPO2 Function  
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
GPO2 is Forced Low (Default)  
GPO2 is Forced High  
SRC Interrupt, Active Low  
Transmitter Interrupt, Active Low  
Receiver Interrupt, Active Low  
Receiver 50/15μs Pre-Emphasis, Active  
Low  
0
0
1
1
1
1
1
0
0
0
1
1
0
0
1
0
1
0
1
0
Receiver Non-Audio Data, Active High  
Receiver Non-Valid Data, Active High  
Receiver Channel Status Bit  
Receiver User Data Bit  
Receiver Block Start Clock  
Receiver COPY Bit  
1
1
0
1
1
0
1
0
(0 = Copyright Asserted, 1 = Copyright  
Not Asserted)  
Receiver L-Bit  
(0 = First Generation or Higher, 1 =  
Original)  
1
1
1
1
1
1
0
1
1
1
0
1
Receiver Parity Error, Active High  
Receiver Internal Sync Clock  
Transmitter Internal Sync Clock  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
73  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
Register 1D: General-Purpose Output 3 (GPO3) Control Register  
Bit 7 (MSB)  
0
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
GPO30  
0
0
0
GPO33  
GPO32  
GPO31  
GPO[33:30] General-Purpose Output 3 (GPO3) Configuration  
These bits are used to set the state or data source for the general-purpose digital output pin  
GPO3.  
GPO33  
GPO32  
GPO31  
GPO30  
GPO3 Function  
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
GPO3 is Forced Low (Default)  
GPO3 is Forced High  
SRC Interrupt, Active Low  
Transmitter Interrupt, Active Low  
Receiver Interrupt, Active Low  
Receiver 50/15μs Pre-Emphasis, Active  
Low  
0
0
1
1
1
1
1
0
0
0
1
1
0
0
1
0
1
0
1
0
Receiver Non-Audio Data, Active High  
Receiver Non-Valid Data, Active High  
Receiver Channel Status Bit  
Receiver User Data Bit  
Receiver Block Start Clock  
Receiver COPY Bit  
1
1
0
1
1
0
1
0
(0 = Copyright Asserted, 1 = Copyright  
Not Asserted)  
Receiver L-Bit  
(0 = First Generation or Higher, 1 =  
Original)  
1
1
1
1
1
1
0
1
1
1
0
1
Receiver Parity Error, Active High  
Receiver Internal Sync Clock  
Transmitter Internal Sync Clock  
74  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
Register 1E: General-Purpose Output 4 (GPO4) Control Register  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
GPO40  
0
0
0
0
GPO43  
GPO42  
GPO41  
GPO[43:40] General-Purpose Output 4 (GPO4) Configuration  
These bits are used to set the state or data source for the general-purpose digital output pin  
GPO4.  
GPO43  
GPO42  
GPO41  
GPO40  
GPO4 Function  
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
GPO4 is Forced Low (Default)  
GPO4 is Forced High  
SRC Interrupt, Active Low  
Transmitter Interrupt, Active Low  
Receiver Interrupt, Active Low  
Receiver 50/15μs Pre-Emphasis, Active  
Low  
0
0
1
1
1
1
1
0
0
0
1
1
0
0
1
0
1
0
1
0
Receiver Non-Audio Data, Active High  
Receiver Non-Valid Data, Active High  
Receiver Channel Status Bit  
Receiver User Data Bit  
Receiver Block Start Clock  
Receiver COPY Bit  
1
1
0
1
1
0
1
0
(0 = Copyright Asserted, 1 = Copyright  
Not Asserted)  
Receiver L-Bit  
(0 = First Generation or Higher, 1 =  
Original)  
1
1
1
1
1
1
0
1
1
1
0
1
Receiver Parity Error, Active High  
Receiver Internal Sync Clock  
Transmitter Internal Sync Clock  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
75  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
Registers 1F through 28: Q-Channel Sub-Code Data Registers  
Registers 0x1F through 0x28 comprise the Q-channel sub-code buffer, which may be accessed for audio CD  
playback. The Q-channel data provides information regarding the playback status for the current disc. The  
buffer data is decoded by the DIR block.  
Register 1F: Q-Channel Sub-Code Data Register 1 (Read-Only), Bits[7:0], Control and Address  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
Register 20: Q-Channel Sub-Code Data Register 2 (Read-Only), Bits[15:8], Track  
Bit 7 (MSB)  
Q8  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Q15  
Q9  
Q10  
Q11  
Q12  
Q13  
Q14  
Register 21: Q-Channel Sub-Code Data Register 3 (Read-Only), Bits[23:16], Index  
Bit 7 (MSB)  
Q16  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Q23  
Q17  
Q18  
Q19  
Q20  
Q21  
Q22  
Register 22: Q-Channel Sub-Code Data Register 4 (Read-Only), Bits[31:24], Minutes  
Bit 7 (MSB)  
Q24  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Q31  
Q25  
Q26  
Q27  
Q28  
Q29  
Q30  
Register 23: : Q-Channel Sub-Code Data Register 5 (Read-Only), Bits[39:32], Seconds  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Q32  
Q33  
Q34  
Q35  
Q36  
Q37  
Q38  
Q39  
Register 24: : Q-Channel Sub-Code Data Register 6 (Read-Only), Bits[47:40], Frame  
Bit 7 (MSB)  
Q40  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Q47  
Q41  
Q42  
Q43  
Q44  
Q45  
Q46  
Register 25: Q-Channel Sub-Code Data Register 7 (Read-Only), Bits[55:48], Zero  
Bit 7 (MSB)  
Q48  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Q55  
Q49  
Q50  
Q51  
Q52  
Q53  
Q54  
Register 26: Q-Channel Sub-Code Data Register 8 (Read-Only), Bits[63:56], AMIN  
Bit 7 (MSB)  
Q56  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Q63  
Q57  
Q58  
Q59  
Q60  
Q61  
Q62  
Register 27: Q-Channel Sub-Code Data Register 9 (Read-Only), Bits[71:64], ASEC  
Bit 7 (MSB)  
Q64  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Q71  
Q65  
Q66  
Q67  
Q68  
Q69  
Q70  
Register 28: Q-Channel Sub-Code Data Register 10 (Read-Only), Bits[79:72], AFRAME  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
Q72  
Q73  
Q74  
Q75  
Q76  
Q77  
Q78  
Q79  
76  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
Registers 29 through 2C: IEC61937 PC/PD Burst Preamble  
The PC and PD burst preambles are part of the IEC61937 standard for transmission of data reduced, non-PCM  
audio over a standard two-channel interface (IEC60958). Examples of data-reduced formats include Dolby AC-  
3, DTS, various flavors of MPEG audio (including AAC), and Sony ATRAC. The PA and PB preambles provide  
synchronization data, and are fixed values of 0xF872 and 0x4E1F, respectively. The PC preamble indicates the  
type of data being carried by the interface and the PD preamble indicates the length of the burst, given as  
number of bits.  
Registers 0x29 through 0x2C contain the PC and PD preambles as decoded by the DIR block.  
Register 29: Burst Preamble PC High-Byte Status Register (Read-Only)  
Bit 7 (MSB)  
PC15  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
PC08  
PC14  
PC13  
PC12  
PC11  
PC10  
PC09  
Register 2A: Burst Preamble PC Low-Byte Status Register (Read-Only)  
Bit 7 (MSB)  
PC07  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
PC00  
PC06  
PC05  
PC04  
PC03  
PC02  
PC01  
PC[4:0], Hex  
Data Type  
00  
01  
Null  
Dolby AC-3  
Reserved  
Pause  
02  
03  
04  
MPEG-1 Layer 1  
05  
MPEG-1 Layer 2 or 3, or MPEG-2 Without Extension  
06  
MPEG-2 Data With Extension  
MPEG-2 AAC ADTS  
MPEG-2 Layer 1 Low Sample Rate  
MPEG-2 Layer 2 or 3 Low Sample Rate  
Reserved  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
DTS Type 1  
DTS Type 2  
DTS Type 3  
ATRAC  
ATRAC2/3  
10-1F  
Reserved  
Bits PC[6:5] are both set to 0.  
Bit PC[7] is an Error Flag, where: 0 = A valid burst-payload; 1 = Burst-payload may contain errors.  
Bits PC[12:8] are data-type dependent.  
Bits PC[15:13] indicate the stream number, which is set to 0.  
Register 2B: Burst Preamble PD High-Byte Status Register (Read-Only)  
Bit 7 (MSB)  
PD15  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
PD08  
PD14  
PD13  
PD12  
PD11  
PD10  
PD09  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
77  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
Register 2C: Burst Preamble PD Low-Byte Status Register (Read-Only)  
Bit 7 (MSB)  
PD07  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
PD00  
PD06  
PD05  
PD04  
PD03  
PD02  
PD01  
Register 2D: SRC Control Register 1  
Bit 7 (MSB)  
0
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
SRCIS0  
TRACK  
0
MUTE  
SRCCLK1  
SRCCLK0  
SRCIS1  
SRCIS[1:0] SRC Input Data Source  
These bits select the input data source for the SRC.  
SRCIS1  
SRCIS0  
Input Source  
Port A (Default)  
Port B  
0
0
1
1
0
1
0
1
DIR  
Reserved  
SRCCLK  
[1:0]  
SRC Reference Clock Source  
These bits select the reference clock source for the SRC.  
SRCCLK1  
SRCCLK0  
Reference Clock Source  
MCLK (Default)  
RXCKI  
0
0
1
1
0
1
0
1
RXCKO  
Reserved  
MUTE  
SRC Output Soft Mute Function  
This bit enables or disables the SRC output soft mute function.  
MUTE  
Mute Function  
0
1
Mute Disabled (Default)  
Mute enabled; output data set to all zeros.  
TRACK  
SRC Digital Output Attenuation Tracking  
This bit enables or disables left and right channel attenuation tracking.  
TRACK  
Output Attenuation Tracking  
Tracking Disabled (Default)  
0
The Left and Right channel attenuation is programmed separately using  
registers 0x30 and 0x31, respectively.  
Tracking Enabled  
1
The Left channel attenuation setting is also used for the Right channel. The  
Right channel tracks the Left channel setting.  
78  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
Register 2E: SRC Control Register 2  
Bit 7 (MSB)  
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
IGRP0  
0
AUTODEM  
DEM1  
DEM0  
DDN  
IGRP1  
IGRP[1:0]  
SRC Interpolation Filter Group Delay  
These bits select the interpolation filter group delay by configuring the number of samples which  
are pre-buffered prior to the re-sampler function.  
IGRP1  
IGRP0  
Number of Samples Pre-Buffered  
64 Samples (Default)  
32 Samples  
0
0
1
1
0
1
0
1
16 Samples  
8 Samples  
DDN  
SRC Decimation Filter/Direct Down-Sampling Function  
This bit selects the mode of the decimation function, either true decimation filter or direct down-  
sampling without filtering.  
DDN  
Decimation Function  
Decimation Filter (Default)  
Direct Down Sampling  
0
1
Note: Direct down-sampling should only be used when the output sampling rate is higher than  
the input sampling rate. When the output sampling rate is equal to or lower than the input  
sampling rate, the Decimation Filter must be used in order to avoid aliasing.  
DEM[1:0]  
Digital De-Emphasis Filter, Manual Configuration  
These bits are utilized to enable or disable the digital de-emphasis filter manually. The de-  
emphasis filter is intended to process 50/15μs pre-emphasized audio material at the following  
input sampling rates:  
DEM1  
DEM0  
De-Emphasis Filter Function  
0
0
1
1
0
1
0
1
De-Emphasis Disabled (Default)  
De-Emphasis Enabled for fS = 48kHz  
De-Emphasis Enabled for fS = 44.1kHz  
De-Emphasis Enabled for fS = 32kHz  
Note: When the AUTODEM bit is set to 1, the setting of the DEM0 and DEM1 bits are ignored.  
AUTODEM Automatic De-Emphasis Configuration  
This bit enables or disables the automatic de-emphasis function, which monitors the channel  
status bits from the DIR function block and determines whether de-emphasis is enabled and for  
which sampling frequency. This function is valid for only 50/15μs pre-emphasized data and one  
of the three supported sampling rates (32kHz, 44.1kHz, or 48kHz).  
AUTODEM  
Automatic De-Emphasis Function  
Disabled (Default)  
0
1
Enabled  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
79  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
Register 2F: SRC Control Register 3  
Bit 7 (MSB)  
OWL1  
Bit 6  
Bit 5  
0
Bit 4  
Bit 3  
Bit 2  
0
Bit 1  
0
Bit 0 (LSB)  
0
OWL0  
0
0
OWL[1:0]  
SRC Output Word Length  
These bits select the word length for the SRC output data. The word length reduction is  
performed by utilizing triangular PDF dithering.  
OWL1  
OWL0  
SRC Output Word Length  
24 Bits (Default)  
20 Bits  
0
0
1
1
0
1
0
1
18 Bits  
16 Bits  
Note: When the SRC is selected as the output data source for Port A or B and the data format  
for the port is set to Right-Justified, the proper word length must be selected in the Port A or B  
control registers such that it matches the corresponding SRC output data word length set by the  
OWL0 and OWL1 bits.  
Register 30: SRC Control Register 4  
Bit 7 (MSB)  
AL7  
Bit 6  
AL6  
Bit 5  
AL5  
Bit 4  
Bit 3  
Bit 2  
AL2  
Bit 1  
AL1  
Bit 0 (LSB)  
AL0  
AL4  
AL3  
These bits are utilized to configure the SRC digital output attenuation for the Left Channel when the TRACK bit  
in register 0x2D is set to 0. The attenuation setting for the Left channel also applies to the Right channel when  
TRACK bit in register 0x2D is set to 1.  
Output Attenuation (dB) = –N × 0.5, where N = AL[7:0]DEC  
.
Register 31: SRC Control Register 5  
Bit 7 (MSB)  
AR7  
Bit 6  
AR6  
Bit 5  
AR5  
Bit 4  
AR4  
Bit 3  
AR3  
Bit 2  
AR2  
Bit 1  
AR1  
Bit 0 (LSB)  
AR0  
These bits are utilized to configure the SRC digital output attenuation for the Right Channel when the TRACK  
bit in register 0x2D is set to 0.  
Output Attenuation (dB) = –N × 0.5, where N = AR[7:0]DEC  
.
Register 32: SRC Ratio Readback Register (Read-Only)  
Bit 7 (MSB)  
SRI4  
Bit 6  
SRI3  
Bit 5  
SRI2  
Bit 4  
SRI1  
Bit 3  
SRI0  
Bit 2  
Bit 1  
Bit 0 (LSB)  
SRF8  
SRF10  
SRF9  
80  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
Register 33: SRC Ratio Readback Register (Read-Only)  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
SRF0  
SRF7  
SRF6  
SRF5  
SRF4  
SRF3  
SRF2  
SRF1  
SRI[4:0]  
Integer Part of the Input-to-Output Sampling Ratio  
Fractional Part of the Input-to-Output Sampling Ratio  
SRF[10:0]  
In order to properly read back the ratio, these registers must be read back in sequence, starting  
with register 0x32.  
Register 7F: Page Selection Register  
Bit 7 (MSB)  
0
Bit 6  
0
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (LSB)  
PAGE0  
0
0
0
0
PAGE1  
PAGE[1:0]  
Page Selection  
These bits are utilized to select one of three register pages for write and/or read access via the  
SPI or I2C serial host interface. The Page Selection Register is present on every register page at  
address 0x7F, allowing movement between pages as necessary.  
PAGE1  
PAGE0  
Register/Buffer Page Selection  
0
0
1
1
0
1
0
1
Page 0, Control and Status Registers (Default)  
Page 1, DIR Channel Status and User Data Buffers  
Page 2, DIT Channel Status and User Data Buffers  
Page 3, Reserved  
CHANNEL STATUS AND USER DATA BUFFER MAPS  
Table 5 through Table 8 show the buffer maps for the DIR and DIT channel status and user data buffers.  
For Table 5, the channel status byte definitions are dependent on the transmission mode, either Professional or  
Consumer. Bit 0 of Byte 0 defines the transmission mode, 0 for Consumer mode, and 1 for Professional mode.  
This is applicable for Table 5 and Table 6.  
For Table 7, the channel status byte definitions are dependent on the transmission mode, either Professional or  
Consumer. Bit 0 of Byte 0 defines the transmission mode, 0 for Consumer mode, and 1 for Professional mode. In  
Professional mode, Byte 23 for each channel is reserved for CRC data, which is automatically calculated and  
encoded by the DIT. There is no need to program Byte 23 for either channel in Professional mode.  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
81  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
Table 5. DIR Channel Status Data Buffer Map (Register Page 1)  
ADDRESS  
(Hex)  
CHANNEL  
BYTE  
0
BIT 0 (MSB)  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
BIT 1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
BIT 2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
BIT 3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
BIT 4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
BIT 5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
BIT 6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
BIT 7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
0
1
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
0
2
1
3
1
4
2
5
2
6
3
7
3
8
4
9
4
A
5
B
5
C
6
D
6
E
7
F
7
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
8
8
9
9
10  
10  
11  
11  
12  
12  
13  
13  
14  
14  
15  
15  
16  
16  
17  
17  
18  
18  
19  
19  
20  
20  
21  
21  
22  
22  
23  
23  
82  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
Table 6. DIR User Data Buffer Map (Register Page 1)  
ADDRESS  
(Hex)  
CHANNEL  
BYTE  
0
BIT 0 (MSB)  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
BIT 1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
BIT 2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
BIT 3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
BIT 4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
BIT 5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
BIT 6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
BIT 7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
10  
11  
11  
12  
12  
13  
13  
14  
14  
15  
15  
16  
16  
17  
17  
18  
18  
19  
19  
20  
20  
21  
21  
22  
22  
23  
23  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
83  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
Table 7. DIT Channel Status Data Buffer Map (Register Page 2)  
ADDRESS  
(Hex)  
CHANNEL  
BYTE  
0
BIT 0 (MSB)  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
BIT 1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
BIT 2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
BIT 3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
BIT 4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
BIT 5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
BIT 6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
BIT 7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
0
1
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
0
2
1
3
1
4
2
5
2
6
3
7
3
8
4
9
4
A
5
B
5
C
6
D
6
E
7
F
7
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
2A  
2B  
2C  
2D  
2E  
2F  
8
8
9
9
10  
10  
11  
11  
12  
12  
13  
13  
14  
14  
15  
15  
16  
16  
17  
17  
18  
18  
19  
19  
20  
20  
21  
21  
22  
22  
23  
23  
84  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
Table 8. DIT User Data Buffer Map (Register Page 2)  
ADDRESS  
(Hex)  
CHANNEL  
BYTE  
0
BIT 0 (MSB)  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
D0  
BIT 1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
D1  
BIT 2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
D2  
BIT 3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
D3  
BIT 4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
D4  
BIT 5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
D5  
BIT 6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
D6  
BIT 7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
D7  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
4A  
4B  
4C  
4D  
4E  
4F  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
5A  
5B  
5C  
5D  
5E  
5F  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
6A  
6B  
6C  
6D  
6E  
6F  
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
1
2
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
10  
11  
11  
12  
12  
13  
13  
14  
14  
15  
15  
16  
16  
17  
17  
18  
18  
19  
19  
20  
20  
21  
21  
22  
22  
23  
23  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
85  
Product Folder Links: SRC4392  
SRC4392  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
www.ti.com  
REFERENCE DOCUMENTS  
Throughout this data sheet, various standards and documents are repeatedly cited as references. Sources for  
these documents are listed here so that the reader may obtain the documents for further study.  
Audio Engineering Society (AES) standards documents, including the AES3, AES11, AES18, and related  
specifications are available from the AES web site: http://www.aes.org.  
International Electrotechnical Committee (IEC) standards, including the IEC60958 and IEC61937 are available  
from the IEC web site: http://www.iec.ch; or the ANSI web site: http://www.ansi.org.  
The EIAJ CP-1212 (formerly CP-1201) standard is available from the Japanese Electronics and Information  
Technologies Industries Association (JEITA): http://www.jeita.or.jp/english.  
The Philips I2C bus specification is available from Philips: http://www.philips.com.The version utilized as a  
reference for this product is Version 2.1, published in January 2000.  
Several papers regarding balanced and unbalanced transformer-coupled digital audio interfaces have been  
published and presented at past AES conventions by Jon D. Paul of Scientific Conversion, Inc. These papers are  
available for download from: http://www.scientificonversion.com.  
86  
Submit Documentation Feedback  
Copyright © 2005–2012, Texas Instruments Incorporated  
Product Folder Links: SRC4392  
SRC4392  
www.ti.com  
SBFS029D DECEMBER 2005REVISED DECEMBER 2012  
REVISION HISTORY  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
Changes from Revision C (September 2007) to Revision D  
Page  
Updated chip photo ............................................................................................................................................................... 1  
Changed last Features bullet ................................................................................................................................................ 1  
Changed last sentence of Description section ..................................................................................................................... 2  
Added RKP package to Ordering Information table ............................................................................................................. 3  
Updated format of PFB pin configuration ........................................................................................................................... 10  
Added RKP pin configuration .............................................................................................................................................. 10  
Added RKP data to Pin Descriptions table ......................................................................................................................... 10  
DATE  
REV  
PAGE  
SECTION  
DESCRIPTION  
Changed from Product Preview to Production Data.  
Corrected spelling of Typical.  
12  
Typical Characteristics  
Product Overview,  
35  
Asynchronous Sample Rate  
Converter Operation  
Figure 74: Corrected alignment of text.  
Product Overview,  
Interrupt Output  
Figure 79: Changed reference to multiple SRC4392 devices.  
Corrected spelling error.  
40  
45  
Applications Information,  
Receiver Input Interfacing  
Figure 85, Figure 86: Corrected spelling errors.  
4/06  
B
Applications Information,  
Transmitter Output  
Interfacing  
Figure 89, Figure 90: Corrected spelling errors.  
Figure 90: Renamed Optical Receiver block to Optical  
Transmitter.  
47  
Changed wording in paragraph describing Control Registers  
to accurately explain which register addresses are reserved  
for factory or future use.  
Applications Information,  
Control Registers  
49  
Corrected punctuation errors: AES3-encoded, transformer-  
coupled.  
Global  
Changes from Revision B (April 2006) to Revision C  
Page  
Added U.S. patent number to front page. ............................................................................................................................. 1  
Copyright © 2005–2012, Texas Instruments Incorporated  
Submit Documentation Feedback  
87  
Product Folder Links: SRC4392  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
SRC4392IPFB  
ACTIVE  
ACTIVE  
TQFP  
TQFP  
PFB  
PFB  
48  
48  
250  
RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
SRC4392I  
SRC4392I  
SRC4392IPFBR  
1000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
SRC4392IPFBR  
TQFP  
PFB  
48  
1000  
330.0  
16.4  
9.6  
9.6  
1.5  
12.0  
16.0  
Q2  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
TQFP PFB 48  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
SRC4392IPFBR  
1000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
24-Feb-2023  
TRAY  
L - Outer tray length without tabs  
KO -  
Outer  
tray  
height  
W -  
Outer  
tray  
width  
Text  
P1 - Tray unit pocket pitch  
CW - Measurement for tray edge (Y direction) to corner pocket center  
CL - Measurement for tray edge (X direction) to corner pocket center  
Chamfer on Tray corner indicates Pin 1 orientation of packed units.  
*All dimensions are nominal  
Device  
Package Package Pins SPQ Unit array  
Max  
matrix temperature  
(°C)  
L (mm)  
W
K0  
P1  
CL  
CW  
Name  
Type  
(mm) (µm) (mm) (mm) (mm)  
SRC4392IPFB  
PFB  
TQFP  
48  
250  
10 x 25  
150  
315 135.9 7620 12.2  
11.1 11.25  
Pack Materials-Page 3  
MECHANICAL DATA  
MTQF019A – JANUARY 1995 – REVISED JANUARY 1998  
PFB (S-PQFP-G48)  
PLASTIC QUAD FLATPACK  
0,27  
0,17  
0,50  
M
0,08  
36  
25  
37  
24  
48  
13  
0,13 NOM  
1
12  
5,50 TYP  
7,20  
SQ  
Gage Plane  
6,80  
9,20  
SQ  
8,80  
0,25  
0,05 MIN  
0°7°  
1,05  
0,95  
0,75  
0,45  
Seating Plane  
0,08  
1,20 MAX  
4073176/B 10/96  
NOTES: A. All linear dimensions are in millimeters.  
B. This drawing is subject to change without notice.  
C. Falls within JEDEC MS-026  
POST OFFICE BOX 655303 DALLAS, TEXAS 75265  
IMPORTANT NOTICE AND DISCLAIMER  
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE  
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”  
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY  
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD  
PARTY INTELLECTUAL PROPERTY RIGHTS.  
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate  
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable  
standards, and any other safety, security, regulatory or other requirements.  
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an  
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license  
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you  
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these  
resources.  
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with  
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for  
TI products.  
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023, Texas Instruments Incorporated  

相关型号:

SRC4392IPFBG4

Two-Channel, Asynchronous Sample Rate Converter with Integrated Digital Audio Interface Receiver and Transmitter
BB

SRC4392IPFBR

Two-Channel, Asynchronous Sample Rate Converter with Integrated Digital Audio Interface Receiver and Transmitter
BB

SRC4392IPFBR

高端组合采样速率转换器 | PFB | 48 | -40 to 85
TI

SRC4392IPFBRG4

Two-Channel, Asynchronous Sample Rate Converter with Integrated Digital Audio Interface Receiver and Transmitter
BB

SRC4392IPFBT

Two-Channel, Asynchronous Sample Rate Converter with Integrated Digital Audio Interface Receiver and Transmitter
BB

SRC48

Receiver with Clock Recovery
OPLINK

SRC48-0413

OC-48/STM-16 Receiver with Clock Recovery
OPLINK

SRC50VB101M10X12.5FT

CAPACITOR, ALUMINUM ELECTROLYTIC, NON SOLID, POLARIZED, 50V, 100uF, THROUGH HOLE MOUNT, RADIAL LEADED
CHEMI-CON

SRC50VB220M6.3X9FT

CAPACITOR, ALUMINUM ELECTROLYTIC, NON SOLID, POLARIZED, 50V, 22uF, THROUGH HOLE MOUNT, RADIAL LEADED
CHEMI-CON

SRC50VB221M12.5X15FT

CAPACITOR, ALUMINUM ELECTROLYTIC, NON SOLID, POLARIZED, 50V, 220uF, THROUGH HOLE MOUNT, RADIAL LEADED
CHEMI-CON

SRC50VB2R2M5X9FT

CAPACITOR, ALUMINUM ELECTROLYTIC, NON SOLID, POLARIZED, 50V, 2.2uF, THROUGH HOLE MOUNT, RADIAL LEADED
CHEMI-CON

SRC50VB330M8X9FT

CAPACITOR, ALUMINUM ELECTROLYTIC, NON SOLID, POLARIZED, 50V, 33uF, THROUGH HOLE MOUNT, RADIAL LEADED
CHEMI-CON