TAS2110RPPT [TI]

具有集成 11V H 类升压的 6.1W 单声道数字输入 D 类扬声器放大器 | RPP | 32 | -40 to 85;
TAS2110RPPT
型号: TAS2110RPPT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成 11V H 类升压的 6.1W 单声道数字输入 D 类扬声器放大器 | RPP | 32 | -40 to 85

放大器
文件: 总105页 (文件大小:2272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TAS2110  
ZHCSKM5 DECEMBER 2019  
TAS2110 具有集成 11V H 类升压功能的6.1W 数字输入音频 D 类放大器  
1 特性  
D 类音频放大器能够在 3.6V 的电池电压下向 4Ω 负  
载提供 6.1W 的峰值功率。TAS2110 1W 下的效率  
83.5%,在硬件关断模式下消耗电流低于 1uA。  
1
主要 特性  
11V 多电平 H 类升压功能  
集成的前向算法附带简单易用的 GUI  
TAS2110 通过可配置的欠压保护功能和可配置的  
VBAT 跟踪峰值电压限制器,可帮助防止系统关断。  
输出功率(1% THD+NVBAT = 3.6V)  
4Ω 负载提供 6.1W 功率  
8Ω 负载提供 5W 功率  
TAS2110 QFN 封装与 2 层电路板设计兼容。  
器件信息(1)  
功耗(8ΩVBAT = 4.2V)  
1W 下效率达 83.5%  
器件型号  
TAS2110  
封装  
封装尺寸(标称值)  
硬件关断模式下电流低于 1uA  
QFN  
4.5mm x 4mm  
电源  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
VBAT2.7V 5.5V  
VDD1.65V 1.95V  
简化原理图  
保护功能  
L1  
电池:高级欠压保护  
VBAT  
SW  
削波:VBAT 跟踪峰值电压限制器  
C1  
GREG  
器件:热保护和过流保护  
VBST  
接口和控制  
C2  
I2S/TDM8 个通道(32 位),每个通道的运  
PVDD  
行速率达 96KSPS  
Ferrite bead  
(optional)  
I2S  
TAS2110  
I2C4 个可选择地址  
7.35KSPS 192KSPS 采样速率  
MCLK 运行  
OUT_P  
+
4
To Speaker  
I2C  
OUT_N  
-
Ferrite bead  
(optional)  
2
SDZ  
2 应用  
智能扬声器(带语音助理)  
蓝牙和无线扬声器  
智能家居  
IP 摄像机  
3 说明  
TAS2110 是一款在 QFN 封装内具有算法控制、11V H  
类升压功能的数字输入 D 类音频放大器。前向算法优  
化了升压电压电平,以匹配音频信号的输出。这可以提  
供峰值输出所需的所有功率,同时与恒定输出升压相  
比,显著降低了平均功耗。这些算法使用 PurePath 控  
制台 GUI 进行配置。  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLASET8  
 
 
 
 
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
目录  
8.4 Device Functional Modes........................................ 26  
8.5 Register Maps......................................................... 50  
Application and Implementation ........................ 89  
9.1 Application Information............................................ 89  
9.2 Typical Application ................................................. 89  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 5  
6.1 Absolute Maximum Ratings ...................................... 5  
6.2 ESD Ratings.............................................................. 5  
6.3 Recommended Operating Conditions....................... 5  
6.4 Thermal Information.................................................. 5  
6.5 Electrical Characteristics........................................... 6  
6.6 I2C Timing Requirements........................................ 11  
6.7 TDM Port Timing Requirements ............................. 11  
6.8 Typical Characteristics............................................ 13  
Parameter Measurement Information ................ 18  
Detailed Description ............................................ 19  
8.1 Overview ................................................................. 19  
8.2 Functional Block Diagram ....................................... 19  
8.3 Feature Description................................................. 19  
9
10 Power Supply Recommendations ..................... 92  
10.1 Power Supplies ..................................................... 92  
10.2 Power Supply Sequencing.................................... 92  
11 Layout................................................................... 93  
11.1 Layout Guidelines ................................................. 93  
11.2 Layout Example .................................................... 94  
12 器件和文档支持 ..................................................... 96  
12.1 文档支持 ............................................................... 96  
12.2 接收文档更新通知 ................................................. 96  
12.3 社区资源................................................................ 96  
12.4 ....................................................................... 96  
12.5 静电放电警告......................................................... 96  
12.6 Glossary................................................................ 96  
13 机械、封装和可订购信息....................................... 97  
7
8
4 修订历史记录  
日期  
修订版本  
说明  
2019 12 月  
*
初始发行版。  
2
Copyright © 2019, Texas Instruments Incorporated  
 
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
5 Pin Configuration and Functions  
RPP Package  
32-Pin QFN  
Top View  
23  
21  
22  
19  
20  
18  
17  
24  
NC  
NC  
25  
26  
27  
28  
29  
16  
PVDD  
OUT_N  
PGND  
VBST  
SW  
15  
14  
BGND  
GREG  
13  
12  
11  
10  
9
GND  
NC2  
AD1  
VBAT 30  
31  
SDIN  
SDOUT  
VDD  
NC 32  
NC  
NC  
NC  
2
4
8
3
6
5
7
1
Pin Functions  
PIN  
I/O  
DESCRIPTION  
NAME  
AD0  
QFN  
19  
I
I
I2C address pin LSB.  
AD1  
12  
I2C address pin LSB+1.  
BGND  
14  
P
Boost ground. Connect to PCB GND plane.  
Digital core voltage regulator output. Bypass to GND with a cap. Do not connect to  
external load.  
DREG  
2
P
FSYNC  
GREG  
GND  
5
IO  
P
I2S word clock or TDM frame sync.  
13  
28  
High-side gate CP regulator output. Do not connect to external load.  
Digital ground. Connect to PCB GDN plane.  
P
Open drain, active low interrupt pin. Pull up to VDDD with resistor if optional internal pull  
up is not used.  
IRQZ  
GPIO  
18  
22  
O
IO  
General purpose input/output, no connect if not used.  
Copyright © 2019, Texas Instruments Incorporated  
3
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O  
DESCRIPTION  
NAME  
QFN  
1
8
9
NC  
17  
23  
24  
32  
20  
29  
26  
21  
27  
25  
6
-
No Connect. Can float or connect to any support or signal.  
NC2  
-
No Connect. Can float or connect to ground. Do not connect to other signals or supplies.  
OUT_N  
OUT_P  
PGND  
PVDD  
SBCLK  
SCL  
O
O
P
P
IO  
I
Class-D negative output for receiver channel.  
Class-D positive output for receiver channel.  
Power stage ground. Connect to PCB GND plane.  
Power stage supply.  
I2S/TDM serial bit clock.  
4
I2C Clock Pin. Pull up to VDD with a resistor.  
I2C Data Pin. Pull up to VDD with a resistor.  
I2S/TDM serial data input.  
SDA  
3
IO  
I
SDIN  
11  
10  
7
SDOUT  
SDZ  
IO  
I
I2S/TDM serial data output.  
Active low hardware shutdown.  
SW  
15  
30  
16  
P
P
P
Boost converter switch input.  
VBAT  
VBST  
Battery power supply input. Connect to 2.7 V to 5.5 V supply and decouple with a cap.  
Boost converter output. Do not connect to external load.  
Analog, digital, and IO power supply. Connect to 1.8 V supply and decouple to GND with  
cap.  
VDD  
31  
P
4
版权 © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)  
(1)  
MIN  
–0.3  
MAX  
2
UNIT  
V
Analog / IO Supply Voltage VDD  
Battery Supply Voltage  
Boost Pin  
VBAT  
VBST(2)(3)  
PVDD(2)(3)  
–0.3  
6
V
-0.3  
18.5  
18.5  
16  
V
Power Supply Voltage  
Switching Pin  
-0.3  
V
SW  
-0.7  
V
High Side Regulator Pin  
Digital Regular Pin  
Input voltage(4)  
GREG  
PVDD-0.3  
-0.3  
PVDD+6  
1.65  
VDD+0.3  
85  
V
DREG  
V
Digital IOs referenced to VDD supply  
–0.3  
V
Operating free-air temperature, TA  
Operating junction temperature, TJ  
Storage temperature, Tstg  
–40  
°C  
°C  
°C  
–40  
150  
–65  
150  
(1) Stresses beyond those listed under Absolute Maximum Ratings can cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Procedures. Exposure to absolute-maximum-rated conditions for extended periods can affect device reliability.  
(2) VBST-VBAT and PVDD-VBAT must be less than 16 V  
(3) PVDD can handle 19V transients for less than 10ns  
(4) All digital inputs and IOs are failsafe.  
6.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
V(ESD)  
Electrostatic discharge  
V
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
2.7  
NOM  
3.6  
MAX  
5.5  
UNIT  
V
VBAT  
VBAT  
VDD  
PVDD  
VIH  
Supply voltage(Internal Boost Mode)  
Supply voltage(External Boost Mode)  
Supply voltage  
3
3.6  
5.5  
V
1.65  
VBAT  
1.8  
1.95  
16  
V
Supply voltage - external boost mode  
High-level digital input voltage  
Low-level digital input voltage  
Minimum speaker impedance  
Minimum speaker inductance  
V
VDD  
0
V
VIL  
V
RSPK  
LSPK  
3.2  
10  
Ω
µH  
6.4 Thermal Information  
YFP (WCSP)  
36 PINS  
47.4  
THERMAL METRIC(1)  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
17.0  
Junction-to-board thermal resistance  
13.1  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.5  
ψJB  
12.7  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
Copyright © 2019, Texas Instruments Incorporated  
5
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
6.5 Electrical Characteristics  
TA = 25 °C, VBAT = 3.6 V, (External PVDD = 12 V), VDD = 1.8 V, RL = 8Ω + 33 µH, fin = 1 kHz, SSM, fs = 48 kHz, Gain = 16  
dBV (External PVDD Gain=18 dBV), SDZ = 1, Thermal Foldback Disabled, Measured filter free with an Audio Precision with a  
22 Hz to 20 kHz un-weighted bandwidth (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL INPUT  
and OUTPUT  
High-level digital input logic voltage  
threshold  
VIH  
All digital pins except SDA and SCL  
All digital pins except SDA and SCL  
SDA and SCL  
0.65 × VDD  
V
V
V
V
V
Low-level digital input logic voltage  
threshold  
VIL  
0.35 × VDD  
0.3 × VDD  
High-level digital input logic voltage  
threshold  
VIH(I2C)  
VIL(I2C)  
VOH  
0.7 × VDD  
Low-level digital input logic voltage  
threshold  
SDA and SCL  
All digital pins except SDA, SCL and  
IRQZ; IOH = 2 mA.  
VDD – 0.45  
V
High-level digital output voltage  
All digital pins except SDA, SCL and  
IRQZ; IOL = –2 mA.  
VOL  
Low-level digital output voltage  
Low-level digital output voltage  
0.45  
0.2 × VDD  
0.45  
V
V
V
VOL(I2C)  
VOL(IRQZ)  
SDA and SCL; IOL(I2C) = –2 mA.  
IRQZ; IOL(IRQZ) = –2 mA.  
Low-level digital output voltage for IRQZ  
open drain Output  
IIH  
Input logic-high leakage for digital inputs  
Input logic-low leakage for digital inputs  
Input capacitance for digital inputs  
All digital pins; Input = VDD.  
All digital pins; Input = GND.  
All digital pins  
–5  
–5  
0.1  
0.1  
5
5
5
µA  
µA  
pF  
IIL  
CIN  
Pull down resistance for digital input/IO  
pins when asserted on  
RPD  
SDOUT, SDIN, FSYNC, SBCLK  
50  
kΩ  
AMPLIFIER PERFORMANCE - Internal Boost  
Output Voltage for Full-scale digital Input Measured at -6 dB FS input  
RL = 32Ω + 33 µH, THD+N = 0.03 %, fin  
6.32  
1.25  
Vrms  
W
=
1 kHz  
RL = 8 Ω + 33 µH, THD+N = 0.03 %, fin  
1 kHz  
=
POUT  
Maximum Continuous Output Power  
5
W
W
RL = 4 Ω + 33 µH, THD+N = 1 %, fin = 1  
kHz  
6.1  
RL = 8 Ω + 33 µH, fin = 1 kHz  
RL = 4 Ω + 33 µH, fin = 1 kHz  
82.5  
79.5  
%
%
RL = 8 Ω + 33 µH, fin = 1 kHz, VBAT = 4.2  
V
System efficiency at POUT = 1 W  
83  
%
%
RL = 4 Ω + 33 µH, fin = 1 kHz, VBAT = 4.2  
V
85.2  
RL = 8 Ω + 33 µH, fin = 1 kHz  
RL = 4 Ω + 33 µH, fin = 1 kHz  
75.8  
80.3  
%
%
RL = 8 Ω + 33 µH, fin = 1 kHz, VBAT = 4.2  
V
System efficiency at POUT =0.5 W  
84.9  
80.5  
%
%
RL = 4 Ω + 33 µH, fin = 1 kHz, VBAT = 4.2  
V
RL = 32 Ω + 33 µH, fin = 1 kHz,  
RL = 8 Ω + 33 µH, fin = 1 kHz,  
RL = 4 Ω + 33 µH, fin = 1 kHz  
79.1  
81.2  
75.7  
%
%
%
System efficiency at 0.1% THD+N power  
level  
POUT = 0.25 W, RL = 32Ω + 33 µH, fin = 1  
kHz  
0.01  
%
THD+N  
VN  
Total harmonic distortion + noise  
Idle channel noise  
POUT = 1 W, RL = 8 Ω + 33 µH, fin = 1 kHz  
POUT = 1 W, RL = 4 Ω + 33 µH, fin = 1 kHz  
0.01  
0.01  
%
%
A-Weighted, 20 Hz - 20 kHz, DAC  
Modulator Running  
14.8  
µV  
6
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
Electrical Characteristics (continued)  
TA = 25 °C, VBAT = 3.6 V, (External PVDD = 12 V), VDD = 1.8 V, RL = 8Ω + 33 µH, fin = 1 kHz, SSM, fs = 48 kHz, Gain = 16  
dBV (External PVDD Gain=18 dBV), SDZ = 1, Thermal Foldback Disabled, Measured filter free with an Audio Precision with a  
22 Hz to 20 kHz un-weighted bandwidth (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Average frequency in Spread Spectrum  
Mode, CLASSD_SYNC=0  
384  
kHz  
Fixed Frequency Mode,  
CLASSD_SYNC=0  
384  
352.8  
384  
kHz  
kHz  
kHz  
FPWM  
Class-D PWM switching frequency  
Fixed Frequency Mode,  
CLASSD_SYNC=1, fs = 44.1, 88.2, 174.6  
kHz  
Fixed Frequency Mode,  
CLASSD_SYNC=1, fs = 48, 96, 192 kHz  
VOS  
Output offset voltage  
Dynamic range  
-1  
1
mV  
dB  
DNR  
A-Weighted, -60 dBFS Method  
106.5  
112.5  
A-Weighted, Referenced to 1 % THD+N  
Output Level  
SNR  
Signal to noise ratio  
dB  
Into and out of Mute, Shutdown, Power  
Up, Power Down and audio clocks  
starting and stopping. Measured with APx  
Plugin.  
KCP  
Click and pop performance  
4
mV  
Programmable output level range  
Programmable output level step size  
Amplifier gain error  
8
18  
dBV  
dB  
0.5  
AVERROR  
POUT = 1 W  
±0.1  
dB  
Device in Shutdown or Muted in Normal  
Operation  
Mute attenuation  
110  
dB  
VBAT = 3.6 V + 200 mVpp, fripple = 217 Hz  
VBAT = 3.6 V + 200 mVpp, fripple = 20 kHz  
VDD = 1.8 V + 200 mVpp, fripple = 217 Hz  
VDD = 1.8 V + 200 mVpp, fripple = 20 kHz  
No Volume Ramping  
108  
87.5  
98  
dB  
dB  
dB  
dB  
ms  
ms  
ms  
ms  
VBAT power-supply rejection ratio  
AVDD power-supply rejection ratio  
89  
1.8  
Turn on time from release of SW  
shutdown  
Volume Ramping  
4.5  
No Volume Ramping  
0.9  
Turn off time from assertion of SW  
shutdown to amp Hi-Z  
Volume Ramping  
12.5  
AMPLIFIER PERFORMANCE - External PVDD  
Output Voltage for Full-scale digital Input Measured at -6 dB FS input  
7.94  
1.3  
Vrms  
W
RL = 32Ω + 33 µH, THD+N = 1 %, fin = 1  
kHz  
RL = 8 Ω + 33 µH, THD+N = 1 %, fin = 1  
kHz  
5.2  
10.4  
1.6  
W
W
W
W
W
RL = 4 Ω + 33 µH, THD+N = 1 %, fin = 1  
kHz  
POUT  
Maximum Continuous Output Power  
RL = 32Ω + 33 µH, THD+N = 10 %, fin = 1  
kHz  
RL = 8 Ω + 33 µH, THD+N = 10 %, fin = 1  
kHz  
6.3  
RL = 4 Ω + 33 µH, THD+N = 10%, fin = 1  
kHz  
12.6  
RL = 8 Ω + 33 µH, fin = 1 kHz  
RL = 4 Ω + 33 µH, fin = 1 kHz  
85.8  
81.8  
%
%
RL = 8 Ω + 33 µH, fin = 1 kHz, External  
PVDD = 8.4 V  
System efficiency at POUT = 1 W  
87.9  
83.8  
%
%
RL = 4 Ω + 33 µH, fin = 1 kHz, External  
PVDD = 8.4 V  
Copyright © 2019, Texas Instruments Incorporated  
7
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
TA = 25 °C, VBAT = 3.6 V, (External PVDD = 12 V), VDD = 1.8 V, RL = 8Ω + 33 µH, fin = 1 kHz, SSM, fs = 48 kHz, Gain = 16  
dBV (External PVDD Gain=18 dBV), SDZ = 1, Thermal Foldback Disabled, Measured filter free with an Audio Precision with a  
22 Hz to 20 kHz un-weighted bandwidth (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
RL = 32 Ω + 33 µH, fin = 1 kHz,  
RL = 8 Ω + 33 µH, fin = 1 kHz,  
RL = 4 Ω + 33 µH, fin = 1 kHz  
MIN  
TYP  
89.4  
91.2  
87.2  
MAX  
UNIT  
%
%
%
RL = 32 Ω + 33 µH, fin = 1 kHz, External  
PVDD = 8.4 V  
System efficiency at 0.1% THD+N power  
level  
83.9  
91.9  
88  
%
%
%
%
RL = 8 Ω + 33 µH, fin = 1 kHz, External  
PVDD = 8.4 V  
RL = 4 Ω + 33 µH, fin = 1 kHz, External  
PVDD = 8.4 V  
POUT = 0.25 W, RL = 32Ω + 33 µH, fin = 1  
kHz  
0.01  
THD+N  
VN  
Total harmonic distortion + noise  
Idle channel noise  
POUT = 1 W, RL = 8 Ω + 33 µH, fin = 1 kHz  
POUT = 1 W, RL = 4 Ω + 33 µH, fin = 1 kHz  
0.01  
0.02  
%
%
A-Weighted, 20 Hz - 20 kHz, DAC  
Modulator Running  
21.3  
384  
384  
µV  
Average frequency in Spread Spectrum  
Mode, CLASSD_SYNC=0  
kHz  
kHz  
Fixed Frequency Mode,  
CLASSD_SYNC=0  
FPWM  
Class-D PWM switching frequency  
Fixed Frequency Mode,  
CLASSD_SYNC=1, fs = 44.1, 88.2, 174.6  
kHz  
352.8  
384  
kHz  
kHz  
Fixed Frequency Mode,  
CLASSD_SYNC=1, fs = 48, 96, 192 kHz  
VOS  
Output offset voltage  
Dynamic range  
-1  
1
mV  
dB  
DNR  
A-Weighted, -60 dBFS Method  
109  
A-Weighted, Referenced to 1 % THD+N  
Output Level  
SNR  
Signal to noise ratio  
109.5  
dB  
Into and out of Mute, Shutdown, Power  
Up, Power Down and audio clocks  
starting and stopping. Measured with APx  
Plugin.  
KCP  
Click and pop performance  
3
mV  
Programmable output level range  
Programmable output level step size  
Amplifier gain error  
8
18  
dBV  
dB  
0.5  
AVERROR  
POUT = 1 W  
±0.1  
dB  
Device in Shutdown or Muted in Normal  
Operation  
Mute attenuation  
110  
dB  
VBAT = 3.6 V + 200 mVpp, fripple = 217 Hz  
VBAT = 3.6 V + 200 mVpp, fripple = 20 kHz  
PVDD = 12 V + 200 mVpp, fripple = 217 Hz  
PVDD = 12 V + 200 mVpp, fripple = 20 kHz  
VDD = 1.8 V + 200 mVpp, fripple = 217 Hz  
VDD = 1.8 V + 200 mVpp, fripple = 20 kHz  
No Volume Ramping  
110  
90  
dB  
dB  
dB  
dB  
dB  
dB  
ms  
ms  
ms  
ms  
VBAT power-supply rejection ratio  
105  
90  
PVDD power-supply rejection ratio  
AVDD power-supply rejection ratio  
86  
73  
1.8  
4.5  
0.75  
12.5  
Turn on time from release of SW  
shutdown  
Volume Ramping  
No Volume Ramping  
Turn off time from assertion of SW  
shutdown to amp Hi-Z  
Volume Ramping  
BOOST  
CONVERTER  
0.1A DC load, Average voltage (w/o  
including ripple)  
Max Output Voltage  
11  
V
Startup inrush current limit  
Startup inrush limit time  
Class-G Mode  
Class-G Mode  
1
A
0.45  
ms  
8
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
Electrical Characteristics (continued)  
TA = 25 °C, VBAT = 3.6 V, (External PVDD = 12 V), VDD = 1.8 V, RL = 8Ω + 33 µH, fin = 1 kHz, SSM, fs = 48 kHz, Gain = 16  
dBV (External PVDD Gain=18 dBV), SDZ = 1, Thermal Foldback Disabled, Measured filter free with an Audio Precision with a  
22 Hz to 20 kHz un-weighted bandwidth (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
50  
4
MAX  
UNIT  
kHz  
MHz  
A
PFM mode  
Switching Frequency  
Current Control Mode  
default setting  
Inductor Peak Current Limit  
4
DIE TEMPERATURE  
SENSOR  
Resolution  
8
bits  
°C  
°C  
°C  
Die temperature measurement range  
Die temperature resolution  
Die temperature accuracy  
-40  
150  
1
±5  
VOLTAGE  
MONITOR  
Resolution  
10  
bits  
V
VBAT measurement range  
VBAT resolution  
VBAT accuracy  
2
6
15.6  
±25  
mV  
mV  
TDM SERIAL AUDIO  
PORT  
PCM Sample Rates & FSYNC Input  
Frequency  
7.35  
192  
kHz  
I2S/TDM Operation  
SBCLK Input Frequency  
0.4704  
24.576  
MHz  
RMS Jitter below 40 kHz that can be  
tolerated without performance  
degradation  
1
ns  
SBCLK Maximum Input Jitter  
RMS Jitter above 40 kHz that can be  
tolerated without performance  
degradation  
10  
ns  
SBCLK Cycles per FSYNC in I2S and  
TDM Modes  
Values: 64, 96, 128, 192, 256, 384 and  
512  
64  
512  
Cycles  
PCM PLAYBACK  
CHARACTERISTICS to fs 48 kHz  
fs  
Sample Rates  
7.35  
-0.3  
48  
kHz  
fs  
Passband LPF Corner  
Passband Ripple  
0.454  
20 Hz to LPF cutoff  
0.55 fs  
0.3  
dB  
dB  
dB  
1/fs  
60  
65  
Stop Band Attenuation  
Group Delay  
1 fs  
DC to 0.454 fs  
8.6  
PCM PLAYBACK  
CHARACTERISTICS fs > 48 kHz  
fs  
Sample Rates  
88.2  
-0.5  
192  
kHz  
fs  
fs = 96 kHz  
0.42  
0.21  
Passband LPF Corner  
Passband Ripple  
Stop Band Attenuation  
Group Delay  
fs = 192 kHz  
DC to LPF cutoff  
0.55 fs  
fs  
0.5  
8.6  
dB  
dB  
dB  
1/fs  
60  
65  
1 fs  
DC to 0.375 fs for 96 kHz  
TYPICAL CURRENT  
CONSUMPTION  
SDZ = 0, VBAT  
0.1  
1
µA  
µA  
µA  
µA  
Current consumption in hardware  
shutdown  
SDZ = 0, VDD  
All Clocks Stopped, VBAT  
All Clocks Stopped, VDD  
0.5  
10  
Current consumption in software  
shutdown  
Copyright © 2019, Texas Instruments Incorporated  
9
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
Electrical Characteristics (continued)  
TA = 25 °C, VBAT = 3.6 V, (External PVDD = 12 V), VDD = 1.8 V, RL = 8Ω + 33 µH, fin = 1 kHz, SSM, fs = 48 kHz, Gain = 16  
dBV (External PVDD Gain=18 dBV), SDZ = 1, Thermal Foldback Disabled, Measured filter free with an Audio Precision with a  
22 Hz to 20 kHz un-weighted bandwidth (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
Clocking 0s PCM mode, VBAT  
Clocking 0s PCM mode, VDD  
fs = 48 kHz, VBAT  
MIN  
TYP  
2.7  
7.9  
4.6  
7.9  
MAX  
UNIT  
mA  
Current consumption in idle channel  
mA  
mA  
Current consumption during active  
operation  
fs = 48 kHz, VDD  
mA  
PROTECTION  
CIRCUITRY  
Thermal shutdown temperature  
Thermal shutdown retry  
140  
1.5  
°C  
s
UVLO is asserted  
UVLO is released  
2
V
VBAT undervoltage lockout threshold  
(UVLO)  
2.55  
V
Output to Output, Output to GND, Output  
to VBST or Output to VBAT Short  
Output short circuit limit  
3.75  
A
10  
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
6.6 I2C Timing Requirements  
TA = 25 °C, VDD = 1.8 V (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
Standard-Mode  
fSCL  
SCL clock frequency  
0
4
100  
kHz  
Hold time (repeated) START condition. After this period, the first clock pulse is  
generated.  
tHD;STA  
μs  
tLOW  
LOW period of the SCL clock  
HIGH period of the SCL clock  
Setup time for a repeated START condition  
Data hold time: For I2C bus devices  
Data set-up time  
4.7  
4
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
μs  
pF  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
4.7  
0
3.45  
250  
SDA and SCL rise time  
1000  
300  
tf  
SDA and SCL fall time  
tSU;STO  
tBUF  
Set-up time for STOP condition  
Bus free time between a STOP and START condition  
Capacitive load for each bus line  
4
4.7  
Cb  
400  
400  
Fast-Mode  
fSCL  
SCL clock frequency  
0
kHz  
Hold time (repeated) START condition. After this period, the first clock pulse is  
generated.  
tHD;STA  
0.6  
μs  
tLOW  
LOW period of the SCL clock  
HIGH period of the SCL clock  
Setup time for a repeated START condition  
Data hold time: For I2C bus devices  
Data set-up time  
1.3  
0.6  
40.6  
0
μs  
μs  
μs  
μs  
ns  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
0.9  
100  
20 + 0.1 ×  
Cb  
tr  
tf  
SDA and SCL rise time  
SDA and SCL fall time  
300  
300  
ns  
ns  
20 + 0.1 ×  
Cb  
tSU;STO  
tBUF  
Set-up time for STOP condition  
0.6  
1.3  
10  
μs  
μs  
pF  
Bus free time between a STOP and START condition  
Capacitive load for each bus line  
Cb  
400  
Fast-Mode  
Plus  
fSCL  
SCL clock frequency  
0
1000  
kHz  
Hold time (repeated) START condition. After this period, the first clock pulse is  
generated.  
tHD;STA  
0.26  
μs  
tLOW  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
LOW period of the SCL clock  
HIGH period of the SCL clock  
Setup time for a repeated START condition  
Data hold time: For I2C bus devices  
Data set-up time  
0.5  
0.26  
0.26  
0
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
μs  
pF  
50  
SDA and SCL Rise Time  
120  
120  
tf  
SDA and SCL Fall Time  
tSU;STO  
tBUF  
Set-up time for STOP condition  
Bus free time between a STOP and START condition  
Capacitive load for each bus line  
0.5  
10  
Cb  
550  
6.7 TDM Port Timing Requirements  
TA = 25 °C, VDD = 1.8 V, 20 pF load on all outputs (unless otherwise noted)  
MIN  
20  
20  
8
NOM  
MAX  
UNIT  
ns  
tH(SBCLK)  
tL(SBCLK)  
tSU(FSYNC)  
SBCLK high period  
SBCLK low period  
FSYNC setup time  
ns  
ns  
Copyright © 2019, Texas Instruments Incorporated  
11  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
TDM Port Timing Requirements (continued)  
TA = 25 °C, VDD = 1.8 V, 20 pF load on all outputs (unless otherwise noted)  
MIN  
8
NOM  
MAX  
UNIT  
ns  
tHLD(FSYNC)  
tSU(FSYNC)  
tHLD(SDIN)  
FSYNC hold time  
SDIN setup time  
SDIN hold time  
8
ns  
8
ns  
td(DO-SBCLK) SBCLK to SDOUT delay  
50% of FSYNC to 50% of SDOUT  
10% - 90 % Rise Time  
21  
8
ns  
tr(SBCLK)  
tf(SBCLK)  
SBCLK rise time  
SBCLK fall time  
ns  
90% - 10 % Fall Time  
8
ns  
SDA  
SCL  
tBUF  
tLOW  
th(STA)  
tr  
th(STA)  
th(DAT)  
tHIGH  
tsu(STA)  
tsu(STO)  
STO  
STA  
tf  
tsu(DAT)  
STA  
STO  
1. I2C Timing Diagram  
FSYNC  
tSU(FSYNC)  
td(DO-FSYNC)  
tHLD(FSYNC)  
tL(SBCLK)  
SBCLK  
SDIN  
tH(SBCLK)  
tHLD(SDIN)  
tr(SBCLK)  
tf(SBCLK)  
tSU(SDIN)  
td(DO-SBCLK)  
SDOUT  
2. TDM Timing Diagram  
12  
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
6.8 Typical Characteristics  
At TA = 25°C, fSPK_AMP = 384 kHz, VDD=1.8V, VBAT=3.6V(in external PVDD), input signal is 1 kHz Sine, unless otherwise  
noted. Filter used for Load Resistance is 30 µH, unless otherwise noted.  
10  
5
10  
5
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Pout(W)  
1
2
3 45 7 10  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Pout(W)  
1
2 3 45 7 10  
D001  
D002  
RL = 4 Ω  
FIN = 1 kHz  
RL = 8 Ω  
FIN = 1 kHz  
Figure 3. THD+N vs Output Power  
Figure 4. THD+N vs Output Power  
10  
5
10  
5
PVDD=4.5V  
PVDD=8.4V  
PVDD=12.6V  
PVDD=16V  
PVDD=4.5V  
PVDD=8.4V  
PVDD=12.6V  
PVDD=16V  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.001  
0.01  
0.05  
0.2 0.5  
Pout(W)  
1
2 3 45 710 20  
0.001  
0.01  
0.05  
0.2 0.5  
Pout(W)  
1
2 3 45 710 20  
D003  
D004  
RL = 4 Ω  
FIN = 1 kHz  
PVDD EXTERNAL  
RL = 8 Ω  
FIN = 1 kHz  
PVDD EXTERNAL  
Figure 5. THD+N vs Output Power  
Figure 6. THD+N vs Output Power  
10  
5
10  
5
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Pout(W)  
1
2
3 45 7 10  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Pout(W)  
1
2 3 45 7 10  
D005  
D006  
RL = 4 Ω  
FIN = 6.667 kHz  
RL = 8 Ω  
FIN = 6.667 kHz  
Figure 7. THD+N vs Output Power  
Figure 8. THD+N vs Output Power  
Copyright © 2019, Texas Instruments Incorporated  
13  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, fSPK_AMP = 384 kHz, VDD=1.8V, VBAT=3.6V(in external PVDD), input signal is 1 kHz Sine, unless otherwise  
noted. Filter used for Load Resistance is 30 µH, unless otherwise noted.  
10  
10  
5
5
PVDD=4.5V  
PVDD=8.4V  
PVDD=12.6V  
PVDD=16V  
PVDD=4.5V  
PVDD=8.4V  
PVDD=12.6V  
PVDD=16V  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.001  
0.01  
0.05  
0.2 0.5  
Pout(W)  
1
2 3 45 710 20  
0.001  
0.01  
0.05  
0.2 0.5  
Pout(W)  
1
2 3 45 710 20  
D007  
D008  
RL = 4 Ω  
FIN = 6.667 kHz  
PVDD EXTERNAL  
RL = 8 Ω  
FIN = 6.667 kHz  
PVDD EXTERNAL  
Figure 9. THD+N vs Output Power  
Figure 10. THD+N vs Output Power  
10  
5
10  
5
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20 30 50 70100 200  
500 1000 2000 5000 1000020000  
Frequency(Hz)  
20 30 50 70100 200  
500 1000 2000 5000 1000020000  
Frequency(Hz)  
D009  
D010  
FIN = 20 Hz – 20 kHz  
POUT = 0.1 W  
RL = 4 Ω + 30 µH  
FIN = 20 Hz – 20 kHz  
POUT = 0.1 W  
RL = 8 Ω  
Figure 11. THD+N vs Frequency  
Figure 12. THD+N vs Frequency  
10  
5
10  
5
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20 30 50 70100 200  
500 1000 2000 5000 1000020000  
Frequency(Hz)  
20 30 50 70100 200  
500 1000 2000 5000 1000020000  
Frequency(Hz)  
D011  
D012  
FIN = 20 Hz – 20 kHz  
POUT = 1 W  
RL = 4 Ω + 30 µH  
FIN = 20 Hz – 20 kHz  
POUT = 1 W  
RL = 8 Ω  
Figure 13. THD+N vs Frequency  
Figure 14. THD+N vs Frequency  
14  
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
Typical Characteristics (continued)  
At TA = 25°C, fSPK_AMP = 384 kHz, VDD=1.8V, VBAT=3.6V(in external PVDD), input signal is 1 kHz Sine, unless otherwise  
noted. Filter used for Load Resistance is 30 µH, unless otherwise noted.  
10  
10  
5
5
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
20 30 50 70100 200  
500 1000 2000 5000 1000020000  
Frequency(Hz)  
20 30 50 70100 200  
500 1000 2000 5000 1000020000  
Frequency(Hz)  
D013  
D014  
FIN = 20 Hz – 20 kHz  
POUT = 5 W  
RL = 4 Ω + 30 µH  
FIN = 20 Hz – 20 kHz  
POUT = 5 W  
RL = 8 Ω + 30 µH  
Figure 15. THD+N vs Frequency  
Figure 16. THD+N vs Frequency  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
THD+N = 1%  
4
5
6
7
8
9
PVDD Supply (V)  
10 11 12 13 14 15 16  
2.5  
3
3.5  
4
VBAT Supply (V)  
4.5  
5
5.5  
D01260  
1D50_21C05  
PVDD EXTERNAL  
Figure 18. Idle Channel Noise (A-Weighted) vs PVDD  
Figure 17. Idle Channel Noise (A-Weighted) vs VBAT  
3.15  
3.13  
3.11  
3.09  
3.07  
3.05  
3.03  
3.01  
2.99  
2.97  
2.95  
13  
12.5  
12  
PVDD=8.4V  
PVDD=12.6V  
11.5  
11  
10.5  
10  
9.5  
9
8.5  
8
7.5  
7
20 30 50 70100 200  
500 1000 2000 5000 1000020000  
Frequency (Hz)  
0.1  
0.2 0.3  
0.5 0.7 1  
THD+N (%)  
2
3
4 5 6 7 8 10  
D017  
D018  
FS = 48 kHz  
VBAT = 3.6 V  
RL = 4 Ω  
FIN = 1 kHz  
PVDD EXTERNAL  
Figure 19. Amplitude vs Frequency  
Figure 20. Max Output Power vs THD+N  
Copyright © 2019, Texas Instruments Incorporated  
15  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
Typical Characteristics (continued)  
At TA = 25°C, fSPK_AMP = 384 kHz, VDD=1.8V, VBAT=3.6V(in external PVDD), input signal is 1 kHz Sine, unless otherwise  
noted. Filter used for Load Resistance is 30 µH, unless otherwise noted.  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
6.5  
6.25  
6
PVDD=8.4V  
PVDD=12.6V  
5.75  
5.5  
5.25  
5
4.75  
4.5  
4.25  
4
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
3.75  
3.5  
0.1  
0.2 0.3  
0.5 0.7 1  
THD+N (%)  
2
3
4
5 6 7 8 10  
0.0005  
0.01  
0.05  
Pout (W)  
0.2 0.5  
1
2 3 45 710  
D019  
D020  
RL = 8 Ω  
FIN = 1 kHz  
PVDD EXTERNAL  
RL = 4 Ω  
FIN = 1 kHz  
Figure 21. Max Output Power vs THD+N  
Figure 22. Efficiency vs Output Power  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
PVDD=4.5V  
PVDD=8.4V  
PVDD=12.6V  
PVDD=16V  
0.0005  
0.01  
0.05  
Pout (W)  
0.2 0.5  
1
2 3 45 710  
0.0005  
0.01  
0.05  
Pout (W)  
0.2 0.5  
1
2 3 45 710 20  
D021  
D022  
RL = 8 Ω  
FIN = 1 kHz  
RL = 4 Ω  
FIN = 1 kHz  
PVDD EXTERNAL  
Figure 23. Efficiency vs Output Power  
Figure 24. Efficiency vs Output Power  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
98  
96  
94  
92  
90  
88  
86  
84  
82  
80  
PVDD=4.5V  
PVDD=8.4V  
PVDD=12.6V  
PVDD=16V  
0.0005  
0.01  
0.05  
Pout (W)  
0.2 0.5  
1
2 3 45 710  
20 30 50 70100 200  
500 1000 2000 5000 1000020000  
Frequency (Hz)  
D023  
D024  
RL = 8 Ω  
FIN = 1 kHz  
PVDD EXTERNAL  
AVDD=1.8V  
Figure 25. Efficiency vs Output Power  
Figure 26. AVDD PSRR vs Frequency  
16  
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
Typical Characteristics (continued)  
At TA = 25°C, fSPK_AMP = 384 kHz, VDD=1.8V, VBAT=3.6V(in external PVDD), input signal is 1 kHz Sine, unless otherwise  
noted. Filter used for Load Resistance is 30 µH, unless otherwise noted.  
120  
115  
110  
105  
100  
95  
125  
120  
115  
110  
105  
100  
95  
90  
85  
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.4V  
PVDD=4.5V  
PVDD=8.4V  
PVDD=12.6V  
PVDD=16V  
80  
90  
75  
85  
70  
80  
65  
20 30 50 70100 200  
500 1000 2000 5000 1000020000  
Frequency (Hz)  
20 30 50 70100 200  
500 1000 2000 5000 1000020000  
Frequency (Hz)  
D025  
D026  
PVDD EXTERNAL  
Figure 27. VBAT PSRR vs Frequency  
Figure 28. PVDD PSRR vs Frequency  
9
8.8  
8.6  
8.4  
8.2  
8
5
4.8  
4.6  
4.4  
4.2  
4
7.8  
7.6  
7.4  
7.2  
7
3.8  
3.6  
3.4  
3.2  
3
1.65  
1.695  
1.74  
1.785  
AVDD  
1.83  
1.875  
1.92  
2.7  
3
3.3 3.6 3.9 4.2 4.5 4.8 5.1 5.4 5.7  
VBAT Voltage (V)  
D270_2T9  
D280_3T0  
Figure 29. AVDD Idle Current vs AVDD  
Figure 30. VBAT Idle Current vs VBAT  
8.4  
7.8  
7.2  
6.6  
6
5.4  
4.8  
4.2  
3.6  
3
2.4  
4.5  
6
7.5  
9
10.5  
12  
PVDD Voltage (V)  
13.5  
15  
16.5  
D029  
PVDD EXTERNAL  
Figure 31. PVDD Idle Current vs PVDD  
版权 © 2019, Texas Instruments Incorporated  
17  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
7 Parameter Measurement Information  
All typical characteristics for the devices are measured using the Bench EVM and an Audio Precision SYS-2722  
Audio Analyzer. A PSIA interface is used to allow the I2S interface to be driven directly into the SYS-2722.  
Speaker output terminals are connected to the Audio-Precision analyzer analog inputs through a differential-to-  
single ended (D2S) filter as shown below. The D2S filter contains a 1st order Passive pole at 120 kHz. The D2S  
filter ensures the TAS2110 high performance class-D amplifier sees a fully differential matched loading at its  
outputs. This prevents measurement errors due to loading effects of AUX-0025 filter on the class-D outputs.  
1kΩ  
0.01%  
1kΩ  
0.01%  
-
1kΩ  
SPK_P  
+
-
AP  
680pF  
AUX-0025  
SYS-2772  
+
SPK_N  
1kΩ  
0.01%  
+
-
1kΩ  
1kΩ  
0.01%  
32. Differential To Single Ended (D2S) Filter  
18  
版权 © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
8 Detailed Description  
8.1 Overview  
The TAS2110 is a mono digital input Class-D amplifier optimized for mobile applications where efficient battery  
operation and small solution size are crucial. It integrates battery tracking limiting with brown out prevention.  
8.2 Functional Block Diagram  
2.7V œ 5.5V  
1.8V  
10uF  
4.7uF  
1uF  
VBAT  
VDD  
DREG  
1uH  
SDZ  
Power Management  
SW  
Boost  
BGND  
VBST  
OTP Trim  
VBAT  
TEMP  
Brown Out &  
Protection  
SAR  
ADC  
IRQZ  
To  
Ports  
10uF  
Gate  
Drive  
CP  
GREG  
PVDD  
100nF  
SDIN  
SDOUT  
FSYNC  
SBCLK  
DAC  
Digital  
Filters  
TDM Port  
Class-D  
Clock  
Watchdog  
& Timers  
OUTP  
OUTN  
Reference  
& Temp  
Protection  
Addr Det  
I2C Port  
PLL  
AD0  
AD1  
SDA  
SCL  
PGND  
GND  
8.3 Feature Description  
8.3.1 PurePath™ Console 3 Software  
The TAS2110 advanced features and device configuration should be performed using PurePath Console 3  
(PPC3) software. The base software PPC3 is downloaded and installed from the TI website. Once installed the  
TAS2110 application can be download from with-in PPC3. The PCC3 tool will calculate necessary register  
coefficients that are described in the following sections. It is the recommended method to configure the device.  
Once the TAS2110 application calculates and updates the device, the registers values can be read back using  
the PPC3 tool for final system integration.  
8.3.2 Device Mode and Address Selection  
The TAS2110 can operate using one of four selectable device addresses. In TDM/I2S Mode, audio input and  
output are provided via the FSYNC, SBCLK, SDIN and SDOUT pins using formats including I2S, Left Justified  
and TDM. Configuration and status are provided via the SDA and SCL pins using the I2C protocol. 1 below  
illustrates how to select the device I2C address. I2C slave addresses are shown as 7-bit address format.  
版权 © 2019, Texas Instruments Incorporated  
19  
 
 
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
1. I2C Mode Address Selection  
I2C SLAVE ADDRESS  
AD1 PIN  
AD0 PIN  
0x48 (global  
address)  
NA  
NA  
0x4C  
0x4D  
0x4E  
0x4F  
GND  
GND  
VDD  
VDD  
GND  
VDD  
GND  
VDD  
The TAS2110 has a global 7-bit I2C address 0x48. When enabled the device will additionally respond to I2C  
commands at this address regardless of the AD1 and AD0 pin settings. This is used to speed up device  
configuration when using multiple TAS2110 devices and programming similar settings across all devices. The I2C  
ACK / NACK cannot be used during the multi-device writes since multiple devices are responding to the I2C  
command. The I2C CRC function should be used to ensure each device properly received the I2C commands. At  
the completion of writing multiple devices using the global address, the CRC at I2C_CKSUM register should be  
checked on each device using the local address for a proper value. The global I2C address can be disabled  
using I2C_GBL_EN register. The I2C address is detected by sampling the address pins when SDZ pin is  
released. Additionally, the address may be re-detected by setting I2C_AD_DET high after power up and the pins  
will be resampled.  
2. I2C Global Address Enable  
I2C_GBL_EN  
SETTING  
Disabled  
0
1
Enabled (default)  
3. I2C Global Address Enable  
I2C_AD_DET  
SETTING  
normal (default)  
Re-detect  
0
1
8.3.3 General I2C Operation  
The I2C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a  
system using serial data transmission. The address and data 8-bit bytes are transferred most-significant bit  
(MSB) first. In addition, each byte transferred on the bus is acknowledged by the receiving device with an  
acknowledge bit. Each transfer operation begins with the master device driving a start condition on the bus and  
ends with the master device driving a stop condition on the bus. The bus uses transitions on the data terminal  
(SDA) while the clock is at logic high to indicate start and stop conditions. A high-to-low transition on SDA  
indicates a start, and a low-to-high transition indicates a stop. Normal data-bit transitions must occur within the  
low time of the clock period. shows a typical sequence.  
The master generates the 7-bit slave address and the read/write (R/W) bit to open communication with another  
device and then waits for an acknowledge condition. The device holds SDA low during the acknowledge clock  
period to indicate acknowledgment. When this occurs, the master transmits the next byte of the sequence. Each  
device is addressed by a unique 7-bit slave address plus R/W bit (1 byte). All compatible devices share the same  
signals via a bi-directional bus using a wired-AND connection.  
Use external pull-up resistors for the SDA and SCL signals to set the logic-high level for the bus. Use pull-up  
resistors between 2 kΩ and 4.7 kΩ. Do not allow the SDA and SCL voltages to exceed the device supply  
voltage, . The I2C pins are fault tolerant and will not load the I2C bus when the device is powered down.  
20  
版权 © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
8- Bit Data for  
Register (N)  
8- Bit Data for  
Register (N+1)  
33. Typical I2C Sequence  
There is no limit on the number of bytes that can be transmitted between start and stop conditions. When the last  
word transfers, the master generates a stop condition to release the bus. 33 shows a generic data transfer  
sequence.  
8.3.4 Single-Byte and Multiple-Byte Transfers  
The serial control interface supports both single-byte and multiple-byte read/write operations for all registers.  
During multiple-byte read operations, the TAS2110 responds with data, a byte at a time, starting at the register  
assigned, as long as the master device continues to respond with acknowledges.  
The TAS2110 supports sequential I2C addressing. For write transactions, if a register is issued followed by data  
for that register and all the remaining registers that follow, a sequential I2C write transaction has taken place. For  
I2C sequential write transactions, the register issued then serves as the starting point, and the amount of data  
subsequently transmitted, before a stop or start is transmitted, determines to how many registers are written.  
8.3.5 Single-Byte Write  
As shown in 34, a single-byte data-write transfer begins with the master device transmitting a start condition  
followed by the I2C device address and the read/write bit. The read/write bit determines the direction of the data  
transfer. For a write-data transfer, the read/write bit must be set to 0. After receiving the correct I2C device  
address and the read/write bit, the TAS2110 responds with an acknowledge bit. Next, the master transmits the  
register byte corresponding to the device internal memory address being accessed. After receiving the register  
byte, the device again responds with an acknowledge bit. Finally, the master device transmits a stop condition to  
complete the single-byte data-write transfer.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
R/W  
ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK  
A6 A5 A4  
A3 A2 A1 A0  
Stop  
2
I C Device Address and  
Read/Write Bit  
Register  
Data Byte  
Condition  
34. Single-Byte Write Transfer  
8.3.6 Multiple-Byte Write and Incremental Multiple-Byte Write  
A multiple-byte data write transfer is identical to a single-byte data write transfer except that multiple data bytes  
are transmitted by the master device to the TAS2110 as shown in 35. After receiving each data byte, the  
device responds with an acknowledge bit.  
版权 © 2019, Texas Instruments Incorporated  
21  
 
 
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
Register  
35. Multi-Byte Write Transfer  
8.3.7 Single-Byte Read  
As shown in 36, a single-byte data-read transfer begins with the master device transmitting a start condition  
followed by the I2C device address and the read/write bit. For the data-read transfer, both a write followed by a  
read are actually done. Initially, a write is done to transfer the address byte of the internal memory address to be  
read. As a result, the read/write bit is set to a 0.  
After receiving the TAS2110 address and the read/write bit, the device responds with an acknowledge bit. The  
master then sends the internal memory address byte, after which the device issues an acknowledge bit. The  
master device transmits another start condition followed by the TAS2110 address and the read/write bit again.  
This time, the read/write bit is set to 1, indicating a read transfer. Next, the TAS2110 transmits the data byte from  
the memory address being read. After receiving the data byte, the master device transmits a not-acknowledge  
followed by a stop condition to complete the single-byte data read transfer.  
Repeat Start  
Condition  
Not  
Start  
Acknowledge  
Condition  
Acknowledge  
Acknowledge  
A0 ACK  
Acknowledge  
A6 A5  
A1 A0 R/W ACK A7 A6 A5 A4  
A6 A5  
A1 A0 R/W ACK D7 D6  
D1 D0 ACK  
2
2
Stop  
Condition  
I C Device Address and  
Read/Write Bit  
Register  
I C Device Address and  
Read/Write Bit  
Data Byte  
36. Single-Byte Read Transfer  
8.3.8 Multiple-Byte Read  
A multiple-byte data-read transfer is identical to a single-byte data-read transfer except that multiple data bytes  
are transmitted by the TAS2110 to the master device as shown in 37. With the exception of the last data byte,  
the master device responds with an acknowledge bit after receiving each data byte.  
Repeat Start  
Condition  
Not  
Start  
Acknowledge  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
A6  
A0 R/W ACK A7 A6 A5  
A0 ACK  
A6  
A0 R/W ACK D7  
D0 ACK D7  
D0 ACK  
2
2
Register  
Stop  
Condition  
I C Device Address and  
Read/Write Bit  
I C Device Address and  
Read/Write Bit  
First Data Byte  
Other Data Bytes  
Last Data Byte  
37. Multi-Byte Read Transfer  
8.3.9 Register Organization  
Device configuration and coefficients are stored using a page and book scheme. Each page contains 128 bytes  
and each book contains 256 pages. All device configuration registers are stored in book 0, page 0, which is the  
default setting at power up (and after a software reset). The book and page can be set by the BOOK[7:0] and  
PAGE[7:0] registers respectively.  
22  
版权 © 2019, Texas Instruments Incorporated  
 
 
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
8.3.10 Operational Modes  
8.3.10.1 Hardware Shutdown  
The device enters Hardware Shutdown mode if the SDZ pin is asserted low. In Hardware Shutdown mode, the  
device consumes the minimum quiescent current from VDD and VBAT supplies. All registers loose state in this  
mode and I2C communication is disabled.  
In normal shutdown mode if SDZ is asserted low while audio is playing, the device will ramp down volume on the  
audio, stop the Class-D switching, power down analog and digital blocks and finally put the device into Hardware  
Shutdown mode. If configured in normal with timeout shutdown mode the device will force a hard shutdown after  
a timeout of the configurable shutdown timer. Finally the device can be configured for hard shutdown and will not  
attempt to gracefully stop the audio channel.  
4. Shutdown Control  
SDZ_MODE[1:0]  
SETTING  
00  
Normal Shutdown with Timer  
(default)  
01  
10  
11  
Immediate Shutdown  
Normal Shutdown  
Reserved  
5. Shutdown Control  
SDZ_TIMEOUT[1:0]  
SETTING  
2 ms  
00  
01  
10  
11  
4 ms  
6 ms (default)  
23.8 ms  
When SDZ is released, the device will sample the AD0 and AD1 pins and enter the software shutdown mode.  
8.3.10.2 Software Shutdown  
Software Shutdown mode powers down all analog blocks required to playback audio, but does not cause the  
device to loose register state. Software Shutdown is enabled by asserting the MODE[1:0] register bits to 2'b10. If  
audio is playing when Software Shutdown is asserted, the Class-D will volume ramp down before shutting down.  
When deasserted, the Class-D will begin switching and volume ramp back to the programmed digital volume  
setting.  
8.3.10.3 Mute  
The TAS2110 will volume ramp down the Class-D amplifier to a mute state by setting the MODE[1:0] register bits  
to 2'b01. During mute the Class-D still switches, but transmits no audio content. If mute is deasserted, the device  
will volume ramp back to the programmed digital volume setting.  
8.3.10.4 Active  
In Active Mode the Class-D switches and plays back audio. Speaker voltage and current sensing are operational  
if enabled. Set the MODE[1:0] register bits to 2'b00 to enter active mode.  
8.3.10.5 Mode Control and Software Reset  
The TAS2110 mode can be configured by writing the MODE[1:0] bits.  
6. Mode Control  
MODE[1:0]  
SETTING  
Active  
00  
01  
Mute  
版权 © 2019, Texas Instruments Incorporated  
23  
 
 
 
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
6. Mode Control (接下页)  
MODE[1:0]  
SETTING  
10  
11  
Software Shutdown (default)  
Reserved  
A software reset can be accomplished by asserting the SW_RESET bit, which is self clearing. This will restore all  
registers to their default values.  
7. Software Reset  
SW_RESET  
SETTING  
Don't reset (default)  
Reset  
0
1
8.3.11 Faults and Status  
During the power-up sequence, the power-on-reset circuit (POR) monitoring the VDD and VBAT pins will hold  
the device in reset (including all configuration registers) until the supply is valid. The device will not exit hardware  
shutdown until VDD and VBAT are valid and the SDZ pin is released. Once SDZ is released, the digital core  
voltage regulator will power up, enabling detection of the operational mode. If VDD dips below the POR  
threshold, the device will immediately be forced into a reset state.  
The device also monitors the VBAT supply and holds the analog core in power down if the supply is below the  
UVLO threshold. If the TAS2110 is in active operation and a UVLO fault occurs, the analog supplies will  
immediately power down to protect the device. These faults are latching and require a transition through HW/SW  
shutdown to clear the fault. The live and latched registers will report UVLO faults.  
The device transitions into software shutdown mode if it detects any faults with the TDM clocks such as:  
• Invalid SBCLK to FSYNC ratio  
• Invalid FSYNC frequency  
• Halting of SBCLK or FSYNC clocks  
Upon detection of a TDM clock error, the device transitions into software shutdown mode as quickly as possible  
to limit the possibility of audio artifacts. Once all TDM clock errors are resolved, the device volume ramps back to  
its previous playback state. During a TDM clock error, the IRQZ pin will assert low if the clock error interrupt  
mask register bit is set low (INT_MASK[2]). The clock fault is also available for readback in the live or latched  
fault status registers (INT_LIVE[2] and INT_LTCH[2]). Reading the latched fault status register (INT_LTCH[7:0])  
clears the register.  
The TAS2110 also monitors die temperature and Class-D load current and will enter software shutdown mode if  
either of these exceed safe values. As with the TDM clock error, the IRQZ pin will assert low for these faults if  
the appropriate fault interrupt mask register bit is set low (INT_MASK[0] for over temp and INT_MASK[1] for over  
current). The fault status can also be monitored in the live and latched fault registers as with the TDM clock error.  
Die over temp and Class-D over current errors can either be latching (for example the device will enter software  
shutdown until a HW/SW shutdown sequence is applied) or they can be configured to automatically retry after a  
prescribed time. This behavior can be configured in the OTE_RETRY and OCE_RETRY register bits (for over  
temp and over current respectively). Even in latched mode, the Class-D will not attempt to retry after an over  
temp or over current error until the retry time period (1.5 s) has elapsed. This prevents applying repeated stress  
to the device in a rapid fashion that could lead to device damage. If the device has been cycled through SW/HW  
shutdown, the device will only begin to operate after the retry time period.  
The status registers (and IRQZ pin if enabled via the status mask register) also indicates limiter behavior  
including when the limiter is activity, when VBAT is below the inflection point, when maximum attenuation has  
been applied, when the limiter is in infinite hold and when the limiter has muted the audio.  
Interrupts can be queried using the INT_LIVE[9:0] and INT_LTCH[13:0] registers and correspond to the  
INT_MASK[10:0] Interrupts. The latched registers are cleared by writing the self clearing register  
INT_CLR_LTCH high.  
24  
版权 © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
The IRQZ pin is an open drain output that asserts low during unmasked fault conditions and therefore must be  
pulled up with a resistor to . An internal pull up resistor is provided in the TAS2110 and can be accessed by  
setting the IRQZ_PU register bit high. 38 below highlights the IRQZ pin circuit.  
IOVDD  
IOVDD  
IRQZ_PU  
To  
System  
Master  
IRQZ  
Interrupt  
38. IRQZ Pin  
8. Fault Interrupt Mask  
INT_MASK[10:0] BIT  
INTERRUPT  
Over Temp Error  
Over Current Error  
TDM Clock Error  
Limiter Active  
DEFAULT (1 = Mask)  
0
1
2
3
4
0
0
1
1
1
Limter Voltage < Inf  
Point  
5
6
7
8
Limiter Max Atten  
Limiter Inf Hold  
Limiter Mute  
1
1
1
0
Brown Out on VBAT  
Supply  
9
Brown Out Protection  
Active  
1
1
10  
Brown Out Power  
Down (Latched Only)  
9. IRQ Clear Latched  
INT_CLR_LTCH  
STATE  
0
1
Don't Clear  
Clear (self clearing)  
10. IRQZ Internal Pull Up Enable  
IRQZ_PU  
STATE  
Disabled (default)  
Enabled  
0
1
11. IRQZ Polarity  
IRQZ_POL  
STATE  
0
1
Active High  
Active Low (default)  
版权 © 2019, Texas Instruments Incorporated  
25  
 
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
12. IRQZ Assert Interrupt Configuration  
IRQZ_PIN_CFG[1:0]  
VALUE  
00  
01  
On any unmasked live interrupts  
On any unmasked latched  
interrupts (default)  
10  
11  
For 2-4 ms one time on any  
unmasked live interrupt event  
For 2-4 ms every 4 ms on any  
unmasked latched interrupts  
13. Retry after Over Current Event  
OCE_RETRY  
STATE  
Disabled (default)  
Enabled  
0
1
14. Retry after Over Temperature Event  
OTE_RETRY  
VALUE  
0
1
Do not retry (default)  
Retry after 1.5 s  
8.3.12 Power Sequencing Requirements  
There are no other power sequencing requirements for order of rate of ramping up or down.  
8.3.13 Digital Input Pull Downs  
Each digital input and IO has an optional weak pull down to prevent the pin from floating. Pull downs are not  
enabled during HW shutdown.  
15. Digital Input Pull Down Enables  
REGISTER BIT  
DESCRIPTION  
BIT VALUE  
STATE  
Disabled (default)  
Enabled  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
DIN_PD[0]  
Weak pull down for SBCLK.  
Disabled (default)  
Enabled  
DIN_PD[1]  
DIN_PD[2]  
DIN_PD[3]  
DIN_PD[4]  
DIN_PD[5]  
DIN_PD[7]  
Weak pull down for FSYNC.  
Weak pull down for SDIN.  
Weak pull down for SDOUT.  
Weak pull down forAD0.  
Weak pull down for AD1.  
Weak pull down for GPIO.  
Disabled (default)  
Enabled  
Disabled (default)  
Enabled  
Disabled (default)  
Enabled  
Disabled(default)  
Enabled  
Disabled  
Enabled (default)  
8.4 Device Functional Modes  
8.4.1 TDM Port  
The TAS2110 provides a flexible TDM serial audio port. The port can be configured to support a variety of  
formats including stereo I2S, Left Justified and TDM. Mono audio playback is available via the SDIN pin. The  
SDOUT pin is used to transmit sample streams including VBAT voltage, die temperature and channel gain.  
26  
版权 © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
Device Functional Modes (接下页)  
The TDM serial audio port supports up to 16 32-bit time slots at 44.1/48 kHz, 8 32-bit time slots at a 88.2/96 kHz  
sample rate and 4 32-bit time slots at a 176.4/192 kHz sample rate. The device supports 2 time slots at 32 bits in  
width and 4 or 8 time slots at 16, 24 or 32 bits in width. Valid SBCLK to FSYNC ratios are 64, 96, 128, 192, 256,  
384 and 512. The device will automatically detect the number of time slots and this does not need to be  
programmed.  
By default, the TAS2110 will automatically detect the PCM playback sample rate. This can be disabled by setting  
the AUTO_RATE register bit high and manually configuring the device.  
The SAMP_RATE register bits set the PCM audio sample rate when AUTO_RATE is enabled. The TAS2110  
employs a robust clock fault detection engine that will automatically volume ramp down the playback path if  
FSYNC does not match the configured sample rate (AUTO_RATE enabled) or the ratio of SBCLK to FSYNC is  
not supported (minimizing any audible artifacts). Once the clocks are detected to be valid in both frequency and  
ratio, the device will automatically volume ramp the playback path back to the configured volume and resume  
playback.  
When using the auto rate detection the sampling rate and SBCLK to FSYNC ration detected on the TDM bus is  
reported back on the read-only register FS_RATE and FS_RATIO respectively.  
While the sampling rate of 192 kHz is supported, it is internally down-sampled to 96 kHz. Therefore audio  
content greater than 40 kHz should not be applied to prevent aliasing. This additionally effects all processing  
blocks like BOP and limiter which should use 96 kHz fs when accepting 192 kHz audio. It is recommend to use  
PurePath™ Console 3 Software to configure the device.  
16. PCM Auto Sample Rate Detection  
AUTO_RATE  
SETTING  
Enabled (default)  
Disabled  
0
1
17. PCM Audio Sample Rates  
SAMP_RATE[2:0]  
FS_RATE(read only)  
SAMPLE RATE  
7.35kHz / 8 kHz  
14.7kHz / 16kHz  
22.05 kHz / 24 kHz  
29.4 kHz / 32 kHz  
000  
001  
010  
011  
100  
000  
001  
010  
011  
100  
44.1 kHz / 48 kHz  
(default)  
101  
110  
111  
101  
110  
111  
88.2 kHz / 96 kHz  
176.4 kHz / 192 kHz  
Reserved  
18. PCM SBCLK to FSYNC Ratio Rates  
FS_RATIO[3:0]  
0x0-0x3  
SAMPLE RATE  
Reserved  
0x4  
64  
0x5  
96  
128  
0x6  
0x7  
192  
0x8  
256  
0x9  
384  
0xA  
512  
0xB-0xE  
0xF  
Reserved  
Error Condition  
版权 © 2019, Texas Instruments Incorporated  
27  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
39 and 40 below illustrates the receiver frame parameters required to configure the port for playback. A  
frame begins with the transition of FSYNC from either high to low or low to high (set by the FRAME_START  
register bit). FSYNC and SDIN are sampled by SBCLK using either the rising or falling edge (set by the  
RX_EDGE register bit). The RX_OFFSET register bits define the number of SBCLK cycles from the transition of  
FSYNC until the beginning of time slot 0. This is typically set to a value of 0 for Left Justified format and 1 for an  
I2S format.  
SBCLK  
FSYNC  
MSB  
MSB-1  
LSB+1  
LSB  
SDIN  
RX_OFFSET  
RX_WLEN  
RX_SLEN  
39. TDM RX Time Slot with Left Justification  
SBCLK  
FSYNC  
SDIN  
Slot 0  
Bit 31  
Slot0  
Bit 0  
Slot 1  
Bit 31  
Slot1  
Bit 0  
Slot2  
Bit 31  
RX_OFFSET  
Time Slot 0  
Time Slot 1  
40. TDM RX Time Slots  
19. TDM Start of Frame Polarity  
FRAME_START  
POLARITY  
0
1
Low to High on FSYNC(1)  
High to Low on FSYNC (default)(2)  
(1) When Low to High is used RX_EDGE and TX_EDGE cannot both  
simultaneously be set to rising edge.  
(2) When High to Low is used RX_EDGE and TX_EDGE cannot both  
simultaneously be set to falling edge.  
20. TDM RX Capture Polarity  
RX_EDGE  
FSYNC AND SDIN CAPTURE  
EDGE  
0
1
Rising edge of SBCLK (default)  
Falling edge of SBCLK  
21. TDM RX Start of Frame to Time Slot 0 Offset  
RX_OFFSET[4:0]  
SBCLK CYCLES  
0x00  
0x01  
0x02  
...  
0
1 (default)  
2
...  
0x1E  
0x1F  
30  
31  
28  
版权 © 2019, Texas Instruments Incorporated  
 
 
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
The RX_SLEN[1:0] register bits set the length of the RX time slot. The length of the audio sample word within the  
time slot is configured by the RX_WLEN[1:0] register bits. The RX port will left justify the audio sample within the  
time slot by default, but this can be changed to right justification via the RX_JUSTIFY register bit. The TAS2110  
supports mono and stereo down mix playback ([L+R]/2) via the left time slot, right time slot and time slot  
configuration register bits (RX_SLOT_L[3:0], RX_SLOT_R[3:0] and RX_SCFG[1:0] respectively). By default the  
device will playback mono from the time slot equal to the I2C base address offset for playback. The  
RX_SCFG[1:0] register bits can be used to override the playback source to the left time slot, right time slot or  
stereo down mix set by the RX_SLOT_L[3:0] and RX_SLOT_R[3:0] register bits.  
If time slot selections places reception either partially or fully beyond the frame boundary, the receiver will return  
a null sample equivalent to a digitally muted sample.  
22. TDM RX Time Slot Length  
RX_SLEN[1:0]  
TIME SLOT LENGTH  
16-bits  
00  
01  
10  
11  
24-bits  
32-bits (default)  
reserved  
23. TDM RX Sample Word Length  
RX_WLEN[1:0]  
LENGTH  
16-bits  
00  
01  
10  
11  
20-bits  
24-bits (default)  
32-bits  
24. TDM RX Sample Justification  
RX_JUSTIFY  
JUSTIFICATION  
Left (default)  
Right  
0
1
25. TDM RX Time Slot Select Configuration  
RX_SCFG[1:0]  
CONFIG ORIGIN  
00  
Mono with Time Slot equal to I2C  
Address Offset (default)  
01  
10  
10  
Mono Left Channel  
Mono Right Channel  
Stereo Down Mix [L+R]/2  
26. TDM RX Left Channel Time Slot  
RX_SLOT_L[3:0]  
TIME SLOT  
0x0  
0x1  
...  
0xE  
0xF  
0 (default)  
1
...  
14  
15  
27. TDM RX Right Channel Time Slot  
RX_SLOT_R[3:0]  
TIME SLOT  
0
0x0  
0x1  
1 (default)  
版权 © 2019, Texas Instruments Incorporated  
29  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
27. TDM RX Right Channel Time Slot (接下页)  
RX_SLOT_R[3:0]  
TIME SLOT  
...  
0xE  
0xF  
...  
14  
15  
The TDM port can transmit a number sample streams on the SDOUT pin including, VBAT voltage, die  
temperature and channel gain. below illustrates the alignment of time slots to the beginning of a frame and how a  
given sample stream is mapped to time slots. Either the rising or falling edge of SBCLK can be used to transmit  
data on the SDOUT pin, which can be configured by setting the TX_EDGE register bit. The TX_OFFSET register  
defines the number SBCLK cycles between the start of a frame and the beginning of time slot 0. This would  
typically be programmed to 0 for Left Justified format and 1 for I2S format. The TDM TX can either transmit logic  
0 or Hi-Z depending on the setting of the TX_FILL register bit setting. An optional bus keeper will weakly hold the  
state of SDOUT when all devices driving are Hi-Z. Since only one bus keeper is required on SDOUT, this feature  
can be disabled via the TX_KEEPEN register bit. The bus-keeper can additionally be configured to be enabled  
for only 1LSB cycle or always using TX_KEEPLN and to drive the full or half cycle of the LSB using  
TX_KEEPCY.  
Each sample stream is composed of either one or two 8-bit time slots.. The VBAT voltage stream is 10-bit  
precision, and can either be transmitted left justified in a 16-bit word (using two time slots) or can be truncated to  
8-bits (the top 8 MSBs) and be transmitted in a single time slot. This is configured by setting VBAT_SLEN  
register bit. The Die temperature and gain are both 8-bit precision and are transmitted in a single time slot.  
41. TDM Port TX Diagram  
28. TDM TX Transmit Polarity  
TX_EDGE  
SDOUT TRANSMIT EDGE  
Rising edge of SBCLK  
0
1
Falling edge of SBCLK (default)  
29. TDM TX Start of Frame to Time Slot 0 Offset  
TX_OFFSET[2:0]  
SBCLK CYCLES  
0x0  
0x1  
0x2  
...  
0x6  
0x7  
0
1 (default)  
2
...  
6
7
30. TDM TX Unused Bit Field Fill  
TX_FILL  
SDOUT UNUSED BIT FIELDS  
0
1
Transmit 0  
Transmit Hi-Z (default)  
30  
版权 © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
31. TDM TX SDOUT Bus Keeper Enable  
TX_KEEPEN  
SDOUT BUS KEEPER  
Disable bus keeper  
0
1
Enable bus keeper (default)  
32. TDM TX SDOUT Bus Keeper Length  
TX_KEEPLN  
SDOUT BUS KEEPER ENABLED  
FOR  
0
1
1 LSB cycle (default)  
Always  
33. TDM TX SDOUT Bus Keeper LSB Cycle  
TX_KEEPCY  
SDOUT BUS KEEPER DRIVEN  
full-cycle (default)  
0
1
half-cycle  
The time slot register for each sample stream defines where the MSB transmission begins. Each sample stream  
can be individually enabled or disabled. This is useful to manage limited TDM bandwidth since it may not be  
necessary to transmit all streams for all devices on the bus.  
It is important to ensure that time slot assignments for actively transmitted sample streams do not conflict. This  
will produce unpredictable transmission results in the conflicting bit slots  
If time slot selections place transmission beyond the frame boundary, the transmitter will truncate transmission at  
the frame boundary.  
It is recommended to keep the following slot ordering:  
VBAT_SLOT<TEMP_SLOT<GAIN_SLOT.  
34. TDM VBAT Time Slot  
VBAT_SLOT[5:0]  
SLOT  
0x00  
0x01  
...  
0
1
...  
0x04  
...  
4 (default)  
...  
62  
63  
0x3E  
0x3F  
35. TDM VBAT Time Slot Length  
VBAT_SLEN  
SLOT LENGTH  
Truncate to 8-bits (default)  
Left justify to 16-bits  
0
1
36. TDM VBAT Transmit Enable  
VBAT_TX  
STATE  
Disabled (default)  
Enabled  
0
1
版权 © 2019, Texas Instruments Incorporated  
31  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
37. TDM Temp Sensor Time Slot  
TEMP_SLOT[5:0]  
SLOT  
0x00  
0x01  
...  
0
1
...  
0x05  
...  
5 (default)  
...  
62  
63  
0x3E  
0x3F  
38. TDM Temp Sensor Transmit Enable  
TEMP_TX  
STATE  
Disabled (default)  
Enabled  
0
1
The following sample streams are part of the Inter Chip Limiter Alignment system. These data streams can be  
routed over the audio TDM bus.  
39. TDM Limiter Gain Reduction Time Slot  
GAIN_SLOT[5:0]  
SLOT  
0x00  
0x01  
...  
0
1
...  
0x06  
...  
6 (default)  
...  
62  
63  
0x3E  
0x3F  
40. TDM Limiter Gain Reduction Transmit Enable  
GAIN_TX  
STATE  
Disabled (default)  
Enabled  
0
1
41. TDM Boost Sync Time Slot  
BST_SLOT[5:0]  
SLOT  
0x00  
0x01  
...  
0
1
...  
0x07  
...  
7 (default)  
...  
62  
63  
0x3E  
0x3F  
42. TDM Boost Sync Enable  
BST_TX  
STATE  
Disabled (default)  
Enabled  
0
1
32  
版权 © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
8.4.2 Playback Signal Path  
8.4.2.1 High Pass Filter  
Excessive DC and low frequency content in audio playback signal can damage loudspeakers. The TAS2110  
employs a high-pass filter (HPF) to prevent this from occurring for the PCM playback path. The HPF can be  
disabled using register HPF_EN. The HPF Bi-Quad filter coefficients can be changed from the default 2 Hz using  
the HPFC_N0, HPFC_N1, HPFC_D1 registers using the equation [N, D] = butter(1, fc/(fs/2), 'high');  
round(N(0)*2^31);. These coefficients should be calculated and set using PurePath™ Console 3 Software.  
43. HPF Enable  
HPF_EN  
STATE  
Enabled (default)  
Disabled  
0
1
8.4.2.2 Digital Volume Control and Amplifier Output Level  
The gain from audio input to speaker terminals is controlled by setting the amplifier’s output level and digital  
volume control (DVC).  
Amplifier output level settings are presented in dBV (dB relative to 1 Vrms) with a full scale digital audio input (0  
dBFS) and the digital volume control set to 0 dB. It should be noted that these levels may not be achievable  
because of analog clipping in the amplifier, so they should be used to convey gain only. 44 below shows gain  
settings that can be programmed via the AMP_LEVEL register.  
44. Amplifier Output Level Settings  
FULL SCALE OUTPUT  
AMP_LEVEL[4:0]  
dBV  
VPEAK (V)  
3.55  
0x00  
0x01  
0x02  
...  
8
8.5  
3.76  
9
...  
3.99  
...  
0x10  
...  
16  
8.92  
...  
...  
0x13  
0x14  
0x15-0x1F  
17.5  
18  
10.60  
11.23  
Reserved  
Reserved  
公式 1 calculates the amplifiers output voltage.  
V
= Input + A  
+ A  
dBV  
AMP  
AMP  
dvc  
where  
VAMP is the amplifier output voltage in dBV  
Input is the digital input amplitude in dB with respect to 0 dBFS  
Advc is the digital volume control setting, 0 dB to -100 dB in 0.5 dB steps  
AAMP is the amplifier output level setting in dBV  
(1)  
Settings greater than 0xC8 are interpreted as mute. When a change in digital volume control occurs, the device  
ramps the volume to the new setting based on the DVC_RAMP register bits. If DVC_RAMP is set to 0x0000  
0000, volume ramping is disabled. This can be used to speed up startup, shutdown and digital volume changes  
when volume ramping is handled by the system master.  
The digital voltage control registers DVC_PCM represent the volume in a 2.X format. To calculate the value to  
write to these 4 registers apply the following formula to the desired dB DVC_PCM = round(10^(dB/20)*2^30).  
A volume ramp rate can be set using DVC_RAMP and represents a rate in 1.X format. To calculate the value to  
write to these 4 registers apply the following formula DVC_RAMP = round((1-exp(-1/(0.2*fs*time in  
seconds)))*2^31).  
版权 © 2019, Texas Instruments Incorporated  
33  
 
 
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
45. PCM Digital Volume Control  
DVC_PCM[31:0]  
0x0000 0D43 (MIN)  
...  
VOLUME (dB)  
-110  
...  
0x4000 0000  
...  
0 (default)  
...  
2
0x5092 BEE4 (MAX)  
46. Digital Volume Ramp Rate  
DVC_RAMP[31:0]  
0x0000 0D43  
RAMP RATE @ 48kHz (s)  
0
...  
0x7FFC 963B  
1 s  
8.4.2.3 Auto-Mute During Idle Channel Mode  
Device will stop playing audio if the input audio level drops below the programmable threshold for a  
programmable timer window. If this behavior is not preferred, threshold level can be kept at very low levels.  
8.4.2.4 Auto-Start/Stop on Audio Clocks  
The TAS2110 can enter low power software shutdown when the TDM clocks are stopped instead of going into  
clock error. The device will resume operation when the clocks resume.  
8.4.2.5 Supply Tracking Limiters with Brown Out Prevention  
The TAS2110 monitors battery voltage (VBAT) and along with the audio signal to automatically decrease gain  
when the audio signal peaks exceed a programmable threshold. This helps prevent clipping and extends  
playback time through end of charge battery conditions. The limiters threshold can be configured to track the  
monitored voltage below a programmable inflection point with a programmable slope. A minimum threshold sets  
the limit of threshold reduction from the voltage tracking. Configurable attack rate, hold time and release rate are  
provided to shape the dynamic response of each limiter. If the ICLA is enabled the actual attenuation is based on  
the ICLA configuration using the calculated attenuation value of all devices on the selected ICLA bus.  
BOP ACTIVE PHASE (BOP_GAIN ≠ 0dB)  
PAUSE LIMITER UPDATES  
ICLA_MODE  
LIMITER  
ICLA  
CALC  
ATTACK/  
RELEASE  
ICLA  
1
0
LIMITER  
ATTACK/  
RELEASE  
ICLA_EN  
LIMITER  
PUBLISHED ON  
ICLA  
LIM_MAX_ATN  
LIM_MAX_ATN  
+
+
ATTNUATION  
APPLIED  
BOP ATTACK/  
RELEASE  
VBATT<BOP_TH  
BOP  
ATTN  
42. Limiter and Brown Out Prevention Interaction Diagram  
A Brown Out Prevention (BOP) feature provides a priority input to provide a fast response to transient dips in the  
battery supply (VBAT) which at end of charge conditions that can cause system level brown out. When the  
selected supply dips below the brown-out threshold the BOP will begin reducing gain at a configurable attack  
rate. When the VBAT supply rises above the brownout threshold, the BOP will begin to release after the  
programmed hold time. During a BOP event the limiter updates will be paused. This is to prevent a limiter from  
releasing during a BOP event. The VBAT limiter is enabled by setting the LIMB_EN bit high.  
34  
版权 © 2019, Texas Instruments Incorporated  
 
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
47. VBAT Tracking Limiter Enable  
LIMB_EN  
VALUE  
Disabled (default)  
Enabled  
0
1
The limiter has a configurable attack rate, hold time and release rate, which are available via the  
LIMB_ATK_RT[2:0], LIMB_HLD_TM[2:0], LIMB_RLS_RT[2:0] register bits. The limiter attack and release step  
sizes can be set by configuring the LIMB_ATK_ST[1:0] and LIMB_RLS_ST[1:0] register bits. The rates are based  
on the number of audio samples and actual time values can be calculated by multiplying by 1/fs. For example the  
attack rate of 4 samples at 48 ksps would be approximately 83 µs.  
48. Limiter Attack Rate  
LIMB_ATK_RT[2:0]  
ATTACK RATE  
(samples/step)  
ATTACK RATE @ 48  
ksps (~µs)  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
1
20  
42  
2 (default)  
4
8
83  
167  
333  
666  
1300  
2700  
16  
32  
64  
128  
49. Limiter Hold Time  
LIMB_HLD_TM[2:0]  
HOLD TIME  
(samples)  
HOLD TIME @  
48ksps (ms)  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0
1920  
0
40  
4800  
100  
200  
400  
1000  
2000  
4000  
9600  
19200  
48000  
96000 (default)  
192000  
50. Limiter Release Rate  
LIMB_RLS_RT[2:0]  
Release Rate  
(samples/step)  
RELEASE RATE @  
48 ksps (ms)  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
10  
0.2  
0.4  
20  
40  
0.8  
80  
1.7  
160  
3.3  
320  
6.7  
640 (default)  
1280  
13.3  
26.7  
51. Limiter Attack Step Size  
LIMB_ATK_ST[1:0]  
STEP SIZE (dB)  
00  
01  
0.25  
0.5 (default)  
版权 © 2019, Texas Instruments Incorporated  
35  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
51. Limiter Attack Step Size (接下页)  
LIMB_ATK_ST[1:0]  
STEP SIZE (dB)  
10  
11  
1
2
52. Limiter Release Step Size  
LIMB_RLS_ST[1:0]  
STEP SIZE (dB)  
00  
01  
10  
11  
0.25  
0.5 (default)  
1
2
A maximum level of attenuation applied by the limiters and brown out prevention feature is configurable via the  
LIM_MAX_ATN register. This attenuation limit is shared between the features. For instance, if the maximum  
attenuation is set to 6 dB and the limiters have reduced gain by 4 dB, the brown out prevention feature will only  
be able to reduce the gain further by another 2 dB. If the limiter or brown out prevention feature is attacking and  
it reaches the maximum attenuation, gain will not be reduced any further.  
The limiter max attenuation LIM_MAX_ATN represent the limit in a 1.X format. To calculate the value to write to  
the 4 registers by apply the following formula to the desired dB using equation LIMB_MAX_ATN = round(10^(-  
dB/20)*2^31).  
53. Limiter Max Attenuation  
LIM_MAX_ATN[31:0]  
0x7214 82C0  
ATTENUATION (dB)  
-1  
...  
...  
0x2D6A 866F  
...  
-9 (default)  
...  
0x1326 DD71  
-16.5  
The limiter begins reducing gain when the output signal level is greater than the limiter threshold. The limiter can  
be configured to track selected supply below a programmable inflection point with a minimum threshold value. 图  
43 below shows the limiter configured to limit to a constant level regardless of the selected supply level. To  
achieve this behavior, set the limiter maximum threshold to the desired level using LIM_TH_MAX. Set the limiter  
inflection point using LIM_INF_PT below the minimum allowable supply setting. The limiter minimum threshold  
register LIM_TH_MIN does not impact limiter behavior in this use case.  
LIM_TH_MAX  
Brown  
Out  
BOP_TH  
VSUP (V)  
43. Limiter with Fixed Threshold  
36  
版权 © 2019, Texas Instruments Incorporated  
 
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
The VBAT limiter threshold max LIMB_TH_MAX and min LIMB_TH_MIN registers represent the limit in a 5.X  
format. To calculate the value to write to the 4 registers by apply the following formula to the desired threshold  
voltage using the equation LIMB_TH_MAX or LIMB_TH_MIN = round(Volts*2^27).  
54. VBAT Limiter Maximum Threshold  
LIMB_TH_MAX[31:0]  
0x1400 0000  
THRESHOLD (V)  
2.5  
...  
...  
0x4800 0000  
...  
9 (default)  
...  
0x7C00 0000  
15.5  
55. VBAT Limiter Minimum Threshold  
LIMB_TH_MIN[31:0]  
0x1400 0000  
THRESHOLD (V)  
2.5  
...  
...  
0x2000 0000  
...  
4 (default)  
...  
0x7C00 0000  
15.5  
The VBAT limiter inflection point LIMB_INF_PT represent the limit in a format. To calculate the value to write to  
the 4 registers by apply the following formula to the desired infection voltage using the equation LIMB_INF_PT =  
round(Volts*2^).  
56. VBAT Limiter Inflection Point  
LIMB_INF_PT[31:0]  
0x2000 0000  
THRESHOLD (V)  
2
...  
...  
0x34CC CCCD  
...  
3.3 (default)  
...  
6
0x3000 0000  
44 shows how to configure the limiter to track selected supply below a threshold without a minimum threshold.  
Set the LIM_TH_MAX register to the desired threshold and LIM_INF_PT register to the desired inflection point  
where the limiter will begin reducing the threshold with the selected supply. The default value of 1 V/V will reduce  
the threshold 1 V for every 1 V of drop in the supply voltage. More aggressive tracking slopes can be  
programmed if desired. Program the LIM_TH_MIN below the minimum the selected supply to prevent the limiter  
from having a minimum threshold reduction when tracking the selected supply.  
The VBAT limiter tracking slope LIMB_SLOPE[31:0] represent the limit in a format. To calculate the value to write  
to the 4 registers by apply the following formula to the desired infection voltage using equation LIMB_SLOPE =  
round(slope(V/V)*2^).  
版权 © 2019, Texas Instruments Incorporated  
37  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
Inflection  
Point  
LIM_TH_MAX  
slope  
Brown  
Out  
BOP_TH LIM_INF_PT  
VSUP (V)  
44. Limiter with Inflection Point  
57. Limiter VBAT Tracking Slope  
LIMB_SLOPE[31:0]  
SLOPE (V/V)  
0x1000 0000  
...  
1 (default)  
...  
4
0x4000 0000  
To achieve a limiter that tracks the selected supply below a threshold, configure the limiter as explained in the  
previous example, except program the LIM_TH_MIN register to the desired minimum threshold. This is shown in  
45 below.  
Inflection  
Point  
LIM_TH_MAX  
slope  
LIM_TH_MIN  
Brown  
Out  
BOP_TH LIM_INF_PT  
VSUP (V)  
45. Limiter with Inflection Point and Minimum Threshold  
38  
版权 © 2019, Texas Instruments Incorporated  
 
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
The TAS2110 also employs a Brown Out Prevention (BOP) feature that serves as a low latency priority input to  
the limiter engine that begins attacking the VBAT supply dipping below the programmed BOP threshold. This  
feature can be enabled by setting the BOP_EN register bit high. It should be noted that the BOP feature is  
independent of the limiter and will function if enabled, even if the limiter is disabled. The BOP threshold is  
configured by setting the threshold with register bits BOP_TH.  
AUDIO_IN  
AUDIO_OUT  
Limiter  
&
Brown  
Out  
Prevention  
Temp  
Sensor  
SAR  
ADC  
VBAT  
SETTINGS  
46. Limiter Block Diagram  
58. Brown Out Prevention Enable  
BOP_EN  
VALUE  
Disabled  
0
1
Enabled (default)  
The Brownout prevention threshold BOP_TH represent a threshold in a 4.X format. To calculate the value to  
write to the 4 registers by apply the following formula to the desired brownout threshold using equation BOP_TH  
= round(Volts*2^28).  
59. Brown Out Prevention Threshold  
BOP_TH[31:0]  
0x0000 000 - 0x1FFF FFFF  
0x2000 0000  
...  
VBAT THRESHOLD (V)  
Reserved  
2.5  
...  
0x2E66 6666  
...  
2.9 (default)  
...  
4
0x2000 0000  
0x2000 0001 -  
0xFFFF FFFF  
Reserved  
The BOP feature has a separate attack rate BOP_ATK_RT, attack step size BOP_ATK_ST and hold time  
BOP_HLD_TM from the battery tracking limiter. The BOP feature uses the LIMB_RLS_RT register setting to  
release after a brown out event. The rates are based on the number of audio samples and actual time values  
can be calculated by multiplying by 1/fs. For example the attack rate of 4 samples at 48 ksps would be  
approximately 83 µs.  
60. Brown Out Prevention Attack Rate  
BOP_ATK_RT[2:0]  
ATTACK RATE  
(samples/step)  
ATTACK RATE @ 48  
ksps (~µs)  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
1
2
20  
42  
4
83  
8
167  
333  
666  
16  
32  
版权 © 2019, Texas Instruments Incorporated  
39  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
60. Brown Out Prevention Attack Rate (接下页)  
BOP_ATK_RT[2:0]  
ATTACK RATE  
(samples/step)  
ATTACK RATE @ 48  
ksps (~µs)  
0x6  
0x7  
64  
1300  
2700  
128  
61. Brown Out Prevention Attack Step Size  
BOP_ATK_ST[1:0]  
STEP SIZE (dB)  
00  
01  
10  
11  
0.5  
1 (default)  
1.5  
2
62. Brown Out Prevention Hold Time  
BOP_HLD_TM[2:0]  
HOLD TIME (ms)  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0
10  
25  
50  
100  
250  
500 (default)  
1000  
The TAS2110 can also shutdown the device when a brown out event occurs if the BOP_MUTE register bit is set  
high. For the device to continue playing audio again, the device must transition through a SW/HW shutdown  
state. Setting the BOP_INF_HLD high will cause the limiter to stay in the hold state (for example never release)  
after a cleared brown out event until either the device transitions through a mute or SW/HW shutdown state or  
the register bit BOP_HLD_CLR is written to a high value (which will cause the device to exit the hold state and  
begin releasing). This bit is self clearing and will always readback low. 47 below illustrates the entering and  
exiting from a brown out event.  
VBAT  
BOP Thresh  
BOP Active  
BOP  
Attacking  
BOP  
Holding  
Limiter Releasing  
(BOP Inactive)  
BOP Inactive  
BOP Inactive  
BOP Mode  
47. Brown Out Prevention Event  
63. Shutdown on Brown Out Event  
BOP_MUTE  
VALUE  
0
1
Don't Shutdown (default)  
Mute then shutdown  
40  
版权 © 2019, Texas Instruments Incorporated  
 
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
64. Infinite Hold on Brown Out Event  
BOP_INF_HLD  
VALUE  
0
1
Use BOP_HLD_TM after Brown  
Out event (default)  
Do not release until  
BOP_HLD_CLR is asserted high  
If the TAS2110 is configured to hold the brownout event until cleared the attenuation will remain until  
BOP_HLD_CLR register clear is performed. This should be performed by setting the BOP_HLR_CLR bit high,  
reading the register and then setting the BOP_HLD_CLR back to low.  
65. BOP Infinite Hold Clear  
BOP_HLD_CLR  
VALUE  
Don't clear (default)  
Clear event  
0
1
A hard brownout level can be set to shutdown the TAS2110 if the BOP cannot mitigate the drop in battery  
voltage VBAT. This will shutdown the device and should not be used if the BOP_MUTE is enable. The brownout  
shutdown will only function if brownout engine is enabled using BOP_EN.  
66. Brown Out Shutdown Enable  
BOSD_EN  
VALUE  
Disabled (default)  
Enabled  
0
1
The Brownout prevention shutdown threshold BOSD_TH represent a threshold in a 5.X format. To calculate the  
value to write to the 4 registers by apply the following formula to the desired brownout threshold using equation  
BOSD_TH = round(Volts*2^27).  
67. Brown Out Shutdown Threshold  
BOSD_TH[31:0]  
0x2000 0000  
VBAT THRESHOLD (V)  
2.5  
...  
...  
2.7 (default)  
...  
0x2B33 3333  
...  
0x3FFF FFFF  
3.99  
8.4.2.6 Inter Chip Limiter Alignment  
8.4.2.6.1 TDM Mode  
The TAS2110 supports alignment of limiter (including brown out prevention) dynamics across devices that share  
the same TDM bus. This ensures consistent gain between channels during limiting or brown out events since  
these dynamics are dependent on audio content, which can vary across channels. Each device can be  
configured to align to a specified number of other devices, which allows creation of groupings of devices that  
align only to each other. All devices in the same group must use the same setting.  
Limiter activity is communicated via the limiter gain reduction parameter that can be optionally transmitted by  
each device on SDOUT in an 8-bit time slot. Gain reduction should be transmitted in adjacent time slots for all  
devices that are to be aligned beginning with the first slot that is specified by the ICLA_SLOT register. The order  
of the devices is not important as long as they are adjacent. The time slot for limiter gain reduction is configured  
by the GAIN_SLOT register and enabled by the GAIN_TX register bit.  
版权 © 2019, Texas Instruments Incorporated  
41  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
The ICLA_SEN register specify which time slots should be listened to for gain alignment. This allows any number  
of devices between two and eight to be grouped together. At least two of these bits should be enabled for  
alignment to take place. The ICLA_USE_MAX register bit determines whether alignment is based on the  
maximum or minimum gain reduction value from the group of enabled devices. If the BIL_ICLA_EN is enabled  
the # of slots will be double what is selected. For example if time-slot 0,1, and 2 are used for gain alignment.  
Then time-slots 3, 4, and 5 will be used for brownout-current alignment.  
To enable the inter chip limiter alignment feature, the ICLA_GAIN_EN register bit should be asserted high and all  
devices should be configured with identical limiter and brown out prevention settings. Limiter gain reduction  
transmission should be enabled on all devices as described above.  
68. Inter Chip Limiter Alignment  
ICLA_GAIN_EN  
VALUE  
Disabled (default)  
Enabled  
0
1
69. ICLA Gain Alignment Configuration  
ICLA_MODE  
VALUE  
00  
Use the maximum gain reduction  
of the ICLA group (default)  
01  
Use the minimum gain reduction of  
the ICLA group  
10-11  
Reserved  
70. Inter Chip Limiter Gain Alignment Starting Time  
Slot  
ICLA_GAIN_SLOT[5:0]  
0x00  
STARTING TIME SLOT  
Time Slot 0  
Time Slot 1  
Time Slot 2  
...  
0x01  
0x02  
...  
0x3F  
Time Slot 63  
71. Inter Chip Limiter Alignment Time Slots Enable  
REGISTER BIT  
DESCRIPTION  
BIT VALUE  
STATE  
Disabled (default)  
Enabled  
0
1
0
1
0
1
0
1
Time Slot = ICLA_GAIN_SLOT. When enabled, the limiter will  
ICLA_GAIN_SEN[0]  
include this time slot in the alignment group.  
Disabled (default)  
Enabled  
Time Slot = ICLA_GAIN_SLOT + 1. When enabled, the limiter  
ICLA_GAIN_SEN[[1]  
ICLA_GAIN_SEN[[2]  
ICLA_GAIN_SEN[3]  
will include this time slot in the alignment group.  
Disabled (default)  
Enabled  
Time Slot = ICLA_GAIN_SLOT + 2. When enabled, the limiter  
will include this time slot in the alignment group.  
Disabled (default)  
Enabled  
Time Slot = ICLA_GAIN_SLOT + 3. When enabled, the limiter  
will include this time slot in the alignment group.  
8.4.2.7 Class-D Settings  
The TAS2110 Class-D amplifier supports spread spectrum PWM modulation, which can be enabled by setting  
the AMP_SS register bit high. This can help reduce EMI in some systems.  
72. Low EMI Spread Spectrum Mode  
AMP_SS  
SPREAD SPECTRUM  
Disabled  
0
1
Enabled (default)  
42  
版权 © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
By default the Class-D amplifier's switching frequency is based on the device's trimmed internal oscillator. To  
synchronize switching to the audio sample rate, set the CLASSD_SYNC register bit high. When the Class-D is  
synchronized to the audio sample rate, the RATE_RAMP register bit must be set based whether the audio  
sample rate is based on a 44.1 kHz or 48 kHz frequency. For 44.1, 88.2 and 176.4 kHz, set this bit high. for 48,  
96 and 192 kHz, set this bit low. This ensures that the internal ramp generator has the appropriate slope.  
73. Class-D Synchronization Mode  
CLASSD_SYNC  
SYNCHRONIZATION MODE  
0
1
Not synchronized to audio clocks  
(default)  
Synchronized to audio clocks  
74. Sample Rate for Class-D Synchronized Mode  
RAMP_RATE  
PLAYBACK SAMPLE RATE  
multiples of 48 kHz(default)  
multiples of 44.1 kHz  
0
1
8.4.3 SAR ADC  
A 10-bit SAR ADC monitors VBAT voltage VBAT_CNV and die temperature TMP_CNV. VBAT voltage  
conversions are also used by the limiter and brown out prevention features.  
TEMP SENSOR  
SAR  
ADC  
VBAT  
48. SAR Block Diagram  
Actual VBAT voltage is calculated by dividing the VBAT_CNV register by 64. Actual die temperature is calculated  
by subtracting 93 from TMP_CNV register. The battery voltage VBAT can be filtered using VBAT_FLT register  
but will increase the latency. The VBAT_CNV registers should be read VBAT_MSB followed by VBAT_LSB.  
75. VBAT Filtering  
VBAT_FLT[0]  
FILTER POLE  
100 kHz (default)  
Bypass  
0
1
76. ADC VBAT Voltage Conversion  
VBAT_CNV[9:0]  
VBAT VOLTAGE (V)  
0x000  
0x001  
...  
0 V  
0.0156 V  
...  
0x100  
...  
4.0 V  
...  
0x17F  
0x180  
5.9844 V  
6.0 V  
77. ADC Die Temperature Conversion  
TMP_CNV[7:0]  
DIE TEMPERATURE (°C)  
0x00-0x52  
0x53  
Invalid  
-40 °C  
版权 © 2019, Texas Instruments Incorporated  
43  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
77. ADC Die Temperature Conversion (接下页)  
TMP_CNV[7:0]  
DIE TEMPERATURE (°C)  
...  
...  
0x76  
...  
25 °C  
...  
0xF3  
150 °C  
Invalid  
0xF4-0xFF  
8.4.4 Boost  
The TAS2110 internal processing algorithm automatically enables the boost when needed. A look-ahead  
algorithm monitors the battery voltage and the digital audio stream. When the speaker output approaches the  
battery voltage the boost is enabled in-time to supply the required speaker output voltage. When the boost is no  
longer required it is disabled and bypassed to maximize efficiency. The boost can be configured in one of two  
modes. The first is low in-rush (Class-G) supporting only boost on-off and has the lowest in-rush current. The  
second is high-efficiency (Class-H) where the boost voltage level is adjusted to a value just above what is  
needed. This mode is more efficient but has a higher in-rush current to quickly transition the levels. This can be  
configured using 78.  
Class-G  
Class-H  
Time  
49. Boost Mode Signal Tracking Example  
78. Boost Mode  
BST_MODE[1:0]  
BOOST MODE  
Class-H - High efficiency (default)  
Class-G - Low in-rush  
Always On  
00  
01  
10  
11  
Always Off - Pass-through  
The boost can be enabled and disabled using BST_EN register. When driving the Class-D amplifier using an  
external supply through the PVDD pin, the boost should be disabled and the VBST pin can be left floating. Do  
not drive an external voltage on the VBST pin. When suppling and external PVDD voltage the VBAT voltage  
must also be supplied to the device. While VBAT supply must be present it will not carry current to the speaker  
load.  
79. Boost Enable  
BST_EN  
BOOST IS  
Disabled  
0
1
Enabled (default)  
80. Active Mode PFM Lower Frequency Limit  
BST_PFML[1:0]  
LOWER LIMIT (Hz)  
No lower limit  
25 kHz  
00  
01  
10  
11  
50 kHz (default)  
100 kHz  
44  
版权 © 2019, Texas Instruments Incorporated  
 
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
The boost has a soft-start to limit in-rush current during the initial charge. The current limit and soft-start timer are  
configurable to adjust to system component selection.  
81. Soft-Start Current Limit  
BST_SSL[1:0]  
CURRENT LIMIT (A)  
00  
01  
10  
11  
Disabled - Boost Normal Limit  
1.0 A  
1.5 A (default)  
2 A  
82. Class-G Soft-Start Timer  
BST_GSST[1:0]  
TIMEOUT (s)  
1 * BST_HSTT  
00  
01  
10  
11  
2 * BST_HSTT  
4 * BST_HSTT(default)  
8 * BST_HSTT  
83. Class-H Soft-Start Timer  
BST_HSST[3:0]  
TIMEOUT (s)  
9 µS  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
18 µS  
36 µS  
54 µS  
72 µS  
90 µS  
108 µS  
135 µS (default)  
162 µS  
198 µS  
252 µS  
342 µS  
477 µS  
612 µS  
792 µS  
990 µS  
The boost inductor and decoupling capacitor range needs to be specified using BST_IR and BST_LR registers.  
These setting optimize the boost to ensure current limit accuracy and avoid clipping in class-H operation.  
84. Boost Inductor Range  
BST_IR[1:0]  
INDUCTANCE (H)  
< 0.6 µH  
00  
01  
10  
11  
0.6 µH-1.3 µH (default)  
1.3 µH - 2.5 µH  
Reserved  
85. Boost Load Regulation  
BST_LR  
VALUE  
Reserved  
00  
01  
3A/V; load regulation = 1V (default)  
版权 © 2019, Texas Instruments Incorporated  
45  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
85. Boost Load Regulation (接下页)  
BST_LR  
VALUE  
2A/V; load regulation = 1.5V  
Reserved  
10  
11  
The maximum boost voltage regulation is set by BST_VREG. When operating in class-G mode the boost when  
needed will be at this voltage. In class-H mode of operation the boost voltage is automatically selected based on  
the audio signal but, will not exceed this set value.  
The peak current limits the boost current drawn from the VBAT supply. This setting allows flexibility in the  
inductor selection for various saturation currents. The current limit can be adjust in 45 mA steps with register  
BST_ILIM[5:0]. The peak current limit setting is the maximum and may be temporarily reduced if the and ICLA  
current limit is active.  
86. Peak Current Limit  
BST_ILIM[5:0]  
0x00-0x08  
CURRENT (A)  
Reserved  
1.48 A  
0x09  
0x0A  
1.54 A  
...  
...  
0x36  
3.96 A (default)  
4 A  
0x37  
0x38-0x3F  
Reserved  
For multiple parts the TAS2110 can shift the boost phase to ensure each device will contribute to the load  
sharing. The boost syncing among multiple devices is enabled using BST_SYNC and then each part is  
configured to be on 0 or 180 phase using BST_PA. This avoids peak current align on and clock edges and  
spreads out battery ripple. The phase of additional devices can be set relative to the master using register  
BST_PA[1:0]. The phase align is performed over the Inter-chip Communication (ICC) bus and a slot for this  
feature needs to be configured if enabled.  
87. Boost Sync  
BST_SYNC  
0
1
Not Synced (default)  
Synced to FSYNC  
88. Boost Phase  
BST_PA[0]  
PHASE (Deg)  
~0° (default)  
~180°  
0
1
8.4.5 Clocks and PLL  
In TMD/I2C Mode, the device operates from SBCLK. 89 and 90 below shows the valid SBCLK frequencies  
for each sample rate and SBCLK to FSYNC ratio (for 44.1 kHz and 48 kHz family frequencies respectively.  
If the sample rate is properly configured via the SAMP_RATE[1:0] bits, no additional configuration is required as  
long as the SBCLK to FSYNC ratio is valid. The device will detect improper SBCLK frequencies and SBCLK to  
FSYNC ratios and volume ramp down the playback path to minimize audible artifacts. After the clock error is  
detected the device will enter a low power halt mode after CLK_HALT_TIMER if CLK_HALT_EN is enabled.  
Additionally the device can automatically power up and down on valid clock signals if CLK_ERR_PWR_EN is set.  
The device sampling rate should not be changed while this feature is enabled. Additionally, the CLK_HALT_EN  
should be set when CLK_ERR_PWR_EN is set for this feature to work properly.  
46  
版权 © 2019, Texas Instruments Incorporated  
 
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
89. Supported SBCLK Frequencies (48 kHz based sample rates)  
SBCLK TO FSYNC RATIO  
192  
SAMPLE  
RATE (kHz)  
64  
96  
128  
256  
384  
512  
16 kHz  
32 kHz  
48 kHz  
96 kHz  
1.024 MHz  
2.048 MHz  
3.072 MHz  
6.144 MHz  
1.536 MHz  
3.072 MHz  
4.608 MHz  
9.216 MHz  
2.048 MHz  
4.0960 MHz  
6.144 MHz  
12.288 MHz  
3.072 MHz  
6.144 MHz  
9.216 MHz  
18.432 MHz  
4.096 MHz  
8.192 MHz  
12.288 MHz  
24.576 MHz  
6.144 MHz  
12.288 MHz  
18.432 MHz  
-
8.192 MHz  
16.384 MHz  
24.576 MHz  
-
90. Supported SBCLK Frequencies (44.1 kHz based sample rates)  
SBCLK TO FSYNC RATIO  
SAMPLE  
RATE (kHz)  
64  
96  
128  
192  
256  
384  
512  
14.7 kHz  
29.4 kHz  
44.1 kHz  
88.2 kHz  
940.8 kHz  
1.8816 MHz  
2.8224 MHz  
5.6448 MHz  
1.4112 MHz  
2.8224 MHz  
4.2336 MHz  
8.4672 MHz  
1.8816 MHz  
3.7632 MHz  
5.6448 MHz  
11.2896 MHz  
2.8224 MHz  
5.6448 MHz  
8.4672 MHz  
16.9344 MHz  
3.7632 MHz  
7.5264 MHz  
11.2896 MHz  
22.5792 MHz  
5.6448 MHz  
11.2896 MHz  
16.9344 MHz  
-
7.5264 MHz  
15.0528 MHz  
22.5792 MHz  
-
91. Clock Power Up/Down on Valid ASI Clocks  
CLK_ERR_PWR_EN  
SETTING  
Disabled (default)  
Enabled  
0
1
92. Clock Halt(Sleep) After Errors Longer Than Halt  
Timer  
CLK_HALT_EN  
SETTING  
Enabled (default)  
Disabled  
0
1
93. Clock Halt Timer  
CLK_HALT_TIMER[2:0]  
SETTING  
1 ms  
000  
001  
010  
011  
100  
101  
110  
111  
3.27 ms  
26.21 ms  
52.42 ms (default)  
104.85 ms  
209.71 ms  
419.43 ms  
838.86 ms  
8.4.6 Thermal Foldback  
The TAS2110 monitors the die temperature and can automatically limit the audio signal when the die  
temperature reaches a set threshold. It is recommended to use PurePath™ Console 3 Software to configure the  
thermal foldback as the software will perform the necessary math for each register.  
Thermal foldback can be disabled using TF_EN. If the die temperature reaches TF_TEMP_TH this feature will  
begin to attenuate the audio signal to prevent the device from shutting down due to over-temperature. It will  
attenuate the audio signal by TF_LIMS db per degree of temperature over TF_TEMP_TH. The thermal foldback  
with attack at a fixed rate of 0.25 dB per sample. A maximum attenuation of TF_MAX_ATTN can be specified.  
However if the device continue to heat up eventually the device over-temperature will be triggered. The  
attenuation will be held for TF_HOLD_CNT samples before the attenuation will begin releasing.  
版权 © 2019, Texas Instruments Incorporated  
47  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
94. Thermal Foldback Enable  
TF_EN  
SETTING  
Disabled  
0
1
Enabled (default)  
95. Thermal Foldback Registers  
REGISTER  
DESCRIPTION  
CALCULATION  
TF_LIMS  
Thermal foldback  
limiter slope (in db/°C)  
round(10^(-slope /  
20)*2^31)  
TF_HOLD_CNT  
TF_REL_RATE  
Thermal foldback hold round(seconds * 1000)  
count (samples)  
Thermal foldback  
limiter release rate  
(db/samples)  
round(10^(dB per  
sample / 20)*2^30)  
TF_TEMP_TH  
TF_MAX_ATTN  
Thermal foldback  
limiter temperature  
threshold (°C)  
round(°C * 2^23)  
Thermal foldback max  
gain reduction (dB)  
round(10^(max attn  
dB/20)*2^31)  
8.4.7 Internal Tone Generator  
The TAS2110 has two internal tone generators that can be used for pilot tone, ultrasonic tone, or diagnostic  
purposes. It is recommended to use PurePath™ Console 3 Software to configure the tone generators as the  
software will perform the necessary math for each register.  
The frequency and amplitude or each generator can be set independently. Each tone generator is enabled using  
TGx_EN and will soft-ramp to the level set by registers TGx_AMP if corresponding register TGx_SR is set. The  
frequency using registers TGx_FREQ and amplitude using registers TGx_AMP. These amplitude and frequency  
should be set only when the tone generator is disabled. Additionally the first tone-generator can be configured to  
enable and disable the tone using a pin selected by TG1_PINEN pin. When enabled the pin will be logically  
ORed with the TG1_EN register to play the tone. This can be used for audible diagnostic tones or other alerting  
functions.  
When the tone generator is configured to operate in pin-triggered mode, the sampling rate used in the TG1  
equations should be 96 kHz. The range of frequencies that can be generated in this mode is 20 Hz to 38 kHz.  
For ASI bus sample rates of 192 kHz the tone generator 1 and 2 will run only at 96 kHz and this sampling rate  
should be used in the calculation. When not in pin trigger TG1 can generate tones up to fs/2.  
The max frequency for tone generator 2 is based on the sampling rate and shown in 102.  
96. Tone Generator Clock Source  
TG_CLK  
SETTING  
0
1
External TDM (default)  
Internal Oscillator  
97. Tone Generator 1 Enable  
TG1_EN  
TONE GENERATOR OUTPUT  
00  
01  
10  
11  
disabled / pin trigger (default)  
enabled - play tone always  
audio level enabled  
reserved  
48  
版权 © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
98. Tone Generator 1 Pin Enable  
TG1_PINEN[1:0]  
TONE GENERATOR OUTPUT  
00  
01  
11  
disabled (default)  
SDIN pin  
AD1 pin  
99. Tone Generator 1 Soft-Ramp  
TG1_SR  
SOFT RAMPUP  
disabled  
0
1
enabled (default)  
The pilot tone frequency and amplitude can be programmed using the following register. The equations are used  
to calculate the register settings for a given gain, frequency, and audio sampling rate.  
fc = frequency of the tone  
fs = sampling rate  
TG1_FREQ1[1-4] = 2 * cos(2 * pi * fc / fs)  
TG1_FREQ2[1-4] = sin(2 * pi * fc / fs)  
TG1_FREQ3[1-4] = (lcm(fs,fc) / fc) - 1  
TG1_AMP = 10 ^ (dB/20)  
Equations for tone generator 2 are  
TG2_FREQ1[1-4] = 2 * cos(2 * pi * fc / (n*fs))  
TG2_FREQ2[1-4] = sin(2 * pi * fc / (n*fs))  
TG2_FREQ3[1-4] = (lcm(n*fs,fc) / fc) - n  
TG2_AMP = (10 ^ (dB/20)) / 4  
100. Tone Generator Defaults  
REGISTER  
DEFAULT VALUE  
DEFAULT  
REGISTERVALUE  
TG1_FREQ1[1-4]  
TG1_FREQ2[1-4]  
TG1_FREQ3[1-4]  
TG1_AMP  
0
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x0147 AE14  
0x0000 0000  
0x0000 0000  
0x0000 0000  
0x2026 F310  
0
0
-40 dBFS  
TG2_FREQ1[1-4]  
TG2_FREQ2[1-4]  
TG2_FREQ3[1-4]  
TG2_AMP  
0
0
0
-12 dBFS  
101. Tone Generator 2 Enable  
TG2_EN  
TONE GENERATOR OUTPUT  
0
1
disabled (default)  
enabled - play tone  
102. Tone Generator 2 n Value and Range  
fs  
n
MAX TONE  
FREQUENCY  
96 kHz  
1
2
4
< fs /2  
< fs  
48 kHz, 32 kHz  
24 kHz  
< 2*fs  
版权 © 2019, Texas Instruments Incorporated  
49  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
102. Tone Generator 2 n Value and Range (接下页)  
fs  
n
MAX TONE  
FREQUENCY  
16 kHz, 8 kHz  
8
< 4 * fs  
103. Tone Generator 2 Soft-Ramp  
TG2_SR  
SOFT RAMPUP  
disabled  
0
1
enabled (default)  
8.5 Register Maps  
8.5.1 Register Summary Table Page=0x00  
Addr  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x18  
0x19  
0x1A  
0x1B  
0x1F  
0x20  
0x24  
0x25  
0x2A  
0x2B  
0x2C  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
Register  
Description  
Section  
PAGE0  
Device Page  
PAGE0 (page=0x00 address=0x00) [reset=0h]  
SW_RESET (page=0x00 address=0x01) [reset=0h]  
PWR_CTL (page=0x00 address=0x02) [reset=Eh]  
PB_CFG1 (page=0x00 address=0x03) [reset=20h]  
MISC_CFG1 (page=0x00 address=0x04) [reset=C6h]  
MISC_CFG2 (page=0x00 address=0x05) [reset=22h]  
TDM_CFG0 (page=0x00 address=0x06) [reset=9h]  
TDM_CFG1 (page=0x00 address=0x07) [reset=2h]  
TDM_CFG2 (page=0x00 address=0x08) [reset=Ah]  
TDM_CFG3 (page=0x00 address=0x09) [reset=10h]  
TDM_CFG4 (page=0x00 address=0x0A) [reset=13h]  
TDM_CFG7 (page=0x00 address=0x0D) [reset=4h]  
TDM_CFG8 (page=0x00 address=0x0E) [reset=5h]  
TDM_CFG9 (page=0x00 address=0x0F) [reset=6h]  
TDM_CFG10 (page=0x00 address=0x10) [reset=7h]  
TDM_DET (page=0x00 address=0x11) [reset=7Fh]  
LIM_CFG_0 (page=0x00 address=0x12) [reset=12h]  
LIM_CFG_1 (page=0x00 address=0x13) [reset=76h]  
BOP_CFG_0 (page=0x00 address=0x14) [reset=1h]  
BOP_CFG_1 (page=0x00 address=0x15) [reset=2Eh]  
ICLA_CFG (page=0x00 address=0x16) [reset=60h]  
GAIN_ICLA_CFG0 (page=0x00 address=0x18) [reset=Ch]  
ICLA_CFG1 (page=0x00 address=0x19) [reset=0h]  
INT_MASK0 (page=0x00 address=0x1A) [reset=FCh]  
INT_MASK1 (page=0x00 address=0x1B) [reset=A6h]  
INT_LIVE0 (page=0x00 address=0x1F) [reset=0h]  
INT_LIVE1 (page=0x00 address=0x20) [reset=0h]  
INT_LTCH0 (page=0x00 address=0x24) [reset=0h]  
INT_LTCH1 (page=0x00 address=0x25) [reset=0h]  
VBAT_MSB (page=0x00 address=0x2A) [reset=0h]  
VBAT_LSB (page=0x00 address=0x2B) [reset=0h]  
TEMP (page=0x00 address=0x2C) [reset=0h]  
SW_RESET  
PWR_CTL  
Software Reset  
Power Control  
PB_CFG1  
Playback Configuration 1  
Misc Configuration 1  
MISC_CFG1  
MISC_CFG2  
TDM_CFG0  
TDM_CFG1  
TDM_CFG2  
TDM_CFG3  
TDM_CFG4  
TDM_CFG7  
TDM_CFG8  
TDM_CFG9  
TDM_CFG10  
TDM_DET  
Misc Configuration 2  
TDM Configuration 0  
TDM Configuration 1  
TDM Configuration 2  
TDM Configuration 3  
TDM Configuration 4  
TDM Configuration 7  
TDM Configuration 8  
TDM Configuration 9  
TDM Configuration 10  
TDM Clock detection monitor  
Limiter Configuration 0  
Limiter Configuration 1  
Brown Out Prevention 0  
Brown Out Prevention 1  
ICLA gain alignment mode  
Inter Chip Limiter Alignment 0  
Inter Chip Limiter Alignment 1  
Interrupt Mask 0  
LIM_CFG_0  
LIM_CFG_1  
BOP_CFG_0  
BOP_CFG_1  
ICLA_CFG  
GAIN_ICLA_CFG0  
ICLA_CFG1  
INT_MASK0  
INT_MASK1  
INT_LIVE0  
Interrupt Mask 1  
Live Interrupt Readback 0  
Live Interrupt Readback 1  
Latched Interrupt Readback 0  
Latched Interrupt Readback 1  
SAR ADC Conversion 0  
SAR ADC Conversion 1  
SAR ADC Conversion 2  
Interrupt and Clock Error  
Digital Input Pin Pull Down  
Misc Configuration 3  
INT_LIVE1  
INT_LTCH0  
INT_LTCH1  
VBAT_MSB  
VBAT_LSB  
TEMP  
INT_CLK  
INT_CLK (page=0x00 address=0x30) [reset=19h]  
DIN_PD (page=0x00 address=0x31) [reset=40h]  
MISC_CFG3 (page=0x00 address=0x32) [reset=80h]  
BOOST_CFG1 (page=0x00 address=0x33) [reset=34h]  
BOOST_CFG2 (page=0x00 address=0x34) [reset=4Bh]  
BOOST_CFG3 (page=0x00 address=0x35) [reset=74h]  
DIN_PD  
MISC_CFG3  
BOOST_CFG1  
BOOST_CFG2  
BOOST_CFG3  
Boost Configure 1  
Boost Configure 2  
Boost Configure 3  
50  
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
Register Maps (continued)  
0x3D  
0x3F  
0x40  
0x7D  
0x7E  
0x7F  
MISC_CFG4  
TG_CFG0  
BOOST_CFG4  
REV_ID  
Misc Configuration 4  
Tone Generator  
Boost Configure 4  
Revision and PG ID  
I2C Checksum  
MISC_CFG4 (page=0x00 address=0x3D) [reset=8h]  
TG_CFG0 (page=0x00 address=0x3F) [reset=0h]  
BOOST_CFG4 (page=0x00 address=0x40) [reset=36h]  
REV_ID (page=0x00 address=0x7D) [reset=0h]  
I2C_CKSUM (page=0x00 address=0x7E) [reset=0h]  
BOOK (page=0x00 address=0x7F) [reset=0h]  
I2C_CKSUM  
BOOK  
Device Book  
8.5.2 Register Summary Table Page=0x01  
Addr  
0x00  
0x08  
Register  
Description  
Section  
PAGE1  
TF_CFG21  
Device Page  
Thermal Folder Configure  
PAGE1 (page=0x01 address=0x00) [reset=0h]  
TF_CFG21 (page=0x01 address=0x08) [reset=40h]  
8.5.3 Register Summary Table Page=0x02  
Addr  
0x00  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
Register  
Description  
Section  
PAGE2  
Device Page  
PAGE2 (page=0x02 address=0x00) [reset=0h]  
DVC_CFG1 (page=0x02 address=0x0C) [reset=40h]  
DVC_CFG2 (page=0x02 address=0x0D) [reset=40h]  
DVC_CFG3 (page=0x02 address=0x0E) [reset=0h]  
DVC_CFG4 (page=0x02 address=0x0F) [reset=0h]  
DVC_CFG5 (page=0x02 address=0x10) [reset=3h]  
DVC_CFG6 (page=0x02 address=0x11) [reset=4Ah]  
DVC_CFG7 (page=0x02 address=0x13) [reset=6Ch]  
DVC_CFG7 (page=0x02 address=0x13) [reset=6Ch]  
LIM_CFG1 (page=0x02 address=0x14) [reset=2Dh]  
LIM_CFG2 (page=0x02 address=0x15) [reset=6Ah]  
DVC_CFG1  
DVC_CFG2  
DVC_CFG3  
DVC_CFG4  
DVC_CFG5  
DVC_CFG6  
DVC_CFG7  
DVC_CFG7  
LIM_CFG1  
LIM_CFG2  
Digital Volume Control 1  
Digital Volume Control 2  
Digital Volume Control 3  
Digital Volume Control 4  
Digital Volume Control 5  
Digital Volume Control 6  
Digital Volume Control 7  
Digital Volume Control 8  
Limiter Configuration 1  
Limiter Configuration 2- Sets limiter max  
attenuation  
0x16  
0x17  
LIM_CFG3  
LIM_CFG4  
Limiter Configuration 3- Sets limiter max  
attenuation  
LIM_CFG3 (page=0x02 address=0x16) [reset=86h]  
LIM_CFG4 (page=0x02 address=0x17) [reset=6Fh]  
Limiter Configuration 4- Sets limiter max  
attenuation  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
LIM_CFG5  
LIM_CFG6  
LIM_CFG7  
LIM_CFG8  
LIM_CFG9  
LIM_CFG10  
LIM_CFG11  
LIM_CFG12  
LIM_CFG13  
LIM_CFG14  
LIM_CFG15  
LIM_CFG16  
LIM_CFG17  
LIM_CFG18  
LIM_CFG19  
LIM_CFG20  
BOP_CFG1  
BOP_CFG2  
BOP_CFG3  
BOP_CFG4  
BOP_CFG5  
BOP_CFG6  
Limiter Configuration 5  
Limiter Configuration 6  
Limiter Configuration 7  
Limiter Configuration 8  
Limiter Configuration 9  
Limiter Configuration 10  
Limiter Configuration 11  
Limiter Configuration 12  
Limiter Configuration 13  
Limiter Configuration 14  
Limiter Configuration 15  
Limiter Configuration 16  
Limiter Configuration 1  
Limiter Configuration 2  
Limiter Configuration 3  
Limiter Configuration 4  
Brown Out Prevention 1  
Brown Out Prevention 2  
Brown Out Prevention 3  
Brown Out Prevention 4  
Brown Out Prevention 5  
Brown Out Prevention 6  
LIM_CFG5 (page=0x02 address=0x18) [reset=47h]  
LIM_CFG6 (page=0x02 address=0x19) [reset=5Ch]  
LIM_CFG7 (page=0x02 address=0x1A) [reset=28h]  
LIM_CFG8 (page=0x02 address=0x1B) [reset=F6h]  
LIM_CFG9 (page=0x02 address=0x1C) [reset=16h]  
LIM_CFG10 (page=0x02 address=0x1D) [reset=66h]  
LIM_CFG11 (page=0x02 address=0x1E) [reset=66h]  
LIM_CFG12 (page=0x02 address=0x1F) [reset=66h]  
LIM_CFG13 (page=0x02 address=0x20) [reset=34h]  
LIM_CFG14 (page=0x02 address=0x21) [reset=CCh]  
LIM_CFG15 (page=0x02 address=0x22) [reset=CCh]  
LIM_CFG16 (page=0x02 address=0x23) [reset=CDh]  
LIM_CFG17 (page=0x02 address=0x24) [reset=10h]  
LIM_CFG18 (page=0x02 address=0x25) [reset=0h]  
LIM_CFG19 (page=0x02 address=0x26) [reset=0h]  
LIM_CFG20 (page=0x02 address=0x27) [reset=0h]  
BOP_CFG1 (page=0x02 address=0x28) [reset=2Eh]  
BOP_CFG2 (page=0x02 address=0x29) [reset=66h]  
BOP_CFG3 (page=0x02 address=0x2A) [reset=66h]  
BOP_CFG4 (page=0x02 address=0x2B) [reset=66h]  
BOP_CFG5 (page=0x02 address=0x2C) [reset=2Bh]  
BOP_CFG6 (page=0x02 address=0x2D) [reset=33h]  
Copyright © 2019, Texas Instruments Incorporated  
51  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
BOP_CFG7 (page=0x02 address=0x2E) [reset=33h]  
0x2E  
0x2F  
0x30  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
BOP_CFG7  
BOP_CFG8  
HPFC_CFG1  
HPFC_CFG2  
HPFC_CFG3  
HPFC_CFG4  
HPFC_CFG5  
HPFC_CFG6  
HPFC_CFG7  
HPFC_CFG8  
HPFC_CFG9  
HPFC_CFG10  
HPFC_CFG11  
HPFC_CFG12  
TG_CFG1  
Brown Out Prevention 7  
Brown Out Prevention 8  
BOP_CFG8 (page=0x02 address=0x2F) [reset=33h]  
HPFC_CFG1 (page=0x02 address=0x30) [reset=7Fh]  
HPFC_CFG2 (page=0x02 address=0x31) [reset=FBh]  
HPFC_CFG3 (page=0x02 address=0x32) [reset=B6h]  
HPFC_CFG4 (page=0x02 address=0x33) [reset=14h]  
HPFC_CFG5 (page=0x02 address=0x34) [reset=80h]  
HPFC_CFG6 (page=0x02 address=0x35) [reset=4h]  
HPFC_CFG7 (page=0x02 address=0x36) [reset=49h]  
HPFC_CFG8 (page=0x02 address=0x37) [reset=ECh]  
HPFC_CFG9 (page=0x02 address=0x38) [reset=7Fh]  
HPFC_CFG10 (page=0x02 address=0x39) [reset=7Fh]  
HPFC_CFG11 (page=0x02 address=0x3A) [reset=6Ch]  
HPFC_CFG12 (page=0x02 address=0x3B) [reset=28h]  
TG_CFG1 (page=0x02 address=0x3C) [reset=3Fh]  
TG_CFG2 (page=0x02 address=0x3D) [reset=FFh]  
TG_CFG3 (page=0x02 address=0x3E) [reset=7Ah]  
TG_CFG4 (page=0x02 address=0x3F) [reset=E3h]  
TG_CFG5 (page=0x02 address=0x40) [reset=1h]  
TG_CFG6 (page=0x02 address=0x41) [reset=1h]  
TG_CFG7 (page=0x02 address=0x42) [reset=5Bh]  
TG_CFG8 (page=0x02 address=0x43) [reset=4Ch]  
TG_CFG9 (page=0x02 address=0x44) [reset=0h]  
TG_CFG10 (page=0x02 address=0x45) [reset=0h]  
TG_CFG11 (page=0x02 address=0x46) [reset=3h]  
TG_CFG12 (page=0x02 address=0x47) [reset=1Fh]  
TG_CFG13 (page=0x02 address=0x48) [reset=2h]  
TG_CFG14 (page=0x02 address=0x49) [reset=46h]  
TG_CFG15 (page=0x02 address=0x4A) [reset=B4h]  
TG_CFG16 (page=0x02 address=0x4B) [reset=E4h]  
TG_CFG17 (page=0x02 address=0x4C) [reset=E0h]  
TG_CFG18 (page=0x02 address=0x4D) [reset=0h]  
TG_CFG19 (page=0x02 address=0x4E) [reset=0h]  
TG_CFG20 (page=0x02 address=0x4F) [reset=0h]  
TG_CFG21 (page=0x02 address=0x50) [reset=6Eh]  
TG_CFG22 (page=0x02 address=0x51) [reset=D9h]  
TG_CFG23 (page=0x02 address=0x52) [reset=EBh]  
TG_CFG24 (page=0x02 address=0x53) [reset=A1h]  
TG_CFG25 (page=0x02 address=0x54) [reset=0h]  
TG_CFG26 (page=0x02 address=0x55) [reset=0h]  
TG_CFG27 (page=0x02 address=0x56) [reset=0h]  
TG_CFG28 (page=0x02 address=0x57) [reset=2Ch]  
TG_CFG29 (page=0x02 address=0x58) [reset=8h]  
TG_CFG30 (page=0x02 address=0x59) [reset=9h]  
TG_CFG31 (page=0x02 address=0x5A) [reset=BCh]  
TG_CFG32 (page=0x02 address=0x5B) [reset=C4h]  
LD_CFG0 (page=0x02 address=0x5C) [reset=64h]  
LD_CFG1 (page=0x02 address=0x5D) [reset=0h]  
LD_CFG2 (page=0x02 address=0x5E) [reset=0h]  
LD_CFG3 (page=0x02 address=0x5F) [reset=0h]  
LD_CFG4 (page=0x02 address=0x60) [reset=0h]  
LD_CFG5 (page=0x02 address=0x61) [reset=80h]  
LD_CFG6 (page=0x02 address=0x62) [reset=0h]  
LD_CFG7 (page=0x02 address=0x63) [reset=0h]  
HPF Coefficient 1  
HPF Coefficient 2  
HPF Coefficient 3  
HPF Coefficient 4  
HPF Coefficient 5  
HPF Coefficient 6  
HPF Coefficient 7  
HPF Coefficient 8  
HPF Coefficient 9  
HPF Coefficient 10  
HPF Coefficient 11  
HPF Coefficient 12  
Tone Generator 1 Freq Calc 1  
Tone Generator 1 Freq Calc 1  
Tone Generator 1 Freq Calc 1  
Tone Generator 1 Freq Calc 1  
Tone Generator 1 Freq Calc 2  
Tone Generator 1 Freq Calc 2  
Tone Generator 1 Freq Calc 2  
Tone Generator 1 Freq Calc 2  
Tone Generator 1 Freq Calc 3  
Tone Generator 1 Freq Calc 3  
Tone Generator 1 Freq Calc 3  
Tone Generator 1 Freq Calc 3  
Tone Generator 1 Amplitude Calc  
Tone Generator 1 Amplitude Calc  
Tone Generator 1 Amplitude Calc  
Tone Generator 1 Amplitude Calc  
Tone Generator 2 Freq Calc 1  
Tone Generator 2 Freq Calc 1  
Tone Generator 2 Freq Calc 1  
Tone Generator 2 Freq Calc 1  
Tone Generator 2 Freq Calc 2  
Tone Generator 2 Freq Calc 2  
Tone Generator 2 Freq Calc 2  
Tone Generator 2 Freq Calc 2  
Tone Generator 2 Freq Calc 3  
Tone Generator 2 Freq Calc 3  
Tone Generator 2 Freq Calc 3  
Tone Generator 2 Freq Calc 3  
Tone Generator 2 Amplitude Calc  
Tone Generator 2 Amplitude Calc  
Tone Generator 2 Amplitude Calc  
Tone Generator 2 Amplitude Calc  
Load Diagnostics Resistance Upper Threshold  
Load Diagnostics Resistance Upper Threshold  
Load Diagnostics Resistance Upper Threshold  
Load Diagnostics Resistance Upper Threshold  
Load Diagnostics Resistance Lower Threshold  
Load Diagnostics Resistance Lower Threshold  
Load Diagnostics Resistance Lower Threshold  
Load Diagnostics Resistance Lower Threshold  
TG_CFG2  
TG_CFG3  
TG_CFG4  
TG_CFG5  
TG_CFG6  
TG_CFG7  
TG_CFG8  
TG_CFG9  
TG_CFG10  
TG_CFG11  
TG_CFG12  
TG_CFG13  
TG_CFG14  
TG_CFG15  
TG_CFG16  
TG_CFG17  
TG_CFG18  
TG_CFG19  
TG_CFG20  
TG_CFG21  
TG_CFG22  
TG_CFG23  
TG_CFG24  
TG_CFG25  
TG_CFG26  
TG_CFG27  
TG_CFG28  
TG_CFG29  
TG_CFG30  
TG_CFG31  
TG_CFG32  
LD_CFG0  
LD_CFG1  
LD_CFG2  
LD_CFG3  
LD_CFG4  
LD_CFG5  
LD_CFG6  
LD_CFG7  
52  
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
0x64  
0x65  
0x66  
0x67  
0x6C  
0x6D  
0x6E  
0x6F  
0x7C  
0x7D  
0x7E  
0x7F  
IDC_CFG0  
IDC_CFG1  
IDC_CFG2  
IDC_CFG3  
IDC_CFG7  
IDC_CFG8  
IDC_CFG9  
IDC_CFG10  
TF_CFG_1  
TF_CFG_2  
TF_CFG_3  
TF_CFG_4  
Idle channel detection threshold  
IDC_CFG0 (page=0x02 address=0x64) [reset=0h]  
IDC_CFG1 (page=0x02 address=0x65) [reset=20h]  
IDC_CFG2 (page=0x02 address=0x66) [reset=C4h]  
IDC_CFG3 (page=0x02 address=0x67) [reset=9Ch]  
IDC_CFG7 (page=0x02 address=0x6C) [reset=0h]  
IDC_CFG8 (page=0x02 address=0x6D) [reset=0h]  
IDC_CFG9 (page=0x02 address=0x6E) [reset=12h]  
IDC_CFG10 (page=0x02 address=0x6F) [reset=C0h]  
TF_CFG_1 (page=0x02 address=0x7C) [reset=72h]  
TF_CFG_2 (page=0x02 address=0x7D) [reset=14h]  
TF_CFG_3 (page=0x02 address=0x7E) [reset=82h]  
TF_CFG_4 (page=0x02 address=0x7F) [reset=C0h]  
Idle channel detection threshold  
Idle channel detection threshold  
Idle channel detection threshold  
Hystersis for idle channel detection  
Hystersis for idle channel detection  
Hystersis for idle channel detection  
Hystersis for idle channel detection  
Thermal foldback limiter slope (in db/C)  
Thermal foldback limiter slope (in db/C)  
Thermal foldback limiter slope (in db/C)  
Thermal foldback limiter slope (in db/C)  
8.5.4 Register Summary Table Page=0x04  
Addr  
0x00  
0x18  
Register  
Description  
Section  
PAGE4  
Device Page  
PAGE4 (page=0x04 address=0x00) [reset=0h]  
LD_CFG8 (page=0x04 address=0x18) [reset=0h]  
LD_CFG8  
Load Resistance Value after load diagnostics  
is completed  
0x19  
0x1A  
0x1B  
LD_CFG9  
Load Resistance Value after load diagnostics  
is completed  
LD_CFG9 (page=0x04 address=0x19) [reset=0h]  
LD_CFG10 (page=0x04 address=0x1A) [reset=0h]  
LD_CFG11 (page=0x04 address=0x1B) [reset=0h]  
LD_CFG10  
LD_CFG11  
Load Resistance Value after load diagnostics  
is completed  
Load Resistance Value after load diagnostics  
is completed  
0x58  
0x59  
0x5A  
0x5B  
0x5C  
TF_CFG4  
TF_CFG5  
TF_CFG6  
TF_CFG7  
TF_CFG8  
Thermal foldback hold count (samples)  
Thermal foldback hold count (samples)  
Thermal foldback hold count (samples)  
Thermal foldback hold count (samples)  
TF_CFG4 (page=0x04 address=0x58) [reset=0h]  
TF_CFG5 (page=0x04 address=0x59) [reset=0h]  
TF_CFG6 (page=0x04 address=0x5A) [reset=0h]  
TF_CFG7 (page=0x04 address=0x5B) [reset=64h]  
TF_CFG8 (page=0x04 address=0x5C) [reset=40h]  
Thermal foldback limiter release rate  
(db/samples)  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
TF_CFG9  
Thermal foldback limiter release rate  
(db/samples)  
TF_CFG9 (page=0x04 address=0x5D) [reset=BDh]  
TF_CFG10 (page=0x04 address=0x5E) [reset=B7h]  
TF_CFG11 (page=0x04 address=0x5F) [reset=B0h]  
TF_CFG12 (page=0x04 address=0x60) [reset=39h]  
TF_CFG13 (page=0x04 address=0x61) [reset=82h]  
TF_CFG14 (page=0x04 address=0x62) [reset=60h]  
TF_CFG16 (page=0x04 address=0x63) [reset=7Fh]  
TF_CFG10  
TF_CFG11  
TF_CFG12  
TF_CFG13  
TF_CFG14  
TF_CFG16  
Thermal foldback limiter release rate  
(db/samples)  
Thermal foldback limiter release rate  
(db/samples)  
Thermal foldback limiter temperature  
threshold  
Thermal foldback limiter temperature  
threshold  
Thermal foldback limiter temperature  
threshold  
Thermal foldback limiter temperature  
threshold  
0x64  
0x65  
0x66  
0x67  
TF_CFG17  
TF_CFG18  
TF_CFG19  
TF_CFG20  
Thermal foldback max gain reduction (dB)  
Thermal foldback max gain reduction (dB)  
Thermal foldback max gain reduction (dB)  
Thermal foldback max gain reduction (dB)  
TF_CFG17 (page=0x04 address=0x64) [reset=2Dh]  
TF_CFG18 (page=0x04 address=0x65) [reset=6Ah]  
TF_CFG19 (page=0x04 address=0x66) [reset=86h]  
TF_CFG20 (page=0x04 address=0x67) [reset=6Fh]  
Copyright © 2019, Texas Instruments Incorporated  
53  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
8.5.5 PAGE0 (page=0x00 address=0x00) [reset=0h]  
The device's memory map is divided into pages and books. This register sets the page.  
Table 104. Device Page Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PAGE[7:0]  
RW  
0h  
Sets the device page.  
00h = Page 0  
01h = Page 1  
...  
FFh = Page 255  
8.5.6 SW_RESET (page=0x00 address=0x01) [reset=0h]  
Asserting Software Reset will place all register values in their default POR (Power on Reset) state.  
Table 105. Software Reset Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
SW_RESET  
Reserved  
RW  
0h  
Software reset. Bit is self clearing.  
0b = Don't reset  
1b = Reset  
8.5.7 PWR_CTL (page=0x00 address=0x02) [reset=Eh]  
Sets device's mode of operation and power down of IV sense blocks.  
Table 106. Power Control Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
LDG_MODE  
Reserved  
6
RW  
0h  
Load Diagnostic is  
0b = Not Running  
1b = Running (self clearing)  
5
4
Reserved  
Reserved  
Reserved  
Reserved  
MODE[1:0]  
RW  
RW  
RW  
RW  
RW  
0h  
0h  
1h  
1h  
2h  
Reserved  
Reserved  
Reserved  
Reserved  
3
2
1-0  
Device operational mode.  
00b = Active  
01b = Mute  
10b = Software Shutdown  
11b = Load Diagnostics  
8.5.8 PB_CFG1 (page=0x00 address=0x03) [reset=20h]  
Sets playback high pass filter corner (PCM playback only).  
Table 107. Playback Configuration 1 Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
HPF_EN  
Reserved  
6
RW  
0h  
Disable DC Blocker  
0b = Enabled  
1b = Disabled  
54  
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
Table 107. Playback Configuration 1 Field Descriptions (continued)  
Bit  
Field  
AMP_LEVEL[4:0]  
Type  
Reset  
Description  
5-1  
RW  
10h  
15h-1Fh - Reserved  
01h = 8.5 dBV(3.76Vpk)  
02h = 9.0 dBV(3.99Vpk)  
03h = 9.5 dBV(4.22Vpk)  
04h = 10.0 dBV(4.47Vpk)  
05h = 10.5 dBV(4.74Vpk)  
06h = 11.0 dBV (5.02 Vpk)  
07h = 11.5 dBV (5.32 Vpk)  
08h = 12.0 dBV (5.63 Vpk)  
09h = 12.5 dBV (5.96 Vpk)  
0Ah = 13.0 dBV (6.32 Vpk)  
0Bh = 13.5 dBV (6.69 Vpk)  
0Ch = 14.0 dBV (7.09 Vpk)  
0Dh = 14.5 dBV (7.51 Vpk)  
0Eh = 15.0 dBV (7.95 Vpk)  
0Fh = 15.5 dBV (8.42 Vpk)  
10h = 16.0 dBV (8.92 Vpk)  
11h = 16.5 dBV (9.45 Vpk)  
12h = 17.0 dBV (10.01 Vpk)  
13h = 17.5 dBV (10.61 Vpk)  
14h = 18.0 dBV (11.23 Vpk)  
15h = Reserved  
16h = Reserved  
17h = Reserved  
18h = Reserved  
19h = Reserved  
1Ah = Reserved  
1Bh = Reserved  
15h-1Fh - Reserved  
0
Reserved  
RW  
0h  
Reserved  
8.5.9 MISC_CFG1 (page=0x00 address=0x04) [reset=C6h]  
Sets OTE/OCE retry, IRQZ pull up, and amp spread spectrum.  
Table 108. Misc Configuration 1 Field Descriptions  
Bit  
7
Field  
Type  
RW  
RW  
RW  
Reset  
1h  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
OCE_RETRY  
6
1h  
5
0h  
Retry after over current event.  
0b = Do not retry  
1b = Retry after 1.5 s  
4
3
OTE_RETRY  
IRQZ_PU  
AMP_SS  
RW  
RW  
RW  
RW  
0h  
0h  
1h  
2h  
Retry after over temperature event.  
0b = Do not retry  
1b = Retry after 1.5 s  
IRQZ internal pull up enable.  
0b = Disabled  
1b = Enabled  
2
Low EMI spread spectrum enable.  
0b = Disabled  
1b = Enabled  
1-0  
Reserved  
Reserved  
Copyright © 2019, Texas Instruments Incorporated  
55  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
8.5.10 MISC_CFG2 (page=0x00 address=0x05) [reset=22h]  
Set shutdown, VBAT filter, and I2C options.  
Table 109. Misc Configuration 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
SDZ_MODE[1:0]  
RW  
0h  
SDZ Mode configuration.  
00b = Initiates normal shutdown; force shutdown after timeout  
01b = Immediate force shutdown  
10b = Normal shutdown only  
11b = Reserved  
5-4  
SDZ_TIMEOUT[1:0]  
RW  
2h  
SDZ Timeout value  
00b = 2 ms  
01b = 4 ms  
10b = 6 ms  
11b = 23.8 ms  
3
2
Reserved  
RW  
RW  
0h  
0h  
Reserved  
VBAT_FLT  
VBAT filter into SAR ADC.  
0b = 100kHz cut off  
1b = Bypass  
1
0
I2C_GBL_EN  
I2C_AD_DET  
RW  
RW  
1h  
0h  
I2C global address is  
0b = Disabled  
1b = Enabled  
Re-detect I2C slave address (self clearing bit).  
0b = normal  
1b = Re-detect address  
8.5.11 TDM_CFG0 (page=0x00 address=0x06) [reset=9h]  
Sets the TDM frame start, TDM sample rate, TDM auto rate detection and whether rate is based on 44.1 kHz or  
48 kHz frequency.  
Table 110. TDM Configuration 0 Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
CLASSD_SYNC  
Reserved  
6
RW  
0h  
Class-D synchronization mode.  
0b = Not synchronized to audio clocks  
1b = Synchronized to audio clocks  
5
RAMP_RATE  
RW  
0h  
Sample rate based on 44.1kHz or 48kHz when  
CLASSD_SYNC=1.  
0b = 48kHz  
1b = 44.1kHz  
4
AUTO_RATE  
RW  
RW  
0h  
4h  
Auto detection of TDM sample rate.  
0b = Enabled  
1b = Disabled  
3-1  
SAMP_RATE[2:0]  
Sample rate of the TDM bus.  
000b = 7.35/8 kHz  
001b = 14.7/16 kHz  
010b = 22.05/24 kHz  
011b = 29.4/32 kHz  
100b = 44.1/48 kHz  
101b = 88.2/96 kHz  
110b = 176.4/192 kHz  
111b = Reserved  
0
FRAME_START  
RW  
1h  
TDM frame start polarity.  
0b = Low to High on FSYNC  
1b = High to Low on FSYNC  
56  
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
8.5.12 TDM_CFG1 (page=0x00 address=0x07) [reset=2h]  
Sets TDM RX justification, offset and capture edge.  
Table 111. TDM Configuration 1 Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
RX_JUSTIFY  
Reserved  
6
RW  
0h  
TDM RX sample justification within the time slot.  
0b = Left  
1b = Right  
5-1  
0
RX_OFFSET[4:0]  
RX_EDGE  
RW  
RW  
1h  
0h  
TDM RX start of frame to time slot 0 offset (SBCLK cycles).  
TDM RX capture clock polarity.  
0b = Rising edge of SBCLK  
1b = Falling edge of SBCLK  
8.5.13 TDM_CFG2 (page=0x00 address=0x08) [reset=Ah]  
Sets TDM RX time slot select, word length and time slot length.  
Table 112. TDM Configuration 2 Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
RW  
Reset  
0h  
Description  
Reserved  
RX_SCFG[1:0]  
Reserved  
RW  
0h  
TDM RX time slot select config.  
00b = Mono with time slot equal to I2C address offset  
01b = Mono left channel  
10b = Mono right channel  
11b = Stereo downmix (L+R)/2  
3-2  
1-0  
RX_WLEN[1:0]  
RX_SLEN[1:0]  
RW  
RW  
2h  
2h  
TDM RX word length.  
00b = 16-bits  
01b = 20-bits  
10b = 24-bits  
11b = 32-bits  
TDM RX time slot length.  
00b = 16-bits  
01b = 24-bits  
10b = 32-bits  
11b = Reserved  
8.5.14 TDM_CFG3 (page=0x00 address=0x09) [reset=10h]  
Sets TDM RX left and right time slots.  
Table 113. TDM Configuration 3 Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
RW  
Reset  
1h  
Description  
RX_SLOT_R[3:0]  
RX_SLOT_L[3:0]  
TDM RX Right Channel Time Slot.  
TDM RX Left Channel Time Slot.  
RW  
0h  
8.5.15 TDM_CFG4 (page=0x00 address=0x0A) [reset=13h]  
Sets TDM TX bus keeper, fill, offset and transmit edge.  
Table 114. TDM Configuration 4 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
TX_KEEPCY  
RW  
0h  
TDM TX SDOUT LSB data will be driven for  
0b = full-cycle  
1b = half-cycle  
6
TX_KEEPLN  
RW  
0h  
TDM TX SDOUT will hold the bus for the following when  
TX_KEEPEN is enabled  
0b = 1 LSB cycle  
1b = always  
Copyright © 2019, Texas Instruments Incorporated  
57  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
Table 114. TDM Configuration 4 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5
TX_KEEPEN  
RW  
0h  
TDM TX SDOUT bus keeper enable.  
0b = Disable bus keeper  
1b = Enable bus keeper  
4
TX_FILL  
RW  
1h  
TDM TX SDOUT unused bitfield fill.  
0b = Transmit 0  
1b = Transmit Hi-Z  
3-1  
0
TX_OFFSET[2:0]  
TX_EDGE  
RW  
RW  
1h  
1h  
TDM TX start of frame to time slot 0 offset.  
TDM TX launch clock polarity.  
0b = Rising edge of SBCLK  
1b = Falling edge of SBCLK  
8.5.16 TDM_CFG7 (page=0x00 address=0x0D) [reset=4h]  
Sets TDM TX VBAT time slot and enable.  
Table 115. TDM Configuration 7 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
VBAT_SLEN  
RW  
0h  
TDM TX VBAT time slot length.  
0b = Truncate to 8-bits  
1b = Left justify to 16-bits  
6
VBAT_TX  
RW  
RW  
0h  
4h  
TDM TX VBAT transmit enable.  
0b = Disabled  
1b = Enabled  
5-0  
VBAT_SLOT[5:0]  
TDM TX VBAT time slot.  
8.5.17 TDM_CFG8 (page=0x00 address=0x0E) [reset=5h]  
Sets TDM TX temp time slot and enable.  
Table 116. TDM Configuration 8 Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
TEMP_TX  
Reserved  
6
RW  
0h  
TDM TX temp sensor transmit enable.  
0b = Disabled  
1b = Enabled  
5-0  
TEMP_SLOT[5:0]  
RW  
5h  
TDM TX temp sensor time slot.  
8.5.18 TDM_CFG9 (page=0x00 address=0x0F) [reset=6h]  
Sets ICLA bus, TDM TX limiter gain reduction time slot and enable.  
Table 117. TDM Configuration 9 Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
GAIN_TX  
Reserved  
6
RW  
0h  
TDM TX limiter gain reduction transmit enable.  
0b = Disabled  
1b = Enabled  
5-0  
GAIN_SLOT[5:0]  
RW  
6h  
TDM TX limiter gain reduction time slot.  
58  
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
8.5.19 TDM_CFG10 (page=0x00 address=0x10) [reset=7h]  
Sets boost current limiter slot and enable  
Table 118. TDM Configuration 10 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
BST_TX  
RW  
0h  
TDM TX boost current limiter enable.  
0b = Disabled  
1b = Enabled  
6
BST_SYNC_TX  
BST_SLOT[5:0]  
RW  
RW  
0h  
7h  
TDM TX boost clock sync enable.  
0b = Disabled  
1b = Enabled  
5-0  
TDM TX boost sync and current limit time slot.  
8.5.20 TDM_DET (page=0x00 address=0x11) [reset=7Fh]  
Readback of internal auto-rate detection.  
Table 119. TDM Clock detection monitor Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
FS_RATIO[3:0]  
Reserved  
6-3  
R
Fh  
Detected SBCLK to FSYNC ratio.  
00h = 16  
01h = 24  
02h = 32  
03h = 48  
04h = 64  
05h = 96  
06h = 128  
07h = 192  
08h = 256  
09h = 384  
0Ah = 512  
0Bh-0Eh = Reserved  
0F = Invalid ratio  
2-0  
FS_RATE[2:0]  
R
7h  
Detected sample rate of TDM bus.  
000b = 7.35/8 KHz  
001b = 14.7/16 KHz  
010b = 22.05/24 KHz  
011b = 29.4/32 KHz  
100b = 44.1/48 KHz  
101b = 88.2/96 kHz  
110b = 176.4/192 kHz  
111b = Error condition  
8.5.21 LIM_CFG_0 (page=0x00 address=0x12) [reset=12h]  
Sets Limiter attack step size, attack rate and enable.  
Table 120. Limiter Configuration 0 Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved  
6
VBAT_LIM_TH_SELECTION  
RW  
0h  
Select source of threshold for VBAT based limiting  
0b = User configured Thresholds  
1b = PVDD based thresholds  
5-4  
LIMB_ATK_ST[1:0]  
RW  
1h  
VBAT Limiter/ICLA attack step size.  
00b = 0.25 dB  
01b = 0.5 dB  
10b = 1 dB  
11b = 2 dB  
Copyright © 2019, Texas Instruments Incorporated  
59  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
Table 120. Limiter Configuration 0 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-1  
LIMB_ATK_RT[2:0]  
RW  
1h  
VBAT Limiter/ICLA attack rate.  
000b = 1 step in 1 sample  
001b = 1 step in 2 samples  
010b = 1 step in 4 samples  
011b = 1 step in 8 samples  
100b = 1 step in 16 samples  
101b = 1 step in 32 samples  
110b = 1 step in 64 samples  
111b = 1 step in 128 samples  
0
LIMB_EN  
RW  
0h  
Limiter enable.  
0b = Disabled  
1b = Enabled  
8.5.22 LIM_CFG_1 (page=0x00 address=0x13) [reset=76h]  
Sets VBAT limiter release step size, release rate and hold time.  
Table 121. Limiter Configuration 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
LIMB_RLS_ST[1:0]  
RW  
1h  
VBAT Limiter/BOP/ICLA release step size.  
00b = 0.25 dB  
01b = 0.5 dB  
10b = 1 dB  
11b = 2 dB  
5-3  
LIMB_RLS_RT[2:0]  
RW  
6h  
VBAT Limiter/BOP/ICLA release rate.  
000b = 1 step in 10 samples  
001b = 1 step in 20 samples  
010b = 1 step in 40 samples  
011b = 1 step in 80 samples  
100b = 1 step in 160 samples  
101b = 1 step in 320 samples  
110b = 1 step in 640 samples  
111b = 1 step in 1280 samples  
2-0  
LIMB_HLD_TM[2:0]  
RW  
6h  
VBAT Limiter hold time in samples.  
000b = 0 samples  
001b = 1920 samples  
010b = 4800 samples  
011b = 9600 samples  
100b = 19200 samples  
101b = 48000 samples  
110b = 96000 samples  
111b = 192000 samples  
8.5.23 BOP_CFG_0 (page=0x00 address=0x14) [reset=1h]  
Sets BOP infinite hold clear, infinite hold enable, mute on brown out and enable.  
Table 122. Brown Out Prevention 0 Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
BOSD_EN  
Reserved  
RW  
0h  
Brown out prevention shutdown enable.  
0b = Disabled  
1b = Enabled  
3
2
BOP_HLD_CLR  
BOP_INF_HLD  
RW  
RW  
0h  
0h  
BOP infinite hold clear (self clearing).  
0b = Don't clear  
1b = Clear  
Infinite hold on brown out event.  
0b = Use BOP_HLD_TM after brown out event  
1b = Don't release until BOP_HLD_CLR is asserted high  
60  
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
Table 122. Brown Out Prevention 0 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1
BOP_MUTE  
RW  
0h  
Mute on brown out event.  
0b = Don't mute  
1b = Mute followed by device shutdown  
0
BOP_EN  
RW  
1h  
Brown out prevention enable.  
0b = Disabled  
1b = Enabled  
8.5.24 BOP_CFG_1 (page=0x00 address=0x15) [reset=2Eh]  
BOP attack rate, attack step size and hold time.  
Table 123. Brown Out Prevention 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
BOP_ATK_RT[2:0]  
RW  
1h  
Brown out prevention attack rate.  
000b = 1 step in 1 sample  
001b = 1 step in 2 samples  
010b = 1 step in 4 samples  
011b = 1 step in 8 samples  
100b = 1 step in 16 samples  
101b = 1 step in 32 samples  
110b = 1 step in 64 samples  
111b = 1 step in 128 samples  
4-3  
2-0  
BOP_ATK_ST[1:0]  
BOP_HLD_TM[2:0]  
RW  
RW  
1h  
6h  
Brown out prevention attack step size.  
00b = 0.5 dB  
01b = 1 dB  
10b = 1.5 dB  
11b = 2 dB  
Brown out prevention hold time.  
000b = 0 ms  
001b = 10 ms  
010b = 25 ms  
011b = 50 ms  
100b = 100 ms  
101b = 250 ms  
110b = 500 ms  
111b = 1000 ms  
8.5.25 ICLA_CFG (page=0x00 address=0x16) [reset=60h]  
ICLA gain alignment mode  
Table 124. ICLA gain alignment mode Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved  
ICLA_MODE[1:0]  
Reserved  
6-4  
3-2  
RW  
RW  
6h  
Reserved  
0h  
Inter chip limiter alignment gain mode.  
00b = Use the maximum of the ICLA group gain reduction  
01b = Use the minimum of the ICLA group gain reduction  
10b = Reserved  
11b = Reserved  
1-0  
Reserved  
R
0h  
Reserved  
8.5.26 GAIN_ICLA_CFG0 (page=0x00 address=0x18) [reset=Ch]  
ICLA starting time slot and enable.  
Table 125. Inter Chip Limiter Alignment 0 Field Descriptions  
Bit  
Field  
Type  
Reset  
0h  
Description  
Reserved  
7
Reserved  
R
Copyright © 2019, Texas Instruments Incorporated  
61  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
Table 125. Inter Chip Limiter Alignment 0 Field Descriptions (continued)  
Bit  
6-1  
0
Field  
Type  
RW  
Reset  
6h  
Description  
ICLA_GAIN_SLOT[5:0]  
ICLA_GAIN_EN  
Inter chip limiter alignment gain starting time slot.  
RW  
0h  
Inter chip limiter alignment gain enable.  
0b = Disabled  
1b = Enabled  
8.5.27 ICLA_CFG1 (page=0x00 address=0x19) [reset=0h]  
ICLA time slot enables.  
Table 126. Inter Chip Limiter Alignment 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
ICLA_GAIN_SEN[3]  
RW  
0h  
Time slot equals ICLA_GAIN_SLOT[5:0]+3. When enabled, the  
limiter will include this time slot in the alignment group.  
0b = Disabled  
1b = Enabled  
6
5
4
ICLA_GAIN_SEN[2]  
ICLA_GAIN_SEN[1]  
ICLA_GAIN_SEN[0]  
RW  
RW  
RW  
0h  
0h  
0h  
Time slot equals ICLA_GAIN_SLOT[5:0]+2. When enabled, the  
limiter will include this time slot in the alignment group.  
0b = Disabled  
1b = Enabled  
Time slot equals ICLA_GAIN_SLOT[5:0]+1. When enabled, the  
limiter will include this time slot in the alignment group.  
0b = Disabled  
1b = Enabled  
Time slot equals ICLA_GAIN_SLOT[5:0]+0. When enabled, the  
limiter will include this time slot in the alignment group.  
0b = Disabled  
1b = Enabled  
3
2
1
0
Reserved  
Reserved  
Reserved  
Reserved  
RW  
RW  
RW  
RW  
0h  
0h  
0h  
0h  
Reserved  
Reserved  
Reserved  
Reserved  
8.5.28 INT_MASK0 (page=0x00 address=0x1A) [reset=FCh]  
Interrupt masks.  
Table 127. Interrupt Mask 0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_MASK[7]  
RW  
1h  
Limiter mute mask.  
0b = Don't Mask  
1b = Mask  
6
5
4
3
2
INT_MASK[6]  
INT_MASK[5]  
INT_MASK[4]  
INT_MASK[3]  
INT_MASK[2]  
RW  
RW  
RW  
RW  
RW  
1h  
1h  
1h  
1h  
1h  
Limiter infinite hold mask.  
0b = Don't Mask  
1b = Mask  
Limiter max attenuation mask.  
0b = Don't Mask  
1b = Mask  
VBAT below limiter inflection point mask.  
0b = Don't Mask  
1b = Mask  
Limiter active mask.  
0b = Don't Mask  
1b = Mask  
TDM clock error mask.  
0b = Don't Mask  
1b = Mask  
62  
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
Table 127. Interrupt Mask 0 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1
INT_MASK[1]  
RW  
0h  
Over current error mask.  
0b = Don't Mask  
1b = Mask  
0
INT_MASK[0]  
RW  
0h  
Over temp error mask.  
0b = Don't Mask  
1b = Mask  
8.5.29 INT_MASK1 (page=0x00 address=0x1B) [reset=A6h]  
Interrupt masks.  
Table 128. Interrupt Mask 1 Field Descriptions  
Bit  
7
Field  
Type  
RW  
RW  
RW  
Reset  
1h  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
INT_MASK[13]  
6
0h  
5
1h  
Load Diagnostic Completion Mask  
0b = Don't Mask  
1b = Masked  
4-3  
INT_MASK[12:11]  
RW  
0h  
Speaker open load mask  
00b = Don't Mask  
01b = Mask open Load detection  
10b = Mask Short Load detection  
11b = Mask both Open,Short Load detection  
2
1
0
INT_MASK[10]  
INT_MASK[9]  
INT_MASK[8]  
RW  
RW  
RW  
1h  
1h  
0h  
Brownout device power down start mask  
0b = Don't Mask  
1b = Mask  
Brownout Protection Active mask  
0b = Don't Mask  
1b = Mask  
VBAT Brown out detected mask  
0b = Don't Mask  
1b = Mask  
8.5.30 INT_LIVE0 (page=0x00 address=0x1F) [reset=0h]  
Live interrupt readback.  
Table 129. Live Interrupt Readback 0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_LIVE[7]  
R
0h  
Interrupt due to limiter mute.  
0b = No interrupt  
1b = Interrupt  
6
5
4
3
2
INT_LIVE[6]  
INT_LIVE[5]  
INT_LIVE[4]  
INT_LIVE[3]  
INT_LIVE[2]  
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
Interrupt due to limiter infinite hold.  
0b = No interrupt  
1b = Interrupt  
Interrupt due to limiter max attenuation.  
0b = No interrupt  
1b = Interrupt  
Interrupt due to VBAT below limiter inflection point.  
0b = No interrupt  
1b = Interrupt  
Interrupt due to limiter active.  
0b = No interrupt  
1b = Interrupt  
Interrupt due to TDM clock error.  
0b = No interrupt  
1b = Interrupt  
Copyright © 2019, Texas Instruments Incorporated  
63  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
Table 129. Live Interrupt Readback 0 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1
INT_LIVE[1]  
R
0h  
Interrupt due to over current error.  
0b = No interrupt  
1b = Interrupt  
0
INT_LIVE[0]  
R
0h  
Interrupt due to over temp error.  
0b = No interrupt  
1b = Interrupt  
8.5.31 INT_LIVE1 (page=0x00 address=0x20) [reset=0h]  
Live interrupt readback.  
Table 130. Live Interrupt Readback 1 Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
6
Reserved  
R
0h  
5-2  
1
INT_LIVE[13:10]  
INT_LIVE[9]  
R
0h  
R
0h  
Brownout Protection Active flag  
0b = No interrupt  
1b = Interrupt  
0
INT_LIVE[8]  
R
0h  
Interrupt due to VBAT brown out detected flag.  
0b = No interrupt  
1b = Interrupt  
8.5.32 INT_LTCH0 (page=0x00 address=0x24) [reset=0h]  
Latched interrupt readback.  
Table 131. Latched Interrupt Readback 0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
INT_LTCH0[7]  
R
0h  
Interrupt due to limiter mute.  
0b = No interrupt  
1b = Interrupt  
6
5
4
3
2
1
0
INT_LTCH0[6]  
INT_LTCH0[5]  
INT_LTCH0[4]  
INT_LTCH0[3]  
INT_LTCH0[2]  
INT_LTCH0[1]  
INT_LTCH0[0]  
R
R
R
R
R
R
R
0h  
0h  
0h  
0h  
0h  
0h  
0h  
Interrupt due to limiter infinite hold.  
0b = No interrupt  
1b = Interrupt  
Interrupt due to limiter max attenuation.  
0b = No interrupt  
1b = Interrupt  
Interrupt due to VBAT below limiter inflection point.  
0b = No interrupt  
1b = Interrupt  
Interrupt due to limiter active  
0b = No interrupt  
1b = Interrupt  
Interrupt due to TDM clock error  
0b = No interrupt  
1b = Interrupt  
Interrupt due to over current error  
0b = No interrupt  
1b = Interrupt  
Interrupt due to over temp error  
0b = No interrupt  
1b = Interrupt  
64  
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
8.5.33 INT_LTCH1 (page=0x00 address=0x25) [reset=0h]  
Latched interrupt readback.  
Table 132. Latched Interrupt Readback 1 Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
INT_LTCH1[5]  
6
R
0h  
5
R
0h  
Interrupt due to load diagnostic completion.  
0b = Not completed  
1b = Completed  
4-3  
INT_LTCH1[4:3]  
R
0h  
Interrupt due to Load Diagnostic Mode Fault Status.  
00b = Normal Load  
01b = Open Load Detected  
10b = Short Load Detected  
11b = Reserved  
2
1
0
INT_LTCH1[2]  
INT_LTCH1[1]  
INT_LTCH1[0]  
R
R
R
0h  
0h  
0h  
Interrupt due to Brownout Protection Triggered shutdown.  
0b = No interrupt  
1b = Interrupt  
Interrupt due to Brownout Protection Active flag.  
0b = No interrupt  
1b = Interrupt  
Interrupt due to VBAT brown out detected flag.  
0b = No interrupt  
1b = Interrupt  
8.5.34 VBAT_MSB (page=0x00 address=0x2A) [reset=0h]  
MSBs of SAR ADC VBAT conversion.  
Table 133. SAR ADC Conversion 0 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
VBAT_CNV[9:2]  
R
0h  
Returns SAR ADC VBAT conversion MSBs.  
8.5.35 VBAT_LSB (page=0x00 address=0x2B) [reset=0h]  
LSBs of SAR ADC VBAT conversion.  
Table 134. SAR ADC Conversion 1 Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
R
Reset  
0h  
Description  
VBAT_CNV[1:0]  
Reserved  
Returns SAR ADC VBAT conversion LSBs.  
Reserved  
R
0h  
8.5.36 TEMP (page=0x00 address=0x2C) [reset=0h]  
SARD ADC Temp conversion.  
Table 135. SAR ADC Conversion 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TMP_CNV[7:0]  
R
0h  
Returns SAR ADC temp sensor conversion.  
Copyright © 2019, Texas Instruments Incorporated  
65  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
8.5.37 INT_CLK (page=0x00 address=0x30) [reset=19h]  
Sets ASI clock error handeling and interrupt configuration.  
Table 136. Interrupt and Clock Error Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CLK_ERR_PWR_EN  
RW  
0h  
Power up/down based on valid ASI clocks is  
0b = Disable  
1b = Enabled  
6
CLK_HALT_EN  
RW  
RW  
0h  
3h  
Put device to sleep(halt) after clock error lasts longer than  
CLK_HALT_TIMER is  
0b = Enable  
1b =: Disable  
5-3  
CLK_HALT_TIMER[2:0]  
If CLK_HALT_EN device will goto sleep after  
000b = 1 ms  
001b = 3.27 ms  
010b = 26.21ms  
011b = 52.42ms  
100b = 104.85ms  
101b = 209.71ms  
110b = 419.43ms  
111b = 838.86ms  
2
INT_CLR_LTCH  
RW  
RW  
0h  
1h  
Clear INT_LTCH registers  
0b = Don't clear  
1b = Clear (self clearing bit)  
1-0  
IRQZ_PIN_CFG[1:0]  
IRQZ interrupt configuration. IRQZ will assert  
00b = on any unmasked live interrupts  
01b = on any unmasked latched interrupts  
10b = for 2-4ms one time on any unmasked live interrupt event  
11b = for 2-4ms every 4ms on any unmasked latched interrupts  
8.5.38 DIN_PD (page=0x00 address=0x31) [reset=40h]  
Sets enables of input pin weak pull down.  
Table 137. Digital Input Pin Pull Down Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
DIN_PD[6]  
Reserved  
6
RW  
1h  
Weak pull down for GPIO.  
0b = Disabled  
1b = Enabled  
5
4
3
2
1
0
DIN_PD[5]  
DIN_PD[4]  
DIN_PD[3]  
DIN_PD[2]  
DIN_PD[1]  
DIN_PD[0]  
RW  
RW  
RW  
RW  
RW  
RW  
0h  
0h  
0h  
0h  
0h  
0h  
Weak pull down for AD1.  
0b = Disabled  
1b = Enabled  
Weak pull down for AD0.  
0b = Disabled  
1b = Enabled  
Weak pull down for SDOUT.  
0b = Disabled  
1b = Enabled  
Weak pull down for SDIN.  
0b = Disabled  
1b = Enabled  
Weak pull down for FSYNC.  
0b = Disabled  
1b = Enabled  
Weak pull down for SBCLK.  
0b = Disabled  
1b = Enabled  
66  
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
8.5.39 MISC_CFG3 (page=0x00 address=0x32) [reset=80h]  
Set IRQZ pin active state  
Table 138. Misc Configuration 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
IRQZ_POL  
RW  
1h  
IRQZ pin polarity for interrupt.  
0b = Active high (IRQ)  
1b = Active low (IRQZ)  
6-4  
3-2  
1
Reserved  
Reserved  
Reserved  
Reserved  
RW  
R
0h  
0h  
0h  
0h  
Reserved  
Reserved  
Reserved  
Reserved  
RW  
R
0
8.5.40 BOOST_CFG1 (page=0x00 address=0x33) [reset=34h]  
Boost Configure 1  
Table 139. Boost Configure 1 Field Descriptions  
Bit  
7
Field  
Type  
RW  
Reset  
0h  
Description  
BST_MODE  
BST_MODE  
Boost Mode  
6
RW  
0h  
Boost Mode  
00b = Class-H  
01b = Class-G  
10b = Always ON  
11b = Always OFF(Passthrough)  
5
BST_EN  
RW  
RW  
1h  
2h  
Boost enable  
0b = Disabled  
1b = Enabled  
4-3  
BST_GSST[1:0]  
Boost soft-start timer in Class-G mode  
00b = 1 x Class-H power-up time  
01b = 2 x Class-H power-up time  
10b = 4 x Class-H power-up time  
11b = 8 x Class-H power-up time  
2-1  
0
BST_PFML[1:0]  
Reserved  
RW  
2h  
Boost active mode PFM lower limit  
00b = No lower limit  
01b = 25 kHz  
10b = 50 kHz  
11b = 100 kHz  
RW  
0h  
Reserved  
8.5.41 BOOST_CFG2 (page=0x00 address=0x34) [reset=4Bh]  
Boost Configure 2  
Table 140. Boost Configure 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
BST_IR[1:0]  
RW  
1h  
Boost inductor range  
00b = less than 0.6 uH  
01b = 0.6 uH to 1.3 uH  
10b = 1.3 uH to 2.5 uH  
11b = Reserved  
5
4
BST_SYNC  
BST_PA  
RW  
RW  
0h  
0h  
Boost sync to clock  
0b = Not synced  
1b = Synced  
Boost sync phase  
0b = 0 deg  
1b = 180 deg  
Copyright © 2019, Texas Instruments Incorporated  
67  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
Table 140. Boost Configure 2 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
BST_VREG[3:0]  
RW  
Bh  
Boost Maximum Voltage  
0000b = Reserved  
0001b = 6.5 V  
0010b = 7.0 V  
....  
1011b = 11.5 V  
....  
1101b = 12.5 V  
1110b-1111b = Reserved  
8.5.42 BOOST_CFG3 (page=0x00 address=0x35) [reset=74h]  
Boost Configure 3  
Table 141. Boost Configure 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
BST_HSST[3:0]  
RW  
7h  
Step Time for Boost if in Class-H mode  
0000b = 9us  
0001b = 18us  
0010b = 36us  
0011b = 54us  
0100b = 72us  
0101b = 90us  
0110b = 108us  
0111b = 135us  
1000b = 162us  
1001b = 198us  
1010b = 252us  
1011b = 342us  
1100b = 477us  
1101b = 612us  
1110b = 792us  
1111b = 990us  
3-2  
BST_LR[1:0]  
RW  
1h  
Slope of boost load regulation.  
00b = Reserved  
01b = 3A/V; load regulation = 1V (default)  
10b = 2A/V; load regulation = 1.5V  
11b = Reserved  
1
0
Reserved  
Reserved  
RW  
R
0h  
0h  
Reserved  
Reserved  
8.5.43 MISC_CFG4 (page=0x00 address=0x3D) [reset=8h]  
Tone gen clocking, load diagnostic clocking, VI averaging.  
Table 142. Misc Configuration 4 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
Reserved  
R
0h  
Clock source for tone generator beep mode  
0b = External TDM  
1b = Internal Oscillator  
3
LDG_CLK  
RW  
0h  
Clock source for load diagnostic  
0b = External TDM  
1b = Internal Oscillator  
2-1  
0
Reserved  
Reserved  
RW  
RW  
1h  
0h  
Reserved  
Reserved  
68  
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
8.5.44 TG_CFG0 (page=0x00 address=0x3F) [reset=0h]  
Tone Generator  
Table 143. Tone Generator Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
TG1_EN[1:0]  
RW  
0h  
Tone Generator 1 is  
00b = Disabled or pin triggered  
01b = Enabled - play tone  
10b = audio level enabled  
11b = reserved  
5-4  
TG1_PINEN[1:0]  
RW  
0h  
Tone pin trigger  
00b = Disabled  
01b = SDIN  
10b = GPIO  
11b = AD1  
3
TG2_EN  
RW  
R
0h  
0h  
Tone Generator 2 is  
0b = Disabled  
1b = Enabled  
2-0  
Reserved  
Reserved  
8.5.45 BOOST_CFG4 (page=0x00 address=0x40) [reset=36h]  
Boost Configure 4  
Table 144. Boost Configure 4 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BST_SSL[7:0]  
RW  
0h  
Boost peak current limit  
00h = 0.99 A  
01h = 1.045 A  
02h = 1.1 A  
...  
0x36h = 3.96 A  
0x37h = 4 A  
0x38h-0x3Fh = Reserved  
8.5.46 REV_ID (page=0x00 address=0x7D) [reset=0h]  
Returns REV and PG ID.  
Table 145. Revision and PG ID Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R
Reset  
0h  
Description  
REV_ID[3:0]  
PG_ID[3:0]  
Returns the revision ID.  
Returns the PG ID.  
R
0h  
8.5.47 I2C_CKSUM (page=0x00 address=0x7E) [reset=0h]  
Returns I2C checksum.  
Table 146. I2C Checksum Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
I2C_CKSUM[7:0]  
RW  
0h  
Returns I2C checksum. Writing to this register will reset the  
checksum to the written value. This register is updated on writes  
to other registers on all books and pages.  
Copyright © 2019, Texas Instruments Incorporated  
69  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
8.5.48 BOOK (page=0x00 address=0x7F) [reset=0h]  
Device's memory map is divided into pages and books. This register sets the book.  
Table 147. Device Book Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BOOK[7:0]  
RW  
0h  
Sets the device book.  
00h = Book 0  
01h = Book 1  
...  
FFh = Book 255  
8.5.49 PAGE1 (page=0x01 address=0x00) [reset=0h]  
Device Page  
Table 148. Device Page Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PAGE[7:0]  
RW  
0h  
Sets the device page.  
00h = Page 0  
01h = Page 1  
...  
FFh = Page 255  
8.5.50 TF_CFG21 (page=0x01 address=0x08) [reset=40h]  
Set the enable for thermal foldback  
Table 149. Thermal Folder Configure Field Descriptions  
Bit  
7
Field  
Type  
R
Reset  
0h  
Description  
Reserved  
TF_EN  
Reserved  
6
RW  
1h  
Thermal Foldback is  
0 = Disabled  
1 = Enabled  
5-0  
Reserved  
RW  
0h  
Reserved  
8.5.51 PAGE2 (page=0x02 address=0x00) [reset=0h]  
The device's memory map is divided into pages and books. This register sets the page.  
Table 150. Device Page Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PAGE[7:0]  
RW  
0h  
Sets the device page.  
00h = Page 0  
01h = Page 1  
...  
FFh = Page 255  
8.5.52 DVC_CFG1 (page=0x02 address=0x0C) [reset=40h]  
Sets playback volume for PCM playback path.  
Table 151. Digital Volume Control 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DVC_PCM[31:24]  
RW  
40h  
round(10^(volume in dB/20)*2^30)  
70  
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
8.5.53 DVC_CFG2 (page=0x02 address=0x0D) [reset=40h]  
Sets playback volume for PCM playback path.  
Table 152. Digital Volume Control 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DVC_PCM[23:16]  
RW  
40h  
round(10^(volume in dB/20)*2^30)  
8.5.54 DVC_CFG3 (page=0x02 address=0x0E) [reset=0h]  
Sets playback volume for PCM playback path.  
Table 153. Digital Volume Control 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DVC_PCM[15:8]  
RW  
0h  
round(10^(volume in dB/20)*2^30)  
8.5.55 DVC_CFG4 (page=0x02 address=0x0F) [reset=0h]  
Sets playback volume for PCM playback path.  
Table 154. Digital Volume Control 4 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DVC_PCM[7:0]  
RW  
0h  
round(10^(volume in dB/20)*2^30)  
8.5.56 DVC_CFG5 (page=0x02 address=0x10) [reset=3h]  
Sets ramp rate for volume control  
Table 155. Digital Volume Control 5 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
round((1-exp(-1/(0.2*fs*time in seconds)))*2^31)  
7-0  
DVC_RAMP[31:24]  
RW  
3h  
8.5.57 DVC_CFG6 (page=0x02 address=0x11) [reset=4Ah]  
Sets ramp rate for volume control  
Table 156. Digital Volume Control 6 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DVC_RAMP[23:16]  
RW  
4Ah  
round((1-exp(-1/(0.2*fs*time in seconds)))*2^31)  
8.5.58 DVC_CFG7 (page=0x02 address=0x12) [reset=51h]  
Sets ramp rate for volume control  
Table 157. Digital Volume Control 7 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DVC_RAMP[15:8]  
RW  
51h  
round((1-exp(-1/(0.2*fs*time in seconds)))*2^31)  
8.5.59 DVC_CFG7 (page=0x02 address=0x13) [reset=6Ch]  
Sets ramp rate for volume control  
Table 158. Digital Volume Control 8 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DVC_RAMP[7:0]  
RW  
6Ch  
round((1-exp(-1/(0.2*fs*time in seconds)))*2^31)  
Copyright © 2019, Texas Instruments Incorporated  
71  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
8.5.60 LIM_CFG1 (page=0x02 address=0x14) [reset=2Dh]  
Sets limiter max attenuation  
Table 159. Limiter Configuration 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIM_MAX_ATN[31:24]  
RW  
2Dh  
round(10^(max attn dB/20)*2^31)  
8.5.61 LIM_CFG2 (page=0x02 address=0x15) [reset=6Ah]  
Limiter Configuration 2- Sets limiter max attenuation  
Table 160. Limiter Configuration 2- Sets limiter max attenuation Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIM_MAX_ATN[23:16]  
RW  
6Ah  
round(10^(max attn dB/20)*2^31)  
8.5.62 LIM_CFG3 (page=0x02 address=0x16) [reset=86h]  
Limiter Configuration 3- Sets limiter max attenuation  
Table 161. Limiter Configuration 3- Sets limiter max attenuation Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIM_MAX_ATN[15:8]  
RW  
86h  
round(10^(max attn dB/20)*2^31)  
8.5.63 LIM_CFG4 (page=0x02 address=0x17) [reset=6Fh]  
Limiter Configuration 4- Sets limiter max attenuation  
Table 162. Limiter Configuration 4- Sets limiter max attenuation Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIM_MAX_ATN[7:0]  
RW  
6Fh  
round(10^(max attn dB/20)*2^31)  
8.5.64 LIM_CFG5 (page=0x02 address=0x18) [reset=47h]  
Sets VBAT Limiter max threshold.  
Table 163. Limiter Configuration 5 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIMB_TH_MAX[31:24]  
RW  
47h  
round(lim max peak voltage*2^27)  
8.5.65 LIM_CFG6 (page=0x02 address=0x19) [reset=5Ch]  
Sets VBAT Limiter max threshold.  
Table 164. Limiter Configuration 6 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIMB_TH_MAX[23:16]  
RW  
5Ch  
round(lim max peak voltage*2^27)  
8.5.66 LIM_CFG7 (page=0x02 address=0x1A) [reset=28h]  
Sets VBAT Limiter max threshold.  
Table 165. Limiter Configuration 7 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIMB_TH_MAX[15:8]  
RW  
28h  
round(lim max peak voltage*2^27)  
72  
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
8.5.67 LIM_CFG8 (page=0x02 address=0x1B) [reset=F6h]  
Sets VBAT Limiter max threshold.  
Table 166. Limiter Configuration 8 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIMB_TH_MAX[7:0]  
RW  
F6h  
round(lim max peak voltage*2^27)  
8.5.68 LIM_CFG9 (page=0x02 address=0x1C) [reset=16h]  
Sets VBAT limiter min threshold.  
Table 167. Limiter Configuration 9 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIMB_TH_MIN[31:24]  
RW  
16h  
round(lim min peak voltage*2^27)  
8.5.69 LIM_CFG10 (page=0x02 address=0x1D) [reset=66h]  
Sets VBAT limiter min threshold.  
Table 168. Limiter Configuration 10 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIMB_TH_MIN[23:16]  
RW  
66h  
round(lim min peak voltage*2^27)  
8.5.70 LIM_CFG11 (page=0x02 address=0x1E) [reset=66h]  
Sets VBAT limiter min threshold.  
Table 169. Limiter Configuration 11 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIMB_TH_MIN[15:8]  
RW  
66h  
round(lim min peak voltage*2^27)  
8.5.71 LIM_CFG12 (page=0x02 address=0x1F) [reset=66h]  
Sets VBAT limiter min threshold.  
Table 170. Limiter Configuration 12 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIMB_TH_MIN[7:0]  
RW  
66h  
round(lim min peak voltage*2^27)  
8.5.72 LIM_CFG13 (page=0x02 address=0x20) [reset=34h]  
Sets VBAT limiter inflection point.  
Table 171. Limiter Configuration 13 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIMB_INF_PT[31:24]  
RW  
34h  
round(Vbat at inflection point*2^28)  
8.5.73 LIM_CFG14 (page=0x02 address=0x21) [reset=CCh]  
Sets VBAT limiter inflection point.  
Table 172. Limiter Configuration 14 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIMB_INF_PT[23:16]  
RW  
CCh  
round(Vbat at inflection point*2^28)  
Copyright © 2019, Texas Instruments Incorporated  
73  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
8.5.74 LIM_CFG15 (page=0x02 address=0x22) [reset=CCh]  
Sets VBAT limiter inflection point.  
Table 173. Limiter Configuration 15 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIMB_INF_PT[15:8]  
RW  
CCh  
round(Vbat at inflection point*2^28)  
8.5.75 LIM_CFG16 (page=0x02 address=0x23) [reset=CDh]  
Sets VBAT limiter inflection point.  
Table 174. Limiter Configuration 16 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIMB_INF_PT[7:0]  
RW  
CDh  
round(Vbat at inflection point*2^28)  
8.5.76 LIM_CFG17 (page=0x02 address=0x24) [reset=10h]  
Sets VBAT limiter slope  
Table 175. Limiter Configuration 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIMB_SLOPE[31:24]  
RW  
10h  
round(slope*2^28)  
8.5.77 LIM_CFG18 (page=0x02 address=0x25) [reset=0h]  
Sets VBAT limiter slope  
Table 176. Limiter Configuration 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIMB_SLOPE[23:16]  
RW  
0h  
round(slope*2^28)  
8.5.78 LIM_CFG19 (page=0x02 address=0x26) [reset=0h]  
Sets VBAT limiter slope  
Table 177. Limiter Configuration 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIMB_SLOPE[15:8]  
RW  
0h  
round(slope*2^28)  
8.5.79 LIM_CFG20 (page=0x02 address=0x27) [reset=0h]  
Sets VBAT limiter slope  
Table 178. Limiter Configuration 4 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LIMB_SLOPE[7:0]  
RW  
0h  
round(slope*2^28)  
8.5.80 BOP_CFG1 (page=0x02 address=0x28) [reset=2Eh]  
BOP threshold.  
Table 179. Brown Out Prevention 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BOP_TH[31:24]  
RW  
2Eh  
round(Vbat BOP threshold*2^28)  
74  
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
8.5.81 BOP_CFG2 (page=0x02 address=0x29) [reset=66h]  
BOP threshold.  
Table 180. Brown Out Prevention 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BOP_TH[23:16]  
RW  
66h  
round(Vbat BOP threshold*2^28)  
8.5.82 BOP_CFG3 (page=0x02 address=0x2A) [reset=66h]  
BOP threshold.  
Table 181. Brown Out Prevention 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BOP_TH[15:8]  
RW  
66h  
round(Vbat BOP threshold*2^28)  
8.5.83 BOP_CFG4 (page=0x02 address=0x2B) [reset=66h]  
BOP threshold.  
Table 182. Brown Out Prevention 4 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BOP_TH[7:0]  
RW  
66h  
round(Vbat BOP threshold*2^28)  
8.5.84 BOP_CFG5 (page=0x02 address=0x2C) [reset=2Bh]  
BOSD threshold.  
Table 183. Brown Out Prevention 5 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BOSD_TH[31:24]  
RW  
2Bh  
round(Vbat BOSD threshold*2^28)  
8.5.85 BOP_CFG6 (page=0x02 address=0x2D) [reset=33h]  
BOSD threshold.  
Table 184. Brown Out Prevention 6 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BOSD_TH[23:16]  
RW  
33h  
round(Vbat BOSD threshold*2^28)  
8.5.86 BOP_CFG7 (page=0x02 address=0x2E) [reset=33h]  
BOSD threshold.  
Table 185. Brown Out Prevention 7 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BOSD_TH[15:8]  
RW  
33h  
round(Vbat BOSD threshold*2^28)  
8.5.87 BOP_CFG8 (page=0x02 address=0x2F) [reset=33h]  
BOSD threshold.  
Table 186. Brown Out Prevention 8 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
BOSD_TH[7:0]  
RW  
33h  
round(Vbat BOSD threshold*2^28)  
Copyright © 2019, Texas Instruments Incorporated  
75  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
8.5.88 HPFC_CFG1 (page=0x02 address=0x30) [reset=7Fh]  
HPF Biquad coefficients  
Table 187. HPF Coefficient 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
HPF_COEFF_N0[31:24]  
RW  
7Fh  
[N, D] = butter(1, fc/(fs/2), 'high'); round(N(1)*2^31);  
8.5.89 HPFC_CFG2 (page=0x02 address=0x31) [reset=FBh]  
HPF Biquad coefficients  
Table 188. HPF Coefficient 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
HPF_COEFF_N0[23:16]  
RW  
FBh  
[N, D] = butter(1, fc/(fs/2), 'high'); round(N(1)*2^31);  
8.5.90 HPFC_CFG3 (page=0x02 address=0x32) [reset=B6h]  
HPF Biquad coefficients  
Table 189. HPF Coefficient 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
HPF_COEFF_N0[15:8]  
RW  
B6h  
[N, D] = butter(1, fc/(fs/2), 'high'); round(N(1)*2^31);  
8.5.91 HPFC_CFG4 (page=0x02 address=0x33) [reset=14h]  
HPF Biquad coefficients  
Table 190. HPF Coefficient 4 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
HPF_COEFF_N0[7:0]  
RW  
14h  
[N, D] = butter(1, fc/(fs/2), 'high'); round(N(1)*2^31);  
8.5.92 HPFC_CFG5 (page=0x02 address=0x34) [reset=80h]  
HPF Biquad coefficients  
Table 191. HPF Coefficient 5 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
HPF_COEFF_N1[31:24]  
RW  
80h  
[N, D] = butter(1, fc/(fs/2), 'high'); round(N(2)*2^31);  
8.5.93 HPFC_CFG6 (page=0x02 address=0x35) [reset=4h]  
HPF Biquad coefficients  
Table 192. HPF Coefficient 6 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
HPF_COEFF_N1[23:16]  
RW  
4h  
[N, D] = butter(1, fc/(fs/2), 'high'); round(N(2)*2^31);  
8.5.94 HPFC_CFG7 (page=0x02 address=0x36) [reset=49h]  
HPF Biquad coefficients  
Table 193. HPF Coefficient 7 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
HPF_COEFF_N1[15:8]  
RW  
49h  
[N, D] = butter(1, fc/(fs/2), 'high'); round(N(2)*2^31);  
76  
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
8.5.95 HPFC_CFG8 (page=0x02 address=0x37) [reset=ECh]  
HPF Biquad coefficients  
Table 194. HPF Coefficient 8 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
[N, D] = butter(1, fc/(fs/2), 'high'); round(N(2)*2^31);  
7-0  
HPF_COEFF_N1[7:0]  
RW  
ECh  
8.5.96 HPFC_CFG9 (page=0x02 address=0x38) [reset=7Fh]  
HPF Biquad coefficients  
Table 195. HPF Coefficient 9 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
HPF_COEFF_D1[31:24]  
RW  
7Fh  
[N, D] = butter(1, fc/(fs/2), 'high'); round(-D(2)*2^31);  
8.5.97 HPFC_CFG10 (page=0x02 address=0x39) [reset=7Fh]  
HPF Biquad coefficients  
Table 196. HPF Coefficient 10 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
HPF_COEFF_D1[23:16]  
RW  
7Fh  
[N, D] = butter(1, fc/(fs/2), 'high'); round(-D(2)*2^31);  
8.5.98 HPFC_CFG11 (page=0x02 address=0x3A) [reset=6Ch]  
HPF Biquad coefficients  
Table 197. HPF Coefficient 11 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
HPF_COEFF_D1[15:8]  
RW  
6Ch  
[N, D] = butter(1, fc/(fs/2), 'high'); round(-D(2)*2^31);  
8.5.99 HPFC_CFG12 (page=0x02 address=0x3B) [reset=28h]  
HPF Biquad coefficients  
Table 198. HPF Coefficient 12 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
HPF_COEFF_D1[7:0]  
RW  
28h  
[N, D] = butter(1, fc/(fs/2), 'high'); round(-D(2)*2^31);  
8.5.100 TG_CFG1 (page=0x02 address=0x3C) [reset=3Fh]  
Tone Generator 1 Freq Calc 1  
Table 199. Tone Generator 1 Freq Calc 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG1_FREQ1[31:24]  
RW  
3Fh  
round((2*cos(2*pi*f_tone/fs))*2^29)  
8.5.101 TG_CFG2 (page=0x02 address=0x3D) [reset=FFh]  
Tone Generator 1 Freq Calc 1  
Table 200. Tone Generator 1 Freq Calc 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG1_FREQ1[23:16]  
RW  
FFh  
round((2*cos(2*pi*f_tone/fs))*2^29)  
Copyright © 2019, Texas Instruments Incorporated  
77  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
8.5.102 TG_CFG3 (page=0x02 address=0x3E) [reset=7Ah]  
Tone Generator 1 Freq Calc 1  
Table 201. Tone Generator 1 Freq Calc 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG1_FREQ1[15:8]  
RW  
7Ah  
round((2*cos(2*pi*f_tone/fs))*2^29)  
8.5.103 TG_CFG4 (page=0x02 address=0x3F) [reset=E3h]  
Tone Generator 1 Freq Calc 1  
Table 202. Tone Generator 1 Freq Calc 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG1_FREQ1[7:0]  
RW  
E3h  
round((2*cos(2*pi*f_tone/fs))*2^29)  
8.5.104 TG_CFG5 (page=0x02 address=0x40) [reset=1h]  
Tone Generator 1 Freq Calc 2  
Table 203. Tone Generator 1 Freq Calc 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG1_FREQ2[31:24]  
RW  
1h  
round((sin(2*pi*f_tone/fs))*2^31)  
8.5.105 TG_CFG6 (page=0x02 address=0x41) [reset=1h]  
Tone Generator 1 Freq Calc 2  
Table 204. Tone Generator 1 Freq Calc 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG1_FREQ2[23:16]  
RW  
1h  
round((sin(2*pi*f_tone/fs))*2^31)  
8.5.106 TG_CFG7 (page=0x02 address=0x42) [reset=5Bh]  
Tone Generator 1 Freq Calc 2  
Table 205. Tone Generator 1 Freq Calc 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG1_FREQ2[15:8]  
RW  
5Bh  
round((sin(2*pi*f_tone/fs))*2^31)  
8.5.107 TG_CFG8 (page=0x02 address=0x43) [reset=4Ch]  
Tone Generator 1 Freq Calc 2  
Table 206. Tone Generator 1 Freq Calc 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG1_FREQ2[7:0]  
RW  
4Ch  
round((sin(2*pi*f_tone/fs))*2^31)  
8.5.108 TG_CFG9 (page=0x02 address=0x44) [reset=0h]  
Tone Generator 1 Freq Calc 3  
Table 207. Tone Generator 1 Freq Calc 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG1_FREQ3[31:24]  
RW  
0h  
(LCM(fs,f_tone)/f_tone) - 1  
78  
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
8.5.109 TG_CFG10 (page=0x02 address=0x45) [reset=0h]  
Tone Generator 1 Freq Calc 3  
Table 208. Tone Generator 1 Freq Calc 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG1_FREQ3[23:16]  
RW  
0h  
(LCM(fs,f_tone)/f_tone) - 1  
8.5.110 TG_CFG11 (page=0x02 address=0x46) [reset=3h]  
Tone Generator 1 Freq Calc 3  
Table 209. Tone Generator 1 Freq Calc 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG1_FREQ3[15:8]  
RW  
3h  
(LCM(fs,f_tone)/f_tone) - 1  
8.5.111 TG_CFG12 (page=0x02 address=0x47) [reset=1Fh]  
Tone Generator 1 Freq Calc 3  
Table 210. Tone Generator 1 Freq Calc 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG1_FREQ3[7:0]  
RW  
1Fh  
(LCM(fs,f_tone)/f_tone) - 1  
8.5.112 TG_CFG13 (page=0x02 address=0x48) [reset=2h]  
Tone Generator 1 Amplitude Calc  
Table 211. Tone Generator 1 Amplitude Calc Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG1_AMP[31:24]  
RW  
2h  
round(10^(tone amplitude dB/20)*2^31)  
8.5.113 TG_CFG14 (page=0x02 address=0x49) [reset=46h]  
Tone Generator 1 Amplitude Calc  
Table 212. Tone Generator 1 Amplitude Calc Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG1_AMP[23:16]  
RW  
46h  
round(10^(tone amplitude dB/20)*2^31)  
8.5.114 TG_CFG15 (page=0x02 address=0x4A) [reset=B4h]  
Tone Generator 1 Amplitude Calc  
Table 213. Tone Generator 1 Amplitude Calc Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG1_AMP[15:8]  
RW  
B4h  
round(10^(tone amplitude dB/20)*2^31)  
8.5.115 TG_CFG16 (page=0x02 address=0x4B) [reset=E4h]  
Tone Generator 1 Amplitude Calc  
Table 214. Tone Generator 1 Amplitude Calc Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG1_AMP[7:0]  
RW  
E4h  
round(10^(tone amplitude dB/20)*2^31)  
Copyright © 2019, Texas Instruments Incorporated  
79  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
8.5.116 TG_CFG17 (page=0x02 address=0x4C) [reset=E0h]  
Tone Generator 2 Freq Calc 1  
Table 215. Tone Generator 2 Freq Calc 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG2_FREQ1[31:24]  
RW  
E0h  
round((2*cos(2*pi*f_tone/fs))*2^29)  
8.5.117 TG_CFG18 (page=0x02 address=0x4D) [reset=0h]  
Tone Generator 2 Freq Calc 1  
Table 216. Tone Generator 2 Freq Calc 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG2_FREQ1[23:16]  
RW  
0h  
round((2*cos(2*pi*f_tone/fs))*2^29)  
8.5.118 TG_CFG19 (page=0x02 address=0x4E) [reset=0h]  
Tone Generator 2 Freq Calc 1  
Table 217. Tone Generator 2 Freq Calc 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG2_FREQ1[15:8]  
RW  
0h  
round((2*cos(2*pi*f_tone/fs))*2^29)  
8.5.119 TG_CFG20 (page=0x02 address=0x4F) [reset=0h]  
Tone Generator 2 Freq Calc 1  
Table 218. Tone Generator 2 Freq Calc 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG2_FREQ1[7:0]  
RW  
0h  
round((2*cos(2*pi*f_tone/fs))*2^29)  
8.5.120 TG_CFG21 (page=0x02 address=0x50) [reset=6Eh]  
Tone Generator 2 Freq Calc 2  
Table 219. Tone Generator 2 Freq Calc 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG2_FREQ2[31:24]  
RW  
6Eh  
round((sin(2*pi*f_tone/fs))*2^31)  
8.5.121 TG_CFG22 (page=0x02 address=0x51) [reset=D9h]  
Tone Generator 2 Freq Calc 2  
Table 220. Tone Generator 2 Freq Calc 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG2_FREQ2[23:16]  
RW  
D9h  
round((sin(2*pi*f_tone/fs))*2^31)  
8.5.122 TG_CFG23 (page=0x02 address=0x52) [reset=EBh]  
Tone Generator 2 Freq Calc 2  
Table 221. Tone Generator 2 Freq Calc 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG2_FREQ2[15:8]  
RW  
EBh  
round((sin(2*pi*f_tone/fs))*2^31)  
80  
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
8.5.123 TG_CFG24 (page=0x02 address=0x53) [reset=A1h]  
Tone Generator 2 Freq Calc 2  
Table 222. Tone Generator 2 Freq Calc 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG2_FREQ2[7:0]  
RW  
A1h  
round((sin(2*pi*f_tone/fs))*2^31)  
8.5.124 TG_CFG25 (page=0x02 address=0x54) [reset=0h]  
Tone Generator 2 Freq Calc 3  
Table 223. Tone Generator 2 Freq Calc 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG2_FREQ3[31:24]  
RW  
0h  
(LCM(2*fs,f_tone)/f_tone) - 2  
8.5.125 TG_CFG26 (page=0x02 address=0x55) [reset=0h]  
Tone Generator 2 Freq Calc 3  
Table 224. Tone Generator 2 Freq Calc 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG2_FREQ3[23:16]  
RW  
0h  
(LCM(2*fs,f_tone)/f_tone) - 2  
8.5.126 TG_CFG27 (page=0x02 address=0x56) [reset=0h]  
Tone Generator 2 Freq Calc 3  
Table 225. Tone Generator 2 Freq Calc 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG2_FREQ3[15:8]  
RW  
0h  
(LCM(2*fs,f_tone)/f_tone) - 2  
8.5.127 TG_CFG28 (page=0x02 address=0x57) [reset=2Ch]  
Tone Generator 2 Freq Calc 3  
Table 226. Tone Generator 2 Freq Calc 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG2_FREQ3[7:0]  
RW  
2Ch  
(LCM(2*fs,f_tone)/f_tone) - 2  
8.5.128 TG_CFG29 (page=0x02 address=0x58) [reset=8h]  
Tone Generator 2 Amplitude Calc  
Table 227. Tone Generator 2 Amplitude Calc Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG2_AMP[31:24]  
RW  
8h  
round(10^(tone amplitude dB/20)*2^31)  
8.5.129 TG_CFG30 (page=0x02 address=0x59) [reset=9h]  
Tone Generator 2 Amplitude Calc  
Table 228. Tone Generator 2 Amplitude Calc Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG2_AMP[23:16]  
RW  
9h  
round(10^(tone amplitude dB/20)*2^31)  
Copyright © 2019, Texas Instruments Incorporated  
81  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
8.5.130 TG_CFG31 (page=0x02 address=0x5A) [reset=BCh]  
Tone Generator 2 Amplitude Calc  
Table 229. Tone Generator 2 Amplitude Calc Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG2_AMP[15:8]  
RW  
BCh  
round(10^(tone amplitude dB/20)*2^31)  
8.5.131 TG_CFG32 (page=0x02 address=0x5B) [reset=C4h]  
Tone Generator 2 Amplitude Calc  
Table 230. Tone Generator 2 Amplitude Calc Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TG2_AMP[7:0]  
RW  
C4h  
round(10^(tone amplitude dB/20)*2^31)  
8.5.132 LD_CFG0 (page=0x02 address=0x5C) [reset=64h]  
Load Diagnostics Resistance Upper Threshold  
Table 231. Load Diagnostics Resistance Upper Threshold Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LDG_RES_UT[31:24]  
RW  
64h  
round(ohm/7*2^22)  
8.5.133 LD_CFG1 (page=0x02 address=0x5D) [reset=0h]  
Load Diagnostics Resistance Upper Threshold  
Table 232. Load Diagnostics Resistance Upper Threshold Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LDG_RES_UT[23:16]  
RW  
0h  
round(ohm/7*2^22)  
8.5.134 LD_CFG2 (page=0x02 address=0x5E) [reset=0h]  
Load Diagnostics Resistance Upper Threshold  
Table 233. Load Diagnostics Resistance Upper Threshold Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LDG_RES_UT[15:8]  
RW  
0h  
round(ohm/7*2^22)  
8.5.135 LD_CFG3 (page=0x02 address=0x5F) [reset=0h]  
Load Diagnostics Resistance Upper Threshold  
Table 234. Load Diagnostics Resistance Upper Threshold Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LDG_RES_UT[7:0]  
RW  
0h  
round(ohm/7*2^22)  
8.5.136 LD_CFG4 (page=0x02 address=0x60) [reset=0h]  
Load Diagnostics Resistance Lower Threshold  
Table 235. Load Diagnostics Resistance Lower Threshold Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LDG_RES_LT[31:24]  
RW  
0h  
round(ohm/7*2^22)  
82  
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
8.5.137 LD_CFG5 (page=0x02 address=0x61) [reset=80h]  
Load Diagnostics Resistance Lower Threshold  
Table 236. Load Diagnostics Resistance Lower Threshold Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LDG_RES_LT[23:16]  
RW  
80h  
round(ohm/7*2^22)  
8.5.138 LD_CFG6 (page=0x02 address=0x62) [reset=0h]  
Load Diagnostics Resistance Lower Threshold  
Table 237. Load Diagnostics Resistance Lower Threshold Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LDG_RES_LT[15:8]  
RW  
0h  
round(ohm/7*2^22)  
8.5.139 LD_CFG7 (page=0x02 address=0x63) [reset=0h]  
Load Diagnostics Resistance Lower Threshold  
Table 238. Load Diagnostics Resistance Lower Threshold Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LDG_RES_LT[7:0]  
RW  
0h  
round(ohm/7*2^22)  
8.5.140 IDC_CFG0 (page=0x02 address=0x64) [reset=0h]  
Idle channel detection threshold  
Table 239. Idle channel detection threshold Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
IDC_DTH[31:24]  
RW  
0h  
round(10^(idle channel threshold dB/20)*2^31)  
8.5.141 IDC_CFG1 (page=0x02 address=0x65) [reset=20h]  
Idle channel detection threshold  
Table 240. Idle channel detection threshold Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
IDC_DTH[23:16]  
RW  
20h  
round(10^(idle channel threshold dB/20)*2^31)  
8.5.142 IDC_CFG2 (page=0x02 address=0x66) [reset=C4h]  
Idle channel detection threshold  
Table 241. Idle channel detection threshold Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
IDC_DTH[15:8]  
RW  
C4h  
round(10^(idle channel threshold dB/20)*2^31)  
8.5.143 IDC_CFG3 (page=0x02 address=0x67) [reset=9Ch]  
Idle channel detection threshold  
Table 242. Idle channel detection threshold Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
IDC_DTH[7:0]  
RW  
9Ch  
round(10^(idle channel threshold dB/20)*2^31)  
Copyright © 2019, Texas Instruments Incorporated  
83  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
8.5.144 IDC_CFG7 (page=0x02 address=0x6C) [reset=0h]  
Hystersis for idle channel detection  
Table 243. Hystersis for idle channel detection Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
IDC_HYST[31:24]  
RW  
0h  
round(time in seconds*fs)  
8.5.145 IDC_CFG8 (page=0x02 address=0x6D) [reset=0h]  
Hystersis for idle channel detection  
Table 244. Hystersis for idle channel detection Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
IDC_HYST[23:16]  
RW  
0h  
round(time in seconds*fs)  
8.5.146 IDC_CFG9 (page=0x02 address=0x6E) [reset=12h]  
Hystersis for idle channel detection  
Table 245. Hystersis for idle channel detection Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
IDC_HYST[15:8]  
RW  
12h  
round(time in seconds*fs)  
8.5.147 IDC_CFG10 (page=0x02 address=0x6F) [reset=C0h]  
Hystersis for idle channel detection  
Table 246. Hystersis for idle channel detection Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
IDC_HYST[7:0]  
RW  
C0h  
round(time in seconds*fs)  
8.5.148 TF_CFG_1 (page=0x02 address=0x7C) [reset=72h]  
Thermal foldback limiter slope (in db/C)  
Table 247. Thermal foldback limiter slope (in db/C) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_LIMS[31:24]  
RW  
72h  
round(10^(-slope/20)*2^31)  
8.5.149 TF_CFG_2 (page=0x02 address=0x7D) [reset=14h]  
Thermal foldback limiter slope (in db/C)  
Table 248. Thermal foldback limiter slope (in db/C) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_LIMS[23:16]  
RW  
14h  
round(10^(-slope/20)*2^31)  
8.5.150 TF_CFG_3 (page=0x02 address=0x7E) [reset=82h]  
Thermal foldback limiter slope (in db/C)  
Table 249. Thermal foldback limiter slope (in db/C) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_LIMS[15:8]  
RW  
82h  
round(10^(-slope/20)*2^31)  
84  
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
8.5.151 TF_CFG_4 (page=0x02 address=0x7F) [reset=C0h]  
Thermal foldback limiter slope (in db/C)  
Table 250. Thermal foldback limiter slope (in db/C) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_LIMS[7:0]  
RW  
C0h  
round(10^(-slope/20)*2^31)  
8.5.152 PAGE4 (page=0x04 address=0x00) [reset=0h]  
The device's memory map is divided into pages and books. This register sets the page.  
Table 251. Device Page Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PAGE[7:0]  
RW  
0h  
Sets the device page.  
00h = Page 0  
01h = Page 1  
...  
FFh = Page 255  
8.5.153 LD_CFG8 (page=0x04 address=0x18) [reset=0h]  
Load Resistance Value after load diagnostics is completed  
Table 252. Load Resistance Value after load diagnostics is completed Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LD_RES_VAL1[31:24]  
RW  
0h  
7*((LD_RES_VAL1)/2^22) ohms  
8.5.154 LD_CFG9 (page=0x04 address=0x19) [reset=0h]  
Load Resistance Value after load diagnostics is completed  
Table 253. Load Resistance Value after load diagnostics is completed Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LD_RES_VAL1[23:16]  
RW  
0h  
7*((LD_RES_VAL1)/2^22) ohms  
8.5.155 LD_CFG10 (page=0x04 address=0x1A) [reset=0h]  
Load Resistance Value after load diagnostics is completed  
Table 254. Load Resistance Value after load diagnostics is completed Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LD_RES_VAL1[15:8]  
RW  
0h  
7*((LD_RES_VAL1)/2^22) ohms  
8.5.156 LD_CFG11 (page=0x04 address=0x1B) [reset=0h]  
Load Resistance Value after load diagnostics is completed  
Table 255. Load Resistance Value after load diagnostics is completed Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
LD_RES_VAL1[7:0]  
RW  
0h  
7*((LD_RES_VAL1)/2^22) ohms  
Copyright © 2019, Texas Instruments Incorporated  
85  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
8.5.157 TF_CFG4 (page=0x04 address=0x58) [reset=0h]  
Thermal foldback hold count (samples)  
Table 256. Thermal foldback hold count (samples) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_HOLD_CNT[31:24]  
RW  
0h  
round(seconds * 1000)  
8.5.158 TF_CFG5 (page=0x04 address=0x59) [reset=0h]  
Thermal foldback hold count (samples)  
Table 257. Thermal foldback hold count (samples) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_HOLD_CNT[23:16]  
RW  
0h  
round(seconds * 1000)  
8.5.159 TF_CFG6 (page=0x04 address=0x5A) [reset=0h]  
Thermal foldback hold count (samples)  
Table 258. Thermal foldback hold count (samples) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_HOLD_CNT[15:8]  
RW  
0h  
round(seconds * 1000)  
8.5.160 TF_CFG7 (page=0x04 address=0x5B) [reset=64h]  
Thermal foldback hold count (samples)  
Table 259. Thermal foldback hold count (samples) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_HOLD_CNT[7:0]  
RW  
64h  
round(seconds * 1000)  
8.5.161 TF_CFG8 (page=0x04 address=0x5C) [reset=40h]  
Thermal foldback limiter release rate (db/samples)  
Table 260. Thermal foldback limiter release rate (db/samples) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_REL_RATE[31:24]  
RW  
40h  
round(10^(dB per sample/20)*2^30)  
8.5.162 TF_CFG9 (page=0x04 address=0x5D) [reset=BDh]  
Thermal foldback limiter release rate (db/samples)  
Table 261. Thermal foldback limiter release rate (db/samples) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_REL_RATE[23:16]  
RW  
BDh  
round(10^(dB per sample/20)*2^30)  
8.5.163 TF_CFG10 (page=0x04 address=0x5E) [reset=B7h]  
Thermal foldback limiter release rate (db/samples)  
Table 262. Thermal foldback limiter release rate (db/samples) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_REL_RATE[15:8]  
RW  
B7h  
round(10^(dB per sample/20)*2^30)  
86  
Copyright © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
8.5.164 TF_CFG11 (page=0x04 address=0x5F) [reset=B0h]  
Thermal foldback limiter release rate (db/samples)  
Table 263. Thermal foldback limiter release rate (db/samples) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_REL_RATE[7:0]  
RW  
B0h  
round(10^(dB per sample/20)*2^30)  
8.5.165 TF_CFG12 (page=0x04 address=0x60) [reset=39h]  
Thermal foldback limiter temperature threshold  
Table 264. Thermal foldback limiter temperature threshold Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_TEMP_TH[31:24]  
RW  
39h  
round(temperature in degree C*2^23)  
8.5.166 TF_CFG13 (page=0x04 address=0x61) [reset=82h]  
Thermal foldback limiter temperature threshold  
Table 265. Thermal foldback limiter temperature threshold Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_TEMP_TH[23:16]  
RW  
82h  
round(temperature in degree C*2^23)  
8.5.167 TF_CFG14 (page=0x04 address=0x62) [reset=60h]  
Thermal foldback limiter temperature threshold  
Table 266. Thermal foldback limiter temperature threshold Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_TEMP_TH[15:8]  
RW  
60h  
round(temperature in degree C*2^23)  
8.5.168 TF_CFG16 (page=0x04 address=0x63) [reset=7Fh]  
Thermal foldback limiter temperature threshold  
Table 267. Thermal foldback limiter temperature threshold Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_TEMP_TH[7:0]  
RW  
7Fh  
round(temperature in degree C*2^23)  
8.5.169 TF_CFG17 (page=0x04 address=0x64) [reset=2Dh]  
Thermal foldback max gain reduction (dB)  
Table 268. Thermal foldback max gain reduction (dB) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_MAX_ATTN[31:24]  
RW  
2Dh  
round(10^(max attn dB/20)*2^31)  
8.5.170 TF_CFG18 (page=0x04 address=0x65) [reset=6Ah]  
Thermal foldback max gain reduction (dB)  
Table 269. Thermal foldback max gain reduction (dB) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_MAX_ATTN[23:16]  
RW  
6Ah  
round(10^(max attn dB/20)*2^31)  
Copyright © 2019, Texas Instruments Incorporated  
87  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
8.5.171 TF_CFG19 (page=0x04 address=0x66) [reset=86h]  
Thermal foldback max gain reduction (dB)  
Table 270. Thermal foldback max gain reduction (dB) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_MAX_ATTN[15:8]  
RW  
86h  
round(10^(max attn dB/20)*2^31)  
8.5.172 TF_CFG20 (page=0x04 address=0x67) [reset=6Fh]  
Thermal foldback max gain reduction (dB)  
Table 271. Thermal foldback max gain reduction (dB) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
TF_MAX_ATTN[7:0]  
RW  
6Fh  
round(10^(max attn dB/20)*2^31)  
88  
版权 © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
The TAS2110 is a digital input high efficiency Class-D audio power amplifier with advanced battery current  
management and an integrated Class-H boost converter. In auto passthrough mode, the Class-H boost converter  
generates the Class-D amplifier supply rail. During low Class-D output power, the boost improves efficiency by  
deactivating and connecting VBAT directly to the Class-D amplifier supply. When high power audio is required,  
the boost quickly activates to provide louder audio than a stand-alone amplifier connected directly to the battery.  
It is recommended to configure the TAS2110 using PurePath™ Console 3 Software.  
9.2 Typical Application  
1.65 Vœ  
1.95 V  
2.9 V œ  
5.5 V  
L1  
1 mH  
C1  
10 mF  
C5  
4.7 mF  
C6  
1mF  
DREG  
VDD  
SW  
VBAT  
GREG  
C7  
100 nF  
VBST  
PVDD  
C2  
10 mF  
Enable  
SDZ  
L2 (opt.)  
+
-
OUT_P  
OUT_M  
To  
Speaker  
AD1  
AD0  
L3 (opt.)  
I2C Interface  
I2S Interface  
I2C  
I2S  
2
4
C4  
1 nF  
(opt.)  
C3  
1 nF  
(opt.)  
GND  
BGND  
PGND  
50. Typical Application - Digital Audio Input  
272. Recommended External Components  
COMPONENT  
DESCRIPTION  
SPECIFICATION  
Inductance, 20% Tolerance  
Saturation Current  
MIN  
TYP  
MAX  
UNIT  
0.47  
1
µH  
A
L1  
Boost Converter Inductor(1)  
4.5  
(1) See section Boost Converter Passive Devices for additional requirements on derating, stability, and inductor value trade-offs.  
版权 © 2019, Texas Instruments Incorporated  
89  
 
 
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
Typical Application (接下页)  
272. Recommended External Components (接下页)  
COMPONENT  
R2,R3  
DESCRIPTION  
SPECIFICATION  
Impedance at 100 MHz  
DC Resistance  
MIN  
TYP  
MAX  
UNIT  
Ω
120  
EMI Filter Inductors (optional). These are  
not recommended as it degrades THD+N  
performance. TAS2110 is a filter-less  
Class-D and does not require these bead  
inductors.  
0.095  
2
Ω
DC Current  
A
Size  
0402  
EIA  
µF  
C1,C2,C3,C4  
Boost Converter Input Capacitor(1)  
Capacitance, 20% Tolerance  
Type  
10  
X5R  
10  
Capacitance, 20% Tolerance  
Rated Voltage  
47  
µF  
V
C6,C7,C9,C15,C16 Boost Converter Output Capacitor  
16  
Capacitance at 11.5 V derating  
3.3  
µF  
EMI Filter Capacitors (optional, must use  
R2, R3 if C13, C14 used)  
C13,C14  
Capacitance  
1
nF  
C5,C8  
C11,C12  
C10  
VDD Decoupling Capacitor  
DREG Decoupling Capacitor  
GREG Fly Capacitor  
Capacitance  
Capacitance  
Capacitance  
4.7  
1
µF  
µF  
nF  
100  
9.2.1 Design Requirements  
For given design example, use the parameters shown in .273  
273. Design Parameters  
DESIGN PARAMETER  
Audio Input  
EXAMPLE VALUE  
Digital Audio, I2S  
Mono  
Mono or Stereo Configuration  
Max Output Power at 1% THD+N  
5.0 W  
9.2.2 Detailed Design Procedure  
9.2.2.1 Mono/Stereo Configuration  
In this application, the device is assumed to be operating in mono mode. See Device Mode and Address  
Selection for information on changing the I2C address of the TAS2110 to support stereo operation. Mono or  
stereo configuration does not impact the device performance.  
9.2.2.2 Boost Converter Passive Devices  
The boost converter requires three passive devices that are labeled L1, C1 and C2 in 50 and whose  
specifications are provided in 272. These specifications are based on the design of the TAS2110 and are  
necessary to meet the performance targets of the device. In particular, L1 should not be allowed to enter in the  
current saturation region. The saturation current for L1 should be > ILIM to deliver Class-D peak power.  
Additionally, the ratio of L1/C2 (the derated value of C2 at 11.5 V should be used in this ratio) has to be lesser  
than 1/3 for boost stability. This 1/3 ratio should be maintained including the worst case variation of L1 and C2.  
To satisfy sufficient energy transfer, L1 needs to be 0.47 μH at the boost switching frequency (100 kHz to 4  
MHz). Using a 0.47μH will have more boost ripple than a 1.0 μH or 2.2 μH but the high PSRR should minimize  
the effect from the additional ripple. Finally, the minimum C2 (derated value at programmed boost voltage)  
should be > 3.3 μF for Class-D power delivery specification.  
9.2.2.3 EMI Passive Devices  
The system designer may want to include passive devices on the Class-D output . These passive devices that  
are labeled L2, L3, C3 and C4 in 50 and their recommended specifications are provided in 272. If C3 and  
C4 are used, L2 and L3 must also be installed, and C3 and C4 must be placed after L2 and L3 respectively to  
maintain the stability of the output stage.  
90  
版权 © 2019, Texas Instruments Incorporated  
 
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
9.2.2.4 Miscellaneous Passive Devices  
The GREG Capacitor requires 100 nF to meet boost and Class-D power delivery and efficiency specs. For best  
device performance, the GREG capacitor should be placed very close to the device, star connected to PVDD  
and be routed with wide traces to minimize the impact of PCB parasitic effects.  
DREG Capacitor should be placed and Ground Loop closed next to device. DREG is internal supply(1.5V typical,  
functional min of 1.35V) generated from external VDD supply. For best performance, noise on VDD should be  
reduced by wide traces or higher caps on VDD next to device based on board routings.  
9.2.3 Application Curves  
10  
5
10  
5
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
VBAT=3.1V  
VBAT=3.6V  
VBAT=4.2V  
VBAT=5.5V  
2
1
2
1
0.5  
0.5  
0.2  
0.1  
0.2  
0.1  
0.05  
0.05  
0.02  
0.01  
0.02  
0.01  
0.005  
0.005  
0.002  
0.001  
0.002  
0.001  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Pout(W)  
1
2
3 45 7 10  
0.001  
0.010.02 0.05 0.1 0.2 0.5  
Pout(W)  
1
2 3 45 7 10  
D002  
D006  
RL = 4 Ω  
FIN = 1 kHz  
FIN = 20 Hz – 20 kHz  
POUT = 0.1 W  
RL = 8 Ω  
51. THD+N vs Output Power  
52. THD+N vs Frequency  
版权 © 2019, Texas Instruments Incorporated  
91  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 Power Supplies  
The TAS2110 requires four power supplies:  
Boost Input (terminal: VBAT)  
Voltage: 2.9 V to 5.5 V  
Max Current: 5 A for ILIM = 4.0 A (default)  
Analog Supply (terminal: VDD)  
Voltage: 1.65 V to 1.95 V  
Max Current: 30 mA  
Internal Supplies  
Digital Supply (terminal: DREG): 1.35 V to 1.65 V  
Boost Output (terminal: VBST) : VBAT to 13V  
Class-D Power Supply (terminal: PVDD): Short to VBST  
The decoupling capacitors for the power supplies should be placed close to the device terminals.  
10.2 Power Supply Sequencing  
The power rail may be brought up and down in any order. There is no requirement on sequencing. However if  
VDD is present without VBAT an additional rise in VDD current will be observed until VBAT is present.  
When the supplies have settled, the SDZ terminal can be set HIGH to operate the device. Additionally the SDZ  
pin can be tied to VDD and the internal POR will perform a reset of the device. After a hardware or software  
reset additional commands to the device should be delayed for 100 uS to allow the OTP to load. The above  
sequence should be completed before any I2C operation.  
In External PVDD Case, User need to ensure that PVDD does not drop below VBAT-0.7V.  
10.2.1 Boost Supply Details  
The boost supply (VBAT) and associated passives need to be able to support the current requirements of the  
device. By default, the peak current limit of the boost is set to 4 A. Refer to 86 for information on changing the  
current limit. A minimum of a 10 µF capacitor is recommended on the boost supply to quickly support changes in  
required current. Refer to 50 for the schematic.  
The current requirements can also be reduced by lowering the gain of the amplifier, or in response to decreasing  
battery through the use of the battery-tracking feature of the TAS2110 described in Supply Tracking Limiters with  
Brown Out Prevention.  
92  
版权 © 2019, Texas Instruments Incorporated  
 
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
11 Layout  
11.1 Layout Guidelines  
Place the boost inductor between VBAT and SW close to device terminals with no VIAS between the device  
terminals and the inductor.  
Place the capacitor between VBST and Ground close to device terminals with no VIAS between the device  
terminals and capacitor.  
Place the capacitor between VBAT and GND close to device terminals with no VIAS between the device  
terminals and capacitor.  
Minimize trace inductance between the GREG capacitor and TAS2564. This can be done by using multiple  
vias in parallel and by using wide routes where possible. This capacitor should have a star connection to  
PVDD.  
Do not use VIAS for traces that carry high current. These include the traces for VBST, SW, VBAT, PGND and  
the speaker OUT_P, OUT_M.  
SW, OUT_P and OUT_M are high switching nets and keep out should be kept from these signals to prevent  
corruption of digital signals.  
Use epoxy filled vias for the interior pads.  
EMI ferrites must be used if EMI capacitors are used on OUT_P, OUT_M.  
Use a ground plane with multiple vias for each terminal to create a low-impedance connection to GND for  
minimum ground noise.  
Use supply decoupling capacitors as shown in 50 and described in Power Supplies.  
Place EMI ferrites, if used, close to the device.  
274. Pin Layout Guidelines  
PIN  
MAX PARASITIC INDUCTANCE  
LAYOUT RECOMMENDATIONS  
BGND, GND, PGND, GNDD  
150 pH  
Short BGND, GND, GNDD, PGDN below the package and  
connect them to PCB ground plane strongly through  
multiple vias. Minimize inductance as much as possible  
DREG  
500 pH  
Bypass to GND with capacitor recommended in 272.  
Do not connect to external load. Both ends of decoupling  
cap should see as low inductance as possible between  
this pin and gnd pins.  
GREG  
PVDD  
SW  
200 pH  
100 pH  
Connect it to PVDD with a star connection and not to  
boost plane with recommended in 272. Do not connect  
to external load.  
Short it to VBST(boost) plane through strong conneciton.  
Connect it to GREG with a star connection and not to  
boost plane.  
Connect to VBAT with boost inductor recommended in 表  
272. Reduce parasitic capacitor and resistance for  
efficiency. Boost inductor should be as close as possible  
to the SW pin. Inductor should be connected to SW  
through thick plane. Traces should support currents up to  
device over-current limit.  
VBAT  
VBST  
500 pH  
100 pH  
Bypass to GND with capacitor recommended in 272.  
Should be connected to inductor through thick plane. Both  
ends of decoupling capacitor should see as low  
inductance as possible between VBAT pin and PGND pin.  
Do not connect to external load. Bypass to GND with  
capacitor recommended in 272. Connect to PVDD  
through thick plane. Both ends of decoupling capacitor  
should see as low inductance as possible between VBST  
pin and BGND pin. Traces should support currents up to  
device over-current limit.  
VDD  
200 pH  
Bypass to GND with capacitor recommended in 272.  
Both the end of decoupling cap should see as low  
inductance as possible between this pin and GND pin  
版权 © 2019, Texas Instruments Incorporated  
93  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
11.2 Layout Example  
53. Board Layout- Top  
54. Board Layout- Bottom  
55. Top Copper  
94  
版权 © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
Layout Example (接下页)  
56. Bottom Copper  
版权 © 2019, Texas Instruments Incorporated  
95  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
请参阅如下相关文档:TAS2563YBGEVM-DC 评估模块用户指南》  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品  
信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 社区资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
96  
版权 © 2019, Texas Instruments Incorporated  
TAS2110  
www.ti.com.cn  
ZHCSKM5 DECEMBER 2019  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2019, Texas Instruments Incorporated  
97  
TAS2110  
ZHCSKM5 DECEMBER 2019  
www.ti.com.cn  
98  
版权 © 2019, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TAS2110RPPR  
TAS2110RPPT  
ACTIVE  
ACTIVE  
VQFN-HR  
VQFN-HR  
RPP  
RPP  
32  
32  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 85  
-40 to 85  
TAS2110  
TAS2110  
Samples  
Samples  
SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
12-May-2023  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
RPP 32  
4.5 x 4, 0.4 mm pitch  
VQFN-HR - 1.0 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4226439/A  
www.ti.com  
PACKAGE OUTLINE  
VQFN-HR - 1.0 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RPP0032A  
4.6  
4.4  
A
B
PIN 1 INDEX AREA  
4.1  
3.9  
1.0  
0.8  
C
SEATING PLANE  
0.05  
0.00  
0.08  
C
0.573  
PKG  
0.9  
0.7  
6X  
1.0  
0.8  
(0.367)  
0.017  
(0.66)  
(0.26)  
(0.167)  
24X 0.4  
TYP (0.1)  
(0.226)  
(0.626)  
16  
9
(0.25)  
(0.65)  
17  
8
1.3  
1.1  
3X  
0.7  
0.5  
4X  
4X 0.55  
2X 0.475  
0.3  
0.2  
0.2  
PKG  
0.1  
0.05  
C A B  
C
0.224  
0.95  
0.75  
0.513  
1.4  
1.2  
2X  
1
0.75  
0.55  
(0.674)  
24  
(0.5)  
32  
25  
0.55  
0.35  
(0.274)  
(0.35)  
(0.15)  
5X  
(0.175)  
(0.3)  
0.6  
0.4  
0.25  
27X  
0.15  
5X  
0.1  
C
C
A B  
0.05  
(0.7)  
4224769/A 01/2019  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
VQFN-HR - 1.0 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RPP0032A  
(1.1)  
(0.9)  
(0.325)  
(0.7)  
(0.55)  
2X (0.2)  
PKG  
(0.874)  
(1.05)  
(0.85)  
25  
32  
(1.775)  
(1.675)  
(1.526)  
24  
(1.6626)  
1
(1.45)  
2X  
(1.5)  
(0.513)  
5X (0.4)  
4X (0.55)  
(0.25)  
PKG  
24X (0.4)  
(0.2)  
(0.224)  
(R0.05)  
(0.826)  
4X (0.8)  
5X (0.65)  
(1.5)  
(1.574)  
(1.8)  
17  
8
3X  
(1.4)  
(1.5499)  
(0.85)  
(1.875)  
9
16  
5X (0.7)  
(0.86)  
(0.017)  
(0.573)  
(0.567)  
6X (1)  
27X (0.2)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 16X  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
METAL UNDER  
SOLDER MASK  
METAL EDGE  
EXPOSED  
METAL  
EXPOSED  
METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4224769/A 01/2019  
NOTES: (continued)  
3. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
VQFN-HR - 1.0 mm max height  
PLASTIC QUAD FLAT PACK- NO LEAD  
RPP0032A  
(1.1)  
(0.9)  
(0.325)  
(0.7)  
(0.55)  
2X (0.2)  
PKG  
(0.874)  
(1.05)  
(0.85)  
25  
32  
(1.775)  
(1.675)  
(1.526)  
24  
(1.6626)  
1
(1.45)  
2X  
(1.5)  
(0.513)  
5X (0.375)  
4X (0.55)  
(0.25)  
PKG  
24X (0.4)  
(0.224)  
(0.2)  
(R0.05)  
(0.826)  
4X (0.8)  
5X (0.65)  
(1.5)  
(1.574)  
(1.8)  
17  
8
3X  
(1.4)  
(1.5499)  
(0.85)  
(1.875)  
9
16  
5X (0.7)  
(0.017)  
0.573  
(0.567)  
6X (1)  
(0.86)  
27X (0.2)  
SOLDER PASTE EXAMPLE  
BASED ON 0.100mm THICK STENCIL  
PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
PAD 1: 93% , PAD 8: 92%, PAD 17: 87%, PAD 24: 94%  
SCALE: 16X  
4224769/A 01/2019  
NOTES: (continued)  
4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TAS2141-AAAB

Sensor/Transducer,
TDK

TAS2143-AAAA

Sensor/Transducer,
TDK

TAS214BP

Conformal, Single-In-Line Resistor Networks
VISHAY

TAS214BW

Conformal, Single-In-Line Resistor Networks
VISHAY

TAS215BP

RES NET,THIN FILM,100K OHMS,100WV,.1% +/-TOL,-15,15PPM TC,3210 CASE
VISHAY

TAS223K035P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS223K050P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS223K075P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS223K100P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS224K020P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS224K035P1A

CAP TANT 0.22UF 35V 10% AXIAL
CDE

TAS224K050P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE