TAS3251DKQR [TI]

175W 立体声、350W 单声道、12V 至 38V 电源电压、数字输入 D 类智能音频放大器 | DKQ | 56 | 0 to 70;
TAS3251DKQR
型号: TAS3251DKQR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

175W 立体声、350W 单声道、12V 至 38V 电源电压、数字输入 D 类智能音频放大器 | DKQ | 56 | 0 to 70

放大器 音频放大器
文件: 总123页 (文件大小:2144K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
TAS3251 具有高级 DSP 处理功能的 175W 立体声、350W 单声道超高清  
数字输入 D 类放大器  
1 特性  
2 应用  
1
灵活的音频输入  
蓝牙和WiFi 无线音箱  
I2STDM、左平衡、右平衡  
条形音箱  
低音炮  
32kHz44.1kHz48kHz96kHz  
支持 3 线数字输入(无 MCLK)  
书架立体声系统  
专业和公共广播 (PA) 扬声器和  
有源分频器和双向扬声器  
THD+N 10% 时的总输出功率  
175W/4Ω,桥接负载 (BTL) 立体声配置  
220W/3Ω,桥接负载 (BTL) 立体声配置  
350W/2Ω,并行桥接负载 (PBTL) 单声道配置  
3 说明  
TAS3251 是一款数字输入高性能 D 类音频放大器,可  
实现真正的高端音质和 D 类效率。数字前端 采用 具有  
集成 DSP 的高性能 Burr-Brown™DAC,可实现高级  
音频处理,同时采用了 SmartAmp SmartEQ。该首  
款高功率单芯片解决方案降低了总体系统解决方案的尺  
寸和成本。DSP TI PurePath™控制台图形调节软  
件提供支持,可以快速轻松地调节和控制扬声器。D  
类功率级 具有 高级集成式反馈和专有高速栅极驱动器  
错误校正功能,可以在音频频带内实现超低失真和噪  
声。该器件在 AD 模式下运行,最多可驱动 2 个  
175W/4负载和 2 220W/3负载。  
THD+N 1% 时的总输出功率  
140W/4ΩBTL 立体声配置  
175W/3ΩBTL 立体声配置  
285W/2ΩPBTL 单声道配置  
高级集成式闭环设计  
1W/4时具有 0.01% 的超低 THD+N  
削波小于 0.01% THD+N  
60dB PSRRBTL,无输入信号)  
输出噪声(A 加权)< 95µV  
SNRA 加权)> 108dB  
固定功能处理 特性  
SmartEQ(每个通道多达 15 个双二阶)  
分频器 EQ2x 5 个双二阶)  
器件信息  
器件编号  
TAS3251  
封装  
封装尺寸(标称值)  
HSSOP (56)  
18.41mm × 7.49mm  
三波段高级动态范围压缩 (DRC) + 自动增益限  
(AGL)  
(1) 如需了解所有可用封装,请参阅产品说明书末尾的可订购产品  
附录。  
动态均衡和 SmartBass  
采样率转换  
简化原理图  
控制 特性  
I2C 软件模式控制  
BST_A+  
地址选择引脚  
DAC_MUTE  
SPK_OUTA+  
90% 高效 D 类操作 (4)  
MCLK  
DAC  
LC  
Filter  
12V 36V 宽电源电压工作范围  
LRCLK  
I2S / TDM  
Audio Port  
SCLK  
SDIN  
SPK_OUTA-  
BST_A-  
具有错误报告功能的集成式保护:欠压、逐周期电  
流限制、短路、削波检测、过热警告和关断以及直  
流扬声器保护  
32, 44.1, 48, 96kHz  
CDSP Core  
Pass
EQ, High  
Speaker Enhancement Protection  
/
Filter,  
Low&
DAC  
SDOUT  
Ultra-Low Distortion  
24-bit, Up to 96kHz  
Closed-Loop  
Class-D Amplifiers  
BST_B+  
SPK_OUTB+  
SDA  
SCL  
ADR  
LC  
Filter  
I2  
Software Control Port  
C
SPK_OUTB-  
BST_B-  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLASEG6  
 
 
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
目录  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings.............................................................. 7  
7.3 Recommended Operating Conditions....................... 8  
7.4 Thermal Information.................................................. 8  
7.5 Amplifier Electrical Characteristics............................ 9  
7.6 DAC Electrical Characteristics ................................ 11  
7.7 Audio Characteristics (BTL) .................................... 12  
7.8 Audio Characteristics (PBTL).................................. 12  
7.9 MCLK Timing .......................................................... 13  
7.10 Serial Audio Port Timing – Slave Mode................ 13  
7.11 Serial Audio Port Timing – Master Mode.............. 13  
7.12 I2C Bus Timing –Standard .................................... 14  
7.13 I2C Bus Timing –Fast............................................ 14  
7.14 Timing Diagrams................................................... 15  
7.15 Typical Characteristics.......................................... 17  
8
9
Detailed Description ............................................ 21  
8.1 Overview ................................................................. 21  
8.2 Functional Block Diagram ....................................... 21  
8.3 Feature Description................................................. 22  
8.4 Device Functional Modes........................................ 51  
8.5 Programming........................................................... 53  
8.6 Register Maps......................................................... 64  
Application and Implementation ...................... 101  
9.1 Typical Applications ............................................. 101  
10 Power Supply Recommendations ................... 108  
10.1 Power Supplies ................................................... 108  
11 Layout................................................................. 111  
11.1 Layout Guidelines ............................................... 111  
11.2 Layout Examples................................................. 112  
12 器件和文档支持 ................................................... 115  
12.1 器件支持.............................................................. 115  
12.2 接收文档更新通知 ............................................... 115  
12.3 社区资源.............................................................. 116  
12.4 ..................................................................... 116  
12.5 静电放电警告....................................................... 116  
12.6 术语表 ................................................................. 116  
13 机械、封装和可订购信息..................................... 116  
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (May 2018) to Revision A  
Page  
将文件状态从预告信息 更改成了生产数.............................................................................................................................. 1  
2
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
5 Device Comparison Table  
AUDIO INPUT  
INTERFACE  
PAD  
LOCATION  
DEVICE NAME  
DESCRIPTION  
175-W Stereo, 350-W Mono Ultra-HD Digital-Input Class-D Amplifier with Advanced  
DSP Processing  
TAS3251  
TAS3245  
Digital  
Digital  
Digital  
Top  
Top  
115-W Stereo, 230-W Mono Ultra-HD Digital-Input Class-D Amplifier with Advanced  
DSP Processing  
30-W Stereo, 60-W Mono Digital-Input Class-D Amplifier with Advanced DSP  
Processing  
TAS5782M  
Bottom  
TPA3244  
TPA3245  
TPA3250  
TPA3251  
TPA3255  
60-W Stereo, 100-W Peak Ultra-HD Pad-Down Class-D Amplifier  
115-W Stereo, 230-W Mono Ultra-HD Analog-Input Class-D Amplifier  
70-W Stereo, 130-W Peak Ultra-HD Pad-Down Class-D Amplifier  
175-W Stereo, 350-W Mono Ultra-HD Analog-Input Power Stage  
315-W Stereo, 600-W Mono Ultra-HD Analog-Input Class-D Amplifier  
Analog  
Analog  
Analog  
Analog  
Analog  
Bottom  
Top  
Bottom  
Top  
Top  
Copyright © 2018, Texas Instruments Incorporated  
3
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
6 Pin Configuration and Functions  
DKQ Package  
56-Pin HSSOP with PowerPAD™  
Top View  
DAC_OUTB+  
DAC_OUTB-  
DAC_OUTA-  
DAC_OUTA+  
CPVSS  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
DAC_AVDD  
AGND  
2
3
SDA  
4
SCL  
5
XPU  
CN  
6
SDOUT  
MCLK  
GND  
7
CP  
8
SCLK  
DAC_DVDD  
DGND  
9
SDIN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
LRCK  
DVDD_REG  
GVDD_A  
GND  
ADR  
DAC_MUTE  
BST_A+  
BST_A-  
GND  
MODE  
Thermal  
Pad  
SPK_INA+  
SPK_INA-  
OC_ADJ  
FREQ_ADJ  
OSC_IOM  
OSC_IOP  
DVDD  
SPK_OUTA+  
PVDD_A  
SPK_OUTA-  
GND  
GND  
SPK_OUTB+  
PVDD_B  
SPK_OUTB-  
GND  
GND  
AVDD  
C_START  
SPK_INB+  
SPK_INB-  
RESET_AMP  
FAULT  
BST_B+  
BST_B-  
GVDD_B  
CLIP_OTW  
Not to scale  
4
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
NAME  
1
2
3
4
DAC_OUTB+  
DAC_OUTB-  
DAC_OUTA-  
DAC_OUTA+  
O
O
O
O
Differential DAC output B+.  
Differential DAC output B-.  
Differential DAC output A-.  
Differential DAC output A+.  
–3.3 V negative charge pump supply output for DAC. Connect 1 µF ceramic capacitor to GND. Refer to section:  
Power Supply Recommendations  
5
CPVSS  
P
Negative pin for capacitor connection used in the line-driver charge pump. Connect 1 µF ceramic capacitor from  
CN to CP. Refer to section: Power Supply Recommendations  
6
7
8
CN  
GND  
CP  
P
G
P
Ground pin for device.  
Positive pin for capacitor connection used in the line-driver charge pump. Connect 1 µF capacitor from CN to  
CP. Refer to section: Power Supply Recommendations  
DAC power supply input for digital logic and charge pump. Connect 3.3 V and a 1 uF ceramic capacitor to GND.  
Refer to section: DAC_DVDD and DAC_AVDD Supplies  
9
DAC_DVDD  
DGND  
P
10  
G
Ground reference for digital circuitry. Connect this pin to the system ground.  
DAC voltage regulator output derived from DAC_DVDD supply for use for internal digital circuitry (1.8 V). This  
pin is provided as a connection point for filtering capacitors for this supply and must not be used to power any  
external circuitry. Connect 1 µF ceramic capacitor to GND. Refer to section: DAC_DVDD and DAC_AVDD  
Supplies  
11  
DVDD_REG  
P
Gate drive supply input for amplifier channel A. Connect 12 V and a 0.1 µF capacitor to GND. Refer to section:  
GVDD_X Supply  
12  
GVDD_A  
P
13  
14  
15  
16  
17  
18  
GND  
G
Ground pin for device.  
MODE  
I
Output configuration mode selection. BTL = 0, PBTL = 1. Refer to table: Mode Selection Pins  
Input signal for half-bridge A+.  
SPK_INA+  
SPK_INA-  
OC_ADJ  
FREQ_ADJ  
I
I
Input signal for half-bridge A-.  
I / O  
I / O  
Over-Current threshold programming pin. Refer to section: Overload and Short Circuit Current Protection  
Oscillator frequency programming pin. Refer to section: Oscillator for Output Power Stage  
PWM switching oscillator synchronization interface. Optional. Do not connect if unused. Refer to section:  
Oscillator Synchronization and Slave Mode  
19  
20  
OSC_IOM  
OSC_IOP  
I / O  
O
PWM switching oscillator synchronization interface. Optional. Do not connect if unused. Refer to section:  
Oscillator Synchronization and Slave Mode  
Internal voltage regulator, amplifier digital section. Connect 1 µF ceramic capacitor to GND. Refer to section:  
VDD Supply  
21  
22  
23  
DVDD  
GND  
P
G
P
Ground pin for device.  
Internal voltage regulator, amplifier analog section. Connect 1 µF ceramic capacitor to GND. Refer to section:  
VDD Supply  
AVDD  
Startup ramp, requires a charging capacitor to GND. Connect 10 nF to GND for best pop prevention. Refer to  
section: Pop and Click Free Startup and Shutdown  
24  
C_START  
O
25  
26  
27  
SPK_INB+  
SPK_INB-  
I
I
I
Input signal for half-bridge B+.  
Input signal for half-bridge B-.  
RESET_AMP  
Device reset, active low. Use for amplifier reset and mute. Refer to section: Output Power Stage Reset  
Shutdown signal, open drain; active low. Internal pull-up resistor to DVDD. Do not connect if unused. Refer to  
section: Device Output Stage Protection System  
28  
29  
30  
FAULT  
CLIP_OTW  
GVDD_B  
O
O
P
Clipping warning and over-temperature warning; open drain; active low. Internal pull-up resistor to DVDD. Do not  
connect if unused. Refer to section: Device Output Stage Protection System  
Gate drive supply input for amplifier channel B. Connect 12 V and a 0.1 µF capacitor to GND. Refer to section:  
GVDD_X Supply  
31  
32  
33  
34  
BST_B-  
BST_B+  
GND  
P
P
HS bootstrap supply (BST), external 0.033 μF capacitor to SPK_OUTB-. Refer to section: BST Supply  
HS bootstrap supply (BST), external 0.033 μF capacitor to SPK_OUTB+. Refer to section: BST Supply  
Ground pin for device.  
G
O
SPK_OUTB-  
Output, half bridge B-.  
PVDD supply for channel B. Connect large bulk capacitor and 1 µF ceramic decoupling capacitor to GND and  
place near pin. Refer to section: PVDD Supply  
35  
PVDD_B  
P
36  
37  
38  
SPK_OUTB+  
GND  
O
G
G
Output, half bridge B+.  
Ground pin for device.  
Ground pin for device.  
GND  
(1) I=Input, O=Output, I/O= Input/Output, P=Power, G=Ground  
Copyright © 2018, Texas Instruments Incorporated  
5
 
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
NAME  
39  
SPK_OUTA-  
O
P
Output, half bridge A-.  
PVDD supply for channel A. Connect large bulk capacitor and 1 µF ceramic decoupling capacitor to GND and  
place near pin. Refer to section: PVDD Supply  
40  
PVDD_A  
41  
42  
43  
44  
SPK_OUTA+  
GND  
O
G
P
P
Output, half bridge A+.  
Ground pin for device.  
BST_A-  
BST_A+  
HS bootstrap supply (BST), external 0.033 μF capacitor to SPK_OUTA-. Refer to section: BST Supply  
HS bootstrap supply (BST), external 0.033 μF capacitor to SPK_OUTA+. Refer to section: BST Supply  
Hardware controlled DAC mute function. Pull low (connected to DGND) to mute the device and pull high  
(connected to DAC_DVDD) to unmute the device. Refer to section: Mute with DAC_MUTE or Clock Error  
45  
46  
DAC_MUTE  
ADR  
I
I
Sets the LSB of the I2C address to 0 if pulled to GND, to 1 if pulled to DAC_DVDD. Refer to table: Slave  
Address Select  
Left-Right Word (I2S) or Frame (TDM) select clock for digital audio signal. In I2S, LJ, and RJ, this corresponds to  
the left channel and right channel boundary. In TDM mode, this corresponds to the frame sync boundary. Refer  
to section: Serial Audio Port  
47  
LRCK  
I
48  
49  
SDIN  
SCLK  
I
I
Audio data serial port, data in. Refer to section: Serial Audio Port  
Serial or bit clock for the digital signal that is active on the input data line of the serial data port. Refer to section:  
Serial Audio Port  
Master clock used for internal clock tree and sub-circuit and state machine clocking. Refer to section: Serial  
Audio Port  
50  
51  
52  
MCLK  
SDOUT  
XPU  
I
I / O  
I
Audio data serial port, data output. Refer to section: SDOUT Port and Hardware Control Pin  
External pull-up, logic level pin. For normal operation, this pin should be connected directly to 3.3 V (DAC_DVDD  
or DAC_AVDD).  
I2C serial control port clock. Refer to section: I2C Communication Port  
I2C serial control port data. Refer to section: I2C Communication Port  
Ground reference for analog circuitry. Connect to system ground.  
53  
54  
55  
SCL  
SDA  
I
I / O  
G
AGND  
DAC power supply input for DAC internal analog circuitry. Connect 3.3 V and a 1 uF ceramic capacitor to GND.  
Refer to section: DAC_DVDD and DAC_AVDD Supplies  
56  
DAC_AVDD  
PowerPAD™  
P
G
Ground, connect to grounded heat sink.  
Table 1. Mode Selection Pins  
Output  
Configuration  
SPK_INB+  
Input Mode  
MODE Pin  
SPK_INB- Pin  
Description  
Pin  
2 x BTL  
2N + 1  
0
X
X
Stereo BTL output configuration  
Paralleled BTL configuration pre-filter or  
post-filter. Connect SPK_INB+ and  
INPUT_B- to GND with no DC blocking  
capacitor.  
1 x PBTL  
2N + 1  
1
0
0
Table 2. I2C Device Slave Address  
ADR Pin  
Hex  
0x4A  
0x94  
0x95  
0x4B  
0x96  
0x97  
Binary  
7-bit Address  
1001 010  
1001 0100  
1001 0101  
1001 011  
1001 0110  
1001 0111  
0
7-bit Address + Write Bit  
7-bit Address + Read Bit  
7-bit Address  
1
7-bit Address + Write Bit  
7-bit Address + Read Bit  
6
Copyright © 2018, Texas Instruments Incorporated  
 
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
7 Specifications  
7.1 Absolute Maximum Ratings  
Free-air room temperature 25°C (unless otherwise noted)(1)  
MIN  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
MAX  
50  
UNIT  
V
PVDD_X to GND(2)  
BST_X to GVDD_X(2)  
BST_X to GND(2)  
50  
V
62.5  
13.2  
13.2  
4.2  
8.5  
3.9  
50  
V
VDD to GND  
Supply Voltage  
V
GVDD_X to GND(2)  
V
DVDD to GND  
V
AVDD to GND  
V
DAC_DVDD, DAC_AVDD  
SPK_OUTX to GND(2)  
V
V
Analog Interface Pins  
SPK_INX to GND  
7
V
OC_ADJ, MODE, OSC_IOP, OSC_IOM, FREQ_ADJ, C_START to  
GND  
-0.3  
-0.3  
4.2  
V
RESET_AMP, FAULT, CLIP_OTW to GND  
4.2  
9
V
Digital Interface Pins  
Continuous sink current RESET_AMP, FAULT, CLIP_OTW to GND  
mA  
ADR, DAC_MUTE, LRCK, MCLK, SCL, SCLK, SDA, SDIN, SDOUT,  
XPU to GND  
VDAC_DVDD +  
-0.5  
V
0.5  
Operating junction temperature range, power die  
Operating junction temperature, digital die  
Storage temperature range  
-40  
-40  
-40  
165  
°C  
°C  
°C  
TJ  
125  
150  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Theseare stress ratings  
only, and functional operation of the device at these or any other conditionsbeyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions forextended periods may affect device reliability.  
(2) These voltages represents the DC voltage + peak AC waveformmeasured at the terminal of the device in all conditions..  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)  
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)  
Electrostatic  
discharge  
V(ESD)  
V
(1) JEDEC document JEP155 states that 2000-V HBM allows safemanufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 500-V CDM allows safemanufacturing with a standard ESD control process.  
Copyright © 2018, Texas Instruments Incorporated  
7
 
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
Free-air room temperature 25°C (unless otherwise noted)  
MIN  
TYP  
MAX  
UNIT  
PVDD_X  
GVDD_X  
Half-bridge supply  
DC supply voltage  
DC supply voltage  
DC supply voltage  
12  
36  
38  
V
Supply for logic regulators and gate-drive  
circuitry  
10.8  
12  
13.2  
V
VDD  
Digital regulator supply voltage  
10.8  
2.9  
12  
13.2  
3.63  
V
V
DAC_AVDD  
Power supply for DAC internal analog circuitry. DC supply voltage  
3.3  
DAC digital power supply and power supply for  
DC supply voltage  
DAC_DVDD(1)  
2.9  
3.3  
3.63  
V
charge pump  
RL(BTL)  
2.7  
1.6  
5
4
2
Output filter inductance within  
recommended value range  
Load impedance  
RL(PBTL)  
LOUT(BTL)  
LOUT(PBTL)  
Minimum output inductance at  
IOC  
Output filter inductance  
μH  
5
Nominal  
575  
475  
430  
9.9  
19.8  
29.7  
1.0  
22  
600  
500  
450  
10  
625  
525  
470  
10.1  
20.2  
30.3  
PWM frame resistor tolerance selectable for  
AM interference avoidance; 1% Resistor  
tolerance  
FPWM  
AM1  
kHz  
AM2  
Nominal; Master mode  
AM1; Master mode  
AM2; Master mode  
R(FREQ_ADJ)  
PWM frame rate programming resistor  
20  
k  
30  
CPVDD  
PVDD close decoupling capacitors  
Over-current programming resistor  
Over-current programming resistor  
μF  
kΩ  
kΩ  
ROC  
Resistor tolerance = 5%  
Resistor tolerance = 5%  
30  
64  
ROC(LATCHED)  
47  
Voltage on FREQ_ADJ pin for slave mode  
operation  
V(FREQ_ADJ)  
VIH(DigIn)  
VIL(DigIn)  
TJ  
Slave mode  
3.3  
0
V
V
Input logic high for DAC_DVDD referenced  
0.9 ×  
VDAC_DVDD  
VDAC_DVDD  
(2)  
digital inputs(1)  
Input logic low for DAC_DVDD referenced  
0.1 ×  
VDAC_DVDD  
VDAC_DVDD  
0
V
(3)  
digital inputs(1)  
Junction temperature  
125  
°C  
(1) DAC_DVDD referenced digital pins include: ADR, LRCK, MCLK, DAC_MUTE, SCL, SCLK, SDA, SDIN, SDOUT and XPU.  
(2) Front-end (DAC and DSP) pins should be referenced to DAC_DVDD. Power stage digital pins should be referenced to DVDD.  
(3) All TAS3251 ground pins should be referenced to the system ground.  
7.4 Thermal Information  
TAS3251  
DKQ 56-PIN (HSSOP)  
THERMAL METRIC(1)  
UNIT  
JEDEC STANDARD 4-  
LAYER PCB  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
47.8  
0.3  
°C/W  
RθJC(top)  
RθJB  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
24.2  
0.2  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ψJB  
20.6  
n/a  
RθJC(bot)  
(1) For more information about traditional and new thermalmetrics, see the Semiconductor and ICPackage Thermal Metrics application  
report.  
8
Copyright © 2018, Texas Instruments Incorporated  
 
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
7.5 Amplifier Electrical Characteristics  
PVDD_X = 36 V, GVDD_X = 12 V, VDD = 12 V, TC (Case temperature) = 75°C, fs = 600 kHz, unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AMPLIFIER INTERNAL VOLTAGE REGULATOR AND CURRENT CONSUMPTION  
DVDD  
AVDD  
Voltage regulator for internal use  
Voltage regulator for internal use  
VDD = 12 V  
VDD = 12 V  
50% duty cycle  
Reset mode  
3
3.3  
7.8  
90  
3.6  
V
V
mA  
mA  
IGVDD_A + GVDD_B + VDD  
GVDD and VDD supply current  
PVDD idle current  
19  
50% duty cycle with recommended  
output filter  
20  
mA  
mA  
IPVDD_X  
Reset mode, no switching  
0.0048  
ANALOG INPUTS  
RIN  
Input resistance  
24  
7
kΩ  
Maximum input voltage swing,  
SPK_INx pins  
VIN  
V
Maximum input current, SPK_INx  
pins  
IIN  
G
1
mA  
dB  
Inverting voltage gain  
Amplifier VOUT/VIN  
20  
AMPLIFIER OSCILLATOR  
Nominal, Master Mode  
FPWM × 6  
FPWM × 6  
FPWM × 6  
3.45  
2.85  
2.58  
1.86  
3.6  
3
3.75  
3.15  
2.82  
MHz  
MHz  
MHz  
V
fOSC(IO+)  
AM1, Master Mode  
AM2, Master Mode  
2.7  
VIH  
VIL  
High level input voltage  
Low level input voltage  
1.45  
V
OUTPUT-STAGE MOSFETs  
Drain-to-source resistance, low-side  
TJ = 25°C, Includes metallization  
resistance, GVDD = 12 V  
60  
60  
100  
100  
mΩ  
mΩ  
(LS)  
RDS(on)  
Drain-to-source resistance, high-side TJ = 25°C, Includes metallization  
(HS) resistance, GVDD = 12 V  
AMPLIFIER I/O PROTECTION  
Undervoltage protection limit,  
GVDD_X and VDD  
Vuvp,VDD,GVDD  
Vuvp,VDD, GVDD,hyst  
OTW  
9.5  
0.6  
125  
25  
V
V
Undervoltage protection hysteresis,  
GVDD_X and VDD  
Over-temperature warning,  
115  
145  
135  
165  
°C  
°C  
(1)  
CLIP_OTW  
Temperature drop required to remove  
OTW event on CLIP_OTW  
OTWhyst  
OTE  
Over-temperature error  
OTE - OTW differential  
155  
30  
°C  
°C  
OTE-OTW(differential)  
A reset is required to clear an OTE  
event  
OTEhyst  
OLPC  
25  
°C  
Overload protection counter for CB3C FPWM = 600 kHz (1024 PWM cycles  
mode  
1.7  
ms  
for all FPWM)  
Resistor – programmable, nominal  
peak current in 1Ω load, ROCP = 22  
kΩ  
IOC  
Overcurrent limit for CB3C mode  
14  
A
Resistor – programmable, peak  
current in 1Ω load, ROCP = 47kΩ  
IOC(LATCHED)  
IDCspkr  
IOCT  
Overcurrent limit for latched mode  
14  
1.5  
150  
3
A
A
DC speaker protection current  
threshold  
BTL current imbalance threshold  
Time from switching transition to  
flip-state induced by overcurrent  
Overcurrent response time  
ns  
mA  
Output pulldown current of each half- Connected when RESET is active to  
bridge provide bootstrap charge  
IPD  
(1) Specified by design.  
Copyright © 2018, Texas Instruments Incorporated  
9
 
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Amplifier Electrical Characteristics (continued)  
PVDD_X = 36 V, GVDD_X = 12 V, VDD = 12 V, TC (Case temperature) = 75°C, fs = 600 kHz, unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
AMPLIFIER STATIC DIGITAL SPECIFICATIONS  
MODE, OSC_IOP, OSC_IOM,  
RESET_AMP  
VIH  
VIL  
Ilkg  
High-level input voltage  
Low-level input voltage  
Input leakage current  
1.9  
V
V
MODE, OSC_IOP, OSC_IOM,  
RESET_AMP  
0.8  
MODE, OSC_IOP, OSC_IOM,  
RESET_AMP  
100  
μA  
AMPLIFIER OTW/SHUTDOWN (FAULT)  
Internal pullup resistance, CLIP_OTW  
RINT_PU  
20  
3
26  
32  
kΩ  
to DVDD, FAULT to DVDD  
High-level output voltage  
Low-level output voltage  
CLIP_OTW, FAULT  
VOH  
Internal pullup resistor  
IO = 4 mA  
3.3  
200  
30  
3.6  
V
VOL  
500  
mV  
Device fanout  
No external pullup  
devices  
10  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
7.6 DAC Electrical Characteristics  
Free-air room temperature 25°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DIGITAL I/O  
Input logic high threshold for  
DAC_DVDD referenced digital  
inputs(1)  
VIH1  
70%  
VDAC_DVDD  
VDAC_DVDD  
µA  
Input logic low threshold for  
DAC_DVDD referenced digital  
inputs(1)  
VIL1  
IIH1  
IIL1  
30%  
10  
Input logic high current level for  
DAC_DVDD referenced digital  
input pins(1)  
VIN(DigIn) = VDAC_DVDD  
Input logic low current level for  
DAC_DVDD referenced digital  
input pins(1)  
VIN(DigIn) = 0 V  
–10  
µA  
VOH(DigOut)  
VOL(DigOut)  
I2C CONTROL PORT  
Output logic high voltage level(1)  
Output logic low voltage level(1)  
IOH = 4 mA  
80%  
VDAC_DVDD  
VDAC_DVDD  
IOH = –4 mA  
22%  
400  
Allowable load capacitance for  
CL(I2C)  
pF  
each I2C Line  
fSCL(fast)  
fSCL(slow)  
Support SCL frequency  
Support SCL frequency  
No wait states, fast mode  
No wait states, slow mode  
400  
100  
kHz  
kHz  
Noise margin at High level for  
each connected device (including  
hysteresis)  
0.2 ×  
VDAC_DVDD  
VNH  
V
MCLK AND PLL SPECIFICATIONS  
DMCLK Allowable MCLK duty cycle  
fMCLK  
40%  
128  
60%  
512  
(2)  
Supported MCLK frequencies  
Up to 50 MHz  
fS  
Clock divider uses fractional divide  
D > 0, P = 1  
6.7  
1
20  
20  
fPLL  
PLL input frequency  
MHz  
Clock divider uses integer divide  
D = 0, P = 1  
SERIAL AUDIO PORT  
Required LRCK/FS to SCLK rising  
edge delay  
tDLY  
5
ns  
DSCLK  
fS  
fSCLK  
fSCLK  
Allowable SCLK duty cycle  
Supported input sample rates  
Supported SCLK frequencies  
SCLK frequency  
40%  
8
60%  
96  
kHz  
(2)  
32  
64  
fS  
Either master mode or slave mode  
24.576  
MHz  
(1) DAC_DVDD referenced digital pins include: ADR, LRCK, MCLK, DAC_MUTE, SCL, SCLK, SDA, SDIN, SDOUT and XPU.  
(2) A unit of fS indicates that the specification is the value listed in the table multiplied by the sample rate of the audio used in the TAS3251  
device.  
Copyright © 2018, Texas Instruments Incorporated  
11  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
7.7 Audio Characteristics (BTL)  
PCB and system configuration are in accordance with recommended guidelines. Audio frequency = 1 kHz, PVDD_X = 36 V,  
GVDD_X = 12 V, RL = 4 , fS = 600 kHz, ROC = 22 k, TC= 75°C, Output Filter: LDEM = 10 μH, CDEM = 1 µF, MODE = 0,  
AES17 + AUX-0025 measurement filters, unless otherwise noted.  
PARAMETER  
TEST CONDITIONS  
RL = 3 , 10% THD+N  
RL = 4 , 10% THD+N  
RL = 3 , 1% THD+N  
RL = 4 , 1% THD+N  
1 W  
MIN  
TYP  
220  
MAX  
UNIT  
175  
PO  
Power output per channel  
W
175  
140  
THD+N  
Vn  
Total harmonic distortion + noise  
Output integrated noise  
0.008  
%
A-weighted, AES17 filter,  
input capacitor grounded  
95  
μV  
|VOS  
|
Output offset voltage  
Signal-to-noise ratio(1)  
Inputs AC coupled to GND  
20  
60  
mV  
dB  
dB  
SNR  
DNR  
108  
110  
Dynamic range  
Power dissipation due to Idle losses  
PO = 0, 4 channels  
switching(2)  
Pidle  
0.75  
W
(IPVDD_X  
)
(1) SNR is calculated relative to 1% THD+N outputlevel.  
(2) Actual system idle losses also are affected by core losses of output inductors.  
7.8 Audio Characteristics (PBTL)  
PCB and system configuration are in accordance with recommended guidelines. Audio frequency = 1 kHz, PVDD_X = 36 V,  
GVDD_X = 12 V, RL = 2 , fS = 600 kHz, ROC = 22 k, TC= 75°C, Output Filter: LDEM = 10 μH, CDEM = 1 µF, MODE = 1,  
outputs paralleled after LC filter, AES17 + AUX-0025 measurement filters, unlessotherwise noted.  
PARAMETER  
TEST CONDITIONS  
RL = 2 , 10% THD+N  
RL = 3 , 10% THD+N  
RL = 4 , 10% THD+N  
RL = 2 , 1% THD+N  
RL = 3 , 1% THD+N  
RL = 4 , 1% THD+N  
1 W  
MIN  
TYP  
355  
MAX  
UNIT  
250  
195  
PO  
Power output per channel  
W
285  
200  
155  
THD+N  
Vn  
Total harmonic distortion + noise  
Output integrated noise  
0.009  
%
A-weighted, AES17 filter,  
input capacitor grounded  
95  
μV  
SNR  
DNR  
Signal to noise ratio(1)  
Dynamic range  
A-weighted  
A-weighted  
108  
108  
dB  
dB  
Power dissipation due to idle losses  
(IPVDD_X)  
PO = 0, 4 channels  
switching(2)  
Pidle  
0.75  
W
(1) SNR is calculated relative to 1% THD+N output level.  
(2) Actual system idle losses are affected by core losses of output inductors.  
12  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
7.9 MCLK Timing  
See 1.  
PARAMETER  
MIN  
20  
9
MAX  
UNIT  
ns  
tMCLK  
MCLK period  
MCLK pulse width, high  
MCLK pulse width, low  
1000  
tMCLKH  
tMCLKL  
ns  
9
ns  
7.10 Serial Audio Port Timing – Slave Mode  
See 2.  
PARAMETER  
MIN  
1.024  
40  
16  
16  
8
MAX  
UNIT  
MHz  
ns  
fSCLK  
tSCLK  
tSCLKL  
tSCLKH  
tSL  
SCLK frequency  
SCLK period  
SCLK pulse width, low  
ns  
SCLK pulse width, high  
ns  
SCLK rising to LRCK/FS edge  
LRCK/FS Edge to SCLK rising edge  
Data setup time, before SCLK rising edge  
Data hold time, after SCLK rising edge  
Data delay time from SCLK falling edge  
ns  
tLS  
8
ns  
tSU  
8
ns  
tDH  
8
ns  
tDFS  
15  
ns  
7.11 Serial Audio Port Timing – Master Mode  
See 3.  
PARAMETER  
MIN  
40  
16  
16  
–10  
8
MAX  
UNIT  
ns  
tSCLK  
tSCLKL  
tSCLKH  
tLRD  
SCLK period  
SCLK pulse width, low  
ns  
SCLK pulse width, high  
ns  
LRCK/FS delay time from to SCLK falling edge  
Data setup time, before SCLK rising edge  
Data hold time, after SCLK rising edge  
Data delay time from SCLK falling edge  
20  
15  
ns  
tSU  
ns  
tDH  
8
ns  
tDFS  
ns  
Copyright © 2018, Texas Instruments Incorporated  
13  
 
 
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
7.12 I2C Bus Timing –Standard  
MIN  
MAX  
UNIT  
kHz  
µs  
fSCL  
SCL clock frequency  
400  
tBUF  
Bus free time between a STOP and START condition  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for (repeated) START condition  
Hold time for (repeated) START condition  
Data setup time  
4.7  
tLOW  
tHI  
4.7  
µs  
4
µs  
tRS-SU  
tS-HD  
tD-SU  
tD-HD  
tSCL-R  
4.7  
µs  
4
µs  
250  
0
ns  
Data hold time  
900  
ns  
Rise time of SCL signal  
20 + 0.1CB  
1000  
ns  
Rise time of SCL signal after a repeated START condition and after an  
acknowledge bit  
tSCL-R1  
20 + 0.1CB  
1000  
ns  
tSCL-F  
tSDA-R  
tSDA-F  
tP-SU  
Fall time of SCL signal  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
4
1000  
1000  
1000  
ns  
ns  
ns  
µs  
Rise time of SDA signal  
Fall time of SDA signal  
Setup time for STOP condition  
7.13 I2C Bus Timing –Fast  
See 4.  
MIN  
MAX  
UNIT  
kHz  
µs  
fSCL  
SCL clock frequency  
400  
tBUF  
Bus free time between a STOP and START condition  
Low period of the SCL clock  
High period of the SCL clock  
Setup time for (repeated)START condition  
Hold time for (repeated)START condition  
Data setup time  
1.3  
1.3  
tLOW  
tHI  
µs  
600  
ns  
tRS-SU  
tRS-HD  
tD-SU  
tD-HD  
tSCL-R  
600  
ns  
600  
ns  
100  
ns  
Data hold time  
0
900  
300  
ns  
Rise time of SCL signal  
20 + 0.1CB  
ns  
Rise time of SCL signal after a repeated START condition and after an  
acknowledge bit  
tSCL-R1  
20 + 0.1CB  
300  
ns  
tSCL-F  
tSDA-R  
tSDA-F  
tP-SU  
tSP  
Fall time of SCL signal  
20 + 0.1CB  
20 + 0.1CB  
20 + 0.1CB  
600  
300  
300  
300  
ns  
ns  
ns  
ns  
ns  
Rise time of SDA signal  
Fall time of SDA signal  
Setup time for STOP condition  
Pulse width of spike suppressed  
50  
14  
版权 © 2018, Texas Instruments Incorporated  
 
 
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
7.14 Timing Diagrams  
This section contains timing diagrams for I2C and I2S / TDM.  
t
MCLKH  
"H"  
"L"  
0.7 × V  
DVDD  
0.3 × V  
DVDD  
t
t
MCLKL  
MCLK  
1. Timing Requirements for MCLK Input  
LRCK/FS  
(Input)  
0.5 × DVDD  
0.5 × DVDD  
t
t
SCLKL  
SCLKH  
t
LS  
SCLK  
(Input)  
t
t
SL  
SCLK  
DATA  
(Input)  
0.5 × DVDD  
0.5 × DVDD  
t
t
DH  
SU  
t
DFS  
DATA  
(Output)  
2. MCLK Timing Diagram in Slave Mode  
版权 © 2018, Texas Instruments Incorporated  
15  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Timing Diagrams (接下页)  
t
BCL  
t
SCLK.  
SCLK  
(Input)  
0.5 × DVDD  
0.5 × DVDD  
t
t
LRD  
SCLK  
LRCK/FS  
(Input)  
t
DFS  
DATA  
(Input)  
0.5 × DVDD  
t
t
DH  
SU  
DATA  
(Output)  
0.5 × DVDD  
3. MCLK Timing Diagram in Master Mode  
Repeated  
START  
START  
STOP  
t
t
t
t
P-SU  
t
D-SU  
D-HD  
SDA-F  
SDA-R  
t
BUF.  
SDA  
t
t
t
SP  
SCL-R.  
RS-HD  
t
LOW.  
SCL  
t
HI.  
t
RS-SU  
t
t
SCL-F.  
S-HD.  
4. I2C Communication Port Timing Diagram  
16  
版权 © 2018, Texas Instruments Incorporated  
 
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
7.15 Typical Characteristics  
7.15.1 BTL Configuration  
All Measurements taken at audio frequency = 1 kHz, PVDD_X = 36 V, GVDD_X = 12 V, RL = 4 , fS = 600 kHz,  
ROC = 22 k, TC = 75°C, Output Filter: LDEM = 10 μH, CDEM = 1 µF, MODE = 0, AES17 + AUX-0025  
measurement filters, unless otherwise noted.  
10  
1
10  
1
1 W  
20 W  
75 W  
3 W  
4 W  
8 W  
0.1  
0.01  
0.1  
0.01  
0.001  
0.001  
0.0005  
10m  
100m  
1
10  
100 300  
20  
100  
1k  
10k 20k  
Po - Output Power - W  
f - Frequency - Hz  
D001  
D002  
TC = 75°C  
RL = 4 Ω  
TC = 75°C  
5. Total Harmonic Distortion+Noise vs Output Power  
6. Total Harmonic Distortion+Noise vs Frequency  
240  
3 W  
4 W  
200  
3 W  
4 W  
200  
8 W  
8 W  
160  
160  
120  
80  
40  
0
120  
80  
40  
0
10  
15  
20  
25  
30  
35  
40  
10  
15  
20  
25  
30  
35  
40  
PVDD - Supply Voltage - V  
PVDD - Supply Voltage - V  
D004  
D005  
THD+N = 10%  
TC = 75°C  
THD+N = 1%  
TC = 75°C  
7. Output Power vs Supply Voltage  
8. Output Power vs Supply Voltage  
100  
10  
1
75  
50  
25  
0
3 W  
4 W  
8 W  
3 W  
4 W  
8 W  
10m  
100m  
1
10  
100  
500  
2 Channel Output Power - W  
0
100  
200  
300  
400 450  
D006  
2 Channel Output Power - W  
D007  
TC = 75°C  
9. Efficiency vs Output Power  
TC = 75°C  
10. Power Loss vs Output Power  
版权 © 2018, Texas Instruments Incorporated  
17  
 
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
BTL Configuration (接下页)  
0
-20  
250  
4 W  
200  
150  
100  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
50  
3 W  
4 W  
8 W  
0
0
25  
50  
75  
100  
0
5k 10k 15k 20k 25k 30k 35k 40k 45k48k  
f - Frequency - Hz  
TC - Case Temperature - èC  
D008  
D009  
THD+N = 10%  
TC = 75°C  
VREF = 25.46 V FFT = 16384  
80 kHz analyzer BW  
AUX-0025 filter  
11. Output Power vs Temperature  
12. Noise vs Frequency  
18  
版权 © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
7.15.2 PBTL Configuration  
All Measurements taken at audio frequency = 1 kHz, PVDD_X = 36 V, GVDD_X = 12 V, RL = 2 , fS = 600 kHz,  
ROC = 22 k, TC = 75 °C, Output Filter: LDEM = 10 μH, CDEM = 1 µF, MODE = 1, outputs paralleled after LC filter,  
AES17 + AUX-0025 measurement filters, unless otherwise noted.  
10  
1
10  
1
2 W  
3 W  
4 W  
1 W  
50 W  
150 W  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
10m  
100m  
1
10  
100  
400  
20  
100  
1k  
10k 20k  
Po - Output Power - W  
f - Frequency - Hz  
D010  
D011  
TC = 75°C  
RL = 3 Ω  
TC = 75°C  
13. Total Harmonic Distortion+Noise vs Output Power  
14. Total Harmonic Distortion+Noise vs Frequency  
360  
300  
2 W  
3 W  
2 W  
3 W  
4 W  
320  
280  
240  
200  
160  
120  
80  
250  
4 W  
200  
150  
100  
50  
40  
0
0
10  
15  
20  
25  
30  
35  
40  
10  
15  
20  
25  
30  
35  
40  
PVDD - Supply Voltage - V  
PVDD - Supply Voltage - V  
D013  
D014  
THD+N = 10%  
TC = 75°C  
THD+N = 1%  
TC = 75°C  
16. Output Power vs Supply Voltage  
15. Output Power vs Supply Voltage  
100  
10  
1
75  
50  
25  
0
2 W  
3 W  
4 W  
2 W  
3 W  
4 W  
TC = 75èC  
10m  
100m  
1
10  
100  
500  
0
100  
200  
300  
400  
Output Power - W  
Output Power - W  
D015  
D016  
TC = 75°C  
17. Efficiency vs Output Power  
TC = 75°C  
18. Power Loss vs Output Power  
版权 © 2018, Texas Instruments Incorporated  
19  
 
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
PBTL Configuration (接下页)  
350  
300  
250  
200  
150  
100  
0
-20  
2 W  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
2
3
4
W
W
W
50  
0
0
25  
50  
75  
100  
0
5k  
10k 15k 20k 25k 30k 35k 40k 45k48k  
f - Frequency - Hz  
TC - Case Temperature - èC  
D0127  
D018  
THD+N = 10%  
19. Output Power vs Temperature  
TC = 75°C  
VREF = 25.46 V FFT = 16384  
80 kHz analyzer BW  
AUX-0025 filter  
20. Noise vs Frequency  
20  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8 Detailed Description  
8.1 Overview  
The TAS3251 device integrates four main building blocks into a single cohesive device that maximizes sound  
quality, flexibility, and ease of use. These include:  
Burr-Brown™ stereo audio DAC with a highly flexible serial audio port  
µCDSP, TI's latest audio processing core with a pre-programmed DSP audio process flows  
High-Performance, Ultra-HD Closed-loop Class-D amplifier capable of operating in stereo or mono  
An I2C control port for communication and control of the device  
The device requires three power supplies for proper operation. A 3.3 V rail for the low voltage circuitry and DAC,  
a 12 V rail for the amplifier gate-drive, and PVDD which is required to provide power to the output stage of the  
audio amplifier. The operating range for these supplies is shown in the Recommended Operating Conditions.  
The communication and control interface for the device uses I2C. A speaker amplifier fault output is also provided  
to notify a system controller of the occurrence of an overtemperature, overcurrent or undervoltage event.  
The µCDSP audio processing core is pre-programmed with configurable DSP programs. The PurePath™  
Console 3 software with the TAS3251 App available on TI.com provides the tools to control and tune the pre-  
programmed audio process flows.  
8.2 Functional Block Diagram  
Internal  
Voltage  
Supplies  
Charge  
Pump  
Oscillator  
Sync  
1.8-V  
Regulator  
Internal Voltage  
Supplies  
Closed Loop Class D Amplifier  
Gate  
SPK_OUTA+  
SPK_OUTA-  
SPK_OUTB+  
SPK_OUTB-  
Full Bridge  
Power Stage  
A
µCDSP  
Output  
Current  
Monitoring  
and  
Drives  
Analog  
to  
MCLK  
SCLK  
PWM  
Selectable  
Process  
Flows  
Modulator  
Full Bridge  
Power Stage  
B
Gate  
Protection  
DAC  
DAC  
Drives  
Serial  
Audio  
Port  
LRCK/FS  
SDIN  
Clock Monitoring and  
Error Protection  
Die Temperature  
Monitoring and Protection  
Error Reporting  
SDOUT  
Control Registers & Error Reporting  
Internal Control Registers and State Machines  
Copyright © 2018, Texas Instruments Incorporated  
21  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Power-on-Reset (POR) Function  
The TAS3251 device has a power-on reset function. The power-on reset feature resets all of the registers to their  
default configuration as the device is powering up. When the low-voltage power supply used to power DVDD,  
AVDD, and CPVDD exceeds the POR threshold, the device sets all of the internal registers to their default  
values and holds them there until the device receives valid MCLK, SCLK, and LRCK/FS toggling for a period of  
approximately 4 ms. After the toggling period has passed, the internal reset of the registers is removed and the  
registers can be programmed via the I2C Control Port.  
8.3.2 Enable Device  
To enable the device and play audio after power is applied write the following to the device over I2C. book 0x00,  
page 0x00, register 0x02 to 0x00. The following is a sample script for enabling the device:  
w 90 00 00 # Go to page 0  
w 90 7f 00 # Go to book 0  
w 90 02 00 # Enable device  
8.3.3 DAC and DSP Clocking  
The TAS3251 front-end (DAC and DSP) has flexible systems for clocking. Internally, the device requires a  
number of clocks, mostly at related clock rates to function correctly. All of these clocks can be derived from the  
Serial Audio Interface in one form or another. See section Oscillator for Output Power Stagefor setting the output  
stage oscillator and switching frequency.  
fS  
(24-bit)  
16 fS  
(24-bit)  
128 fS  
(~8-bit)  
Serial Audio  
Interface  
(Input)  
µCDSP  
(including  
interpolator)  
Delta  
Sigma  
Modulator  
I to V  
Line  
Driver  
Current  
Segments  
+
Audio  
In  
Audio  
Out  
Charge Pump  
CPCK  
DSPCK  
OSRCK  
DACCK  
LRCK/FS  
Figure 21. Audio Flow with Respective Clocks  
Figure 21 shows the basic data flow at basic sample rate (fS). When the data is brought into the serial audio  
interface, the data is processed, interpolated and modulated to 128 × fS before arriving at the current segments  
for the final digital to analog conversion.  
Figure 22 shows the clock tree.  
22  
Copyright © 2018, Texas Instruments Incorporated  
 
 
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
Feature Description (continued)  
PLLEN  
(P0-R4)  
MCLK  
SREF  
Divider  
(P0-R13)  
DDSP (P0-R27)  
SCLK  
GPIO  
MCLK  
SDAC  
(P0-R14)  
PLL  
K × R/P  
PLLCKIN  
PLLCK  
K = J.D  
J = 1,2,3,..,62,63  
D= 0000,0001,.,9998,9999  
R= 1,2,3,4,.,15,16  
DACCK (DAC Clock )  
MCLK  
GPIO  
Divider  
CPCK (Charge Pump Clock )  
DNCP (P0-R29)  
P= 1,2,.,127,128  
DDAC  
(P0-R28)  
Divider  
OSRCK  
(Oversampling  
Ratio Clock )  
Divider  
MUX  
DOSR  
(P0-R30)  
Divide  
by 2  
I16E (P0-R34)  
Figure 22. TAS3251 Clock Distribution Tree  
The Serial Audio Interface typically has 4 connection pins which are listed as follows:  
MCLK (System Master Clock)  
SCLK (Serial or Bit Clock)  
LRCK/FS (Left-Right Word Clock and Frame Sync)  
SDIN (Input Data)  
SDOUT can be used to output pre- or post-processed DSP data for use externally (See the SDOUT Port and  
Hardware Control Pins section)  
The device has an internal PLL that is used to take either MCLK or SCLK and create the higher rate clocks  
required by the DSP and the DAC clock.  
In situations where the highest audio performance is required, bringing MCLK to the device along with SCLK and  
LRCK/FS is recommended. The device should be configured so that the PLL is only providing a clock source to  
the DSP. All other clocks are then a division of the incoming MCLK. To enable the MCLK as the main source  
clock, with all others being created as divisions of the incoming MCLK, set the DAC CLK source mux (SDAC in  
Figure 22) to use MCLK as a source, rather than the output of the MCLK/PLL mux.  
8.3.3.1 Internal Clock Error Notification (CLKE)  
When a clock error is detected on the incoming data clock, the TAS3251 device switches to an internal oscillator  
and continues to the drive the DAC, while attenuating the data from the last known value. Once this process is  
complete, the DAC outputs will be hard muted to the ground and the Class-D PWM output will stop switching.  
The clock error can be monitored at B0-P0-R94 and R95. The clock error status bits are non-latching, except for  
MCLK halted B0-P0-R95-D[4] which is cleared when read.  
Copyright © 2018, Texas Instruments Incorporated  
23  
 
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Feature Description (continued)  
8.3.4 Serial Audio Port  
8.3.4.1 Clock Master Mode from Audio Rate Master Clock  
In Master Mode, the device generates bit clock and left-right and frame sync clock and outputs them on the  
appropriate pins. To configure the device in master mode, first put the device into reset, then use registers  
SCLKO and LRKO (P0-R9). Then reset the LRCK/FS and SCLK divider counters using bits RSCLK and RLRK  
(P0-R12). Finally, exit reset.  
Figure 23 shows a simplified serial port clock tree for the device in master mode.  
Audio Related System Clock (MCLK)  
MCLK  
SCLKO (Bit Clock Output In Master Mode)  
Divider  
Q1 = 1...128  
SCLK  
LRCK/FS (LR Clock or Frame Sync Output In  
Master Mode  
Divider  
LRCK/FS  
Q1 = 1...128  
Figure 23. Simplified Clock Tree for MCLK Sourced Master Mode  
In master mode, MCLK is an input and SCLK and LRCK/FS are outputs. SCLK and LRCK/FS are integer  
divisions of MCLK. Master mode with a non-audio rate master clock source requires external GPIO’s to use the  
PLL in standalone mode. The PLL should be configured to ensure that the on-chip processor can be driven at  
the maximum clock rate. The master mode of operation is described in the section.  
When used with audio rate master clocks, the register changes that should be done include switching the device  
into master mode, and setting the divider ratio. An example of the master mode of operations is using 24.576  
MHz MCLK as a master clock source and driving the SCLK and LRCK/FS with integer dividers to create 48 kHz  
sample rate clock output. In master mode, the DAC section of the device is also running from the PLL output.  
The TAS3251 device is able to meet the specified audio performance while using the internal PLL. However,  
using the MCLK CMOS oscillator source will have less jitter than the PLL.  
To switch the DAC clocks (SDAC in the Figure 22) the following registers should be modified  
Clock Tree Flex Mode (P253-R63 and P253-R64)  
DAC and OSR Source Clock Register (P0-R14). Set to 0x30 (MCLK input, and OSR is set to whatever the  
DAC source is)  
The DAC clock divider should be 16 fS.  
16 × 48 kHz = 768 kHz  
24.576 MHz (MCLK in) / 768 kHz = 32  
Therefore, the divide ratio for register DDAC (P0-R28) should be set to 32. The register mapping gives  
0x00 = 1, therefore 32 must be converter to 0x1F (31dec).  
8.3.4.2 Clock Slave Mode with 4-Wire Operation (SCLK, MCLK, LRCK/FS, SDIN)  
The TAS3251 device requires a system clock to operate the digital interpolation filters and advanced segment  
DAC modulators. The system clock is applied at the MCLK input and supports up to 50 MHz. The TAS3251  
device system-clock detection circuit automatically senses the system-clock frequency. Common audio sampling  
frequencies in the bands of 32 kHz, (44.1 – 48 kHz), (88.2 – 96 kHz) are supported.  
NOTE  
Values in the parentheses are grouped when detected, for example, 88.2 kHz and 96 kHz  
are detected as double rate, 32 kHz, 44.1 kHz and 48 kHz are detected as single rate and  
so on.  
24  
Copyright © 2018, Texas Instruments Incorporated  
 
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
Feature Description (continued)  
In the presence of a valid bit MCLK, SCLK and LRCK/FS, the device automatically configures the clock tree and  
PLL to drive the miniDSP as required.  
The sampling frequency detector sets the clock for the digital filter, Delta Sigma Modulator (DSM) and the  
Negative Charge Pump (NCP) automatically. Table 3 shows examples of system clock frequencies for common  
audio sampling rates.  
MCLK rates that are not common to standard audio clocks, between 1 MHz and 50 MHz, are supported by  
configuring various PLL and clock-divider registers directly. In slave mode, auto clock mode should be disabled  
using P0-R37. Additionally, the user can be required to ignore clock error detection if external clocks are not  
available for some time during configuration, or if the clocks presented on the pins of the device are invalid. The  
extended programmability allows the device to operate in an advanced mode in which the device becomes a  
clock master and drive the host serial port with LRCK/FS and SCLK, from a non-audio related clock (for  
example, using a setting of 12 MHz to generate 44.1 kHz [LRCK/FS] and 2.8224 MHz [SCLK]).  
Table 3 shows the timing requirements for the system clock input. For optimal performance, use a clock source  
with low phase jitter and noise. For MCLK timing requirements, refer to the Serial Audio Port Timing – Master  
Mode section.  
Table 3. System Master Clock Inputs for Audio Related Clocks  
SYSTEM CLOCK FREQUENCY (fMCLK) (MHz)  
SAMPLING  
FREQUENCY  
64 fS  
128 fS  
1.024  
192 fS  
1.536  
256 fS  
2.048  
384 fS  
3.072  
512 fS  
4.096  
8 kHz  
16 kHz  
32 kHz  
44.1 kHz  
48 kHz  
88.2 kHz  
96 kHz  
2.048  
3.072  
4.096  
6.144  
8.192  
4.096  
6.144  
8.192  
12.288  
16.9344  
18.432  
33.8688  
36.864  
16.384  
22.5792  
24.576  
45.1584  
49.152  
See  
5.6488  
6.144  
8.4672  
9.216  
11.2896  
12.288  
22.5792  
24.576  
11.2896  
12.288  
16.9344  
18.432  
8.3.4.3 Clock Slave Mode with SCLK PLL to Generate Internal Clocks (3-Wire PCM)  
8.3.4.3.1 Clock Generation Using the PLL  
The TAS3251 device supports a wide range of options to generate the required clocks as shown in Figure 22.  
The clocks for the PLL require a source reference clock. This clock is sourced as the incoming SCLK or MCLK, a  
GPIO can also be used.  
The source reference clock for the PLL reference clock is selected by programming the SRCREF value on P0-  
R13, D[6:4]. The TAS3251 device provides several programmable clock dividers to achieve a variety of sampling  
rates. See Figure 22.  
If PLL functionality is not required, set the PLLEN value on P0-R4, D[0] to 0. In this situation, an external master  
clock is required.  
Table 4. PLL Configuration Registers  
CLOCK MULTIPLEXER  
REGISTER  
SREF  
FUNCTION  
PLL Reference  
BITS  
B0-P0-R13-D[6:4]  
DDSP  
clock divider  
B0-P0-R27-D[6:0]  
B0-P0-R32-D[6:0]  
B0-P0-R33-D[7:0]  
DSCLK  
DLRK  
External SCLK Div  
External LRCK/FS Div  
Copyright © 2018, Texas Instruments Incorporated  
25  
 
 
 
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.3.4.3.2 PLL Calculation  
The TAS3251 device has an on-chip PLL with fractional multiplication to generate the clock frequency required  
by the Digital Signal Processing blocks. The programmability of the PLL allows operation from a wide variety of  
clocks that may be available in the system. The PLL input (PLLCKIN) supports clock frequencies from 1 MHz to  
50 MHz and is register programmable to enable generation of required sampling rates with fine precision.  
The PLL is enabled by default. The PLL can be enabled by writing to P0-R4, D[0]. When the PLL is enabled, the  
PLL output clock PLLCK is given by Equation 1:  
PLLCKIN x R x J.D  
P
PLLCKIN x R x K  
P
PLLCK =  
or PLLCK =  
where  
R = 1, 2, 3,4, ... , 15, 16  
J = 4,5,6, . . . 63, and D = 0000, 0001, 0002, . . . 9999  
K = [J value].[D value]  
P = 1, 2, 3, ... 15  
(1)  
R, J, D, and P are programmable. J is the integer portion of K (the numbers to the left of the decimal point), while  
D is the fractional portion of K (the numbers to the right of the decimal point, assuming four digits of precision).  
8.3.4.3.2.1 Examples:  
If K = 8.5, then J = 8, D = 5000  
If K = 7.12, then J = 7, D = 1200  
If K = 14.03, then J = 14, D = 0300  
If K = 6.0004, then J = 6, D = 0004  
When the PLL is enabled and D = 0000, the following conditions must be satisfied:  
1 MHz ( PLLCKIN / P ) 20 MHz  
64 MHz (PLLCKIN x K x R / P ) 100 MHz  
1 J 63  
When the PLL is enabled and D 0000, the following conditions must be satisfied:  
6.667 MHz PLLCLKIN / P 20 MHz  
64 MHz (PLLCKIN x K x R / P ) 100 MHz  
4 J 11  
R = 1  
When the PLL is enabled,  
fS = (PLLCLKIN × K × R) / (2048 × P)  
The value of N is selected so that fS × N = PLLCLKIN x K x R / P is in the allowable range.  
Example: MCLK = 12 MHz and fS = 44.1 kHz, (N=2048)  
Select P = 1, R = 1, K = 7.5264, which results in J = 7, D = 5264  
Example: MCLK = 12 MHz and fS = 48.0 kHz, (N=2048)  
Select P = 1, R = 1, K = 8.192, which results in J = 8, D = 1920  
Values are written to the registers in Table 5.  
Table 5. PLL Registers  
DIVIDER  
PLLE  
FUNCTION  
PLL enable  
PLL P  
BITS  
P0-R4, [0]  
PPDV  
PJDV  
P0-R20, [3:0]  
P0-R21, [5:0]  
P0-R22, [5:0]  
P0-R23, [7:0]  
P0-R24, [3:0]  
PLL J  
PDDV  
PRDV  
PLL D  
PLL R  
26  
Copyright © 2018, Texas Instruments Incorporated  
 
 
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
Table 6. PLL Configuration Recommendations  
EQUATIONS  
fS (kHz)  
DESCRIPTION  
Sampling frequency  
RMCLK  
Ratio between sampling frequency and MCLK frequency (MCLK frequency = RMCLK x sampling frequency)  
System master clock frequency at MCLK input (pin 20)  
MCLK (MHz)  
PLL VCO (MHz) PLL VCO frequency as PLLCK in Figure 22  
One of the PLL coefficients in Equation 1  
PLL REF (MHz) Internal reference clock frequency which is produced by MCLK / P  
P
M = K × R  
K = J.D  
R
The final PLL multiplication factor computed from K and R as described in Equation 1  
One of the PLL coefficients in Equation 1  
One of the PLL coefficients in Equation 1  
PLL fS  
DSP fS  
NMAC  
Ratio between fS and PLL VCO frequency (PLL VCO / fS)  
Ratio between operating clock rate and fS (PLL fS / NMAC)  
The clock divider value in Table 4  
DSP CLK (MHz) The operating frequency as DSPCK in Figure 22  
MOD fS  
Ratio between DAC operating clock frequency and fS (PLL fS / NDAC)  
MOD f (kHz)  
NDAC  
DAC operating frequency as DACCK in  
DAC clock divider value in Table 4  
OSR clock divider value in Table 4 for generating OSRCK in Figure 22. DOSR must be chosen so that MOD fS / DOSR =  
16 for correct operation.  
DOSR  
NCP  
CP f  
NCP (negative charge pump) clock divider value in Table 4  
Negative charge pump clock frequency (fS × MOD fS / NCP)  
Percentage of error between PLL VCO / PLL fS and fS (mismatch error).  
% Error  
This value is typically zero but can be non-zero especially when K is not an integer (D is not zero).  
This value can be non-zero only when the TAS3251 device acts as a master.  
The previous equations explain how to calculate all necessary coefficients and controls to configure the PLL.  
Table 7 provides for easy reference to the recommended clock divider settings for the PLL as a Master Clock.  
Copyright © 2018, Texas Instruments Incorporated  
27  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Table 7. Recommended Clock Divider Settings for PLL as Master Clock  
fS  
(kHz)  
MCLK  
(MHz)  
PLL VCO  
(MHz)  
PLL REF  
(MHz)  
DSP CLK  
(MHz)  
MOD f  
(kHz)  
CP f  
(kHz)  
RMCLK  
P
M = K×R  
K = J×D  
R
PLL fS  
DSP fS  
NMAC  
MOD fS  
NDAC  
DOSR  
% ERROR  
NCP  
128  
192  
1.024  
1.536  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
1
1
1
3
3
3
3
9
9
9
9
1
3
1
3
3
3
3
9
9
9
9
1
1
1
1
3
3
3
3
3
9
9
9
1.024  
1.536  
2.048  
1.024  
1.365  
2.048  
2.731  
1.024  
1.365  
1.82  
96  
64  
48  
96  
72  
48  
36  
96  
72  
54  
36  
64  
128  
32  
64  
48  
32  
24  
64  
48  
36  
24  
96  
48  
32  
24  
48  
36  
24  
18  
16  
36  
27  
18  
48  
32  
48  
48  
36  
48  
36  
48  
36  
54  
36  
32  
32  
32  
32  
48  
32  
24  
32  
48  
36  
24  
48  
48  
32  
24  
48  
36  
24  
18  
16  
36  
27  
18  
2
2
1
2
2
1
1
2
2
1
1
2
4
1
2
1
1
1
2
1
1
1
2
1
1
1
1
1
1
1
1
1
1
1
12288  
12288  
12288  
12288  
12288  
12288  
12288  
12288  
12288  
12288  
12288  
8192  
8192  
8192  
8192  
8192  
8192  
8192  
8192  
8192  
8192  
8192  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
8
8.192  
8.192  
768  
768  
768  
768  
768  
768  
768  
768  
768  
768  
768  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
512  
384  
384  
384  
384  
384  
384  
384  
384  
384  
384  
384  
384  
6144  
6144  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
48  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
24  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
1536  
1536  
256  
2.048  
8.192  
6144  
1536  
384  
3.072  
8.192  
6144  
1536  
512  
4.096  
8.192  
6144  
1536  
8
768  
6.144  
8.192  
6144  
1536  
1024  
1152  
1536  
2048  
3072  
128  
8.192  
8.192  
6144  
1536  
9.216  
8.192  
6144  
1536  
12.288  
16.384  
24.576  
1.4112  
2.1168  
2.8224  
4.2336  
5.6448  
8.4672  
11.2896  
12.7008  
16.9344  
22.5792  
33.8688  
1.024  
8.192  
6144  
1536  
8.192  
6144  
1536  
2.731  
1.411  
0.706  
2.822  
1.411  
1.882  
2.822  
3.763  
1.411  
1.882  
2.509  
3.763  
1.024  
2.048  
3.072  
4.096  
2.048  
2.731  
4.096  
5.461  
6.144  
2.731  
3.641  
5.461  
8.192  
6144  
1536  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
11.2896  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
16.384  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
6144  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1536  
192  
8
256  
8
384  
8
512  
8
11.025  
768  
8
1024  
1152  
1536  
2048  
3072  
64  
8
8
8
8
8
6
128  
2.048  
6
6144  
1536  
192  
3.072  
6
6144  
1536  
256  
4.096  
6
6144  
1536  
384  
6.144  
6
6144  
1536  
512  
8.192  
6
6144  
1536  
16  
768  
12.288  
16.384  
18.432  
24.576  
32.768  
49.152  
6
6144  
1536  
1024  
1152  
1536  
2048  
3072  
6
6144  
1536  
6
6144  
1536  
6
6144  
1536  
6
6144  
1536  
6
6144  
1536  
28  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
Table 7. Recommended Clock Divider Settings for PLL as Master Clock (continued)  
fS  
MCLK  
(MHz)  
PLL VCO  
(MHz)  
PLL REF  
(MHz)  
DSP CLK  
(MHz)  
MOD f  
(kHz)  
CP f  
(kHz)  
RMCLK  
(kHz)  
P
M = K×R  
K = J×D  
R
PLL fS  
DSP fS  
NMAC  
MOD fS  
NDAC  
DOSR  
% ERROR  
NCP  
64  
1.4112  
2.8224  
4.2336  
5.6448  
8.4672  
11.2896  
16.9344  
22.5792  
25.4016  
33.8688  
45.1584  
1.024  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
98.304  
1
1
3
1
3
3
3
3
9
9
9
1
1
1
1
3
2
3
3
3
3
9
6
1
1
1
3
2
3
3
3
3
1.411  
2.822  
1.411  
5.645  
2.822  
3.763  
5.645  
7.526  
2.822  
3.763  
5.018  
1.024  
1.536  
2.048  
4.096  
2.048  
4.096  
4.096  
5.461  
8.192  
10.923  
4.096  
8.192  
1.411  
2.822  
5.645  
2.822  
5.645  
5.645  
7.526  
11.29  
15.053  
64  
32  
64  
16  
32  
24  
16  
12  
32  
24  
18  
96  
64  
48  
24  
48  
24  
24  
18  
12  
9
32  
32  
32  
16  
32  
24  
16  
12  
32  
24  
18  
48  
16  
24  
24  
48  
24  
24  
18  
12  
9
2
1
2
1
1
1
1
1
1
1
1
2
4
2
1
1
1
1
1
1
1
1
1
2
2
1
1
1
1
1
1
1
4096  
4096  
4096  
4096  
4096  
4096  
4096  
4096  
4096  
4096  
4096  
3072  
3072  
3072  
3072  
3072  
3072  
3072  
3072  
3072  
3072  
3072  
3072  
2048  
2048  
2048  
2048  
2048  
2048  
2048  
2048  
2048  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
4
4
4
4
4
4
4
4
4
4
4
3
3
3
3
3
3
3
3
3
3
3
3
2
2
2
2
2
2
2
2
2
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
22.5792  
32.768  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
256  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
192  
128  
128  
128  
128  
128  
128  
128  
128  
128  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
6144  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1536  
128  
192  
256  
384  
22.05  
512  
768  
1024  
1152  
1536  
2048  
32  
48  
1.536  
98.304  
32.768  
6144  
1536  
64  
2.048  
98.304  
32.768  
6144  
1536  
128  
192  
256  
384  
512  
768  
1024  
1152  
1536  
32  
4.096  
98.304  
32.768  
6144  
1536  
6.144  
98.304  
32.768  
6144  
1536  
8.192  
98.304  
32.768  
6144  
1536  
32  
12.288  
16.384  
24.576  
32.768  
36.864  
49.152  
1.4112  
2.8224  
5.6448  
8.4672  
11.2896  
16.9344  
22.5792  
33.8688  
45.1584  
98.304  
32.768  
6144  
1536  
98.304  
32.768  
6144  
1536  
98.304  
32.768  
6144  
1536  
98.304  
32.768  
6144  
1536  
98.304  
24  
12  
64  
32  
16  
32  
16  
16  
12  
8
24  
12  
32  
16  
16  
32  
16  
16  
12  
8
32.768  
6144  
1536  
98.304  
32.768  
6144  
1536  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
90.3168  
45.1584  
45.1584  
45.1584  
45.1584  
45.1584  
45.1584  
45.1584  
45.1584  
45.1584  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
5644.8  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
1411.2  
64  
8
128  
192  
256  
384  
512  
768  
1024  
8
8
44.1  
8
8
8
8
6
6
8
Copyright © 2018, Texas Instruments Incorporated  
29  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Table 7. Recommended Clock Divider Settings for PLL as Master Clock (continued)  
fS  
(kHz)  
MCLK  
(MHz)  
PLL VCO  
(MHz)  
PLL REF  
(MHz)  
DSP CLK  
(MHz)  
MOD f  
(kHz)  
CP f  
RMCLK  
P
M = K×R  
K = J×D  
R
PLL fS  
DSP fS  
NMAC  
MOD fS  
NDAC  
DOSR  
% ERROR  
NCP  
(kHz)  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
1536  
32  
64  
1.536  
3.072  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
98.304  
1
1
1
3
2
3
3
3
3
1
3
1
2
3
4
6
8
1.536  
3.072  
6.144  
3.072  
6.144  
6.144  
8.192  
12.288  
16.384  
3.072  
1.536  
6.144  
6.144  
6.144  
6.144  
6.144  
6.144  
64  
32  
16  
32  
16  
16  
12  
8
32  
16  
16  
32  
16  
16  
12  
8
2
2
1
1
1
1
1
1
1
2
2
2
1
1
1
1
1
2048  
2048  
2048  
2048  
2048  
2048  
2048  
2048  
2048  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
1024  
512  
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
49.152  
128  
128  
128  
128  
128  
128  
128  
128  
128  
64  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
6144  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
16  
8
8
8
8
8
8
8
8
8
4
4
4
4
4
4
4
4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
128  
192  
256  
384  
512  
768  
1024  
32  
6.144  
9.216  
48  
12.288  
18.432  
24.576  
36.864  
49.152  
3.072  
6
6
32  
64  
16  
16  
16  
16  
16  
16  
16  
32  
8
48  
4.608  
512  
64  
64  
6.144  
512  
64  
128  
192  
256  
384  
512  
12.288  
18.432  
24.576  
36.864  
49.152  
16  
16  
16  
16  
16  
512  
64  
96  
512  
64  
512  
64  
512  
64  
512  
64  
30  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8.3.4.4 Serial Audio Port – Data Formats and Bit Depths  
The serial audio interface port is a 3-wire serial port with the signals LRCK/FS (pin 25), SCLK (pin 23), and SDIN  
(pin 24). SCLK is the serial audio bit clock, used to clock the serial data present on SDIN into the serial shift  
register of the audio interface. Serial data is clocked into the TAS3251 device on the rising edge of SCLK.The  
LRCK/FS pin is the serial audio left/right word clock or frame sync when the device is operated in TDM Mode.  
Table 8. TAS3251 device Audio Data Formats, Bit Depths and Clock Rates  
MAXIMUM LRCK/FS  
FREQUENCY (kHz)  
FORMAT  
DATA BITS  
MCLK RATE (fS)  
SCLK RATE (fS)  
I2S/LJ/RJ  
32, 24, 20, 16  
Up to 96  
128 to 3072 (50 MHz)  
128 to 3072  
64, 48, 32  
125, 256  
125, 256  
Up to 48  
TDM/DSP  
32, 24, 20, 16  
96  
128 to 512  
The TAS3251 device requires the synchronization of LRCK/FS and system clock, but does not require a specific  
phase relation between LRCK/FS and system clock.  
If the relationship between LRCK/FS and system clock changes more than ±5 MCLK, internal operation is  
initialized within one sample period and analog outputs are forced to the bipolar zero level until re-  
synchronization between LRCK/FS and system clock is completed.  
If the relationship between LRCK/FS and SCLK are invalid more than 4 LRCK/FS periods, internal operation is  
initialized within one sample period and analog outputs are forced to the bipolar zero level until re-  
synchronization between LRCK/FS and SCLK is completed.  
8.3.4.4.1 Data Formats and Master/Slave Modes of Operation  
The TAS3251 device supports industry-standard audio data formats, including standard I2S and left-justified.  
Data formats are selected via Register (P0-R40). All formats require binary two's complement, MSB-first audio  
data; up to 32-bit audio data is accepted. The data formats are detailed in Figure 24 through Figure 29.  
The TAS3251 device also supports right-justified and TDM/DSP data. I2S, LJ, RJ, and TDM/DSP are selected  
using Register (P0-R40). All formats require binary 2s complement, MSB-first audio data. Up to 32 bits are  
accepted. Default setting is I2S and 24 bit word length. The I2S slave timing is shown in 3.  
shows a detailed timing diagram for the serial audio interface.  
In addition to acting as a I2S slave, the TAS3251 device can act as an I2S master, by generating SCLK and  
LRCK/FS as outputs from the MCLK input. Table 9 lists the registers used to place the device into Master or  
Slave mode. Please refer to the Serial Audio Port Timing – Master Mode section for serial audio Interface timing  
requirements in Master Mode. For Slave Mode timing, please refer to to the Serial Audio Port Timing – Slave  
Mode section.  
Table 9. I2S Master Mode Registers  
REGISTER  
FUNCTION  
P0-R9-B0, B4, and B5  
P0-R32-D[6:0]  
I2S Master mode select  
SCLK divider and LRCK/FS divider  
P0-R33-D[7:0]  
Copyright © 2018, Texas Instruments Incorporated  
31  
 
 
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
1 tS .  
Right-channel  
Left-channel  
LRCK/FS  
SLCK  
Audio data word = 16-bit, SLCK = 32, 48, 64fS  
1
2
15 16  
1
1
2
15 16  
DATA  
LSB  
LSB  
MSB  
MSB  
Audio data word = 24-bit, SLCK = 48, 64fS  
2
1
2
24  
2
23 24  
DATA  
LSB  
LSB  
MSB  
MSB  
Audio data word = 32-bit, SLCK = 64fS  
1
2
31 32  
1
2
31 32  
DATA  
MSB  
LSB  
MSB  
LSB  
Figure 24. Left Justified Audio Data Format  
1 tS .  
LRCK/FS  
SLCK  
Left-channel  
Right-channel  
Audio data word = 16-bit, SLCK = 32, 48, 64fS  
1
2
15 16  
1
1
2
15 16  
DATA  
LSB  
LSB  
MSB  
MSB  
Audio data word = 24-bit, SLCK = 48, 64fS  
2
2
23 24  
1
23 24  
DATA  
LSB  
MSB  
LSB  
MSB  
Audio data word = 32-bit, SLCK = 64fS  
1
2
31 32  
1
2
31 32  
DATA  
MSB  
LSB  
MSB  
LSB  
I2S Data Format; L-channel = LOW, R-channel = HIGH  
Figure 25. I2S Audio Data Format  
32  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
1 /fS .  
Right-channel  
Left-channel  
LRCK/FS  
SLCK  
Audio data word = 16-bit, SLCK = 32, 48, 64fS  
DATA  
1
2
15 16  
1
2
15 16  
LSB  
LSB  
MSB  
MSB  
Audio data word = 24-bit, SLCK = 48, 64fS  
2
1
2
24  
1
2
23 24  
DATA  
MSB  
LSB  
MSB  
LSB  
Audio data word = 32-bit, SLCK = 64fS  
1
2
31 32  
1
2
31 32  
DATA  
MSB  
LSB  
MSB  
LSB  
Right Justified Data Format; L-channel = HIGH, R-channel = LOW  
Figure 26. Right Justified Audio Data Format  
1 /fS .  
LRCK/FS  
SLCK  
Audio data word = 16-bit, Offset = 0  
1
2
15 16  
1
2
15 16  
1
1
1
DATA  
Data Slot 1  
Data Slot 2  
LSB  
MSB  
LSB  
MSB  
Audio data word = 24-bit, Offset = 0  
-
,
1
2
23 24  
1
2
23 24  
LSB  
DATA  
Data Slot 1  
LSB  
MSB  
MSB  
Audio data word = 32-bit, Offset = 0  
1
2
31 32  
LSB  
1
2
31 32  
LSB  
DATA  
MSB  
TDM/DSP Data Format with OFFSET = 0  
In TDM Modes, Duty Cycle of LRCK/FS should be 1x SCLK at minimum. Rising edge is considered frame start.  
Figure 27. TDM/DSP 1 Audio Data Format  
Copyright © 2018, Texas Instruments Incorporated  
33  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
1 /fS .  
OFFSET = 1  
LRCK/FS  
SLCK  
Audio data word = 16-bit, Offset = 1  
1
2
15 16  
1
2
15 16  
1
1
1
DATA  
Data Slot 1  
LSB  
Data Slot 2  
LSB  
MSB  
MSB  
Audio data word = 24-bit, Offset = 1  
1
2
23 24  
1
2
23 24  
LSB  
DATA  
Data Slot 1  
Data Slot 2  
LSB  
MSB  
MSB  
Audio data word = 32-bit, Offset = 1  
1
2
31 32  
LSB  
1
2
31 32  
DATA  
Data Slot 1  
Data Slot 2  
LSB  
MSB  
TDM/DSP Data Format with OFFSET = 1  
In TDM Modes, Duty Cycle of LRCK/FS should be 1x SCLK at minimum. Rising edge is considered frame start.  
Figure 28. TDM/DSP 2 Audio Data Format  
1 /fS .  
OFFSET = n  
LRCK/FS  
SLCK  
Audio data word = 16-bit, Offset = n  
1
2
15 16  
1
2
15 16  
DATA  
Data Slot 1  
LSB  
Data Slot 2  
LSB  
MSB  
MSB  
Audio data word = 24-bit, Offset = n  
1
2
23 24  
1
2
23 24  
LSB  
DATA  
Data Slot 1  
Data Slot 2  
LSB  
MSB  
MSB  
Audio data word = 32-bit, Offset = n  
1
2
31 32  
LSB  
1
2
31 32  
LSB  
DATA  
Data Slot 1  
Data Slot 2  
MSB  
TDM/DSP Data Format with OFFSET = N  
In TDM Modes, Duty Cycle of LRCK/FS should be 1x SCLK at minimum. Rising edge is considered frame start.  
Figure 29. TDM/DSP 3 Audio Data Format  
34  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8.3.4.5 Input Signal Sensing (Power-Save Mode)  
The TAS3251 device has a zero-detect function. The zero-detect function can be applied to both channels of  
data as an AND function or an OR function, via controls provided in the control port in P0-R65-D[2:1].Continuous  
Zero data cycles are counted by LRCK/FS, and the threshold of decision for analog mute can be set by P0-R59,  
D[6:4] for the data which is clocked in on the left frame of an I2S signal or Slot 1 of a TDM signal and P0-R59,  
D[2:0] for the data which is clocked in on the right frame of an I2S signal or Slot 2 of a TDM signal as shown in  
Table 11. Default values are 0 for both channels.  
Table 10. Zero Detection Mode  
ATMUTECTL  
VALUE  
FUNCTION  
Zero data triggers for the two channels for zero detection are  
ORed together.  
0
Bit : 2  
Zero data triggers for the two channels for zero detection are  
ANDed together.  
1 (Default)  
0
Zero detection and analog mute are disabled for the data  
clocked in on the right frame of an I2S signal or Slot 2 of a  
TDM signal.  
Bit : 1  
Bit : 0  
Zero detection analog mute are enabled for the data clocked in  
on the right frame of an I2S signal or Slot 2 of a TDM signal.  
1 (Default)  
0
Zero detection analog mute are disabled for the data clocked  
in on the left frame of an I2S signal or Slot 1 of a TDM signal.  
Zero detection analog mute are enabled for the data clocked in  
on the left frame of an I2S signal or Slot 1 of a TDM signal.  
1 (Default)  
Table 11. Zero Data Detection Time  
ATMUTETIML OR ATMA  
NUMBER OF LRCK/FS CYCLES  
TIME at 48 kHz  
21 ms  
0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
1024  
5120  
106 ms  
10240  
25600  
51200  
102400  
256000  
512000  
213 ms  
533 ms  
1.066 secs  
2.133 secs  
5.333 secs  
10.66 secs  
8.3.5 Volume Control  
8.3.5.1 DAC Digital Gain Control  
A basic DAC digital gain control with range between 24 dB and –103 dB and mute is available on each channels  
by P0-R61-D[7:0] for SPK_OUTB± and P0-R62-D[7:0] for SPK_OUTA±. These volume controls all have 0.5 dB  
step programmability over most gain and attenuation ranges. Table 12 lists the detailed gain versus programmed  
setting for the basic volume control. Volume can be changed for both SPK_OUTB± and SPK_OUTA± at the  
same time or independently by P0-R61-D[1:0] . When D[1:0] set 00 (default), independent control is selected.  
When D[1:0] set 01, SPK_OUTA± accords with SPK_OUTB± volume. When D[1:0] set 10, SPK_OUTA± volume  
controls the volume for both channels. To set D[1:0] to 11 is prohibited.  
Table 12. DAC Digital Gain Control Settings  
GAIN  
SETTING  
GAIN  
(dB)  
BINARY DATA  
COMMENTS  
0
1
0000-0000  
0000-0001  
24.0  
23.5  
Positive maximum  
.
.
.
.
.
.
.
.
.
46  
0010-1110  
1.0  
Copyright © 2018, Texas Instruments Incorporated  
35  
 
 
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Table 12. DAC Digital Gain Control  
Settings (continued)  
GAIN  
SETTING  
GAIN  
(dB)  
BINARY DATA  
COMMENTS  
47  
48  
49  
50  
51  
0010-1111  
0011-0000  
0011-0001  
0011-0010  
0011-0011  
0.5  
0.0  
No attenuation (default)  
–0.5  
–1.0  
–1.5  
.
.
.
.
.
.
.
.
.
253  
254  
255  
1111-1101  
1111-1110  
1111-1111  
–102.5  
–103  
Negative maximum  
Negative infinite (Mute)  
Ramp-up frequency and ramp-down frequency can be controlled by P0-R63, D[7:6] and D[3:2] as shown in  
Table 13. Also ramp-up step and ramp-down step can be controlled by P0-R63, D[5:4] and D[1:0] as shown in  
Table 14.  
Table 13. Ramp Up or Down Frequency  
RAMP UP  
SPEED  
RAMP DOWN  
FREQUENCY  
EVERY N fS  
COMMENTS  
EVERY N fS  
COMMENTS  
00  
01  
10  
11  
1
Default  
00  
01  
10  
11  
1
Default  
2
2
4
4
Direct change  
Direct change  
Table 14. Ramp Up or Down Step  
RAMP UP  
STEP  
RAMP DOWN  
COMMENTS  
STEP dB  
STEP dB  
COMMENTS  
STEP  
00  
01  
10  
11  
4.0  
2.0  
1.0  
0.5  
00  
01  
–4.0  
–2.0  
–1.0  
–0.5  
Default  
10  
11  
Default  
8.3.5.1.1 Emergency Volume Ramp Down  
Emergency ramp down of the volume is provided for situations such as I2S clock error and power supply failure.  
Ramp-down speed is controlled by P0-R64-D[7:6]. Ramp-down step can be controlled by P0-R64-D[5:4]. Default  
is ramp-down by every fS cycle with –4dB step.  
36  
Copyright © 2018, Texas Instruments Incorporated  
 
 
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8.3.6 SDOUT Port and Hardware Control Pin  
The TAS3251 device contains a versatile GPIO port (SDOUT pin), allowing signals to be passed from the system  
to the device or sent from the device to the system. This pin can be used for advanced clocking features, to pass  
internal signals to the system or accept signals from the system for use inside the device by a given process  
flow. The SDOUT pin supports serial data out and the features described in Figure 30. The register map can be  
used to configure the function of the SDOUT pin.  
Here are a few key registers to enable the SDOUT pin:  
Page 0, Register 7, Bit 0 (SDSL) - select if SDOUT data is pre-DSP or post-DSP processing.  
Page 0, Register 9, Bit 5 (SDDIR) - select the SDOUT pin as input or output.  
See register map for more details to configure the SDOUT pin function.  
Internal Data  
(P0-R82)  
GPIOx Output Enable  
P0-R8  
GPIOx Output Inversion  
P0-R87  
GPIOx Output Selection  
P0-R82  
Off (low)  
DSP GPIOx output  
Register GPIOx output (P0-R86)  
Auto mute flag (Both A and B)  
Auto mute flag (Channel B)  
Auto mute flag (Channel A)  
Clock invalid flag  
Mux  
GPIOx  
Mux  
Serial Audio Data Output  
Analog mute flag for B  
Analog mute flag for A  
PLL lock flag  
Charge Pump Clock  
Under voltage flag 1  
Under voltage flag 2  
PLL output/4  
GPIOx Input State  
Monitoring  
(P0-R119)  
To µCDSP  
To Clock Tree  
Figure 30. SDOUT GPIO Port  
Copyright © 2018, Texas Instruments Incorporated  
37  
 
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.3.7 I2C Communication Port  
The TAS3251 device supports the I2C serial bus and the data transmission protocol for standard and fast mode  
as a slave device. Because the TAS3251 register map spans several books and pages, the user must select the  
correct book and page before writing individual register bits or bytes. Changing from book to book is  
accomplished by first changing to page 0x00 by writing 0x00 to register 0x00 and then writing the book number  
to register 0x7f of page 0. Changing from page to page is accomplished via register 0x00 on each page. The  
register value selects the register page, from 0 to 255.  
8.3.7.1 Slave Address  
Table 15. I2C Slave Address  
MSB  
1
LSB  
0
0
1
0
1
ADR  
R/ W  
The TAS3251 device has 7 bits for the slave address. The last bit of the address byte is the device select bit  
which can be selected by setting the ADR pin either high or low. A maximum of two devices can be connected  
on the same bus at one time, which gives two options: 0x94 and 0x96. See table Table 16 for more details. Each  
TAS3251 device responds when it receives the slave address.  
Table 16. I2C Address Configuration using ADR Pin  
ADR Pin / Bit  
I2C SLAVE ADDRESS + [R/W]  
0
1
0x94  
0x96  
8.3.7.2 Register Address Auto-Increment Mode  
Auto-increment mode allows multiple sequential register locations to be written to or read back in a single  
operation, and is especially useful for block write and read operations. The TAS3251 device supports auto-  
increment mode automatically. Auto-increment stops at page boundries.  
8.3.7.3 Packet Protocol  
A master device must control packet protocol, which consists of start condition, slave address, read/write bit,  
data if write or acknowledge if read, and stop condition. The TAS3251 device supports only slave receivers and  
slave transmitters.  
SDA  
SCL  
9
1–7  
8
9
1–8  
9
1–8  
9
Sp  
St  
Slave address  
R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
ACK  
Start  
condition  
Stop  
condition  
R/W: Read operation if 1; otherwise, write operation  
ACK: Acknowledgement of a byte if 0  
DATA: 8 bits (byte)  
Figure 31. Packet Protocol  
Table 17. Write Operation - Basic I2C Framework  
Transmitter  
Data Type  
M
M
M
S
M
S
M
S
S
M
St  
slave address  
R/  
ACK  
DATA  
ACK  
DATA  
ACK  
ACK  
Sp  
Table 18. Read Operation - Basic I2C Framework  
Transmitter  
Data Type  
M
M
M
S
S
M
S
M
M
M
St  
slave address  
R/  
ACK  
DATA  
ACK  
DATA  
ACK  
NACK  
Sp  
38  
Copyright © 2018, Texas Instruments Incorporated  
 
 
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
M = Master Device; S = Slave Device; St = Start Condition Sp = Stop Condition  
8.3.7.4 Write Register  
A master can write to any TAS3251 device registers using single or multiple accesses. The master sends a  
TAS3251 device slave address with a write bit, a register address with auto-increment bit, and the data. If auto-  
increment is enabled, the address is that of the starting register, followed by the data to be transferred. When the  
data is received properly, the index register is incremented by 1 automatically. When the index register reaches  
0x7F, the next value is 0x0. Table 19 shows the write operation.  
Table 19. Write Operation  
Transmitter  
Data Type  
M
M
M
S
M
S
M
S
M
S
S
M
reg  
addr  
write  
data 1  
write  
data 2  
St  
slave addr  
W
ACK  
inc  
ACK  
ACK  
ACK  
ACK  
Sp  
M = Master Device; S = Slave Device; St = Start Condition Sp = Stop Condition; W = Write; ACK = Acknowledge  
8.3.7.5 Read Register  
A master can read the TAS3251 device register. The value of the register address is stored in an indirect index  
register in advance. The master sends a TAS3251 device slave address with a read bit after storing the register  
address. Then the TAS3251 device transfers the data which the index register points to. When auto-increment is  
enabled, the index register is incremented by 1 automatically. When the index register reaches 0x7F, the next  
value is 0x0. Table 20 lists the read operation.  
Table 20. Read Operation  
Transmitter  
Data Type  
M
M
M
S
M
S
M
M
M
S
S
M
M
M
slave  
addr  
reg  
addr  
slave  
addr  
St  
W
ACK  
inc  
ACK  
Sr  
R
ACK  
data  
ACK  
NACK  
Sp  
M = Master Device; S = Slave Device; St = Start Condition; Sr = Repeated start condition; Sp = Stop Condition;  
W = Write; R = Read; NACK = Not acknowledge  
Copyright © 2018, Texas Instruments Incorporated  
39  
 
 
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.3.7.6 DSP Book, Page, and Register Update  
The DSP memory is arranged in books, pages, and registers. Each book has several pages and each page has  
several registers.  
8.3.7.6.1 Book and Page Change  
To change the book, the user must be on page 0x00. In register 0x7f on page 0x00 you can change the book.  
On page 0x00 of each book, register 0x7f is used to change the book. Register 0x00 of each page is used to  
change the page. To change a book first write 0x00 to register 0x00 to switch to page 0 then write the book  
number to register 0x7f on page 0. To change between pages in a book, simply write the page number to  
register 0x00.  
8.3.7.6.2 Swap Flag  
The swap flag is used to copy the audio coefficient from the host memory to the DSP memory. The swap flag  
feature is important to maintain the stability of the BQs. A BQ is a closed-loop system with 5 coefficients. To  
avoid instability in the BQ in an update transition between two different filters, update all five parameters within  
one audio sample. The interal swap flag insures all 5 coefficients for each filter are transferred from host memory  
to DSP memory occurs within an audio sample. The swap flag stays high until the full host buffer is transferred to  
DSP memory. Updates to the Host buffer should not be made while the swap flag is high.  
All writes to book 0x8C at pages above page 0x1B and register 0x58 require the swap flag. The swap flag is  
located in book 0x8C, page 0x05page 0x01, and register 0x7C and must be set to 0x00 00 00 01 for a swap.  
8.3.7.6.3 Example Use  
The following is a sample script for using the DSP host memory to change the fine volume on the device on I2C  
slave address 0x90 to the default value of 0 dB:  
w 90 00 00 #Go to page 0  
w 90 7f 8C #Change the book to 0x8C  
w 90 00 21 #Go to page 0x21  
w 90 34 40 00 00 00 #Fine volume Left  
w 90 38 40 00 00 00 #Fine volume Rights  
#Run the swap flag for the DSP to work on the new coefficients  
w 90 00 00 #Go to page 0  
w 90 7f 8C #Change the book to 0x8C  
w 90 00 05 #Go to page 0x05  
w 90 7C 00 00 00 01 #Swap flag  
8.3.8 Pop and Click Free Startup and Shutdown  
The output power stage PWM generator minimizes pop and click with a unique turn on and turn off behavior. The  
sequence ramps up the PWM switching to the full PVDD voltage using the timing capacitor on the C_START pin.  
It is recommended to use a 10 nF capacitor from the C_START pin to GND for best pop and click performance.  
The startup time can be lengthened by increasing the capacitance up to 470 nF.  
8.3.9 Integrated Oscillator for Output Power Stage  
The amplifier power stage of the uses a built in oscillator that can be trimmed by an external resistor from the  
FREQ_ADJ pin to GND. Changes in the oscillator frequency should be made with resistor values specified in  
Recommended Operating Conditions while RESET is low. See section DAC and DSP Clocking for configuring  
the clocks for the digital front-end (DAC and DSP).  
To reduce interference problems while using a radio receiver tuned within the AM band, the switching frequency  
can be changed from nominal to lower or higher values. These values should be chosen such that the nominal  
and the alternate switching frequencies together result in the fewest cases of interference throughout the AM  
band. The oscillator frequency can be selected by the value of the FREQ_ADJ resistor connected to GND in  
master mode.  
40  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8.3.9.1 Oscillator Synchronization and Slave Mode  
The TAS3251 supports synchronizing the internal oscillator and output switching frequency of multiple TAS3251  
devices for managing the power supply, electro-magnetic interference and preventing audio beating. For slave  
mode operation, turn off the oscillator of the slave by pulling the FREQ_ADJ pin to DVDD. This configures the  
OSC_IOM and OSC_IOP pins as inputs to be slaved from an external differential clock. In a master/slave system  
inter-channel delay is automatically added to the PWM between audio channels, which can be seen with all  
channels switching at different times. This will not influence the audio output, but only the switch timing to  
minimize noise coupling between audio channels through the power supply. Inter-channel delay is needed to  
optimize audio performance and to get better operating conditions for the power supply. The inter-channel delay  
will be set up for a slave device depending on the polarity of the OSC_IOM and OSC_IOP connection as follows:  
Slave 1 Mode has positive polarity with the master device. Master OSC_IOP and the slave OSC_IOP are  
connected. Master OSC_IOM and the slave OSC_IOM are connected.  
Slave 2 Mode has reverse polarity with the master device. Master OSC_IOP and the slave OSC_IOM are  
connected. Master OSC_IOM and the slave OSC_IOP are connected.  
Multiple slaves can be connected to one master TAS3251. If more than 2 slaves are used it is best to alternate  
the slave modes so that adjacent devices are configured in different slave modes. The inter-channel delay for  
interleaved channel idle switching is given in the table below for the master/slave and output configuration modes  
in degrees relative to the PWM frame.  
Table 21. Master/Slave Inter Channel Delay Settings  
Master  
MODE = 0, 2 x BTL mode  
MODE = 1, 1 x PBTL mode  
SPK_OUTA+  
SPK_OUTA-  
SPK_OUTB+  
SPK_OUTB-  
Slave 1  
0°  
0°  
180°  
0°  
180°  
60°  
240°  
180°  
SPK_OUTA+  
SPK_OUTA-  
SPK_OUTB+  
SPK_OUTB-  
Slave 2  
60°  
60°  
240°  
60°  
240°  
120°  
300°  
240°  
SPK_OUTA+  
SPK_OUTA-  
SPK_OUTB+  
SPK_OUTB-  
30°  
210°  
90°  
30°  
210°  
30°  
270°  
210°  
Copyright © 2018, Texas Instruments Incorporated  
41  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.3.10 Device Output Stage Protection System  
The TAS3251 contains advanced protection circuitry carefully designed to facilitate system integration and ease  
of use, as well as to safeguard the device from permanent failure due to a wide range of fault conditions such as  
short circuits, overload, overtemperature, and undervoltage. The TAS3251 responds to a fault by immediately  
setting the power stage in a high-impedance (Hi-Z) state and asserting the FAULT pin low. In situations other  
than overload and overtemperature error (OTE), the device automatically recovers when the fault condition has  
been removed, that is, the supply voltage has increased.  
The device will handle errors, as shown in Table 22.  
Table 22. Device Protection  
BTL MODE  
LOCAL ERROR IN  
PBTL MODE  
LOCAL ERROR IN  
TURNS OFF  
TURNS OFF  
SPK_OUTA+  
SPK_OUTA-  
SPK_OUTB+  
SPK_OUTB-  
SPK_OUTA+  
SPK_OUTA-  
SPK_OUTB+  
SPK_OUTB-  
A+ and A-  
A+, A-, B+, and B-  
B+ and B-  
Bootstrap UVP does not shutdown according to the table, it shuts down the respective halfbridge (non-latching,  
does not assert FAULT).  
8.3.10.1 Error Reporting  
The FAULT, and CLIP_OTW, pins are active-low, open-drain outputs. Each pin has a 26 kΩ pull-up resistor  
reference to DVDD and does not need an external pull-up resistor. The function is for protection-mode signaling  
to a system-control device.  
Any fault resulting in device shutdown is signaled by the FAULT pin going low. Also, CLIP_OTW goes low when  
the device junction temperature exceeds 125°C (see Table 23).  
Table 23. Error Reporting  
FAULT  
CLIP_OTW  
DESCRIPTION  
Overtemperature (OTE), overload (OLP) or undervoltage (UVP) Junction temperature  
higher than 125°C (overtemperature warning)  
0
0
0
1
1
1
0
1
Overload (OLP) or undervoltage (UVP). Junction temperature lower than 125°C  
Junction temperature higher than 125°C (overtemperature warning)  
Junction temperature lower than 125°C and no OLP or UVP faults (normal operation)  
Note that asserting RESET low forces the FAULT signal high, independent of faults being present. TI  
recommends monitoring the CLIP_OTW signal using the system microcontroller and responding to an  
overtemperature warning signal by turning down the volume to prevent further heating of the device resulting in  
device shutdown (OTE).  
To reduce external component count, an internal pullup resistor to 3.3 V is provided on both FAULT and  
CLIP_OTW outputs.  
8.3.10.2 Overload and Short Circuit Current Protection  
TAS3251 has fast reacting current sensors with a programmable trip threshold (OC threshold) on all high-side  
and low-side FETs. To prevent output current from increasing beyond the programmed threshold, TAS3251 has  
the option of either limiting the output current for each switching cycle (Cycle By Cycle Current Control, CB3C) or  
to perform an immediate shutdown of the output in case of excess output current (Latching Shutdown). CB3C  
prevents premature shutdown due to high output current transients caused by high level music transients and a  
drop of real speaker’s load impedance, and allows the output current to be limited to a maximum programmed  
level. If the maximum output current persists, i.e. the power stage being overloaded with too low load impedance,  
the device will shut down the affected output channel and the affected output is put in a high-impedance (Hi- Z)  
state until a RESET cycle is initiated. CB3C works individually for each half bridge output. If an over current  
event is triggered, CB3C performs a state flip of the half bridge output that is cleared upon beginning of next  
PWM frame.  
42  
Copyright © 2018, Texas Instruments Incorporated  
 
 
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
PWM_X  
RISING EDGE PWM  
SETS CB3C LATCH  
HS PWM  
LS PWM  
OC EVENT RESETS  
CB3C LATCH  
OC THRESHOLD  
OUTPUT CURRENT  
OCH  
HS GATE-DRIVE  
LS GATE-DRIVE  
Figure 32. CB3C Timing Example  
During CB3C an over load counter increments for each over current event and decrease for each non-over  
current PWM cycle. This allows full amplitude transients into a low speaker impedance without a shutdown  
protection action. In the event of a short circuit condition, the over current protection limits the output current by  
the CB3C operation and eventually shut down the affected output if the overload counter reaches its maximum  
value. If a latched OC operation is required such that the device shuts down the affected output immediately  
upon first detected over current event, this protection mode should be selected. The over current threshold and  
mode (CB3C or Latched OC) is programmed by the OC_ADJ resistor value. The OC_ADJ resistor needs to be  
within its intentional value range for either CB3C operation or Latched OC operation.  
I_OC  
IOC_max  
IOC_min  
Not Defined  
ROC_ADJ  
Figure 33. OC Threshold versus OC ADJ Resistor Value Example  
OC_ADJ values outside specified value range for either CB3C or latched OC operation will result in minimum OC  
threshold.  
Table 24. Device Protection  
OC_ADJ Resistor Value  
Protection Mode  
CB3C  
OC Threshold  
16.3 A  
22 kΩ  
24 kΩ  
27 kΩ  
30 kΩ  
CB3C  
15.1 A  
CB3C  
13.5 A  
CB3C  
12.3 A  
Copyright © 2018, Texas Instruments Incorporated  
43  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Table 24. Device Protection (continued)  
OC_ADJ Resistor Value  
Protection Mode  
Latched OC  
Latched OC  
Latched OC  
Latched OC  
OC Threshold  
16.3 A  
47 kΩ  
51 kΩ  
56 kΩ  
64 kΩ  
15.1 A  
13.5 A  
12.3 A  
8.3.10.3 Signal Clipping and Pulse Injector  
A built in activity detector monitors the PWM activity of the SPK_OUTx pins. TAS3251 is designed to drive  
unclipped output signals all the way to PVDD and GND rails. In case of audio signal clipping when applying  
excessive input signal voltage, or in case of CB3C current protection being active, the amplifier feedback  
loop of the audio channel will respond to this condition with a saturated state, and the output PWM signals  
will stop unless special circuitry is implemented to handle this situation. To prevent the output PWM signals  
from stopping in a clipping or CB3C situation, narrow pulses are injejcted to the gate drive to maintain output  
activity. The injected narrow pulses are injected at every 4th PWM frame, and thus the effective switching  
frequency during this state is reduced to 1/4 of the normal switching frequency.  
Signal clipping is signalled on the CLIP_OTW pin and is self clearing when signal level reduces and the  
device reverts to normal operation. The CLIP_OTW pulses starts at the onset to output clipping, typically at a  
THD level around 0.01%, resulting in narrow CLIP_OTW pulses starting with a pulse width of ~500ns.  
Figure 34. Signal Clipping PWM and Speaker Output Signals  
8.3.10.4 DC Speaker Protection  
The output DC protection scheme protects a speaker from excess DC current in case one terminal of the  
speaker is connected to the amplifier while the other is accidentally shorted to the chassis ground. Such a short  
circuit results in a DC voltage of PVDD/2 across the speaker, which potentially can result in destructive current  
levels. The output DC protection detects any unbalance of the output and input current of a BTL output, and in  
the event of the unbalance exceeding a programmed threshold, the overload counter increments until its  
maximum value and the affected output channel is shut down. DC Speaker Protection is disabled in PBTL and  
SE mode operation.  
8.3.10.5 Pin-to-Pin Short Circuit Protection (PPSC)  
The PPSC detection system protects the device from permanent damage in the case that a power output pin  
(SPK_OUTx) is shorted to GND_X or PVDD_X. For comparison, the OC protection system detects an  
overcurrent after the demodulation filter where PPSC detects shorts directly at the pin before the filter. PPSC  
detection is performed at startup i.e. when VDD is supplied, consequently a short to either GND_X or PVDD_X  
after system startup does not activate the PPSC detection system. When PPSC detection is activated by a short  
on the output, all half bridges are kept in a Hi-Z state until the short is removed; the device then continues the  
startup sequence and starts switching. The detection is controlled globally by a two step sequence. The first step  
44  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
ensures that there are no shorts from SPK_OUTx to GND_X, the second step tests that there are no shorts from  
SPK_OUTx to PVDD_X. The total duration of this process is roughly proportional to the capacitance of the output  
LC filter. The typical duration is < 15 ms/μF. While the PPSC detection is in progress, FAULT is kept low, and the  
device will not react to changes applied to the RESET pin. If no shorts are present the PPSC detection passes,  
and FAULT is released. A device reset will not start a new PPSC detection. PPSC detection is enabled in BTL  
and PBTL output configurations, the detection is not performed in SE mode. To make sure not to trip the PPSC  
detection system it is recommended not to insert a resistive load to GND_X or PVDD_X.  
8.3.10.6 Overtemperature Protection OTW and OTE  
TAS3251 has a two-level temperature-protection system that asserts an active-low warning signal (CLIP_OTW)  
when the device junction temperature exceeds 125°C (typical) and, if the device junction temperature exceeds  
155°C (typical), the device is put into thermal shutdown, resulting in all half-bridge outputs being set in the high-  
impedance (Hi-Z) state and FAULT being asserted low. OTE is latched in this case. To clear the OTE latch,  
RESET must be asserted. Thereafter, the device resumes normal operation.  
8.3.10.7 Undervoltage Protection (UVP) and Power-on Reset (POR)  
The UVP and POR circuits of the TAS3251 fully protect the device in any power-up/down and brownout situation.  
While powering up, the POR circuit ensures that all circuits are fully operational when the GVDD_X and VDD  
supply voltages reach values stated in the Electrical Characteristics table. Although GVDD_X and VDD are  
independently monitored, a supply voltage drop below the UVP threshold on any VDD or GVDD_X pin results in  
all half-bridge outputs immediately being set in the high-impedance (Hi-Z) state and FAULT being asserted low.  
The device automatically resumes operation when all supply voltages have increased above the UVP threshold.  
Copyright © 2018, Texas Instruments Incorporated  
45  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.3.10.8 Fault Handling  
If a fault situation occurs while in operation, the device acts accordingly to the fault being a global or a channel  
fault. A global fault is a chip-wide fault situation and causes all PWM activity of the device to be shut down, and  
will assert FAULT low. A global fault is a latching fault and clearing FAULT and restarting operation requires  
resetting the device by toggling RESET. Deasserting RESET should never be allowed with excessive system  
temperature, so it is advised to monitor RESET by a system microcontroller and only allow releasing RESET  
(RESET high) if the CLIP_OTW signal is cleared (high). A channel fault results in shutdown of the PWM activity  
of the affected channel(s). Note that asserting RESET low forces the FAULT signal high, independent of faults  
being present.  
Table 25. Error Reporting  
Fault/Event  
Description  
Latched/Self  
Clearing  
Action needed to  
Clear  
Output  
FETs  
Fault/Event  
Global or Channel  
Reporting Method  
PVDD_X UVP  
VDD UVP  
Increase affected  
supply voltage  
Voltage Fault  
Global  
Global  
FAULT pin  
FAULT pin  
Self Clearing  
HI-Z  
AVDD UVP  
POR (DVDD UVP)  
Power On Reset  
Voltage Fault  
Self Clearing  
Self Clearing  
Allow DVDD to rise  
HI-Z  
Allow BST cap to  
recharge (lowside  
ON, VDD 12V)  
BST_X UVP  
OTW  
Channel (Half Bridge) None  
HighSide off  
Cool below OTW  
threshold  
Normal  
operation  
Thermal Warning  
Global  
OTW pin  
Self Clearing  
OTE  
Thermal Shutdown  
OC Shutdown  
Global  
FAULT pin  
FAULT pin  
Latched  
Latched  
Toggle RESET  
Toggle RESET  
HI-Z  
HI-Z  
OLP (CB3C>1.7ms)  
Channel  
Latched OC  
(47kΩ<ROC_ADJ<68kΩ)  
OC Shutdown  
OC Limiting  
Channel  
Channel  
Global  
FAULT pin  
None  
Latched  
Toggle RESET  
HI-Z  
Flip state,  
cycle by  
cycle at fs/3  
CB3C  
Reduce signal level  
or remove short  
Self Clearing  
Self Clearing  
(22kΩ<ROC_ADJ<30kΩ)  
No OSC_IO activity  
in Slave Mode  
Resume OSC_IO  
activity  
Stuck at Fault(1)  
None  
HI-Z  
(1) Stuck at Fault occurs when input OSC_IO input signal frequency drops below minimum frequency given in the Electrical Characteristics  
table of this data sheet.  
8.3.10.9 Output Power Stage Reset  
Asserting RESET low initiates the device ramp down. The output FETs go into a Hi-Z state after the ramp down  
is complete. Output pull downs are active both in SE mode and BTL mode with RESET low.  
In BTL modes, to accommodate bootstrap charging prior to switching start, asserting the reset input low enables  
weak pulldown of the half-bridge outputs.  
Asserting reset input low removes any fault information to be signaled on the FAULT output, that is, FAULT is  
forced high. A rising-edge transition on reset input allows the device to resume operation after a fault. To ensure  
thermal reliability, the rising edge of reset must occur no sooner than 4 ms after the falling edge of FAULT.  
46  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8.3.11 Initialization, Startup and Shutdown  
This section provides common procedures for power up, operation and power down sequencing.  
8.3.11.1 Power Up and Startup Sequence  
The device analog front-end, including the DAC and DSP, are controlled independently of the output power  
stage. Follow the sequence below to power up the digital front-end and power stage to begin playing audio.  
1. Apply power to DAC_DVDD, DAC_AVDD, GVDD_x, and PVDD_x. The power supplies do not have a power  
on sequence and can be powered on in any order.  
2. Apply I2S or TDM clocks to the device to enable the internal system clocks.  
3. Mute the left and right DAC channels, by setting Register 0x03, Bits 0 (right) and 4 (left) to '1'.  
4. Set DSP coefficients and configuration settings through I2C (optional). The DSP will pass-through audio if no  
registers are changed.  
5. Bring the DSP out of standby by setting Register 0x02, Bit 7 (DSPR) to '1'.  
6. Unmute the left and right DAC channels, by setting Register 0x03, Bits 0 (right) and 4 (left) to '0'.  
7. Enable the amplifier output stage by setting the RESET_AMP pin high.  
8. Play audio through I2S or TDM.  
8.3.11.2 Power Down and Shutdown Sequence  
Follow the sequence below to initiate standby and power down the digital front-end and power stage.  
1. Stop audio playback.  
2. Disable the amplifier output stage by setting the RESET_AMP pin low.  
3. Mute the left and right DAC channels by setting Register 0x03, Bits 0 (right) and 4 (left) to '1'.  
4. Optional: Put the DAC into a low-power mode register 0x02.  
5. Optional: Remove voltage from all power supply rails.  
8.3.11.3 Device Mute  
1. Optional: Disable the amplifier output stage by setting the RESET_AMP pin low.  
2. Mute the left and right DAC channels by setting Register 0x03, Bits 0 (right) and 4 (left) to '1'.  
8.3.11.4 Device Unmute  
1. Unmute the left and right DAC channels, by setting Register 0x03, Bits 0 (right) and 4 (left) to '0'.  
2. Optional: If the amplifier output stage is powered down, enable the amplifier output stage by setting the  
RESET_AMP pin high.  
8.3.11.5 Device Reset  
8.3.11.6 Mute with DAC_MUTE or Clock Error  
Under certain conditions, the TAS3251 can exhibit some pop on power down if the device does not have enough  
time to detect power loss and initiate the muting process. The TAS3251has two auto-mute functions to mute the  
device upon power loss (intentional or unintentional).  
DAC_MUTE - when the DAC_MUTE pin is pulled low, the incoming serial port data is attenuated to 0, closely  
followed by a hard analog mute. This process takes 150 samples + 0.2 ms.  
Clock Error Detect - when a clock error is detected on the incoming serial port data, the TAS3251 switches  
to an internal oscillator and continues to drive the DAC outputs while attenuating the data from the last known  
good value. Once this process completes, the TAS3251 DAC outputs are hard muted to ground.  
Copyright © 2018, Texas Instruments Incorporated  
47  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.3.11.6.1 Mute using DAC_MUTE  
Deassert DAC_MUTE low 150 samples + 0.2 ms before power is removed.  
3.3V  
VDD  
0V  
150tS + 0.2ms  
High  
XSMT  
Low  
High  
2
I S Clocks  
SCK, BCK, LRCK  
Low  
Time  
Figure 35. DAC_MUTE Timing Diagram  
8.3.11.7 Mute using Serial Audio Port Clock  
Stop I2S clocks (SCLK, MCLK, LRCK) 3 ms before power-down as shown in the figure below.  
3.3V  
VDD  
0V  
High  
XSMT  
Low  
3 ms  
High  
I2S Clocks  
SCK, BCK, LRCK  
Low  
Time  
Figure 36. Serial Port Muting Timing Diagram  
48  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8.3.11.8 Muting before an Unplanned Shutdown with DAC_MUTE  
Many systems use a low-noise regulator to provide 3.3 V to the DAC_AVDD and DAC_DVDD. The DAC_MUTE  
pin can take advantage of such a feature to measure the pre-regulated output (3.3 V) from the system power  
supply to mute the output before the PVDD power supply discharges. Figure 37 shows how to configure the  
system to use the DAC_MUTE pin. The DAC_MUTE pin can also be used in parallel with a GPIO pin from the  
system microcontroller, DSP or power supply.  
“mute” signal  
MCU GPIO  
GND  
XSMT  
110V / 220V  
Linear  
Regulator  
PCM5xxx  
Audio DAC  
6V  
3.3V  
SMPS  
10  
F
GND  
GND  
Figure 37. Application Diagram for DAC_MUTE  
8.3.11.9 Output Power Stage Startup Timing  
The TAS3251 output power stage does not require a specific power-up sequence, but it is recommended to hold  
RESET low for a minimum of 400 ms after PVDD supply voltage is powered on. The outputs of the half-bridges  
remain in a high-impedance state until the gate-drive supply voltage (GVDD_X) and VDD voltage are above the  
undervoltage protection (UVP) voltage threshold (see the Electrical Characteristics table of this data sheet). This  
allows an internal circuit to charge the external bootstrap capacitors by enabling a weak pull-down of the half-  
bridge output as well as initiating a controlled ramp up sequence of the output voltage.  
PVDD  
VDD  
GVDD  
DVDD  
/RESET  
AVDD  
C 70µs  
t
Precharge  
C 200ms  
/FAULT  
VIN_X  
OUT_X  
VOUT_X  
t
Startup ramp  
V_CSTART  
Figure 38. Power Stage Startup Timing  
Copyright © 2018, Texas Instruments Incorporated  
49  
 
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
When RESET is released to turn on TAS3251, FAULT signal will output low and AVDD voltage regulator will be  
enabled. FAULT will stay low until AVDD reaches the undervoltage protection (UVP) voltage threshold (see the  
Electrical Characteristics table of this data sheet). Next a pre-charge time begins to stabilize the DC voltage  
across the input AC coupling capacitors, followed by the ramp up output power stage sequence .  
50  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8.4 Device Functional Modes  
Because the TAS3251 device is a highly configurable device, numerous modes of operation can exist for the  
device. For the sake of succinct documentation, these modes are divided into two modes:  
Fundamental operating modes  
Secondary usage modes  
Fundamental operating modes are the primary modes of operation that affect the major operational  
characteristics of the device, which are the most basic configurations that are chosen to ensure compatibility with  
the intended application or the other components that interact with the device in the final system. Some  
examples of the operating modes are the communication protocol used by the control port, the output  
configuration of the amplifier, or the Master/Slave clocking configuration.  
The fundamental operating modes are described starting in the Serial Audio Port Operating Modes section.  
Secondary usage modes are best described as modes of operation that are used after the fundamental operating  
modes are chosen to fine tune how the device operates within a given system. These secondary usage modes  
can include selecting between left justified and right justified Serial Audio Port data formats, or enabling some  
slight gain/attenuation within the DAC path. Secondary usage modes are accomplished through manipulation of  
the registers and controls in the I2C control port. Those modes of operation are described in their respective  
register/bit descriptions and, to avoid redundancy, are not included in this section.  
8.4.1 Serial Audio Port Operating Modes  
The serial audio port in the TAS3251 device supports industry-standard audio data formats, including I2S, Time  
Division Multiplexing (TDM), Left-Justified (LJ), and Right-Justified (RJ) formats. To select the data format that  
will be used with the device, controls are provided on P0-R40. The timing diagrams for the serial audio port are  
shown in the Serial Audio Port Timing – Slave Mode section, and the data formats are shown in the Serial Audio  
Port – Data Formats and Bit Depths section.  
8.4.1.1 Master and Slave Mode Clocking for Digital Serial Audio Port  
The digital audio serial port in the TAS3251 device can be configured to receive clocks from another device as a  
serial audio slave device. The slave mode of operation is described in the Clock Slave Mode with SCLK PLL to  
Generate Internal Clocks (3-Wire PCM) section. If no system processor is available to provide the audio clocks,  
the TAS3251 device can be placed into Master Mode. In master mode, the TAS3251 device provides the clocks  
to the other audio devices in the system. For more details regarding the Master and Slave mode operation within  
the TAS3251 device, see the Serial Audio Port Operating Modes section.  
8.4.2 Communication Port Operating Modes  
The TAS3251 device is configured via an I2C communication port. The device does not support a hardware only  
mode of operation, nor Serial Peripheral Interface (SPI) communication. The I2C Communication Protocol is  
detailed in the I2C Communication Port section. The I2C timing requirements are described in the I2C Bus Timing  
–Standard and I2C Bus Timing –Fast sections.  
8.4.3 Speaker Amplifier Operating Modes  
The TAS3251 device can be used in two different amplifier configurations:  
Stereo Mode  
Mono Mode  
8.4.3.1 Stereo Mode  
The familiar stereo mode of operation uses the TAS3251 device to amplify two independent signals, which  
represent the left and right portions of a stereo signal. These amplified left and right audio signals are presented  
on differential output pairs shown as SPK_OUTA± and SPK_OUTB±. The routing of the audio data which is  
presented on the SPK_OUTx outputs can be changed according to the Audio Process Flow which is used and  
the configuration of registers P0-R42-D[5:4] and P0-R42-D[1:0]. The familiar stereo mode of operation is shown  
in .  
By default, the TAS3251 device is configured to output the Right frame of a I2S input on the Channel A output  
and the left frame on the Channel B output.  
Copyright © 2018, Texas Instruments Incorporated  
51  
 
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Device Functional Modes (continued)  
8.4.3.2 Mono Mode  
The mono mode of operation is used to describe operation in which the two outputs of the device are placed in  
parallel with one another to increase the power sourcing capabilities of the audio output channel. This is also  
known as Parallel Bridge Tied Load (PBTL).  
On the output side of the TAS3251 device, the summation of the devices can be done before the filter in a  
configuration called Pre-Filter PBTL. However, the two outputs may be required to merge together after the  
inductor portion of the output filter. Doing so does require two additional inductors, but allows smaller, less  
expensive inductors to be used because the current is divided between the two inductors. This process is called  
Post-Filter PBTL. Both variants of mono operation are shown in Figure 39 and Figure 40.  
SPK_OUTA+  
SPK_OUTA+  
SPK_OUTA-  
SPK_OUTA-  
Class-D  
Amplifier  
Class-D  
Amplifier  
SPK_OUTB+  
SPK_OUTB+  
SPK_OUTB-  
SPK_OUTB-  
Figure 39. Pre-Filter PBTL  
Figure 40. Post-Filter PBTL  
On the input side of the TAS3251 device, the input signal to the mono amplifier can be selected from the any slot  
in a TDM stream or the left or right frame from an I2S, LJ, or RJ signal. The TAS3251 device can also be  
configured to amplify some mixture of two signals, as in the case of a subwoofer channel which mixes the left  
and right channel together and sends the mixture through a low-pass filter to create a mono, low-frequency  
signal.  
52  
Copyright © 2018, Texas Instruments Incorporated  
 
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8.5 Programming  
8.5.1 Audio Processing Features  
The TAS3251 device includes audio processing to optimize the audio performance of the audio system into  
which they are integrated. The TAS3251 device has 12 Biquad Filters for speaker response tuning, One dual  
band DPEQ to dynamically adjust the equalization curve that is applied to low-level signal and the curve that is  
applied to high level signals. A 2-band advanced DRC + AGL structure limits the output power of the amplifier for  
two regions while controlling the peaking that can occur in the crossover region during compression. A fine  
volume control is provided to finely adjust the output level of the amplifier based upon the system level  
considerations faced by the product development engineer.  
The TAS3251 device has two signal monitoring options available, the level meter and the serial data out signal.  
The level meter monitors the signal level through an alpha filter and presents the signal in an I²C register. The  
level meter signal is taken before the 4x interpolation which occurs before the digital-to-analog conversion.  
The details of the audio processing flow, including the I²C control port registers associated with each block, are  
shown in .  
Audio Path  
32 Bit Data Path & Coefficients  
High level  
BQ  
Band-Split  
High (1BQ)  
Main  
EQ  
Input Scale  
& Mix  
SRC  
Adv.  
DRC  
Gain  
Audio Input  
from Serial  
Port  
1.31  
32/48k  
to  
96kHz  
DAC w/  
1.31  
Gain  
Scale  
DPEQ  
Control  
Fine  
Volume  
4x  
Int.  
Analog Out  
to Amp  
5.27  
Sense  
BQ  
Up to 15  
BQS  
AGL  
L&R or  
L+R  
2
+
+
Gain Cntrl  
Log.  
Style  
Band-Split  
Low (1BQ)  
Gain  
Low  
level BQ  
Level  
Meter  
Mux  
Mux  
Bypass  
I²C Register  
Audio Out to  
Serial Port  
Figure 41. Fixed-Function Process Flow found in the TAS3251  
8.5.2 Processing Block Description  
The processing block shown in the above is comprised of the following major blocks:  
Input scale and mixer  
Sample Rate Converter (SRC)  
Parametric Equalizers (PEQs)  
BQs Gain Scale  
Dynamic Parametric Equalizer (DPEQ)  
Two-Band Dynamic Ranger Control (DRC)  
Automatic Gain Limiter (AGL)  
Fine Volume  
Level Meter  
8.5.2.1 Input Scale and Mixer  
The input mixer can be used to mix the left and right channel input signals as shown in Figure 42. The input  
mixer has four coefficients, which control the mixing and gains of the input signals. When mixing and scaling the  
input signals, ensure that at maximum input level the input mixer outputs don't exceed 0 dBFs, which will  
overdrive the SRC inputs.  
Copyright © 2018, Texas Instruments Incorporated  
53  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Programming (continued)  
L2L  
Gain  
Audio left in  
Audio left out  
+
L2R  
Gain  
R2L  
Gain  
R2R  
Gain  
Audio right in  
Audio right out  
+
Figure 42. Input Scale and Mixer  
8.5.2.1.1 Example  
The following is a sample script for setting up the both left and right channels for (½L + ½R) or (L + R) / 2:  
w 90 00 00 # Go to page 0  
w 90 7f 8C #Change the book to 0x8C  
w 90 00 21 #Go to page 0x21  
w 90 3C 00 40 26 E7 #Input mixer left in to left out gain  
w 90 40 00 40 26 E7 #Input mixer right in to left out gain  
w 90 44 00 40 26 E7 #Input mixer left in to right out gain  
w 90 48 00 40 26 E7 #Input mixer right in to right out gain  
#Run the swap flag for the DSP to work on the new coefficients  
w 90 00 00 #Go to page 0  
w 90 7f 8C #Change the book to 0x8C  
w 90 00 05 #Go to page 0x05  
w 90 7C 00 00 00 01 #Swap flag  
8.5.2.2 Sample Rate Converter  
The sample rate converter supports 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz and 96 kHz input sample rates. These  
input sample rates are converted to 88.2 or 96 kHz sample rate. The sample rate detection doesn’t distinguish  
between sample rates from 32 to 48 kHz. These sample rates are treated as 48 kHz by the sample rate  
converter. The detected sample rate can be read at book 0x78 page 0x0C register 0x5C. The input sample rate  
is 88.2 or 96 kHz at register 0x5C which reads 0x00 00 00 01. The input sample rate is 32 to 48 kHz at register  
0x5C which reads 0x00 00 00 02. Input sample rate 32 kHz requires changing the interpolation setting from 2x to  
3x by writing B0-P0-R37-D7 to 1. The device must be placed in standby mode for this change to take effect.  
Table 26. Sample Rate Detection  
SAMPLING RATE (KHZ)  
B0-P0-R91-D[6:4]  
8
16  
001  
010  
011  
100  
101  
110  
32 – 48  
88.2 – 96  
176.4 – 192  
384  
54  
Copyright © 2018, Texas Instruments Incorporated  
 
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
Even though the sample rate converter supports 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz and 96 kHz input sample  
rates, the TAS3251 device supports all input sample rates shown in Table 26 in 1x interpolation mode, base rate  
processing.  
The SRC input should not be overdriven. Making the maximum signal level into the SRC –0.5dBFs is  
recommended to prevent overdriving the SRC and causing audio artifacts. The input scale and mixer can be  
used to attenuate or boost the maximum input signal to –0.5dBFs. The processing block has several blocks after  
the SRC where the signal can be compensate for any gain attenuation done in the input mixer and scale block to  
prevent over driving the SRC.  
8.5.2.3 Parametric Equalizers (PEQ)  
The device supports up to 15 individual tuned PEQs for left channel and up to 15 individual tuned PEQs for the  
right channel. The PEQs are implemented using cascaded “direct form 1” BQs structures as shown in Figure 43.  
Inst1_B0  
Inst2_B0  
Inst3_B0  
BIQUADIN_D  
X
X
X
+
+
+
2*Inst1_B1  
X
2*Inst1_A1  
2*Inst2_B1  
X
2*Inst2_A1  
2*Inst3_B1  
z-1  
z-1  
z-1  
X
X
X
z-1  
z-1  
z-1  
Inst1_B2  
X
Inst1_A2  
Inst2_B2  
X
Inst2_A2  
Inst3_B2  
X
X
X
Instance 1  
Instance 2  
Figure 43. Cascaded BQ Structure  
Instance 3  
b0 + b Z-1 + b2Z-2  
a0 + a1Z-1 + a2Z-2  
1
H(z) =  
(2)  
All BQ coefficients are normalized with a0 to insure that a0 is equal to 1. The structure requires 5 BQ coefficients  
as shown in Table 27. Any BQ with coefficients greater than 1 undergoes gain scaling as described in BQ Gain  
Scale.  
Table 27. BQ Coefficients Normalization  
BQ COEFFICIENT FOR TAS3251  
COEFFICIENT CALCULATION  
B0_DSP  
B1_DSP  
B2_DSP  
A1_DSP  
A2_DSP  
b0 / a0  
b1 / (a0 × 2)  
b2 / a0  
–a1 / (a0 × 2)  
–a2 / a0  
8.5.2.4 BQ Gain Scale  
Main EQ  
12-15 BQs  
Gain  
Scale  
Figure 44. PEQs and BQs Gain Scale Block  
Copyright © 2018, Texas Instruments Incorporated  
55  
 
 
 
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
The BQ coefficients format is as follows: The first BQ has B0 = 5.x, B1 = 6.x, B2 = 5.x, A1 = 2.x, and A2 = 1.x.  
The rest of the BQ have this format: B0 = 1.x, B1 = 2.x, B2 = 1.x, A1 = 2.x, and A2 = 1.x. This formatting  
maintains the highest possible resolution and noise performance. The 1.31 format restricts the ability to do high  
gains within the BQs and as a result requires gain compensation for the restriction. When generating BQ  
coefficients, ensure none of the BQ coefficients is greater than 1 by implementing gain compensation. The Gain  
compensation reduces the BQ coefficients gain to ensure all BQ coefficients are less than 1. The reduced gain is  
then reapplied in the subsequent gain scale block.  
Gain compensation takes the maximum value of B0_DSP, B1_DSP, and B2_DSP after the BQ normalization  
shown in Table 27 is implemented. All the B coefficients are divided by maximum B coefficient value then  
multiplied by 0.999999999534339 (the nearest two’s complement 32-bit number to 1). The following calculations  
are done for each BQ in the PEQ block:  
Max _ k = max(B0 _ DSP, B1_ DSP, B2 _ DSP)  
k _ BQX = Max _ k  
(3)  
(4)  
B0 _ DSP  
B0 _ DSP =  
k _ BQX  
(5)  
(6)  
(7)  
B1_ DSP  
B1_ DSP =  
k _ BQX  
B2 _ DSP  
B2 _ DSP =  
k _ BQX  
The calculations above insure all DSP BQ coefficients are in a 1.31 format. The reduced gains in the BQ 1.31  
format is compensation for in the gain scale block. The following calculation is done for each channel.  
k_BQ = k_BQ1 × k_BQ2 × k_BQ3 × k_BQ4 × k_BQ5 × k_BQ6 × k_BQ7 × k_BQ8 × k_BQ9 × k_BQ10 × k_BQ11 ×  
k_BQ12  
(8)  
The calculated k_BQ compensation value is then applied to the BQ gain scale in an 8.24 format. The BQ gain  
scale can also be used for volume control before the DRCs. The block can be considered as BQ gain scale and  
volume gain block. When the BQ gain scale block is used for volume control the coefficient value must be  
calculated as follows:  
Volume  
20  
Gain _ BQ _V =10  
´k _ BQ  
where  
Volume is in dB  
(9)  
The BQ gain scale coefficients are located in book 0x8C, page 0x21 register 0x4C for left and register 0x50 for  
right.  
The Bypass EQ Mux allows the user to bypass all processing. The Bypass EQ mux is at Page 0x21, Register  
0x64. The Gang Left / Right mux forces the left processing to be the same as the right processing. The Gang  
Left / Right Mux is located at Page 0x21, Register 0x68.  
8.5.2.5 Dynamic Parametric Equalizer (DPEQ)  
The dynamic parametric equalizer mixes the audio signals routed through two paths containing one BQ each  
based upon the signal level detected by the sense path, as shown in Figure 45. The sense path contains one  
BQ, which can be used to focus the DPEQ sensing on a specific frequency bandwidth. An alpha filter structure is  
used to sense the energy in the sense path and setting the dynamic mixing ratios.  
56  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
High level  
BQ  
DPEQ  
Control  
Sense  
BQ  
+
Low level  
BQ  
Figure 45. DPEQ Signal Path  
The dynamic mixing is controlled by offset, gain, and alpha coefficients in a 1.31 format. The alpha coefficient  
controls the average time constant in ms of the signal data in the sense path. The offset and gain coefficients  
control the dynamic mixing thresholds shown in Figure 46.  
GAIN  
Low Path Mix  
1
High Path Mix  
0
T1  
T2  
FS  
SENSE LEVEL  
Figure 46. Dynamic Mixing  
The offset, gain and alpha coefficients are calculated as follows:  
T1  
T1_ Linear =1020  
(10)  
(11)  
T 2-6  
20  
T2 _ Linear =10  
where  
T2 –20 dB  
T 2  
T2 _ Linear =1020  
where  
T2 < –20 dB  
(12)  
(13)  
Offset = -T1_ Linear  
1
Gain =  
32(T2 _ Linear -T1_ Linear)  
-1000  
(14)  
57  
Alpha =1- etime constant´Fs  
Copyright © 2018, Texas Instruments Incorporated  
 
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
where  
T1 and T2 are in dB  
The time constant is in ms  
(15)  
The DPEQ control coefficients are located in book 0x8C, page0x20. Register 0x44 is alpha coefficient, register  
0x48 is gain coefficient and register 0x4C is offset coefficient.  
The high level path BQ, low level path BQ, and sense path BQ coefficients use a 1.31 format as shown in  
Table 29. The DPEQ BQs don't have a gain scale to compensate for any BQ gain reduction due to the  
requirements of the 1.31 format. During tuning, the reduced gain can be compensated by using the BQ gain  
scale or the DRC offset coefficient.  
The DPEQ sense gain scale is located in the sensing path. The DPEQ sense gain scale can be used to shift the  
dynamic mixing thresholds by changing the signal level in the sensing path. A positive dB gain shifts the dynamic  
mixing thresholds down by the gain amount and a negative dB gain shifts the dynamic mixing thresholds up by  
the gain amount.  
8.5.2.6 Two-Band Dynamic Range Control  
The Dynamic Range Control (DRC) is a feed-forward mechanism that can be used to automatically control the  
audio signal amplitude or the dynamic range within specified limits. The dynamic range control is done by  
sensing the audio signal level using an estimate of the alpha filter energy then adjusting the gain based on the  
region and slope parameters that are defined. The Dynamic Range Control is shown in Figure 47.  
Adv.  
DRC  
Mixer  
gain  
Band-Split  
High (1BQ)  
+
Log.  
Style  
Band-Split  
Low (1BQ)  
Mixer  
gain  
Figure 47. Dynamic Range Control  
The DRCs have seven programmable transfer function parameters each: k0, k1, k2, T1, T2, OFF1, and OFF2.  
The T1 and T2 parameters specify thresholds or boundaries of the three compression or expansion regions in  
terms of input level. The Parameters k0, k1, and k2 define the gains or slopes of curves for each of the three  
regions. The parameters OFF1 and OFF2 specify the offset shift relative 1:1 transfer function curve at the  
thresholds T1 and T2 respectively shown in Figure 48.  
58  
Copyright © 2018, Texas Instruments Incorporated  
 
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
0
OFF2  
OFF1  
-25  
K2  
K1  
-50  
K0  
-75  
-100  
T1  
T2  
-125  
-100  
-75  
-50  
-25  
0
Input (dB)  
Figure 48. DRC Transfer Function Example Plot  
The two-band dynamic range control is comprised of two DRCs that can be spilt into two bands using the BQ at  
the input of each band. The frequency where the two bands are spilt is referred to as the crossover frequency.  
The crossover frequency is the cut off frequency for the low pass filter used to create the low band and the cut  
off frequency for the high pass filter used to create the high band. It is inherent of parallel two-band DRC to have  
a hump at the crossover region due to the overlap of energy going through both bands of the DRC being  
summed in the two-band DRC output mixer.  
Attack  
Decay  
time  
time  
Gain  
t1  
t2  
Time  
Figure 49. DRC Attack and Decay  
The DRC in each band is equipped with individual energy, attack, and decay time constants. The DRC time  
constants control the transition time of changes and decisions in the DRC gain during compression or expansion.  
The energy, attack, and decay time constants affect the sensitivity level of the DRC. The shorter the time  
constant, the more aggressive the DRC response and vice versa.  
Copyright © 2018, Texas Instruments Incorporated  
59  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.5.2.7 Automatic Gain Limiter  
The Automatic Gain Limiter (AGL) is a feedback mechanism that can be used to automatically control the audio  
signal amplitude or dynamic range within specified limits. The automatic gain limiting is done by sensing the  
audio signal level using an alpha filter energy structure shown in Figure 51 at the output of the AGL then  
adjusting the gain based on the whether the signal level is above or below the defined threshold. Three decisions  
made by the AGL are engage, disengage, or do nothing. The rate at which the AGL engages or disengages  
depends on the attack and release settings, respectively.  
1:1 Transfer Function  
Implemented Transfer Function  
T
Input Level (dB)  
M0091-04  
Figure 50. AGL Transfer Function Example Plot  
Alpha Filter Structure  
S
α
–1  
ω
Z
Figure 51. AGL Alpha Filter Structure  
8.5.2.7.1 Softening Filter Alpha (AEA)  
AEA = 1 – e–1000 / (fs × User_AE)  
e 2.718281828  
Fs = sampling frequency  
User_AE = user input step size  
8.5.2.7.2 Softening Filter Omega (AEO)  
AEO = 1 – AEA  
8.5.2.7.3 Attack Rate  
Attack rate = 2 (AA + Release rate)  
AA = 1000 × User_Ad / Fs  
User_Ad = user input attack step size  
8.5.2.7.4 Release Rate  
Release rate = 1000 × User_Rd / Fs  
User_Rd = user input release step size  
60  
Copyright © 2018, Texas Instruments Incorporated  
 
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
NOTE  
The release duration (User_Rd) should be longer than the attack duration (User_Ad).  
8.5.2.7.5 Attack Threshold  
Attack Threshold = user input level in dB  
Threshold  
INPUT  
Threshold  
OUTPUT  
Attack Rate  
Release Rate  
W0003-01  
Figure 52. AGL Attack and Release  
The Attack Threshold AGL coefficients are shown in .  
8.5.2.8 Fine Volume  
The fine volume block after the AGL can be used to provide additional fine volume steps from –192 dB to 6 dB in  
a 2.30 format. The Fine Coefficients are shown in .  
8.5.2.9 THD Boost  
A boost scaler and fine volume together can be used for clipping. The THD boost block allows the user to  
programmatically increase the THD by clipping at an operating point earlier than that defined by the supply rails.  
8.5.2.10 Level Meter  
The level meter uses an energy estimator with a programmable time constant to adjust the sensitivity level based  
on signal frequency and desired accuracy level. The level meter outputs of both left and right channels are  
written to a 32-bit sub address location in a 1.31 format as shown in Table 28. The BypassTo Level Meter Bit in  
Book 8C, Page 0x21, Register 0x70 can be used to switch the input to the Level Meter from the audio before  
processing to audio post-processing.  
Copyright © 2018, Texas Instruments Incorporated  
61  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.5.3 Other Processing Block Features  
8.5.3.1 Number Format  
The data processing path is 32 bits with 32-bit coefficients. The coefficients use the two’s complement digital  
number format.  
Table 28. Two’s Complement Format  
BITS  
TWO'S COMPLEMENT VALUE  
0111 1111  
0111 1110  
0000 0010  
0000 0001  
0000 0000  
1111 1111  
1111 1110  
1000 0010  
1000 0001  
1000 0000  
127  
126  
2
1
0
–1  
–2  
–126  
–127  
–128  
8.5.3.1.1 Coefficient Format Conversion  
The device uses 32 bit two’s complement number formats. The calculated 4 byte register values are shown  
below in an 8 digit hex value.  
Table 29. Sample Calculations for 1.31 Format  
dB  
0
Linear  
1
Decimal  
Hex (1.31 Format)  
7FFFFFFF  
2147483648  
1073741824  
214748364  
–6  
–20  
0.5  
40000000  
0.1  
0CCCCCCC  
D = 231 × L, D < 231  
x
L = 10(x/20)  
Dec2Hex(D, 8)(1)  
D = 231, D 231  
(1) Dec2Hex(D, 8), where 8 represents 8 nibbles or 38 bits.  
Please note that for a 1.31 format the linear value cannot be greater than 1 or decimal value 232.  
Table 30. Sample Calculations for B.A Format  
dB  
Linear  
Decimal  
Hex (1.31 Format)  
D = 2A × L, D < 2(B + A - 1)  
x
L = 10(x/20)  
Dec2Hex(D, 8)  
D = 2(B + A - 1), D 2(B + A - 1)  
8.5.4 Checksum  
The TAS3251 device supports two different check sum schemes, a cyclic redundancy check (CRC) checksum  
and an Exclusive (XOR) checksum. Both checksums work on every register write, except for book switch register  
and page switching register, 0x7F and 0x00, respectively. Register reads do not change checksum, but writes to  
even nonexistent registers will change the checksum. Both checksums are 8-bit checksums and both are  
available together simultaneously. The checksums can be reset by writing a starting value (eg. 0x 00 00 00 00)  
to their respective 4-byte register locations.  
62  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8.5.4.1 Cyclic Redundancy Check (CRC) Checksum  
The 8-bit CRC checksum used is the 0x7 polynomial (CRC-8-CCITT I.432.1; ATM HEC, ISDN HEC and cell  
delineation, (1 + x1 + x2 + x8). A major advantage of the CRC checksum is that it is input order sensitive.  
The CRC supports all I2C transactions, excluding book and page switching. The CRC checksum is read from  
register 0x7E on any page of book 0x00 (B0_Page x_Reg 126). If the book isn’t Book 0, the CRC checksum is  
only valid on page 0x00 register 0x7E (Page 0_Reg 126). The CRC checksum can be reset by writing 0x00 00  
00 00 to the same register locations where the CRC checksum is valid.  
8.5.4.2 Exclusive or (XOR) Checksum  
The Xor checksum is a simpler checksum scheme. It performs sequential XOR of each register byte write with  
the previous 8-bit checksum register value. XOR supports only YMEM, which is located in Book 0x8C and  
excludes page switching and all registers in Page 0x00 of Book 0x8C. XOR checksum is read from location  
register 0x7D on page 0x00 of book 0x8C (B140_Page 0_Reg 125). The XOR Checksum can be reset by writing  
0x00 00 00 00 to the same register location where it is read.  
Table 31. XOR Truth Table  
INPUT  
OUTPUT  
A
0
0
1
1
B
0
1
0
1
0
1
1
0
Copyright © 2018, Texas Instruments Incorporated  
63  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.6 Register Maps  
8.6.1 Registers - Page 0  
8.6.1.1 Register 1 (0x01)  
Figure 53. Register 1 (0x01)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
RSTM  
R/W  
Reserved  
R/W  
RSTR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 32. Register 1 (0x01) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
Reset  
Description  
Reserved  
RSTM  
Reserved  
R/W  
0
Reset Modules – This bit resets the interpolation filter and the DAC modules. Since the  
DSP is also reset, the coeffient RAM content will also be cleared by the DSP. This bit  
is auto cleared and can be set only in standby mode.  
0: Normal  
1: Reset modules  
3-1  
0
Reserved  
RSTR  
Reserved  
R/W  
0
Reset Registers – This bit resets the mode registers back to their initial values. The  
RAM content is not cleared, but the execution source will be back to ROM. This bit is  
auto cleared and must be set only when the DAC is in standby mode (resetting  
registers when the DAC is running is prohibited and not supported).  
0: Normal  
1: Reset mode registers  
8.6.1.2 Register 2 (0x02)  
Figure 54. Register 2 (0x02)  
7
6
5
4
3
2
1
0
DSPR  
R/W  
Reserved  
R/W  
RQST  
R/W  
Reserved  
R/W  
RQPD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 33. Register 2 (0x02) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DSPR  
R/W  
1
DSP reset – When the bit is made 0, DSP will start powering up and send out data.  
This needs to be made 0 only after all the input clocks are (ASI,MCLK,PLLCLK) are  
settled so that DMA channels do not go out of sync.  
0: Normal operation  
1: Reset the DSP  
6-5  
4
Reserved  
RQST  
R/W  
R/W  
Reserved  
0
Standby Request – When this bit is set, the DAC will be forced into a system standby  
mode, which is also the mode the system enters in the case of clock errors. In this  
mode, most subsystems will be powered down but the charge pump and digital power  
supply.  
0: Normal operation  
1: Standby mode  
3-1  
Reserved  
R/W  
Reserved  
64  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
Table 33. Register 2 (0x02) Field Descriptions (continued)  
Bit  
Field  
RQPD  
Type  
Reset  
Description  
0
R/W  
0
Powerdown Request – When this bit is set, the DAC will be forced into powerdown  
mode, in which the power consumption would be minimum as the charge pump is also  
powered down. However, it will take longer to restart from this mode. This mode has  
higher precedence than the standby mode, i.e. setting this bit along with bit 4 for  
standby mode will result in the DAC going into powerdown mode.  
0: Normal operation  
1: Powerdown mode  
8.6.1.3 Register 3 (0x03)  
Figure 55. Register 3 (0x03)  
7
6
5
4
3
2
1
0
Reserved  
RO  
RQML  
R/W  
Reserved  
R/W  
RQMR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 34. Register 3 (0x03) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
RO  
Reset  
Description  
Reserved  
RQML  
Reserved  
R/W  
0
Mute Left Channel – This bit issues soft mute request for the left channel. The volume  
will be smoothly ramped down/up to avoid pop/click noise.  
0: Normal volume  
1: Mute  
3-1  
0
Reserved  
RQMR  
R/W  
R/W  
Reserved  
0
Mute Right Channel – This bit issues soft mute request for the right channel. The  
volume will be smoothly ramped down/up to avoid pop/click noise.  
0: Normal volume  
1: Mute  
8.6.1.4 Register 4 (0x04)  
Figure 56. Register 4 (0x04)  
7
6
5
4
PLCK  
R
3
2
1
0
Reserved  
R/W  
Reserved  
R/W  
PLLE  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 35. Register 4 (0x04) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
PLCK  
Reserved  
0
PLL Lock Flag – This bit indicates whether the PLL is locked or not. When the PLL is  
disabled this bit always shows that the PLL is not locked.  
0: The PLL is locked  
1: The PLL is not locked  
3-1  
0
Reserved  
PLLE  
R/W  
R/W  
Reserved  
1
PLL Enable – This bit enables or disables the internal PLL. When PLL is disabled, the  
master clock will be switched to the MCLK.  
0: Disable PLL  
1: Enable PLL  
Copyright © 2018, Texas Instruments Incorporated  
65  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.6.1.5 Register 6 (0x06)  
Figure 57. Register 6 (0x06)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DBPG  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 36. Register 6 (0x06) Field Descriptions  
Bit  
7-4  
3
Field  
Type  
Reset  
Description  
Reserved  
DBPG  
0
0
Reserved  
R/W  
Page auto increment disable – Disable page auto increment mode. for non -zero  
books. When end of page is reached it goes back to 8th address location of next page  
when this bit is 0. When this bit is 1 it goes to 0 th location of current page itself like in  
older part.  
0: Enable Page auto increment  
1: Disable Page auto increment  
2-0  
Reserved  
R/W  
0
Reserved  
8.6.1.6 Register 7 (0x07)  
Figure 58. Register 7 (0x07)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DEMP  
R/W  
Reserved  
R/W  
SDSL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 37. Register 7 (0x07) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
DEMP  
0
0
Reserved  
De-Emphasis Enable – This bit enables or disables the de-emphasis filter. The default  
coefficients are for 44.1 kHz sampling rate, but can be changed by reprogramming the  
appropriate coeffients in RAM.  
0: De-emphasis filter is disabled  
1: De-emphasis filter is enabled  
3-1  
0
Reserved  
SDSL  
R/W  
R/W  
0
1
Reserved  
SDOUT Select – This bit selects what is being output as SDOUT via the SDOUT pin.  
0: SDOUT is the DSP output (post-processing)  
1: SDOUT is the DSP input (pre-processing)  
8.6.1.7 Register 8 (0x08)  
Figure 59. Register 8 (0x08)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
G2OE  
R/W  
MUTEOE  
R/W  
Reserved  
R/W  
Table 38. Register 8 (0x08) Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
G2OE  
Reserved  
0
SDOUT Output Enable – This bit sets the direction of the  
SDOUT pin  
0: SDOUT is input  
1: SDOUT is output  
66  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
Table 38. Register 8 (0x08) Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4
MUTEOE  
R/W  
0
MUTE Control Enable – This bit sets an enable of MUTE control  
from PCM to TPA  
0: MUTE control disable  
1: MUTE control enable  
Reserved  
3-0  
Reserved  
R/W  
0
8.6.1.8 Register 9 (0x09)  
Figure 60. Register 9 (0x09)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
SCLKP  
R/W  
SCLKO  
R/W  
Reserved  
R/W  
LRCLKFSO  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 39. Register 9 (0x09) Field Descriptions  
Bit  
7-6  
5
Field  
Type  
Reset  
Description  
Reserved  
SCLKP  
Reserved  
R/W  
0
SCLK Polarity – This bit sets the inverted SCLK mode. In inverted SCLK mode, the  
DAC assumes that the LRCLK and DIN edges are aligned to the rising edge of the  
SCLK. Normally they are assumed to be aligned to the falling edge of the SCLK.  
0: Normal SCLK mode  
1: Inverted SCLK mode  
4
SCLKO  
R/W  
0
SCLK Output Enable – This bit sets the SCLK pin direction to output for I2S master  
mode operation. In I2S master mode the PCM51xx outputs the reference SCLK and  
LRCLK, and the external source device provides the DIN according to these clocks.  
Use P0-R32 to program the division factor of the MCLK to yield the desired SCLK rate  
(normally 64 FS)  
0: SCLK is input (I2S slave mode)  
1: SCLK is output (I2S master mode)  
3-1  
0
Reserved  
LRKO  
Reserved  
R/W  
0
LRCLK Output Enable – This bit sets the LRCLK pin direction to output for I2S master  
mode operation. In I2S master mode the PCM51xx outputs the reference SCLK and  
LRCLK, and the external source device provides the DIN according to these clocks.  
Use P0-R33 to program the division factor of the SCLK to yield 1 FS for LRCLK.  
0: LRCLK is input (I2S slave mode)  
1: LRCLK is output (I2S master mode)  
8.6.1.9 Register 12 (0x0C)  
Figure 61. Register 12 (0x0C)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
RSCLK  
R/W  
RLRK  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 40. Register 12 (0x0C) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
Reserved  
R/W  
Reserved  
1
RSCLK  
R/W  
0
Master Mode SCLK Divider Reset – This bit, when set to 0, will reset the MCLK divider  
to generate SCLK clock for I2S master mode. To use I2S master mode, the divider  
must be enabled and programmed properly.  
0: Master mode SCLK clock divider is reset  
1: Master mode SCLK clock divider is functional  
Copyright © 2018, Texas Instruments Incorporated  
67  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Table 40. Register 12 (0x0C) Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
RLRK  
R/W  
1
Master Mode LRCLK Divider Reset – This bit, when set to 0, will reset the SCLK  
divider to generate LRCLK clock for I2S master mode. To use I2S master mode, the  
divider must be enabled and programmed properly.  
0: Master mode LRCLK clock divider is reset  
1: Master mode LRCLK clock divider is functional  
8.6.1.10 Register 13 (0x0D)  
Figure 62. Register 13 (0x0D)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
SREF  
R/W  
Reserved  
R/W  
SDSP  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 41. Register 13 (0x0D) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
SREF  
Reserved  
0
DSP clock source – This bit select the source clock for internal PLL. This bit is ignored  
and overriden in clock auto set mode.  
0: The PLL reference clock is MCLK  
1: The PLL reference clock is SCLK  
010: The PLL reference clock is oscillator clock  
011: The PLL reference clock is GPIO (selected using P0-R18)  
Others: Reserved (PLL reference is muted)  
3
Reserved  
SDSP  
R/W  
R/W  
Reserved  
2-0  
0
DAC clock source – These bits select the source clock for DSP clock divider.  
000: Master clock (PLL/MCLK and OSC auto-select)  
001: PLL clock  
010: OSC clock  
011: MCLK clock  
100: SCLK clock  
101: GPIO (selected using P0-R16)  
Others: Reserved (muted)  
68  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8.6.1.11 Register 14 (0x0E)  
Figure 63. Register 14 (0x0E)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
SDAC  
R/W  
Reserved  
R/W  
SOSR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 42. Register 14 (0x0E) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
SDAC  
0
0
Reserved  
6-4  
DAC clock source – These bits select the source clock for DAC clock divider.  
000: Master clock (PLL/MCLK and OSC auto-select)  
001: PLL clock 010: OSC clock  
011: MCLK clock  
100: SCLK clock  
101: GPIO (selected using P0-R16)  
Others: Reserved (muted)  
3
Reserved  
SOSR  
R/W  
R/W  
0
0
Reserved  
2-0  
OSR clock source – These bits select the source clock for OSR clock divider.  
000: DAC clock  
001: Master clock (PLL/MCLK and OSC auto-select)  
010: PLL clock  
011: OSC clock  
100: MCLK clock  
101: SCLK clock  
110: GPIO (selected using P0-R17)  
Others: Reserved (muted)  
8.6.1.12 Register 15 (0x0F)  
Figure 64. Register 15 (0x0F)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
SNCP  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 43. Register 15 (0x0F) Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
SNCP  
Reserved  
0
NCP clock source – These bits select the source clock for CP clock divider.  
000: DAC clock  
001: Master clock (PLL/MCLK and OSC auto-select)  
010: PLL clock  
011: OSC clock  
100: MCLK clock  
101: SCLK clock  
110: GPIO (selected using P0-R17)  
Others: Reserved (muted)  
Copyright © 2018, Texas Instruments Incorporated  
69  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.6.1.13 Register 16 (0x10)  
Figure 65. Register 16 (0x10)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
GDSP  
R/W  
Reserved  
R/W  
GDAC  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 44. Register 16 (0x10) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
GDSP  
0
0
Reserved  
6-4  
GPIO Source for uCDSP clk – These bits select the SDOUT pin as clock input source  
when GPIO is selected as DSP clock divider source.  
000: N/A  
001: N/A  
010: N/A  
011: N/A  
100: N/A  
101: SDOUT  
Others: Reserved (muted)  
3
Reserved  
GDAC  
R/W  
R/W  
0
0
Reserved  
2-0  
GPIO Source for DAC clk – These bits select the SDOUT pin as clock input source  
when GPIO is selected as DAC clock divider source.  
000: N/A  
001: N/A  
010: N/A  
011: N/A  
100: N/A  
101: SDOUT  
Others: Reserved (muted)  
70  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8.6.1.14 Register 17 (0x11)  
Figure 66. Register 17 (0x11)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
GNCP  
R/W  
Reserved  
R/W  
GOSR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 45. Register 17 (0x11) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
GNCP  
0
0
Reserved  
6-4  
GPIO Source for NCP clk – These bits select the SDOUT pin as clock input source  
when GPIO is selected as CP clock divider source  
000: N/A  
001: N/A  
010: N/A  
011: N/A  
100: N/A  
101: SDOUT  
Others: Reserved (muted)  
3
Reserved  
GOSR  
R/W  
R/W  
0
0
Reserved  
2-0  
GPIO Source for OSR clk – These bits select the SDOUT pin as clock input source  
when GPIO is selected as OSR clock divider source.  
000: N/A  
001: N/A  
010: N/A  
011: N/A  
100: N/A  
101: SDOUT  
Others: Reserved (muted)  
8.6.1.15 Register 18 (0x12)  
Figure 67. Register 18 (0x12)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
GREF  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 46. Register 18 (0x12) Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
GREF  
0
0
Reserved  
GPIO Source for PLL reference clk – These bits select the SDOUT pin as clock input  
source when GPIO is selected as the PLL reference clock source.  
000: N/A  
001: N/A  
010: N/A  
011: N/A  
100: N/A  
101: SDOUT  
Others: Reserved (muted)  
Copyright © 2018, Texas Instruments Incorporated  
71  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.6.1.16 Register 20 (0x14)  
Figure 68. Register 20 (0x14)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
PPDV  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 47. Register 20 (0x14) Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
PPDV  
0
0
Reserved  
PLL P – These bits set the PLL divider P factor. These bits are ignored in clock auto  
set mode.  
0000: P=1  
0001: P=2  
...  
1110: P=15  
1111: Prohibited (do not set this value)  
72  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8.6.1.17 Register 21 (0x15)  
Figure 69. Register 21 (0x15)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
PJDV  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 48. Register 21 (0x15) Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
Reset  
0
Description  
Reserved  
PJDV  
Reserved  
R/W  
001000  
PLL J – These bits set the J part of the overall PLL multiplication factor J.D * R.  
These bits are ignored in clock auto set mode.  
000000: Prohibited (do not set this value)  
000001: J=1  
000010: J=2  
...  
111111: J=63  
8.6.1.18 Register 22 (0x16)  
Figure 70. Register 22 (0x16)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
PDDV  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 49. Register 22 (0x16) Field Descriptions  
Bit  
7-6  
5-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
PDDV  
Reserved  
0
PLL D (MSB) – These bits set the D part of the overall PLL multiplication factor J.D * R.  
These bits are ignored in clock auto set mode.  
0 (in decimal): D=0000  
1 (in decimal): D=0001  
...  
9999 (in decimal): D=9999  
Others: Prohibited (do not set)  
Copyright © 2018, Texas Instruments Incorporated  
73  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.6.1.19 Register 23 (0x17)  
Figure 71. Register 23 (0x17)  
7
6
5
4
3
2
1
0
PDDV  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 50. Register 23 (0x17) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
PDDV  
R/W  
0
PLL D (LSB) – These bits set the D part of the overall PLL multiplication factor J.D * R.  
These bits are ignored in clock auto set mode.  
0 (in decimal): D=0000  
1 (in decimal): D=0001  
...  
9999 (in decimal): D=9999  
Others: Prohibited (do not set)  
8.6.1.20 Register 24 (0x18)  
Figure 72. Register 24 (0x18)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
PRDV  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 51. Register 24 (0x18) Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
PRDV  
Reserved  
0
PLL R – These bits set the R part of the overall PLL multiplication factor J.D * R. These  
bits are ignored in clock auto set mode.  
0000: R=1  
0001: R=2  
...  
1111: R=16  
8.6.1.21 Register 27 (0x1B)  
Figure 73. Register 27 (0x1B)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DDSP  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 52. Register 27 (0x1B) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
DDSP  
Reserved  
6-0  
0
DSP Clock Divider – These bits set the source clock divider value for the DSP clock.  
These bits are ignored in clock auto set mode.  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
74  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8.6.1.22 Register 28 (0x1C)  
Figure 74. Register 28 (0x1C)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DDAC  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 53. Register 28 (0x1C) Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
DDAC  
Reserved  
6-4  
3-0  
R/W  
R/W  
0
1
DAC Clock Divider – These bits set the source clock divider value for the DAC clock.  
These bits are ignored in clock auto set mode.  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
8.6.1.23 Register 29 (0x1D)  
Figure 75. Register 29 (0x1D)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DNCP  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 54. Register 29 (0x1D) Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
DNCP  
Reserved  
6-2  
1-0  
R/W  
R/W  
0
1
NCP Clock Divider – These bits set the source clock divider value for the CP clock.  
These bits are ignored in clock auto set mode.  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
8.6.1.24 Register 30 (0x1E)  
Figure 76. Register 30 (0x1E)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DOSR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 55. Register 30 (0x1E) Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
Reserved  
DOSR  
Reserved  
6-4  
3-0  
R/W  
R/W  
0
1
OSR Clock Divider – These bits set the source clock divider value for the OSR clock.  
These bits are ignored in clock auto set mode.  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
Copyright © 2018, Texas Instruments Incorporated  
75  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.6.1.25 Register 32 (0x20)  
Figure 77. Register 32 (0x20)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DSCLK  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 56. Register 32 (0x20) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
DSCLK  
Reserved  
6-0  
0
Master Mode SCLK Divider – These bits set the MCLK divider value to generate I2S  
master SCLK clock.  
0000000: Divide by 1  
0000001: Divide by 2  
...  
1111111: Divide by 128  
8.6.1.26 Register 33 (0x21)  
Figure 78. Register 33 (0x21)  
7
6
5
4
3
2
1
0
DLRK  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 57. Register 33 (0x21) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DLRK  
R/W  
0
Master Mode LRCLK Divider – These bits set the I2S master SCLK clock divider value  
to generate I2S master LRCLK clock  
00000000: Divide by 1  
00000001: Divide by 2  
...  
11111111: Divide by 256  
76  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8.6.1.27 Register 34 (0x22)  
Figure 79. Register 34 (0x22)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
I16E  
R/W  
Reserved  
R/W  
FSSP  
R/W  
FSSP  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 58. Register 34 (0x22) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
I16E  
Reserved  
0
16x Interpolation – This bit enables or disables the 16x interpolation mode  
0: 8x interpolation  
1: 16x interpolation  
3
2
Reserved  
FSSP  
R/W  
R/W  
R/W  
Reserved  
1
0
FS Speed Mode – These bits select the FS operation mode, which must be set  
according to the current audio sampling rate. These bits are ignored in clock auto set  
mode.  
1-0  
000: Reserved  
001: Reserved  
010: Reserved  
011: 48 kHz  
100: 88.2-96 kHz  
101: Reserved  
110: Reserved  
111: 32kHz  
Copyright © 2018, Texas Instruments Incorporated  
77  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.6.1.28 Register 37 (0x25)  
Figure 80. Register 37 (0x25)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
IDFS  
R/W  
IDBK  
R/W  
IDSK  
R/W  
IDCH  
R/W  
IDCM  
R/W  
DCAS  
R/W  
IPLK  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 59. Register 37 (0x25) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
IDFS  
Reserved  
6
0
Ignore FS Detection – This bit controls whether to ignore the FS detection. When  
ignored, FS error will not cause a clock error.  
0: Regard FS detection  
1: Ignore FS detection  
5
4
3
2
IDBK  
IDSK  
IDCH  
IDCM  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
Ignore SCLK Detection – This bit controls whether to ignore the SCLK detection  
against LRCLK. The SCLK must be stable between 32 FS and 256 FS inclusive or an  
error will be reported. When ignored, a SCLK error will not cause a clock error.  
0: Regard SCLK detection  
1: Ignore SCLK detection  
Ignore MCLK Detection – This bit controls whether to ignore the MCLK detection  
against LRCLK. Only some certain MCLK ratios within some error margin are allowed.  
When ignored, an MCLK error will not cause a clock error.  
0: Regard MCLK detection  
1: Ignore MCLK detection  
Ignore Clock Halt Detection – This bit controls whether to ignore the MCLK halt (static  
or frequency is lower than acceptable) detection. When ignored an MCLK halt will not  
cause a clock error.  
0: Regard MCLK halt detection  
1: Ignore MCLK halt detection  
Ignore LRCLK/SCLK Missing Detection – This bit controls whether to ignore the  
LRCLK/SCLK missing detection. The LRCLK/SCLK need to be in low state (not only  
static) to be deemed missing. When ignored an LRCLK/SCLK missing will not cause  
the DAC go into powerdown mode.  
0: Regard LRCLK/SCLK missing detection  
1: Ignore LRCLK/SCLK missing detection  
1
DCAS  
R/W  
0
Disable Clock Divider Autoset – This bit enables or disables the clock auto set mode.  
When dealing with uncommon audio clock configuration, the auto set mode must be  
disabled and all clock dividers must be set manually.  
Addtionally, some clock detectors might also need to be disabled. The clock autoset  
feature will not work with PLL enabled in VCOM mode. In this case this feature has to  
be disabled and the clock dividers must be set manually.  
0: Enable clock auto set  
1: Disable clock auto set  
0
IPLK  
R/W  
0
Ignore PLL Lock Detection – This bit controls whether to ignore the PLL lock detection.  
When ignored, PLL unlocks will not cause a clock error. The PLL lock flag at P0-R4, bit  
4 is always correct regardless of this bit.  
0: PLL unlocks raise clock error  
1: PLL unlocks are ignored  
78  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8.6.1.29 Register 40 (0x28)  
Figure 81. Register 40 (0x28)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
AFMT  
R/W  
Reserved  
R/W  
ALEN  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 60. Register 40 (0x28) Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
Reset  
Description  
AFMT  
R/W  
0
I2S Data Format – These bits control both input and output audio interface formats for  
DAC operation.  
00: I2S  
01: DSP  
10: RTJ  
11: LTJ  
3-2  
1
Reserved  
ALEN  
R/W  
R/W  
R/W  
Reserved  
1
0
I2S Word Length – These bits control both input and output audio interface sample  
word lengths for DAC operation.  
0
00: 16 bits  
01: 20 bits  
10: 24 bits  
11: 32 bits  
8.6.1.30 Register 41 (0x29)  
Figure 82. Register 41 (0x29)  
7
6
5
4
3
2
1
0
AOFS  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 61. Register 41 (0x29) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
AOFS  
R/W  
0
I2S Shift – These bits control the offset of audio data in the audio frame for both input  
and output. The offset is defined as the number of SCLK from the starting (MSB) of  
audio frame to the starting of the desired audio sample.  
00000000: offset = 0 SCLK (no offset)  
00000001: ofsset = 1 SCLK  
00000010: offset = 2 SCLKs  
11111111: offset = 256 SCLKs  
Copyright © 2018, Texas Instruments Incorporated  
79  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.6.1.31 Register 42 (0x2A)  
Figure 83. Register 42 (0x2A)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
AUPL  
R/W  
Reserved  
R/W  
AUPR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 62. Register 42 (0x2A) Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
Reserved  
AUPL  
Reserved  
0
1
Left DAC Data Path – These bits control the left channel audio data path connection.  
00: Zero data (mute)  
01: Left channel data  
10: Right channel data  
11: Reserved (do not set)  
4
3-2  
1
Reserved  
AUPR  
R/W  
R/W  
R/W  
Reserved  
0
1
Right DAC Data Path – These bits control the right channel audio data path  
connection.  
0
00: Zero data (mute)  
01: Right channel data  
10: Left channel data  
11: Reserved (do not set)  
8.6.1.32 Register 43 (0x2B)  
Figure 84. Register 43 (0x2B)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
PSEL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 63. Register 43 (0x2B) Field Descriptions  
Bit  
7-5  
4-1  
0
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
Reserved  
PSEL  
Reserved  
0
1
DSP Program Selection – These bits select the DSP program to use for audio  
processing.  
00000: Reserved  
00001: Rom Mode 1  
00010: Reserved  
00011: Reserved  
80  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8.6.1.33 Register 44 (0x2C)  
Figure 85. Register 44 (0x2C)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
CMDP  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 64. Register 44 (0x2C) Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
Reset  
Description  
Reserved  
CMDP  
Reserved  
R/W  
0
Clock Missing Detection Period – These bits set how long both SCLK and LRCLK keep  
low before the audio clocks deemed missing and the DAC transitions to powerdown  
mode.  
000: about 1 second  
001: about 2 seconds  
010: about 3 seconds  
...  
111: about 8 seconds  
8.6.1.34 Register 59 (0x3B)  
Figure 86. Register 59 (0x3B)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
AMTL  
R/W  
Reserved  
R/W  
AMTR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 65. Register 59 (0x3B) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
AMTL  
Reserved  
6-4  
0
Auto Mute Time for Left Channel – These bits specify the length of consecutive zero  
samples at left channel before the channel can be auto muted. The times shown are  
for 96 kHz sampling rate and will scale with other rates.  
000: 11.5 ms  
001: 53 ms  
010: 106.5 ms  
011: 266.5 ms  
100: 0.535 sec  
101: 1.065 sec  
110: 2.665 sec  
111: 5.33 sec  
3
Reserved  
AMTR  
R/W  
R/W  
Reserved  
2-0  
0
Auto Mute Time for Right Channel – These bits specify the length of consecutive zero  
samples at right channel before the channel can be auto muted. The times shown are  
for 96 kHz sampling rate and will scale with other rates.  
000: 11.5 ms  
001: 53 ms  
010: 106.5 ms  
011: 266.5 ms  
100: 0.535 sec  
101: 1.065 sec  
110: 2.665 sec  
111: 5.33 sec  
Copyright © 2018, Texas Instruments Incorporated  
81  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.6.1.35 Register 60 (0x3C)  
Figure 87. Register 60 (0x3C)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
PCTL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 66. Register 60 (0x3C) Field Descriptions  
Bit  
7-2  
1-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
PCTL  
0
0
Reserved  
Digital Volume Control – These bits control the behavior of the digital volume.  
00: The volume for Left and right channels are independent  
01: Right channel volume follows left channel setting  
8.6.1.36 Register 61 (0x3D)  
Figure 88. Register 61 (0x3D)  
7
6
5
4
3
2
1
0
VOLL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 67. Register 61 (0x3D) Field Descriptions  
Bit  
Field  
Type  
Reset  
00110000  
Description  
7-0  
VOLL  
R/W  
Left Digital Volume – These bits control the left channel digital volume. The  
digital volume is 24 dB to –103 dB in –0.5 dB step.  
00000000: +24.0 dB  
00000001: +23.5 dB  
00101111: +0.5 dB  
00110000: 0.0 dB  
00110001: –0.5 dB  
...  
11111110: –103 dB  
11111111: Mute  
8.6.1.37 Register 62 (0x3E)  
Figure 89. Register 62 (0x3E)  
7
6
5
4
3
2
1
0
VOLR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
82  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
Table 68. Register 62 (0x3E) Field Descriptions  
Bit  
Field  
VOLR  
Type  
Reset  
Description  
7-0  
R/W  
0011000 Right Digital Volume – These bits control the right channel digital volume. The digital  
0
volume is 24 dB to –103 dB in –0.5 dB step.  
00000000: +24.0 dB  
00000001: +23.5 dB  
00101111: +0.5 dB  
00110000: 0.0 dB  
00110001: –0.5 dB  
...  
11111110: –103 dB  
11111111: Mute  
8.6.1.38 Register 63 (0x3F)  
Figure 90. Register 63 (0x3F)  
7
6
5
4
3
2
1
0
VNDF  
R/W  
VNDS  
R/W  
VNUF  
R/W  
VNUS  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 69. Register 63 (0x3F) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
VNDF  
R/W  
00  
Digital Volume Normal Ramp Down Frequency – These bits control the frequency of  
the digital volume updates when the volume is ramping down. The setting here is  
applied to soft mute request, asserted by XSMUTE pin or P0-R3.  
00: Update every 1 FS period  
01: Update every 2 FS periods  
10: Update every 4 FS periods  
11: Directly set the volume to zero (Instant mute)  
5-4  
3-2  
1-0  
VNDS  
VNUF  
VNUS  
R/W  
R/W  
R/W  
11  
00  
11  
Digital Volume Normal Ramp Down Step – These bits control the step of the digital  
volume updates when the volume is ramping down.  
The setting here is applied to soft mute request, asserted by XSMUTE pin or P0-R3.  
00: Decrement by 4 dB for each update  
01: Decrement by 2 dB for each update  
10: Decrement by 1 dB for each update  
11: Decrement by 0.5 dB for each update  
Digital Volume Normal Ramp Up Frequency – These bits control the frequency of the  
digital volume updates when the volume is ramping up.  
The setting here is applied to soft unmute request, asserted by XSMUTE pin or P0-R3.  
00: Update every 1 FS period  
01: Update every 2 FS periods  
10: Update every 4 FS periods  
11: Directly restore the volume (Instant unmute)  
Digital Volume Normal Ramp Up Step – These bits control the step of the digital  
volume updates when the volume is ramping up.  
The setting here is applied to soft unmute request, asserted by XSMUTE pin or P0-R3.  
00: Increment by 4 dB for each update  
01: Increment by 2 dB for each update  
10: Increment by 1 dB for each update  
11: Increment by 0.5 dB for each update  
Copyright © 2018, Texas Instruments Incorporated  
83  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.6.1.39 Register 64 (0x40)  
Figure 91. Register 64 (0x40)  
7
6
5
4
3
2
1
0
VEDF  
R/W  
VEDS  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 70. Register 64 (0x40) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
VEDF  
R/W  
0
Digital Volume Emergency Ramp Down Frequency – These bits control the frequency  
of the digital volume updates when the volume is ramping down due to clock error or  
power outage, which usually needs faster ramp down compared to normal soft mute.  
00: Update every 1 FS period  
01: Update every 2 FS periods  
10: Update every 4 FS periods  
11: Directly set the volume to zero (Instant mute)  
5-4  
3-0  
VEDS  
R/W  
R/W  
1
Digital Volume Emergency Ramp Down Step – These bits control the step of the digital  
volume updates when the volume is ramping down due to clock error or power outage,  
which usually needs faster ramp down compared to normal soft mute.  
00: Decrement by 4 dB for each update  
01: Decrement by 2 dB for each update  
10: Decrement by 1 dB for each update  
11: Decrement by 0.5 dB for each update  
Reserved  
Reserved  
8.6.1.40 Register 65 (0x41)  
Figure 92. Register 65 (0x41)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
ACTL  
R/W  
AMLE  
R/W  
AMRE  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 71. Register 65 (0x41) Field Descriptions  
Bit  
7-3  
2
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
ACTL  
Reserved  
1
Auto Mute Control**NOBUS** – This bit controls the behavior of the auto mute upon  
zero sample detection. The time length for zero detection is set with P0-R59.  
0: Auto mute left channel and right channel independently.  
1: Auto mute left and right channels only when both channels are about to be auto  
muted.  
1
0
AMLE  
AMRE  
R/W  
R/W  
1
1
Auto Mute Left Channel**NOBUS** – This bit enables or disables auto mute on right  
channel. Note that when right channel auto mute is disabled and the P0-R65, bit 2 is  
set to 1, the left channel will also never be auto muted.  
0: Disable right channel auto mute  
1: Enable right channel auto mute  
Auto Mute Right Channel**NOBUS** – This bit enables or disables auto mute on left  
channel. Note that when left channel auto mute is disabled and the P0-R65, bit 2 is set  
to 1, the right channel will also never be auto muted.  
0: Disable left channel auto mute  
1: Enable left channel auto mute  
84  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8.6.1.41 Register 67 (0x43)  
Figure 93. Register 67 (0x43)  
7
6
5
4
3
2
1
0
DLPA  
R/W  
DRPA  
R/W  
DLPM  
R/W  
DRPM  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 72. Register 67 (0x43) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
DLPA  
R/W  
0
Left DAC primary AC dither gain – These bits control the AC dither gain for left channel  
primary DAC modulator.  
00: AC dither gain = 0.125  
01: AC dither gain = 0.25  
5-4  
3-2  
DRPA  
DLPM  
R/W  
R/W  
0
0
Right DAC primary AC dither gain – These bits control the AC dither gain for right  
channel primary DAC modulator.  
00: AC dither gain = 0.125  
01: AC dither gain = 0.25  
Left DAC primary DEM dither gain – These bits control the dither gain for left channel  
primary Galton DEM.  
00: DEM dither gain = 0.5  
01: DEM dither gain = 1.0  
Others: Reserved (do not set)  
1-0  
DRPM  
R/W  
0
Right DAC primary DEM dither gain – These bits control the dither gain for right  
channel primary Galton DEM.  
00: DEM dither gain = 0.5  
01: DEM dither gain = 1.0  
Others: Reserved (do not set)  
8.6.1.42 Register 68 (0x44)  
Figure 94. Register 68 (0x44)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DLPD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 73. Register 68 (0x44) Field Descriptions  
Bit  
7-3  
2-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
DLPD  
Reserved  
0
Left DAC primary DC dither – These bits control the DC dither amount to be added to  
the lower part of the left channel primary DAC modulator. The DC dither is expressed  
is Q0.11 format, with 1.0 equals to 1/32 fullscale modulator input.  
00000000000 : No DC dither  
00000000001 : 2-11 × 1/32 FS  
00000000010 : 2-10 × 1/32 FS  
Copyright © 2018, Texas Instruments Incorporated  
85  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.6.1.43 Register 69 (0x45)  
Figure 95. Register 69 (0x45)  
7
6
5
4
3
2
1
0
DLPD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 74. Register 69 (0x45) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DLPD  
R/W  
0
Left DAC primary DC dither – These bits control the DC dither amount to be added to  
the lower part of the left channel primary DAC modulator. The DC dither is expressed  
is Q0.11 format, with 1.0 equals to 1/32 fullscale modulator input.  
00000000000 : No DC dither  
00000000001 : 2-11 × 1/32 FS  
00000000010 : 2-10 × 1/32 FS  
8.6.1.44 Register 70 (0x46)  
Figure 96. Register 70 (0x46)  
7
6
5
4
3
2
1
0
DRPD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 75. Register 70 (0x46) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DRPD  
R/W  
0
Right DAC primary DC dither – These bits control the DC dither amount to be added to  
the lower part of the right channel primary DAC modulator. The DC dither is expressed  
is Q0.11 format, with 1.0 equals to 1/32 fullscale modulator input.  
00000000000 : No DC dither  
00000000001 : 2-11 × 1/32 FS  
00000000010 : 2-10 × 1/32 FS  
8.6.1.45 Register 71 (0x47)  
Figure 97. Register 71 (0x47)  
7
6
5
4
3
2
1
0
DRPD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 76. Register 71 (0x47) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DRPD  
R/W  
0
Right DAC primary DC dither – These bits control the DC dither amount to be added to  
the lower part of the right channel primary DAC modulator. The DC dither is expressed  
is Q0.11 format, with 1.0 equals to 1/32 fullscale modulator input.  
00000000000 : No DC dither  
00000000001 : 2-11 × 1/32 FS  
00000000010 : 2-10 × 1/32 FS  
86  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8.6.1.46 Register 72 (0x48)  
Figure 98. Register 72 (0x48)  
7
6
5
4
3
2
1
0
DLSA  
R/W  
DRSA  
R/W  
DLSM  
R/W  
RSM  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 77. Register 72 (0x48) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
DLSA  
R/W  
01  
Left DAC secondary AC dither gain – These bits control the AC dither gain for left  
channel secondary DAC.  
00: AC dither gain = 0.125  
01: AC dither gain = 0.25  
5-4  
DRSA  
R/W  
01  
Right DAC secondary AC dither gain – These bits control the AC dither gain for right  
channel secondary DAC modulator.  
00: AC dither gain = 0.125  
01: AC dither gain = 0.25  
10: AC dither gain = 0.5  
11: no AC dither  
3-2  
1-0  
DLSM  
DRSM  
R/W  
R/W  
01  
01  
Left DAC secondary DEM dither gain – These bits control the dither gain for left  
channel secondary Galton DEM.  
00: DEM dither gain = 0.5  
01: DEM dither gain = 1.0  
Others: Reserved (do not set)  
Right DAC secondary DEM dither gain – These bits control the dither gain for right  
channel secondary Galton DEM.  
00: DEM dither gain = 0.5  
01: DEM dither gain = 1.0  
Others: Reserved (do not set)  
Copyright © 2018, Texas Instruments Incorporated  
87  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.6.1.47 Register 73 (0x49)  
Figure 99. Register 73 (0x49)  
7
6
5
4
3
2
1
0
DLSD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 78. Register 73 (0x49) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DLSD  
R/W  
0
Left DAC secondary DC dither – These bits control the DC dither amount to be added  
to the lower part of the left channel secondary DAC modulator. The DC dither is  
expressed is Q0.11 format, with 1.0 equals to 1/32 fullscale modulator input.  
00000000000 : No DC dither  
00000000001 : 2–11 × 1/32 FS  
00000000010 : 2–10 × 1/32 FS  
8.6.1.48 Register 74 (0x4A)  
Figure 100. Register 74 (0x4A)  
7
6
5
4
3
2
1
0
DLSD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 79. Register 74 (0x4A) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DLSD  
R/W  
0
Left DAC secondary DC dither – These bits control the DC dither amount to be added  
to the lower part of the left channel secondary DAC modulator. The DC dither is  
expressed is Q0.11 format, with 1.0 equals to 1/32 fullscale modulator input.  
00000000000 : No DC dither  
00000000001 : 2–11 × 1/32 FS  
00000000010 : 2–10 × 1/32 FS  
88  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8.6.1.49 Register 75 (0x4B)  
Figure 101. Register 75 (0x4B)  
7
6
5
4
3
2
1
0
DRSD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 80. Register 75 (0x4B) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DRSD  
R/W  
0000000 Right DAC secondary DC dither – These bits control the DC dither amount to be added  
0
to the lower part of the right channel secondary DAC modulator. The DC dither is  
expressed is Q0.11 format, with 1.0 equals to 1/32 fullscale modulator input.  
00000000000 : No DC dither  
00000000001 : 2–11 × 1/32 FS  
00000000010 : 2–10 × 1/32 FS  
8.6.1.50 Register 76 (0x4C)  
Figure 102. Register 76 (0x4C)  
7
6
5
4
3
2
1
0
DRSD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 81. Register 76 (0x4C) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DRSD  
R/W  
0000000 Right DAC secondary DC dither – These bits control the DC dither amount to be added  
0
to the lower part of the right channel secondary DAC modulator. The DC dither is  
expressed is Q0.11 format, with 1.0 equals to 1/32 fullscale modulator input.  
00000000000 : No DC dither  
00000000001 : 2–11 × 1/32 FS  
00000000010 : 2–10 × 1/32 FS  
Copyright © 2018, Texas Instruments Incorporated  
89  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.6.1.51 Register 78 (0x4E)  
Figure 103. Register 78 (0x4E)  
7
6
5
4
3
2
1
0
OLOF  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 82. Register 78 (0x4E) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
OLOF  
R/W  
0000000 Left OFSCAL offset – These bits controls the amount of manual DC offset to be added  
0
to the left channel DAC output. The additional offset would be approximately the  
negative of the decimal value of this register divided by 4 in mV.  
01111111 : –31.75 mV  
01111110 : –31.50 mV  
00000010 : –0.50 mV  
00000001 : –0.25 mV  
00000000 : 0.0 mV  
11111111 : +0.25 mV  
11111110 : +0.50 mV  
10000000 : +32.0 mV  
8.6.1.52 Register 79 (0x4F)  
Figure 104. Register 79 (0x4F)  
7
6
5
4
3
2
1
0
OROF  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 83. Register 79 (0x4F) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
OROF  
R/W  
0
Right OFSCAL offset – These bits controls the amount of manual DC offset to be  
added to the right channel DAC output. The additional offset would be approximately  
the negative of the decimal value of this register divided by 4 in mV.  
01111111 : –31.75 mV  
01111110 : –31.50 mV  
00000010 : –0.50 mV  
00000001 : –0.25 mV  
00000000 : 0.0 mV  
11111111 : +0.25 mV  
11111110 : +0.50 mV  
10000000 : +32.0 mV  
90  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8.6.1.53 Register 85 (0x55)  
Figure 105. Register 85 (0x55)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
G2SL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 84. Register 85 (0x55) Register Field Descriptions  
Bit  
7-5  
4-0  
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
G2SL  
0
0
Reserved  
SDOUT Output Selection – These bits select the signal to output to SDOUT. To  
actually output the selected signal, the SDOUT must be set to output mode at P0-R8.  
0000: off (low)  
0001: DSP SDOUT output  
0010: Register SDOUT output (P0-R86, bit 5)  
0011: Auto mute flag (asserted when both L and R channels are auto muted)  
0100: Auto mute flag for left channel  
0101: Auto mute flag for right channel  
0110: Clock invalid flag (clock error or clock changing or clock missing)  
0111: Serial audio interface data output (SDOUT)  
1000: Analog mute flag for left channel (low active)  
1001: Analog mute flag for right channel (low active)  
1010: PLL lock flag  
1011: Charge pump clock  
1100: Reserved  
1101: Reserved  
1110: Under voltage flag, asserted when XSMUTE voltage is higher than 0.7 DVDD  
1111: Under voltage flag, asserted when XSMUTE voltage is higher than 0.3 DVDD **  
INTERNAL **  
1100: Short detection flag for left channel  
1101: Short detection flag for right channel  
10000: PLL clock/4 10001: Oscillator clock/4  
10010: Impedance sense flag for left channel  
10011: Impedance sense flag for right channel  
10100: Internal UVP flag, becomes low when VDD falls below roughly 2.7V  
10101: Offset calibration flag, asserted when the system is offset calibrating itself.  
10110: Clock error flag  
10111: Clock changing flag  
11000: Clock missing flag  
11001: Clock halt detection flag  
11010: DSP boot done flag  
11011: Charge pump voltage output valid flag (low active)  
Others: N/A (zero)  
Copyright © 2018, Texas Instruments Incorporated  
91  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.6.1.54 Register 86 (0x56)  
Figure 106. Register 86 (0x56)  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 85. Register 86 (0x56) Register Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
GOUT2  
0
0
Reserved  
GPIO Output Control – This bit controls the SDOUT pin output when the selection at  
P0-R85 is set to 0010 (register output)  
0: Output low  
1: Output high  
4
MUTE  
R/W  
R/W  
0
0
This bit controls the MUTE output when the selection at P0-R84 is set to 0010 (register  
output).  
0: Output low  
1: Output high  
3-0  
Reserved  
Reserved  
8.6.1.55 Register 87 (0x57)  
Figure 107. Register 87 (0x57)  
7
6
5
4
3
2
1
0
R/W  
R/W  
R/W  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 86. Register 87 (0x57) Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
R/W  
Reset  
Description  
Reserved  
GINV2  
0
0
Reserved  
GPIO Output Inversion – This bit controls the polarity of the SDOUT pin output. When  
set to 1, the output will be inverted for any signal being selected.  
0: Non-inverted  
1: Inverted  
4
MUTE  
R/W  
R/W  
0
0
This bit controls the polarity of MUTE output. When set to 1, the output will be inverted  
for any signal being selected.  
0: Non-inverted  
1: Inverted  
3-0  
Reserved  
Reserved  
8.6.1.56 Register 88 (0x58)  
Figure 108. Register 88 (0x58)  
7
6
5
4
3
2
1
0
DIEI  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 87. Register 88 (0x58) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DIEI  
RO  
0x84  
Die ID, Device ID = 0x84  
92  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8.6.1.57 Register 91 (0x5B)  
Figure 109. Register 91 (0x5B)  
7
6
5
DTFS  
R
4
3
2
1
0
Reserved  
R/W  
DTSR  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 88. Register 91 (0x5B) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
DTFS  
0
0
Reserved  
6-4  
Detected FS – These bits indicate the currently detected audio sampling rate.  
000: Error (Out of valid range)  
001: 8 kHz  
010: 16 kHz  
011: 32-48 kHz  
100: 88.2-96 kHz  
101: 176.4-192 kHz  
110: 384 kHz  
3-0  
DTSR  
R
0
Detected MCLK Ratio – These bits indicate the currently detected MCLK ratio. Note  
that even if the MCLK ratio is not indicated as error, clock error might still be flagged  
due to incompatible combination with the sampling rate. Specifically the MCLK ratio  
must be high enough to allow enough DSP cycles for minimal audio processing when  
PLL is disabled. The absolute MCLK frequency must also be lower than 50 MHz.  
0000: Ratio error (The MCLK ratio is not allowed)  
0001: MCLK = 32 FS  
0010: MCLK = 48 FS  
0011: MCLK = 64 FS  
0100: MCLK = 128 FS  
0101: MCLK = 192 FS  
0110: MCLK = 256 FS  
0111: MCLK = 384 FS  
1000: MCLK = 512 FS  
1001: MCLK = 768 FS  
1010: MCLK = 1024 FS  
1011: MCLK = 1152 FS  
1100: MCLK = 1536 FS  
1101: MCLK = 2048 FS  
1110: MCLK = 3072 FS  
Copyright © 2018, Texas Instruments Incorporated  
93  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.6.1.58 Register 92 (0x5C)  
Figure 110. Register 92 (0x5C)  
7
6
5
4
3
2
1
0
DTBR  
R
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 89. Register 92 (0x5C) Field Descriptions  
Bit  
7-1  
0
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
DTBR  
0
0
Reserved  
Detected SCLK Ratio (MSB)  
8.6.1.59 Register 93 (0x5D)  
Figure 111. Register 93 (0x5D)  
7
6
5
4
3
2
1
0
DTBR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 90. Register 93 (0x5D) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
DTBR  
R/W  
Detected SCLK Ratio (LSB) – These bits indicate the currently detected SCLK  
ratio, i.e. the number of SCLK clocks in one audio frame. Note that for extreme  
case of SCLK = 1 FS (which is not usable anyway), the detected ratio will be  
unreliable  
94  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8.6.1.60 Register 94 (0x5E)  
Figure 112. Register 94 (0x5E)  
7
6
CDST6  
R
5
CDST5  
R
4
CDST4  
R
3
CDST3  
R
2
CDST2  
R
1
CDST1  
R
0
CDST0  
R
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 91. Register 94 (0x5E) Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
CDST6  
0
Reserved  
6
Clock Detector Status – This bit indicates whether the MCLK clock is present or not.  
0: MCLK is present  
1: MCLK is missing (halted)  
5
CDST5  
R
This bit indicates whether the PLL is locked or not. The PLL will be reported as  
unlocked when it is disabled.  
0: PLL is locked  
1: PLL is unlocked  
4
3
CDST4  
CDST3  
R
R
This bit indicates whether the both LRCLK and SCLK are missing (tied low) or not.  
0: LRCLK and/or SCLK is present 1: LRCLK and SCLK are missing  
This bit indicates whether the combination of current sampling rate and MCLK ratio is  
valid for clock auto set.  
0: The combination of FS/MCLK ratio is valid  
1: Error (clock auto set is not possible)  
2
CDST2  
R
This bit indicates whether the MCLK is valid or not. The MCLK ratio must be detectable  
to be valid. There is a limitation with this flag, that is, when the low period of LRCLK is  
less than or equal to five SCLKs, this flag will be asserted (MCLK invalid reported).  
0: MCLK is valid  
1: MCLK is invalid  
1
0
CDST1  
CDST0  
R
R
This bit indicates whether the SCLK is valid or not. The SCLK ratio must be stable and  
in the range of 32-256FS to be valid.  
0: SCLK is valid  
1: SCLK is invalid  
This bit indicated whether the audio sampling rate is valid or not. The sampling rate  
must be detectable to be valid. There is a limitation with this flag, that is when this flag  
is asserted and P0-R37 is set to ignore all asserted error flags such that the DAC  
recovers, this flag will be de-asserted (sampling rate invalid not reported anymore).  
0: Sampling rate is valid  
1: Sampling rate is invalid  
Copyright © 2018, Texas Instruments Incorporated  
95  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.6.1.61 Register 95 (0x5F)  
Figure 113. Register 95 (0x5F)  
7
6
5
4
LTSH  
R
3
2
CKMF  
R
1
CSRF  
R
0
CERF  
R
Reserved  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 92. Register 95 (0x5F) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
LTSH  
0
Reserved  
Latched Clock Halt – This bit indicates whether MCLK halt has occurred. The bit is  
cleared when read.  
0: MCLK halt has not occurred  
1: MCLK halt has occurred since last read  
3
2
Reserved  
CKMF  
R/W  
R
0
Reserved  
Clock Missing – This bit indicates whether the LRCLK and SCLK are missing (tied low).  
0: LRCLK and/or SCLK is present  
1: LRCLK and SCLK are missing  
1
0
CSRF  
CERF  
R
R
Clock Resync Request – This bit indicates whether the clock resynchronization is in  
progress.  
0: Not resynchronizing  
1: Clock resynchronization is in progress  
Clock Error – This bit indicates whether a clock error has occurred. The bit is cleared  
when read  
0: Clock error has not occurred  
1: Clock error has occurred.  
96  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8.6.1.62 Register 108 (0x6C)  
Figure 114. Register 108 (0x6C)  
7
6
5
4
3
2
1
AMLM  
R
0
AMRM  
R
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 93. Register 108 (0x6C) Field Descriptions  
Bit  
7-2  
1
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
AMLM  
0
Reserved  
Left Analog Mute Monitor – This bit is a monitor for left channel analog mute status.  
0: Mute  
1: Unmute  
0
AMRM  
R
Right Analog Mute Monitor – This bit is a monitor for right channel analog mute status.  
0: Mute  
1: Unmute  
8.6.1.63 Register 119 (0x77)  
Figure 115. Register 119 (0x77)  
7
6
5
GPIN2  
R
4
MUTE  
R
3
2
1
0
Reserved  
R/W  
Reserved  
R
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 94. Register 119 (0x77) Field Descriptions  
Bit  
7-6  
5
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
GPIN2  
0
0
Reserved  
GPIO Input States – This bit indicates the logic level at SDOUT pin.  
0: Low  
1: High  
4
MUTE  
R
R
0
0
This bit indicates the logic level at MUTE pin.  
0: Low  
1: High  
3-0  
Reserved  
Reserved bits. Data on these bits may vary.  
0: Low  
1: High  
Copyright © 2018, Texas Instruments Incorporated  
97  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.6.1.64 Register 120 (0x78)  
Figure 116. Register 120 (0x78)  
7
6
5
4
AMFL  
R
3
2
1
0
AMFR  
R
Reserved  
R/W  
Reserved  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 95. Register 120 (0x78) Field Descriptions  
Bit  
7-5  
4
Field  
Type  
R/W  
R
Reset  
Description  
Reserved  
AMFL  
0
Reserved  
Auto Mute Flag for Left Channel – This bit indicates the auto mute status for left  
channel.  
0: Not auto muted  
1: Auto muted  
3-1  
0
Reserved  
AMFR  
R/W  
R
0
Reserved  
Auto Mute Flag for Right Channel – This bit indicates the auto mute status for right  
channel.  
0: Not auto muted  
1: Auto muted  
8.6.2 Registers - Page 1  
8.6.2.1 Register 1 (0x01)  
Figure 117. Register 1 (0x01)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
OSEL  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 96. Register 1 (0x01) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Reserved  
R/W  
0
Reserved  
Output Amplitude Type - This bit selects the output amplitude type. The clock autoset  
feature will not work with PLL enabled in VCOM mode.  
In this case this feature has to be disabled via P0-R37 and the clock dividers must be  
set manually.  
0
OSEL  
R/W  
0
0: VREF mode (Constant output amplitude against AVDD variation)  
1: VCOM mode (Output amplitude is proportional to AVDD variation)  
98  
Copyright © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
8.6.2.2 Register 2 (0x02)  
Figure 118. Register 2 (0x02)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
LAGN  
R/W  
Reserved  
R/W  
RAGN  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 97. Register 2 (0x02) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
Reserved  
R/W  
0
Reserved  
Analog Gain Control for Left Channel - This bit controls the left channel analog gain.  
4
3-1  
0
LAGN  
R/W  
R/W  
R/W  
0
0
0
0: 0 dB  
1: -6 dB  
Reserved  
RAGN  
Reserved  
Analog Gain Control for Right Channel - This bit controls the right channel analog gain.  
0: 0 dB  
1: -6 dB  
8.6.2.3 Register 6 (0x06)  
Figure 119. Register 6 (0x06)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
AMCT  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 98. Register 6 (0x06) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-1  
Reserved  
R/W  
0
Reserved  
Analog Mute Control -This bit enables or disables analog mute following digital mute.  
0
AMCT  
R/W  
1
0: Disabled  
1: Enabled  
Copyright © 2018, Texas Instruments Incorporated  
99  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
8.6.2.4 Register 7 (0x07)  
Figure 120. Register 7 (0x07)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
AGBL  
R/W  
Reserved  
R/W  
AGBR  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 99. Register 7 (0x07) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-5  
Reserved  
R/W  
0
Reserved  
Analog +10% Gain for Left Channel - This bit enables or disables amplitude boost  
mode for left channel.  
0: Normal amplitude  
4
3-1  
0
AGBL  
R/W  
R/W  
R/W  
0
0
0
1: +10% (+0.8 dB) boosted amplitude  
Reserved  
AGBR  
Reserved  
Analog +10% Gain for Right Channel - This bit enables or disables amplitude boost  
mode for right channel.  
0: Normal amplitude  
1: +10% (+0.8 dB) boosted amplitude  
8.6.2.5 Register 9 (0x09)  
Figure 121. Register 9 (0x09)  
7
6
5
4
3
2
1
0
Reserved  
R/W  
DEME  
R/W  
VCPD  
R/W  
LEGEND: R/W = Read/Write; R = Read only; -n = value after reset  
Table 100. Register 9 (0x09) Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-2  
Reserved  
R/W  
0
Reserved  
VCOM Pin as De-emphasis Control - This bit controls whether to use the  
DEEMP/VCOM pin as De-emphasis control.  
0: Disabled (DEEMP/VCOM is not used to control De-emphasis)  
1: Enabled (DEEMP/VCOM is used to control De-emphasis)  
1
0
DEME  
VCPD  
R/W  
R/W  
0
1
Power down control for VCOM - This bit controls VCOM powerdown switch.  
0: VCOM is powered on  
1: VCOM is powered down  
100  
版权 © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Typical Applications  
The TAS3251 device supports both 2-channel, bridge-tied load (BTL) and mono, parallel bridge-tied load output  
configurations. This allows flexibility to configure and program the device for a number of different applications:  
2.0, Stereo Systems - this is a standard stereo configuration. Use either one TAS3251 device in stereo, BTL  
or two TTAS3251 devices in PBTL.  
0.1, Mono Speaker - the TAS3251 can be used as a 1-channel amplifier when configured in PBTL.  
Two-Way (1.1) Powered Speaker - the TAS3251 processing and amplifier support two-way or active  
crossover systems with a tweeter and woofer driven by independent amplifiers. This allows for the removal of  
passive crossover components in the speaker. This can either be accomplished using one TAS3251 device in  
BTL or two TAS3251 devices in PBTL.  
Three-Way Powered Speaker - the TAS3251 processing and amplifier support a three-way active speaker  
with a tweeter, mid-range and woofer each driven by independent amplifiers. This allows the removal of  
passive crossover components in the speaker. This can be accomplished by using two TAS3251 devices (2x  
BTL + 1x PBTL) or three TAS3251 devices each configured in PBTL.  
2.1 Systems - the TAS3251 can be configured to support a 2.1 to support stereo, 2-channels (2x BTL) and a  
subwoofer (1x PBTL).  
版权 © 2018, Texas Instruments Incorporated  
101  
 
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Typical Applications (接下页)  
9.1.1 Stereo, Bridge Tied Load (BTL) Application  
Bridge-tied load (BTL) is a 2-channel amplifier configuration that can be used for stereo systems or two-way  
powered speakers. See design details below.  
SDOUT  
3.3 V  
3.3 V  
SCLK LRCLK  
SDA SCL  
/DAC_MUTE  
SDIN  
MCLK  
1 F  
1
2
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
DAC_AVDD  
DAC_OUTB+  
DAC_OUTB-  
DAC_OUTA-  
DAC_OUTA+  
CPVSS  
499  
499  
1 nF  
1 nF  
10 k  
10 k  
AGND  
SDA  
3
499  
499  
4
SCL  
5
XPU  
100 k  
100 k 100 k  
100 k  
1 F  
6
CN  
SDOUT  
MCLK  
1 F  
7
GND  
3.3 V  
8
CP  
SCLK  
9
DAC_DVDD  
DGND  
SDIN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
1 µF  
LRCK  
DVDD_REG  
GVDD_A  
GND  
ADR  
33 nF  
12V  
LFILTER  
1 F  
DAC_MUTE  
BST_A+  
BST_A-  
GND  
330 nF  
33 nF  
CFILTER  
MODE  
TAS3251  
SPK_INA+  
SPK_INA-  
OC_ADJ  
FREQ_ADJ  
OSC_IOM  
OSC_IOP  
DVDD  
10 F  
1 F  
470 mF  
SPK_OUTA+  
PVDD_A  
SPK_OUTA-  
GND  
10 F  
CFILTER  
LFILTER  
ROC_ADJ  
RFREQ_ADJ  
PVDD  
GND  
GND  
LFILTER  
SPK_OUTB+  
PVDD_B  
SPK_OUTB-  
GND  
1 F  
1 F  
GND  
CFILTER  
1 F  
AVDD  
470 F  
C_START  
SPK_INB+  
SPK_INB-  
RESET_AMP  
FAULT  
33 nF  
10 nF  
BST_B+  
BST_B-  
GVDD_B  
CLIP_OTW  
10 µF  
CFILTER  
LFILTER  
10 µF  
/RESET_AMP  
/FAULT  
33nF  
/CLIP_OTW  
12 V  
100 nF  
122. Bridge-Tied Load (BTL) Application Diagram  
102  
版权 © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
Typical Applications (接下页)  
9.1.2 Mono, Parallel Bridge-Tied Load (PBTL) Application  
Parallel bridge-tied load (PBTL) is a mono, one-channel amplifier configuration that provides twice the current of  
a single BTL channel. The TAS3251 supports both pre-filter PBTL and post-filter PBTL, which allows the Class-D  
output terminals to be paralleled before or after the LC filter. Paralleling the outputs after the LC filter requires  
four inductors and paralleling the outputs before the LC filter requires only two inductors.  
9.1.2.1 Parallel Bridge-Tied Load (PBTL), Pre-Filter  
The following diagram shows an application using pre-filter PBTL, which requires only two inductors. Note that  
the inductor should have a saturation current that is equal to the maximum current during an output short  
condition.  
SPK_OUTA+ and SPK_OUTB+ are connected before LFILTER for the positive amplifier output.  
SPK_OUTA- and SPK_OUTB- are connected before LFILTER for the negative amplifier output.  
SDOUT  
3.3 V  
3.3 V  
SCLK LRCK  
SDIN  
SDA SCL  
MCLK  
/DAC_MUTE  
1 F  
1
2
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
DAC_AVDD  
DAC_OUTB+  
DAC_OUTB-  
DAC_OUTA-  
DAC_OUTA+  
CPVSS  
10 k  
10 k  
AGND  
SDA  
3
499  
499  
1 nF  
4
SCL  
5
XPU  
100 k  
100 k  
1 F  
6
CN  
SDOUT  
MCLK  
1 F  
7
GND  
3.3V  
8
CP  
SCLK  
9
DAC_DVDD  
DGND  
SDIN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
1 µF  
LRCK  
DVDD_REG  
GVDD_A  
GND  
ADR  
33 nF  
12V  
1 F  
DAC_MUTE  
BST_A+  
BST_A-  
GND  
330 nF  
33 nF  
MODE  
TAS3251  
SPK_INA+  
SPK_INA-  
OC_ADJ  
FREQ_ADJ  
OSC_IOM  
OSC_IOP  
DVDD  
10 F  
PVDD  
1 F  
470 mF  
SPK_OUTA+  
PVDD_A  
SPK_OUTA-  
GND  
LFILTER  
10 F  
ROC_ADJ  
CFILTER  
RFREQ_ADJ  
GND  
CFILTER  
SPK_OUTB+  
PVDD_B  
SPK_OUTB-  
GND  
1 F  
LFILTER  
GND  
1 F  
AVDD  
470 F  
1 F  
C_START  
SPK_INB+  
SPK_INB-  
RESET_AMP  
FAULT  
33 nF  
10 nF  
BST_B+  
BST_B-  
GVDD_B  
CLIP_OTW  
GND  
/RESET_AMP  
/FAULT  
33nF  
/CLIP_OTW  
12 V  
100 nF  
123. Pre-Filter Parallel Bridge-Tied Load (PBTL) Application Diagram  
版权 © 2018, Texas Instruments Incorporated  
103  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Typical Applications (接下页)  
9.1.2.2 Parallel Bridge-Tied Load, Post-Filter  
The following diagram shows an application using post-filter PBTL, which requires four inductors. The positive  
and negative output current are shared between two inductors.  
SPK_OUTA+, SPK_OUTA-, SPK_OUTB+ and SPK_OUTB- are each connected to LFILTER first.  
The speaker side of the inductors are connected A+ and B+ and A- and B-. See diagram below.  
3.3 V  
3.3 V  
SDOUT  
SCLK LRCK  
SDIN  
SDA SCL  
MCLK  
/DAC_MUTE  
1 F  
1
2
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
DAC_AVDD  
DAC_OUTB+  
DAC_OUTB-  
DAC_OUTA-  
DAC_OUTA+  
CPVSS  
10 k  
10 k  
AGND  
SDA  
3
499  
499  
1 nF  
4
SCL  
5
XPU  
100 k  
100 k  
1 F  
6
CN  
SDOUT  
MCLK  
1 F  
7
GND  
3.3V  
8
CP  
SCLK  
9
DAC_DVDD  
DGND  
SDIN  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
1 µF  
LRCK  
DVDD_REG  
GVDD_A  
GND  
ADR  
33 nF  
12V  
LFILTER  
1 F  
DAC_MUTE  
BST_A+  
BST_A-  
GND  
330 nF  
33 nF  
MODE  
TAS3251  
PVDD  
SPK_INA+  
SPK_INA-  
OC_ADJ  
FREQ_ADJ  
OSC_IOM  
OSC_IOP  
DVDD  
10 F  
1 F  
470 mF  
SPK_OUTA+  
PVDD_A  
SPK_OUTA-  
GND  
ROC_ADJ  
10 F  
LFILTER  
CFILTER  
RFREQ_ADJ  
GND  
LFILTER  
SPK_OUTB+  
PVDD_B  
SPK_OUTB-  
GND  
CFILTER  
1 F  
GND  
1 F  
AVDD  
470 F  
1 F  
C_START  
SPK_INB+  
SPK_INB-  
RESET_AMP  
FAULT  
33 nF  
10 nF  
GND  
BST_B+  
BST_B-  
GVDD_B  
CLIP_OTW  
LFILTER  
/RESET_AMP  
/FAULT  
33nF  
/CLIP_OTW  
12 V  
100 nF  
124. Post-Filter Parallel Bridge-Tied Load (PBTL) Application Diagram  
104  
版权 © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
9.1.3 Design Requirements  
The following are required for operating and controlling the TAS3251.  
Power Supplies  
Analog and Digital: 3.3-V supply  
Gate Drive: 12-V supply  
PVDD: 12-V to 36-V supply  
Communication: Host processor serving as I2C compliant master  
Memory: The TAS3251 has a volatile register map that will reset when power is removed. The host processor  
should have adequate memory to initialize the device to the desired configuration.  
9.1.4 Detailed Design Procedure  
9.1.4.1 Step One: Schematic and Layout Design  
Begin by designing the hardware for the TAS3251. Use the Typical Application Schematic and Pin Function  
Table as a guide for configuring the hardware pins. Follow the component placement and board layout from the  
TAS3251EVM. The most critical sections of the circuit are the power supply inputs, the amplifier output signals,  
and the high-frequency clock and data signals. Give precedence to these traces and connections when making  
design trade-offs.  
1. First select the operating mode based on the application requirement: BTL, pre-filter PBTL (2-inductors) or  
post-filter PBTL (4-inductors).  
2. Design the output stage including the LC filter based on the output configuration selected. Use the  
TAS3251EVM as reference. The LC Filter Design Guide and LC Filter Designer tool should be used to  
calculate the cutoff frequency and component values.  
3. Select the switching frequency by configuring the resistor on pin 18, FREQ_ADJ.  
4. Select the over-current threshold by configuring the resistor on pin 17, OC_ADJ.  
5. Apply bypass and decoupling capacitors to power pins according to the Pin Function Table and the Typical  
Application Schematic.  
9.1.4.1.1 Decoupling Capacitor Recommendations  
To design an amplifier that has robust performance, passes regulatory requirements, and exhibits good audio  
performance, good quality decoupling capacitors should be used. Ceramic type X7R should be used in this  
application.  
Temperature, ripple current, and voltage overshoot must be considered. This fact is particularly true in the  
selection of the 1 μF that is placed on the PVDD power supply pins to each full-bridge. It must withstand the  
voltage overshoot of the PWM switching, the heat generated by the amplifier during high power output and the  
ripple current created by high power output. A minimum voltage rating of 50 V is required for use with a 36 V  
power supply.  
9.1.4.1.2 PVDD Capacitor Recommendations  
The large capacitors used in conjunction with each full-bridge, are referred to as the PVDD Capacitors. These  
capacitors should be selected for proper voltage margin and adequate capacitance to support the power  
requirements. In practice, with a well designed system power supply, 470 μF, 50 V supports most applications.  
The PVDD capacitors should be low ESR type because they are used in a circuit associated with high-speed  
switching.  
9.1.4.1.3 BST Capacitors  
To ensure large enough bootstrap energy storage for the high side gate drive to work correctly with all audio  
source signals, 33 nF / 25V X7R BST capacitors are recommended.  
9.1.4.1.4 Heatsink  
The heat sink should be attached to the device using a thermally conductive paste and have a good connection  
to board ground.  
版权 © 2018, Texas Instruments Incorporated  
105  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
9.1.4.2 Step Two: Configure the Fixed-Function Process Flow for Use with the Target System  
Use the TAS3251EVM and PurePath™ Console 3 to characterize, tune and test the speaker system.  
1. Use the TAS3251 Evaluation Module (TAS3251EVM) and PurePath™ Console 3 software to configure the  
device settings and audio processing. PurePath Console 3 can be requested and downloaded from TI.com.  
2. Once the appropriate configuration has been finalized using the TAS3251EVM, use the In-System  
Programming mode in PurePath™ Console 3 to load the configuration to a TAS3251 in the final system (not  
on the TAS3251EVM). Connect the I2C traces from the TAS3251EVM to the final system for programming.  
Ensure the I2C lines have compatible voltages and resistor pull-ups.  
9.1.4.3 Step Three: Software Integration  
1. Use the export feature in PurePath™ Console 3 software to generate a register map configuration file to be  
used to initialize the TAS3251at system startup.  
2. Include the configuration file in the main processor program to load during the TAS3251 initialization.  
3. Integrate dynamic control commands (such as volume controls, mute commands, and mode-based EQ  
curves) into the main system program.  
9.1.5 Two TAS3251 Device Configurations  
This section describes hardware design requirements for systems using two TAS3251devices.  
9.1.5.1 2 x PBTL Application  
In this configuration both devices are configured in parallel bridge-tied load (PBTL) mode. Example use cases for  
a 2 x PBTL hardware configuration include:  
Stereo Speaker Pair, with left and right channel audio. This can be implemented in one of two ways:  
Send left channel I2S or TDM data to one device and send right channel I2S or TDM data to the other  
device.  
Or, send both left and right channel to one device and send the post-processed data through the  
SDOUT pin to the other device.  
2-Way, Active Crossover Speaker, with one amplifier driving a tweeter and the other driving a woofer.  
Send the same audio channel to both devices and use the DSP in one device for the high-pass filter  
and the other device for the low-pass filter to form a 2-way, crossover.  
Or, send the audio to one primary device, do the high-pass and low-pass processing in the primary  
device, and then send either the high-pass or low-pass data only to the other device using the SDOUT  
pin.  
9.1.5.2 2 x BTL + 1 x PBTL Application  
In this configuration one device is configured in two bridge-tied load (BTL) mode and the other device is  
configured in mono, parallel bridge-tied load (PBTL) mode. Example use cases for a 2 x BTL and 1 x PBTL  
hardware configuration include:  
2.1 Speaker System, with left, right and subwoofer audio channels. In this setup, process left, right and  
subwoofer audio in one device and then send the subwoofer data from SDOUT to another device.  
3-Way, Active Crossover Speaker, with one amplifier driving a tweeter and a mid-range speaker (BTL),  
and another (PBTL) driving a woofer or subwoofer. In this configuration, process everything in one device  
and send the subwoofer data from SDOUT to another device.  
9.1.6 Three or More TAS3251 Device Configurations  
This section describes hardware design requirements and considerations for systems using three or more  
TAS3251devices.  
With three or more devices in a system, the processing power of a signle TAS3251 may be insufficient. To create  
a complex system, map out the audio path using multiple DSPs and use a combination of daisy-chained DSPs or  
paralleled DSPs to process the audio and create the speaker signal path.  
106  
版权 © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
9.1.7 Application Curves  
101. Application Curves  
Configuration  
BTL  
Performance Graph  
5 Total Harmonic Distortion+Noise vs Output Power  
6 Total Harmonic Distortion+Noise vs Frequency  
13 Total Harmonic Distortion+Noise vs Output Power  
14 Total Harmonic Distortion+Noise vs Frequency  
BTL  
PBTL  
PBTL  
版权 © 2018, Texas Instruments Incorporated  
107  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 Power Supplies  
The device requires three power supplies for proper operation. A 3.3 V rail for the low voltage circuitry and DAC,  
a 12 V rail for the amplifier gate-drive, and PVDD which is required to provide power to the output stage of the  
audio amplifier. The operating range for these supplies is shown in the Recommended Operating Conditions. TI  
recommends waiting 100 ms to 240 ms for the DVDD power supplies to stabilize before starting I2C  
communication and providing stable I2S clock before enabling the device outputs.  
Front-End Power Supplies (DAC + DSP)  
DAC_AVDD  
Internal Analog Circuitry  
Internal Mixed  
Signal Circuitry  
Internal Digital  
Circuitry  
+
3.3V  
DAC_DVDD  
DVDD_REG  
External Filtering/Decoupling  
œ
LDO  
CPVSS  
External Filtering/Decoupling  
Charge  
Pump  
DAC Output Stage  
(Positive)  
DAC Output Stage  
(Negative)  
Gate Drive  
Voltage  
Analog Internal  
Circuitry  
AVDD  
DVDD  
GVDD  
Linear  
Regulator  
External Decoupling  
+
GVDD  
Digital Internal  
Circuitry  
œ
Linear  
Regulator  
External Decoupling  
PVDD  
Output Stage  
Power Supply  
+
PVDD  
Output Stage Power Supplies  
œ
125. Power Supply Functional Block Diagram  
108  
版权 © 2018, Texas Instruments Incorporated  
 
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
Power Supplies (接下页)  
10.1.1 DAC_DVDD and DAC_AVDD Supplies  
The DAC_DVDD supply is required from the system to power several portions of the device. As shown in 125,  
it provides power to the DVDD_REG pin and the CPVDD pin. Proper connection, routing, and decoupling  
techniques are highlighted in the EVM User's Guide (as well as the Application and Implementation section and  
the Layout Examples section) and must be followed as closely as possible for proper operation and performance.  
Deviation from the guidance offered in the TAS3251EVM User's Guide, which follows the same techniques as  
those shown in the Application and Implementation section, can result in reduced performance, errant  
functionality, or even damage to the TAS3251 device.  
Some portions of the device also require a separate power supply that is a lower voltage than the external  
DAC_DVDD supply. To simplify the power supply requirements for the system, the TAS3251 device includes an  
integrated low-dropout (LDO) linear regulator to create this supply. This linear regulator is internally connected to  
the DAC_DVDD supply and its output is presented on the DVDD_REG pin, providing a connection point for an  
external bypass capacitor. It is important to note that the linear regulator integrated in the device has only been  
designed to support the current requirements of the internal circuitry, and should not be used to power any  
additional external circuitry. Additional loading on this pin could cause the voltage to sag, negatively affecting the  
performance and operation of the device.  
The outputs of the high-performance DACs used in the TAS3251 device are ground centered, requiring both a  
positive low-voltage supply and a negative low-voltage supply. The positive power supply for the DAC output  
stage is taken from the DAC_AVDD pin, which can be connected to the DAC_DVDD supply provided by the  
system. A charge pump is integrated in the TAS3251 device to generate the negative low-voltage supply. The  
power supply input for the charge pump is the CPVDD pin. The CPVSS pin is provided to allow the connection of  
a filter capacitor on the negative low-voltage supply. As is the case with the other supplies, the component  
selection, placement, and routing of the external components for these low voltage supplies are shown in the  
TAS3251 EVM User's Guide and should be followed as closely as possible to ensure proper operation of the  
device.  
10.1.1.1 CPVSS, CN and CP Charge Pump  
The TAS3251 has an integrated charge pump for generating the negative supply voltage for the DAC output  
stage. Connect a 1µF ceramic capacitor between CN and CP and connect a 1 µF ceramic capacitor from  
CPVSS to GND.  
10.1.2 VDD Supply  
The VDD supply required from the system is used to power several portions of the device. It provides power to  
internal regulators DVDD and AVDD that are used to power digital and analog sections of the device output  
power stage. Connect a 1 µF ceramic capacitor to GND and ensure capacitor voltage rating is sufficient for  
AVDD and DVDD. See DVDD and AVDD typical voltages in Amplifier Electrical Characteristics. Proper  
connection, routing, and decoupling techniques are highlighted in the Layout Section and the TAS3251EVM  
User's Guide, which must be followed as closely as possible for proper operation and performance. Deviation  
from the guidance offered in the section may result in reduced performance, errant functionality, or even damage  
to the TAS3251 device.  
Some portions of the device also require a separate power supply which is a lower voltage than the VDD supply.  
To simplify the power supply requirements for the system, the TAS3251 device includes integrated low-dropout  
(LDO) linear regulators to create these supplies. These linear regulators are internally connected to the VDD  
supply and their outputs are presented on AVDD and DVDD pins, providing a connection point for an external  
bypass capacitors. It is important to note that the linear regulators integrated in the device have only been  
designed to support the current requirements of the internal circuitry, and should not be used to power any  
additional external circuitry. Additional loading on these pins could cause the voltage to sag and increase noise  
injection, which negatively affects the performance and operation of the device.  
版权 © 2018, Texas Instruments Incorporated  
109  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Power Supplies (接下页)  
10.1.3 GVDD_X Supply  
The GVDD_X supply required from the system is used to power the gate-drives for the output H-bridges.  
Connect 0.1 µF ceramic capacitor from pin to GND and place as close to pin as possible. The ceramic capacitor  
should have a voltage rating of at least 25V. Proper connection, routing, and decoupling techniques are  
highlighted in the Layout Section and the TAS3251EVM User's Guide and must be followed as closely as  
possible for proper operation and performance. Deviation from the guidance offered in the these sections may  
result in reduced performance, errant functionality, or even damage to the TAS3251 device.  
10.1.4 PVDD Supply  
The output stage of the amplifier drives the load using the PVDD supply. This is the power supply which provides  
the drive current to the load during playback. Proper connection, routing, and decoupling techniques are  
highlighted in the section and section and must be followed as closely as possible for proper operation and  
performance. Due to the high-voltage switching of the output stage, it is particularly important to properly  
decouple the output power stages. The lack of proper decoupling can results in voltage spikes which can  
damage the device, or cause poor audio performance and device shutdown faults. See the TAS3251EVM for  
proper component selection, placement and layout for best performance.  
10.1.5 BST Supply  
TAS3251 has built-in bootstrap supply for each half bridge gate drive to supply the high side MOSFETs, only  
requiring a single capacitor per half bridge. The capacitors are connected to each half bridge output and charged  
by the GVDD supply via an internal diode while the PWM outputs are in low state. The high side gate drive is  
supplied by the voltage across the BST capacitor while the output PWM is high. It is recommended to place the  
BST capacitors close to the TAS3251 device and keep the length of PCB traces to a minimum. Connect a 0.033  
µF ceramic capacitor with a rating of at least 25V between BST_xx pin and the corresponding output stage  
SPK_OUTxx pin.  
110  
版权 © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
11 Layout  
11.1 Layout Guidelines  
11.1.1 General Guidelines for TAS3251  
Audio amplifiers which incorporate switching output stages require special attention to the device layout and  
supporting component layout. The system level performance, including electromagnetic compliance (EMC),  
device reliability and audio performance are all affected by the layout. See the section Layout Examples for  
layout recommendations based on amplifier output configuration. The list below provides general guidelinese to  
follow when placing components and routing.  
Use an unbroken ground plan for low impedance and low inductance return path to the power supply for  
power and audio signals.  
Keep the routing between the DAC and the amplifier inputs as short as possible. Maintain good grounding  
around these traces to prevent noise.  
The small bypass capacitors on the PVDD lines should be placed as close to the PVDD pins as possible.  
Reference all bypass and decoupling components to the TAS3251 ground by connecting the ground of the  
component directly to the ground of the device.  
Maintain a contiguous ground plane from the ground pins to the PCB area surrounding the device for as  
many ground pins as possible. This will help conduct heat through the pins of the package.  
11.1.2 Importance of PVDD Bypass Capacitor Placement  
Placing the bypass and decoupling capacitors close to supply pins is required for stability and best performance.  
This applies to DVDD, AVDD, CPVDD, and PVDD.  
The small bypass capacitors on the PVDD lines of the TAS3251 must be placed as close to the PVDD pins as  
possible. Not only does placing these devices far away from the pins increase the electromagnetic interference in  
the system, but doing so can also negatively affect the reliability of the device. Placement of these components  
too far from the TAS3251 device can cause ringing on the output pins that can cause the voltage on the output  
pin to exceed the maximum allowable ratings shown in the Absolute Maximum Ratings table, damaging the  
device. For that reason, the capacitors on the PVDD net must be no further away from their associated PVDD  
pins than what is shown in the example layouts in the Layout Examples section  
版权 © 2018, Texas Instruments Incorporated  
111  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
11.2 Layout Examples  
11.2.1 Bridge-Tied Load (BTL) Layout Example  
This section shows an example layout when operating in bridge-tied load (BTL) mode.  
3.3V  
1
2
56  
55  
54  
53  
52  
3
4
5
6
7
8
3.3V  
51  
50  
49  
48  
47  
46  
45  
44  
43  
9
3.3V  
12V  
10  
11  
12  
13  
14  
15  
16  
17  
18  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Bottom Layer Signal Traces  
Pad to top layer ground pour  
Pin not connected  
Bottom to top layer connection via  
Top Layer Signal Traces  
126. BTL Layout Example  
112  
版权 © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
Layout Examples (接下页)  
11.2.2 Parallel Bridge-Tied Load (PBTL), Pre-Filter  
This section shows an example layout when operating in parallel bridge-tied load (PBTL) mode and connecting  
the output traces before the LC filter using two inductors. This layout requires fewer inductors compared with  
post-filter PBTL.  
3.3V  
1
2
56  
55  
54  
53  
52  
3
4
5
6
7
8
3.3V  
51  
50  
49  
48  
47  
46  
45  
44  
43  
9
3.3V  
12V  
10  
11  
12  
13  
14  
15  
16  
17  
18  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Bottom Layer Signal Traces  
Pad to top layer ground pour  
Pin not connected  
Bottom to top layer connection via  
Top Layer Signal Traces  
127. Pre-Filter PBTL Layout Example  
版权 © 2018, Texas Instruments Incorporated  
113  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
Layout Examples (接下页)  
11.2.3 Parallel Bridge-Tied Load (PBTL), Post-Filter  
This section shows an example layout when operating in parallel bridge-tied load (PBTL) mode and connecting  
the output traces after the LC filter using four inductors. This layout requires fewer inductors compared with post-  
filter PBTL.  
3.3V  
1
2
56  
55  
54  
53  
52  
3
4
5
6
7
8
3.3V  
51  
50  
49  
48  
47  
46  
45  
44  
43  
9
3.3V  
12V  
10  
11  
12  
13  
14  
15  
16  
17  
18  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
Bottom layer signal traces  
Pad to top layer ground pour  
Pin not connected  
Bottom to top layer connection via  
Top layer signal traces  
128. Post-Filter PBTL Layout Example  
114  
版权 © 2018, Texas Instruments Incorporated  
TAS3251  
www.ti.com.cn  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
12 器件和文档支持  
12.1 器件支持  
12.1.1 器件命名规则  
术语表 部分列出的是一个通用的术语表,其中包括常用的缩写和词语,它们都是根据一个范围广泛的 TI 计划定义  
的,符合 JEDECIPCIEEE 等行业标准。本部分提供的术语表定义了特定于本产品和文档、附属产品或本产品  
使用的支持工具和软件的词语和缩写。如对定义和术语有其他疑问,请访问 e2e 音频放大器论坛。  
桥接式负载 (BTL) 是一种输出配置,其中扬声器的两端分别连接一个半桥。  
DUT 是指被测器件,用于区分不同的器件。  
闭环架构是一种拓扑结构,其中放大器监视输出端子、对比输出信号与输入信号,并尝试修正输出信号的非线性。  
动态控件是指系统或最终用户在正常使用时可更改的控件。  
GPIO 是通用输入/输出引脚。该引脚是一个高度可配置的双向数字引脚,可执行系统所需的多种功能。  
主机处理器(也称系统处理器、标量、主机或系统控制器)是指用作中央系统控制器的器件,可为与其连接的器件  
提供控制信息,还可以从上游器件采集音频源数据并将其分配给其他器件。该器件通常配置音频路径中音频处理器  
件(如 TAS3251)的控件,从而根据频率响应、时间校准、目标声压级、系统安全工作区域和用户偏好优化扬声  
器的音频输出。  
HybridFlow 通过搭配使用 RAM 内置的元件和 ROM 内置的元件构成一款可配置器件,与完全可编程器件相比更  
加易于使用,而且还能保持足够的灵活性以适应多种 应用  
最大持续输出功率是指放大器在 25°C 运行环境温度下可持续(不关断)提供的最大输出功率。测试该参数时,要  
求温度达到热平衡点且不再升高  
并联桥接式负载 (PBTL) 是一种输出配置,其中扬声器的两端分别连接一对并行放置的半桥  
rDS(on) 是指放大器输出级中所用 MOSFET 的导通电阻。  
静态控件/静态配置是指系统正常使用时不发生变化的控件。  
过孔是指 PCB 中的镀铜通孔。  
12.1.2 开发支持  
TAS3251 评估模块 TAS3251EVM (TAS3251EVM)  
PurePath™ 控制台 3 软件 (PUREPATHCONSOLE)  
用于 PurePath™ 音频智能放大器的扬声器特性鉴定板 (PP-SALB-EVM)  
TAS3251 工艺流程 (SLAA799)  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录  
版权 © 2018, Texas Instruments Incorporated  
115  
TAS3251  
ZHCSIA0A MAY 2018REVISED NOVEMBER 2018  
www.ti.com.cn  
12.3 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.4 商标  
Burr-Brown, PurePath, PowerPAD, E2E are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
这些装置包含有限的内置 ESD 保护。 存储或装卸时,应将导线一起截短或将装置放置于导电泡棉中,以防止 MOS 门极遭受静电损  
伤。  
12.6 术语表  
SLYZ022 TI 术语表。  
这份术语表列出并解释术语、缩写和定义。  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此产品说明书的浏览器版本,请查看左侧的导航栏。  
116  
版权 © 2018, Texas Instruments Incorporated  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2018 德州仪器半导体技术(上海)有限公司  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TAS3251DKQR  
ACTIVE  
HSSOP  
DKQ  
56  
1000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
0 to 70  
3251  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OUTLINE  
DKQ0056B  
PowerPADTM SSOP - 2.475 mm max height  
S
C
A
L
E
1
.
0
0
0
PLASTIC SMALL OUTLINE  
C
10.67  
10.03  
PIN 1 ID AREA  
A
TYP  
SEATING PLANE  
(1.74)  
0.1 C  
(1.18)  
54X 0.635  
56  
1
(2.455)  
(4.455)  
(3.04)  
(3.04)  
18.54  
18.29  
NOTE 3  
2X  
17.15  
(3)  
(6.34)  
2X  
(0.23)  
28  
29  
0.37  
56X  
0.17  
0.13  
(2.29)  
(1.26)  
C A B  
EXPOSED  
(5.14)  
THERMAL PAD  
7.59  
7.39  
B
NOTE 4  
2.475  
2.240  
NOTE 6  
0.25  
2.29 0.05  
GAGE PLANE  
0.25  
0.13  
TYP  
SEE DETAIL A  
0.08  
0.00  
1.02  
0.51  
0 - 8  
DETAIL A  
TYPICAL  
4223602/A 04/2017  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. The exposed thermal pad is designed to be attached to an external heatsink.  
6. For clamped heatsink design, refer to overall package height above the seating plane as 2.325 +/- 0.075 and molded body  
thickness dimension.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DKQ0056B  
PowerPADTM SSOP - 2.475 mm max height  
PLASTIC SMALL OUTLINE  
56X (1.9)  
SEE DETAILS  
SYMM  
1
56  
56X (0.4)  
54X (0.635)  
SYMM  
28  
29  
(R0.05) TYP  
(9.5)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:6X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4223602/A 04/2017  
NOTES: (continued)  
7. Publication IPC-7351 may have alternate designs.  
8. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DKQ0056B  
PowerPADTM SSOP - 2.475 mm max height  
PLASTIC SMALL OUTLINE  
56X (1.9)  
SYMM  
1
56  
56X (0.4)  
54X (0.635)  
SYMM  
28  
29  
(R0.05) TYP  
(9.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE:6X  
4223602/A 04/2017  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI 均以原样提供技术性及可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资  
源,不保证其中不含任何瑕疵,且不做任何明示或暗示的担保,包括但不限于对适销性、适合某特定用途或不侵犯任何第三方知识产权的暗示  
担保。  
所述资源可供专业开发人员应用TI 产品进行设计使用。您将对以下行为独自承担全部责任:(1) 针对您的应用选择合适的TI 产品;(2) 设计、  
验证并测试您的应用;(3) 确保您的应用满足相应标准以及任何其他安全、安保或其他要求。所述资源如有变更,恕不另行通知。TI 对您使用  
所述资源的授权仅限于开发资源所涉及TI 产品的相关应用。除此之外不得复制或展示所述资源,也不提供其它TI或任何第三方的知识产权授权  
许可。如因使用所述资源而产生任何索赔、赔偿、成本、损失及债务等,TI对此概不负责,并且您须赔偿由此对TI 及其代表造成的损害。  
TI 所提供产品均受TI 的销售条款 (http://www.ti.com.cn/zh-cn/legal/termsofsale.html) 以及ti.com.cn上或随附TI产品提供的其他可适用条款的约  
束。TI提供所述资源并不扩展或以其他方式更改TI 针对TI 产品所发布的可适用的担保范围或担保免责声明。IMPORTANT NOTICE  
邮寄地址:上海市浦东新区世纪大道 1568 号中建大厦 32 楼,邮政编码:200122  
Copyright © 2020 德州仪器半导体技术(上海)有限公司  

相关型号:

TAS3308

DIGITAL AUDIO PROCESSOR WITH ANALOG INTERFACE
TI

TAS3308PZT

DIGITAL AUDIO PROCESSOR WITH ANALOG INTERFACE
TI

TAS3308PZTR

DIGITAL AUDIO PROCESSOR WITH ANALOG INTERFACE
TI

TAS333J100P1A

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 100V, 5% +Tol, 5% -Tol, 0.033uF, Through Hole Mount, AXIAL LEADED
CDE

TAS333K035P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS333K050P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS333K075P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS333K100P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS333M050P1A

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 50V, 20% +Tol, 20% -Tol, 0.033uF, Through Hole Mount, AXIAL LEADED
CDE

TAS333M075P1A

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 75V, 20% +Tol, 20% -Tol, 0.033uF, Through Hole Mount, AXIAL LEADED
CDE

TAS334J035P1A

Tantalum Capacitor, Tantalum (dry/solid), 35V, 5% -Tol, 0.33uF, Through Hole Mount, RADIAL LEADED
CDE

TAS334J035P1A

CAP,TANTALUM / TA2O5,330NF,35VDC,5% -TOL,5% +TOL
VISHAY