TAS5342ADDVR [TI]

100 W STEREO DIGITAL AMPLIFIER POWER STAGE; 100瓦立体声数字放大器功率级
TAS5342ADDVR
型号: TAS5342ADDVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

100 W STEREO DIGITAL AMPLIFIER POWER STAGE
100瓦立体声数字放大器功率级

放大器
文件: 总27页 (文件大小:852K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TM  
TAS5342A  
www.ti.com ........................................................................................................................................................................................... SLAS623NOVEMBER 2008  
100 W STEREO DIGITAL AMPLIFIER POWER STAGE  
1
FEATURES  
DESCRIPTION  
23  
Total Power Output (Bridge Tied Load)  
2 × 100 W at 10% THD+N Into 4  
2 × 80 W at 10% THD+N Into 6 Ω  
2 × 65 W at 10% THD+N Into 8 Ω  
The TAS5342A is a high-performance, integrated  
stereo digital amplifier power stage designed to drive  
a 4-bridge-tied load (BTL) at up to 100 W per  
channel with low harmonic distortion, low integrated  
noise, and low idle current.  
Total Power Output (Single Ended)  
4 × 40 W at 10% THD+N Into 3 Ω  
4 × 30 W at 10% THD+N Into 4 Ω  
The TAS5342A has a complete protection system  
integrated on-chip, safeguarding the device against a  
wide range of fault conditions that could damage the  
system. These protection features are short-circuit  
protection, over-current protection, under voltage  
protection, over temperature protection, and a loss of  
PWM signal (PWM activity detector).  
Total Power Output (Parallel Mode)  
1 × 200 W at 10% THD+N Into 2 Ω  
1 × 160 W at 10% THD+N Into 3 Ω  
>110 dB SNR (A-Weighted With TAS5518  
Modulator)  
A power-on-reset (POR) circuit is used to eliminate  
power-supply sequencing that is required for most  
power-stage designs.  
<0.1% THD+N (1 W, 1 kHz)  
Supports PWM Frame Rates of 192 kHz to  
432 kHz  
BTL OUTPUT POWER  
vs  
Resistor-Programmable Current Limit  
SUPPLY VOLTAGE  
130  
125  
Integrated Self-Protection Circuitry, Including:  
T
= 75°C  
120  
115  
110  
105  
100  
95  
Under Voltage Protection  
Overtemperature Warning and Error  
Overload Protection  
C
THD+N at 10%  
Short-Circuit Protection  
PWM Activity Detector  
90  
85  
80  
75  
4 Ω  
70  
Standalone Protection Recovery  
65  
60  
55  
50  
45  
40  
35  
30  
25  
20  
Power-On Reset (POR) to Eliminate System  
Power-Supply Sequencing  
High-Efficiency Power Stage (>90%) With  
80-mOutput MOSFETs  
6
Thermally Enhanced Package 44-Pin HTSSOP  
(DDV)  
15  
10  
5
8 Ω  
Error Reporting, 3.3-V and 5.0-V Compliant  
0
EMI Compliant When Used With  
Recommended System Design  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
PVDD – Supply Voltage – V  
APPLICATIONS  
PurePath Digital™  
Mini/Micro Audio System  
DVD Receiver  
Home Theater  
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas  
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.  
2
3
PurePath Digital, PowerPad are trademarks of Texas Instruments.  
All other trademarks are the property of their respective owners.  
PRODUCTION DATA information is current as of publication date.  
Products conform to specifications per the terms of the Texas  
Instruments standard warranty. Production processing does not  
necessarily include testing of all parameters.  
Copyright © 2008, Texas Instruments Incorporated  
TAS5342A  
SLAS623NOVEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam  
during storage or handling to prevent electrostatic damage to the MOS gates.  
GENERAL INFORMATION  
Terminal Assignment  
The TAS5342A is available in a thermally enhanced package 44-pin HTSSOP PowerPad™ package (DDV)  
This package contains a thermal pad that is located on the top side of the device for convenient thermal coupling  
to the heatsink.  
DDV PACKAGE  
(TOP VIEW)  
GVDD_B  
OTW  
GVDD_A  
BST_A  
NC  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
1
2
NC  
NC  
SD  
3
PVDD_A  
PVDD_A  
OUT_A  
GND_A  
GND_B  
OUT_B  
PVDD_B  
BST_B  
BST_C  
PVDD_C  
OUT_C  
GND_C  
GND_D  
OUT_D  
PVDD_D  
PVDD_D  
NC  
4
5
PWM_A  
RESET_AB  
PWM_B  
OC_ADJ  
GND  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
AGND  
VREG  
M3  
M2  
M1  
PWM_C  
RESET_CD  
PWM_D  
NC  
NC  
VDD  
GVDD_C  
BST_D  
GVDD_D  
P0016-02  
2
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TAS5342A  
TAS5342A  
www.ti.com ........................................................................................................................................................................................... SLAS623NOVEMBER 2008  
Protection MODE Selection Pins  
Protection modes are selected by shorting M1, M2, and M3 to VREG or GND.  
MODE PINS  
Mode Name  
PWM Input(1)  
Description  
M3  
0
M2  
0
M1  
0
BTL mode 1  
BTL mode 2  
BTL mode 3  
PBTL mode  
SE mode 1  
SE mode 2  
2N  
2N  
All protection systems enabled  
0
0
1
Latching shudown on, PWM activity detector and OLP disabled  
All protection systems enabled  
0
1
0
1N  
0
1
1
1N / 2N(2)  
All protection systems enabled  
1
0
0
1N  
All protection systems enabled(3)  
1
0
1
1N  
Latching shudown on, PWM activity detector and OLP disabled(3)  
1
1
0
Reserved  
1
1
1
(1) The 1N and 2N naming convention is used to indicate the number of PWM lines to the power stage per channel in a specific mode.  
(2) PWM_D is used to select between the 1N and 2N interface in PBTL mode (Low = 1N; High = 2N). PWM_D is internally pulled low in  
PBTL mode. PWM_A is used as the PWM input in 1N mode and PWM_A and PWM_B are used as inputs for the 2N mode.  
(3) PPSC detection system disabled.  
Package Heat Dissipation Ratings(1)  
PARAMETER  
TAS5342ADDV  
R
θJC (°C/W)—2 BTL or 4 SE channels  
1.3  
2.6  
RθJC (°C/W)—1 BTL or 2 SE channel(s)  
RθJC (°C/W)—1 SE channel  
5.0  
Power Pad area(2)  
36 mm2  
(1) JC is junction-to-case, CH is case-to-heatsink.  
(2) θCH is an important consideration. Assume a 2-mil thickness of high performance grease with a thermal conductivity at 2.5W/m-K  
between the pad area and the heat sink. The RθCH with this condition is 0.6°C/W for the DDV package.  
R
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
3
Product Folder Link(s): TAS5342A  
TAS5342A  
SLAS623NOVEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
ABSOLUTE MAXIMUM RATINGS  
over operating free-air temperature range unless otherwise noted  
(1)  
TAS5342A  
VDD to AGND  
–0.3 V to 13.2 V  
–0.3 V to 13.2 V  
–0.3 V to 53 V  
–0.3 V to 53 V  
–0.3 V to 66.2 V  
–0.3 V to 53 V  
–0.3 V to 4.2 V  
–0.3 V to 0.3 V  
–0.3 V to 0.3 V  
–0.3 V to 0.3 V  
–0.3 V to 4.2 V  
–0.3 V to 7 V  
9 mA  
GVDD_X to AGND  
PVDD_X to GND_X  
(2)  
(2)  
OUT_X to GND_X  
BST_X to GND_X  
BST_X to GVDD_X  
VREG to AGND  
GND_X to GND  
GND_X to AGND  
GND to AGND  
(2)  
(2)  
PWM_X, OC_ADJ, M1, M2, M3 to AGND  
RESET_X, SD, OTW to AGND  
Maximum continuous sink current (SD, OTW)  
Maximum operating junction temperature range, TJ  
Storage temperature  
0°C to 125°C  
–40°C to 125°C  
260°C  
Lead temperature, 1,6 mm (1/16 inch) from case for 10 seconds  
Minimum pulse duration, low  
30 ns  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) These voltages represent the dc voltage + peak ac waveform measured at the terminal of the device in all conditions.  
ORDERING INFORMATION(1)  
TA  
PACKAGE(1)  
DESCRIPTION  
0°C to 70°C  
TAS5342ADDV  
44-pin HTSSOP  
(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI  
website at www.ti.com.  
4
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TAS5342A  
TAS5342A  
www.ti.com ........................................................................................................................................................................................... SLAS623NOVEMBER 2008  
Terminal Functions  
TERMINAL  
(1)  
FUNCTION  
DESCRIPTION  
NAME  
AGND  
DDV NO.  
11  
P
P
P
P
P
P
P
P
P
P
P
P
P
P
I
Analog ground  
BST_A  
BST_B  
BST_C  
BST_D  
GND  
43  
Bootstrap pin, A-Side  
Bootstrap pin, B-Side  
Bootstrap pin, C-Side  
Bootstrap pin, D-Side  
Ground  
34  
33  
24  
10  
GND_A  
GND_B  
GND_C  
GND_D  
GVDD_A  
GVDD_B  
GVDD_C  
GVDD_D  
M1  
38  
Power ground for half-bridge A  
Power ground for half-bridge B  
Power ground for half-bridge C  
Power ground for half-bridge D  
37  
30  
29  
44  
Gate-drive voltage supply; A-Side  
Gate-drive voltage supply; B-Side  
Gate-drive voltage supply; C-Side  
Gate-drive voltage supply; D-Side  
Mode selection pin (LSB)  
1
22  
23  
15  
M2  
14  
I
Mode selection pin  
M3  
13  
I
Mode selection pin (MSB)  
NC  
3, 4, 19, 20, 25, 42  
O
O
O
O
O
O
P
P
P
P
I
No connect. Pins may be grounded.  
Analog overcurrent programming pin  
Overtemperature warning signal, open-drain, active-low  
Output, half-bridge A  
OC_ADJ  
OTW  
9
2
OUT_A  
OUT_B  
OUT_C  
OUT_D  
PVDD_A  
PVDD_B  
PVDD_C  
PVDD_D  
PWM_A  
PWM_B  
PWM_C  
PWM_D  
RESET_AB  
RESET_CD  
SD  
39  
36  
31  
28  
40, 41  
35  
32  
26, 27  
6
Output, half-bridge B  
Output, half-bridge C  
Output, half-bridge D  
Power supply input for half-bridge A  
Power supply input for half-bridge B  
Power supply input for half-bridge C  
Power supply input for half-bridge D  
PWM Input signal for half-bridge A  
PWM Input signal for half-bridge B  
PWM Input signal for half-bridge C  
PWM Input signal for half-bridge D  
Reset signal for half-bridge A and half-bridge B, active-low  
Reset signal for half-bridge C and half-bridge D, active-low  
Shutdown signal, open-drain, active-low  
Input power supply  
8
I
16  
18  
7
I
I
I
17  
5
I
O
P
P
VDD  
21  
12  
VREG  
Internal voltage regulator  
(1) I = input, O = output, P = power  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
5
Product Folder Link(s): TAS5342A  
TAS5342A  
SLAS623NOVEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
TYPICAL SYSTEM BLOCK DIAGRAM  
OTW  
System  
Microcontroller  
SD  
I2C  
TAS5518  
BST_A  
BST_B  
Bootstrap  
Capacitors  
RESET_AB  
RESET_CD  
VALID  
PWM_A  
PWM_B  
OUT_A  
OUT_B  
2nd-Order L-C  
Output Filter  
for Each  
Left-  
Channel  
Output  
Output  
H-Bridge 1  
Input  
H-Bridge 1  
Half-Bridge  
2-Channel  
H-Bridge  
BTL Mode  
OUT_C  
OUT_D  
PWM_C  
PWM_D  
2nd-Order L-C  
Output Filter  
for Each  
Output  
H-Bridge 2  
Right-  
Channel  
Output  
Input  
H-Bridge 2  
Half-Bridge  
M1  
M2  
M3  
BST_C  
BST_D  
Hardwire  
Mode  
Control  
Bootstrap  
Capacitors  
4
4
4
PVDD  
Power  
Supply  
GVDD  
VDD  
VREG  
PVDD  
GND  
31.5 V  
Hardwire  
OC Limit  
System  
Power  
Supply  
Decoupling  
Power Supply  
Decoupling  
GND  
12 V  
GVDD (12 V)/VDD (12 V)  
VAC  
B0047-02  
6
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TAS5342A  
TAS5342A  
www.ti.com ........................................................................................................................................................................................... SLAS623NOVEMBER 2008  
FUNCTIONAL BLOCK DIAGRAM  
VDD  
4
Under-  
voltage  
Protection  
OTW  
4
Internal Pullup  
VREG  
VREG  
AGND  
GND  
Resistors to VREG  
SD  
M1  
M2  
M3  
Power  
On  
Reset  
Protection  
and  
I/O Logic  
Temp.  
Sense  
RESET_AB  
RESET_CD  
Overload  
I
OC_ADJ  
sense  
Protection  
GVDD_D  
BST_D  
PVDD_D  
OUT_D  
PWM  
Rcv.  
Gate  
PWM_D  
PWM_C  
PWM_B  
PWM_A  
Ctrl.  
Ctrl.  
Ctrl.  
Ctrl.  
Timing  
Timing  
Timing  
Timing  
Drive  
BTL/PBTL−Configuration  
Pulldown Resistor  
GND_D  
GVDD_C  
BST_C  
PVDD_C  
OUT_C  
PWM  
Rcv.  
Gate  
Drive  
BTL/PBTL−Configuration  
Pulldown Resistor  
GND_C  
GVDD_B  
BST_B  
PVDD_B  
OUT_B  
PWM  
Rcv.  
Gate  
Drive  
BTL/PBTL−Configuration  
Pulldown Resistor  
GND_B  
GVDD_A  
BST_A  
PVDD_A  
OUT_A  
PWM  
Rcv.  
Gate  
Drive  
BTL/PBTL−Configuration  
Pulldown Resistor  
GND_A  
B0034-03  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
7
Product Folder Link(s): TAS5342A  
TAS5342A  
SLAS623NOVEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
RECOMMENDED OPERATING CONDITIONS  
MIN  
TYP  
MAX UNIT  
PVDD_X  
GVDD_X  
Half-bridge supply voltage  
0
31.5  
34  
13.2  
13.2  
V
V
V
Supply voltage for logic regulators and  
gate-drive circuitry  
10.8  
12  
VDD  
Digital regulator supply voltage  
10.8  
3
12  
4
RL (BTL)  
RL (SE)  
RL (PBTL)  
LOutput (BTL)  
LOutput (SE)  
LOutput (PBTL)  
fS  
Resistive load impedance (no Cycle-by_Cycle  
current control), recommended demodulation  
filter  
2.25  
1.5  
5
3
2
10  
10  
10  
384  
Minimum output inductance under  
short-circuit condition  
Output-filter inductance  
PWM frame rate  
5
µH  
5
192  
432  
kHz  
nS  
µF  
nF  
k  
kΩ  
°C  
tLOW  
Minimum low-state pulse duration per PWM  
Frame, noise shaper enabled  
30  
CPVDD  
CBST  
PVDD close decoupling capacitors  
0.1  
33  
Bootstrap capacitor, selected value supports  
PWM frame rates from 192 kHz to 432 kHz  
ROC  
Over-current programming resistor  
Resistor tolerance = 5%  
27  
3.3  
0
27  
47  
REXT-PULLUP  
External pull-up resistor to +3.3V to +5.0V for  
SD or OTW  
4.7  
TJ  
Junction temperature  
125  
AUDIO SPECIFICATIONS (BTL)  
Audio performance is recorded as a chipset consisting of a TAS5518 pwm processor (modulation index limited to 97.7%) and  
a TAS5342A power stage. PCB and system configuraton are in accordance with recommended guidelines. Audio frequency =  
1 kHz, PVDD_x = 31.5 V, GVDD_x = 12 V, RL = 4 , fS = 384 kHz, ROC = 27 k, TC = 75°C, Output Filter: LDEM = 10 µH,  
CDEM = 470 nF, unless otherwise noted.  
TAS5342A  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
100  
80  
MAX  
RL = 4 , 10% THD+N, clipped input signal  
RL = 6 , 10% THD+N, clipped input signal  
RL = 8 , 10% THD+N, clipped input signal  
RL = 4 , 0 dBFS, unclipped input signal  
RL = 6 , 0 dBFS, unclipped input signal  
RL = 8 , 0 dBFS, unclipped input signal  
0 dBFS; AES17 filter  
POMAX  
Maximum Power Output  
65  
W
80  
PO  
Unclipped Power Output  
64  
50  
0.4%  
0.09%  
45  
THD+N  
Total harmonic distortion + noise  
Output integrated noise  
1 W; AES17 filter  
Vn  
A-weighted, AES17 filter, Auto mute disabled  
A-weighted, AES17 filter, Auto mute disabled  
µV  
(1)  
SNR  
Signal-to-noise ratio  
110  
dB  
A-weighted, input level = –60 dBFS, AES17  
filter  
DNR  
Dynamic range  
110  
dB  
DC Offset  
Pidle  
Output offset voltage  
±15  
2
mV  
W
Power dissipation due to idle losses  
(IPVDD_X)  
PO = 0 W, all halfbridges switching(2)  
(1) SNR is calculated relative to 0-dBFS input level.  
(2) Actual system idle losses are affected by core losses of output inductors.  
8
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TAS5342A  
TAS5342A  
www.ti.com ........................................................................................................................................................................................... SLAS623NOVEMBER 2008  
AUDIO SPECIFICATIONS (Single-Ended Output)  
Audio performance is recorded as a chipset consisting of a TAS5086 pwm processor (modulation index limited to 97.7%) and  
a TAS5342A power stage. PCB and system configuraton are in accordance with recommended guidelines. Audio frequency =  
1 kHz, PVDD_x = 31.5 V, GVDD_x = 12 V, RL = 4 , fS = 384 kHz, ROC = 27 k, TC = 75°C, Output Filter: LDEM = 20 µH,  
CDEM = 1.0 µF, unless otherwise noted.  
TAS5342A  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP MAX  
RL = 3 , 10% THD+N, clipped input  
signal  
40  
POMAX  
Maximum Power Output  
RL = 4 , 10% THD+N, clipped input  
30  
W
signal  
RL = 3 , 0 dBFS, unclipped input signal  
RL = 4 , 0 dBFS, unclipped input signal  
0 dBFS; AES17 filter  
30  
20  
PO  
Unclipped Power Output  
0.2%  
0.1%  
35  
THD+N  
Vn  
Total harmonic distortion + noise  
1 W; AES17 filter  
A-weighted, AES17 filter, Auto mute  
disabled  
µV  
Output integrated noise  
Signal-to-noise ratio(1)  
SNR  
A-weighted, AES17 filter, Auto mute  
disabled  
109  
dB  
A-weighted, input level = –60 dBFS  
AES17 filter  
PO = 0 W, all half bridges switching(2)  
DNR  
Pidle  
Dynamic range  
109  
2
dB  
W
Power dissipation due to idle losses (IPVDD_X)  
(1) SNR is calculated relative to 0-dBFS input level.  
(2) Actual system idle losses are affected by core losses of output inductors.  
AUDIO SPECIFICATIONS (PBTL)  
Audio performance is recorded as a chipset consisting of a TAS5518 pwm processor (modulation index limited to 97.7%) and  
a TAS5342A power stage. PCB and system configuraton are in accordance with recommended guidelines. Audio frequency =  
1kHz, PVDD_x = 31.5 V, GVDD_x = 12 V, RL = 3 , fS = 384 kHz, ROC = 27 k, TC = 75°C, Output Filter: LDEM = 10 µH, CDEM  
= 1.0 uF, unless otherwise noted.  
TAS5342A  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP MAX  
200  
RL = 2 , 10% THD+N, clipped input signal  
RL = 3 , 10% THD+N, clipped input signal  
RL = 2 , 0 dBFS, unclipped input signal  
RL = 3 , 0 dBFS, unclipped input signal  
0 dBFS; AES17 filter  
POMAX  
Maximum Power Output  
Unclipped Power Output  
Total harmonic distortion + noise  
160  
W
150  
PO  
120  
0.4%  
0.09%  
45  
THD+N  
1 W; AES17 filter  
Vn  
Output integrated noise  
Signal-to-noise ratio(1)  
A-weighted, AES17 filter, Auto mute disabled  
A-weighted, AES17 filter, Auto mute disabled  
µV  
SNR  
110  
dB  
A-weighted, input level = –60 dBFS AES17  
filter  
DNR  
Dynamic range  
110  
±15  
2
dB  
mV  
W
DC Offset  
Pidle  
Outuput offset voltage  
Power dissipation due to idle losses  
(IPVDD_X)  
PO = 0 W, all half bridges switching(2)  
(1) SNR is calculated relative to 0-dBFS input level.  
(2) Actual system idle losses are affected by core losses of output inductors.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
9
Product Folder Link(s): TAS5342A  
TAS5342A  
SLAS623NOVEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
ELECTRICAL CHARACTERISTICS  
PVDD_x = 31.5 V, GVDD_X = 12 V, VDD = 12 V, TC (Case temperature) = 25°C, fS = 384 kHz, unless otherwise specified.  
TAS5342A  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
MAX  
Internal Voltage Regulator and Current Consumption  
Voltage regulator, only used as a  
reference node  
VREG  
VDD = 12 V  
3
3.3  
3.6  
V
Operating, 50% duty cycle  
Idle, reset mode  
50% duty cycle  
7.2  
5.54  
8
17  
11  
16  
1.8  
25  
IVDD  
VDD supply current  
mA  
IGVDD_X  
Gate supply current per half-bridge  
mA  
mA  
Reset mode  
1
50% duty cycle, with 10 uH and 470 nF output  
filter  
16.3  
IPVDD_X  
Half-bridge idle current  
Reset mode, no switching  
465  
558  
µA  
Output Stage MOSFETs  
Drain-to-source resistance, Low  
Side  
RDSon,LS  
TJ = 25°C, excludes metallization resistance,  
TJ = 25°C, excludes metallization resistance,  
80  
80  
89  
89  
mΩ  
mΩ  
Drain-to-source resistance, High  
Side  
RDSon,HS  
I/O Protection  
Vuvp,G  
Undervoltage protection limit,  
GVDD_X  
9.5  
V
(1)  
Vuvp,hyst  
Undervoltage protection limit,  
GVDD_X  
250  
mV  
BSTuvpF  
BSTuvpR  
OTW(1)  
Puts device into RESET when BST  
voltage falls below limit  
5.85  
7
V
V
Brings device out of RESET when  
BST voltage rises above limit  
Overtemperature warning  
115  
145  
125  
25  
135  
165  
°C  
°C  
Temperature drop needed below  
OTW temp. for OTW to be inactive  
after the OTW event  
(1)  
OTWHYST  
OTE(1)  
OTE-  
Overtemperature error threshold  
155  
30  
°C  
°C  
ms  
A
OTE - OTW differential, temperature  
delta between OTW and OTE  
(1)  
OTWdifferential  
OLPC  
Overload protection counter  
Overcurrent limit protection  
Overcurrent response time  
fS = 384 kHz  
1.25  
10.1  
150  
13.2  
Resistor—programmable, high-end,  
ROC = 27 kwith 1 ms pulse  
IOC  
IOCT  
ns  
µS  
tACTIVITY  
DETECTOR  
Time for PWM activity detector to  
activite when no PWM is present  
Lack of transistion of any PWM input  
Connected when RESET is active to provide  
bootstrap capacitor charge. Not used in SE  
mode.  
Output pulldown current of each  
half-bridge  
IPD  
3
mA  
Static Digital Specifications  
VIH  
High-level input voltage  
2
V
V
PWM_A, PWM_B, PWM_C, PWM_D, M1,  
M2, M3, RESET_AB, RESET_CD  
VIL  
Low-level input voltage  
Input leakage current  
0.8  
ILeakage  
100  
µA  
OTW/SHUTDOWN (SD)  
Internal pullup resistance, OTW to  
RINT_PU  
20  
26  
32  
kΩ  
VREG, SD to VREG  
Internal pullup resistor  
3
3.3  
3.6  
5
VOH  
High-level output voltage  
V
External pullup of 4.7 kto 5 V  
4.5  
(1) Specified by design  
10 Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TAS5342A  
TAS5342A  
www.ti.com ........................................................................................................................................................................................... SLAS623NOVEMBER 2008  
ELECTRICAL CHARACTERISTICS (continued)  
PVDD_x = 31.5 V, GVDD_X = 12 V, VDD = 12 V, TC (Case temperature) = 25°C, fS = 384 kHz, unless otherwise specified.  
TAS5342A  
PARAMETER  
TEST CONDITIONS  
UNIT  
MIN  
TYP  
0.2  
30  
MAX  
VOL  
Low-level output voltage  
Device fanout OTW, SD  
IO = 4 mA  
No external pullup  
0.4  
V
FANOUT  
Devices  
TYPICAL CHARACTERISTICS, BTL CONFIGURATION  
TOTAL HARMONIC DISTORTION + NOISE  
vs  
OUTPUT POWER  
OUTPUT POWER  
vs  
SUPPLY VOLTAGE  
130  
125  
120  
115  
110  
105  
100  
95  
10  
T
= 75°C  
C
THD+N at 10%  
T
= 75°C  
C
5
2
THD+N at 10%  
90  
1
4
85  
4 W  
80  
0.5  
75  
70  
65  
0.2  
0.1  
60  
55  
50  
45  
40  
0.05  
35  
6 Ω  
30  
6 W  
25  
8 W  
0.02  
0.01  
20  
15  
8 Ω  
10  
5
0
0.005  
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
PVDD – Supply Voltage – V  
20m 100m 200m  
1
2
5
10 20 50 100 200  
P
- Output Power - W  
O
Figure 1.  
Figure 2.  
UNCLIPPED OUTPUT POWER  
SYSTEM EFFICIENCY  
vs  
OUTPUT POWER  
vs  
SUPPLY VOLTAGE  
100  
95  
90  
85  
80  
75  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
T
= 75°C  
C
4 W  
6
W
4
W
8
W
70  
65  
60  
55  
6 W  
50  
45  
50  
45  
40  
40  
35  
30  
25  
35  
30  
25  
20  
15  
10  
20  
15  
10  
5
T
= 25°C  
8 W  
C
THD+N at 10%  
5
0
0
0
2
4
6
8
10 12 14 16 18 20 22 24 26 28 30  
0
20 40 60 80 100 120 140 160 180 200 220 240  
- Output Power - W  
P
O
PVDD – Supply Voltage – V  
Figure 3.  
Figure 4.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
11  
Product Folder Link(s): TAS5342A  
TAS5342A  
SLAS623NOVEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS, BTL CONFIGURATION (continued)  
SYSTEM POWER LOSS  
vs  
SYSTEM OUTPUT POWER  
vs  
CASE TEMPERATURE  
OUTPUT POWER  
30  
28  
26  
24  
22  
20  
18  
16  
150  
140  
130  
120  
110  
100  
90  
T
= 25°C  
C
THD+N at 10%  
4
W
6
W
4
W
80  
14  
12  
10  
8
70  
60  
50  
40  
6
W
8
W
6
30  
4
2
0
THD+N at 10%  
20  
10  
0
8 W  
20 40 60 80 100 120 140 160 180 200 220 240  
0
10 20 30 40 50 60 70 80 90 100 110 120  
P
- Output Power - W  
T
- Case Temperature - °C  
O
C
Figure 5.  
Figure 6.  
NOISE AMPLITUDE  
vs  
FREQUENCY  
0
V
= 19.5 V  
-10  
ref  
= 75°C  
T
C
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-150  
-160  
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k  
f - Frequency - Hz  
Figure 7.  
12  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TAS5342A  
TAS5342A  
www.ti.com ........................................................................................................................................................................................... SLAS623NOVEMBER 2008  
TYPICAL CHARACTERISTICS, SE CONFIGURATION  
TOTAL HARMONIC DISTORTION + NOISE  
OUTPUT POWER  
vs  
SUPPLY VOLTAGE  
vs  
OUTPUT POWER  
10  
5
48  
44  
40  
36  
T
= 75°C  
T
= 75°C  
C
THD+N at 10%  
C
THD+N at 10%  
2
1
32  
28  
4 W  
0.5  
4 W  
24  
20  
16  
12  
0.2  
0.1  
0.05  
8
5
W
8 W  
0.02  
0.01  
8
4
0
0.005  
0
2
4
6
8 10 12 14 16 18 20 22 24 26 28 30  
PVDD - Supply Voltage - V  
100m 200m  
10  
50  
20m  
1
2
20  
P
O
- Output Power - W  
Figure 8.  
Figure 9.  
OUTPUT POWER  
vs  
CASE TEMPERATURE  
48  
44  
40  
36  
32  
4 W  
28  
24  
8 W  
20  
16  
12  
8
THD+N at 10%  
4
0
10 20 30 40 50 60 70 80 90 100 110 120  
T
- Case Temperature - °C  
C
Figure 10.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
13  
Product Folder Link(s): TAS5342A  
TAS5342A  
SLAS623NOVEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
TYPICAL CHARACTERISTICS, PBTL CONFIGURATION  
TOTAL HARMONIC DISTORTION + NOISE  
OUTPUT POWER  
vs  
SUPPLY VOLTAGE  
vs  
OUTPUT POWER  
10  
5
240  
220  
200  
180  
160  
140  
120  
T = 75°C  
C
THD+N at 10%  
T
= 75°C  
C
THD+N at 10%  
8
W
2
1
2
W
0.5  
3 W  
2
W
0.2  
100  
80  
60  
40  
20  
0
0.1  
4
W
0.05  
3
W
0.02  
8 W  
6 8 10 12 14 16 18 20 22 24 26 28 30  
0.01  
4
W
0.005  
0
2
4
20m 100m 200m  
1
2
5 10 20 50 100 300  
PVDD - Supply Voltage - V  
P
- Output Power - W  
O
Figure 11.  
Figure 12.  
SYSTEM OUTPUT POWER  
vs  
CASE TEMPERATURE  
260  
240  
220  
200  
2 W  
180  
160  
140  
120  
100  
80  
3 W  
4
W
60  
8 W  
40  
THD+N at 10%  
20  
0
10 20 30 40 50 60 70 80 90 100 110 120  
- Case Temperature - °C  
T
C
Figure 13.  
14  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TAS5342A  
TAS5342A  
www.ti.com ........................................................................................................................................................................................... SLAS623NOVEMBER 2008  
APPLICATION INFORMATION  
PCB Material Recommendation  
FR-4 Glass Epoxy material with 2 oz. (70 µm) is recommended for use with the TAS5342A. The use of this  
material can provide for higher power output, improved thermal performance, and better EMI margin (due to  
lower PCB trace inductance.  
PVDD Capacitor Recommendation  
The large capacitors used in conjunction with each full-birdge, are referred to as the PVDD Capacitors. These  
capacitors should be selected for proper voltage margin and adequate capacitance to support the power  
requirements. In practice, with a well designed system power supply, 1000 µF, 50-V will support more  
applications. The PVDD capacitors should be low ESR type because they are used in a circuit associtated with  
high-speed switching.  
Decoupling Capacitor Recommendations  
In order to design an amplifier that has robust performance, passes regulatory requirements, and exhibits good  
audio performance, good quality decoupling capacitors should be used. In practice, X7R should be used in this  
application.  
The voltage of the decoupling capactors should be selected in accordance with good design practices.  
Temperature, ripple current, and voltage overshoot must be considered. This fact is particularly true in the  
selection of the 0.1µF that is placed on the power supply to each half-bridge. It must withstand the voltage  
overshoot of the PWM switching, the heat generated by the amplifier during high power output, and the ripple  
current created by high power power output. A minimum voltage rating of 50-V is required for use with a 31.5-V  
power supply.  
System Design Recommendations  
The following schematics and PCB layouts illustrate "best practices" in the use of the TAS5342A.  
GVDD (+12 V)  
PVDD  
2.2 W  
2.2 W  
3.3 W  
470 µF  
50 V  
100 nF  
GND  
100 nF  
10 nF  
50 V  
TAS5342ADDV  
GVDD_A  
GND  
GND  
GVDD_B  
GND  
10 µH  
Microcontroller  
I2C  
BST_A  
NC  
OTW  
33 nF 25 V  
GND  
3.3 W  
NC  
1 nF  
50 V  
PVDD_A  
PVDD_A  
OUT_A  
GND_A  
GND_B  
OUT_B  
PVDD_B  
BST_B  
BST_C  
PVDD_C  
OUT_C  
GND_C  
GND_D  
OUT_D  
PVDD_D  
PVDD_D  
NC  
NC  
10 nF  
50 V  
100 nF  
50 V  
SD  
100 nF  
50 V  
PWM1_P  
PWM_A  
RESET_AB  
PWM_B  
OC_ADJ  
GND  
470 nF  
VALID  
100 nF  
50 V  
10 nF  
50 V  
GND  
GND  
100 nF  
50 V  
PWM1_M  
1 nF  
50 V  
27 k  
GND  
3.3 W  
10 µH  
10 µH  
33 nF 25 V  
GND  
AGND  
VREG  
M3  
25V  
33 nF  
3.3 W  
100 nF  
1 nF  
50 V  
M2  
100 nF  
50 V  
10 nF  
50 V  
100 nF  
50 V  
GND  
M1  
PWM2_P  
PWM2_M  
PWM_C  
RESET_CD  
PWM_D  
NC  
470 nF  
10 nF  
50 V  
100 nF  
50 V  
GND  
100 nF  
50 V  
1 nF  
50 V  
GND  
GND  
3.3 W  
NC  
10 µH  
TAS5508/18  
0 W  
GND  
BST_D  
GVDD_D  
VDD  
33 nF 25 V  
100 nF  
GVDD_C  
PVDD  
3.3 W  
GND  
470 µF  
50 V  
10 nF  
50 V  
100 nF  
GND  
100 nF  
2.2 W  
2.2 W  
GND  
GND  
GVDD (+12 V)  
VDD (+12 V)  
Figure 14. Typical Differential (2N) BTL Application With AD Modulation Filters  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
15  
Product Folder Link(s): TAS5342A  
TAS5342A  
SLAS623NOVEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
GVDD (+12 V)  
PVDD  
2.2 W  
2.2 W  
3.3 W  
470 µF  
50 V  
100 nF  
GND  
100 nF  
10 nF  
50 V  
TAS5342ADDV  
GVDD_A  
GND  
GND  
GVDD_B  
GND  
10 µH  
Microcontroller  
I2C  
BST_A  
NC  
OTW  
33 nF 25 V  
GND  
3.3 W  
NC  
1 nF  
50 V  
PVDD_A  
PVDD_A  
OUT_A  
GND_A  
GND_B  
OUT_B  
PVDD_B  
BST_B  
BST_C  
PVDD_C  
OUT_C  
GND_C  
GND_D  
OUT_D  
PVDD_D  
PVDD_D  
NC  
NC  
10 nF  
50 V  
100 nF  
50 V  
SD  
100 nF  
50 V  
PWM1_P  
VALID  
PWM_A  
RESET_AB  
PWM_B  
OC_ADJ  
GND  
470 nF  
100 nF  
50 V  
GND  
10 nF  
50 V  
GND  
100 nF  
50 V  
1 nF  
50 V  
27 k  
GND  
3.3 W  
10 µH  
10 µH  
33 nF 25 V  
GND  
AGND  
VREG  
M3  
25V  
33 nF  
3.3 W  
100 nF  
1 nF  
50 V  
M2  
100 nF  
50 V  
10 nF  
50 V  
100 nF  
50 V  
GND  
M1  
PWM2_P  
PWM_C  
RESET_CD  
PWM_D  
NC  
470 nF  
10 nF  
50 V  
100 nF  
50 V  
GND  
100 nF  
50 V  
1 nF  
50 V  
GND  
GND  
3.3 W  
NC  
10 µH  
TAS5508/18  
0 W  
GND  
BST_D  
GVDD_D  
VDD  
33 nF 25 V  
GVDD_C  
100 nF  
PVDD  
3.3 W  
GND  
470 µF  
50 V  
10 nF  
50 V  
100 nF  
GND  
100 nF  
2.2 W  
2.2 W  
GND  
GND  
GVDD (+12 V)  
VDD (+12 V)  
Figure 15. Typical Non-Differential (1N) BTL Application With AD Modulation Filters  
16  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TAS5342A  
TAS5342A  
www.ti.com ........................................................................................................................................................................................... SLAS623NOVEMBER 2008  
GVDD (+12V)  
PVDD  
2.2R  
2.2R  
3.3R  
470uF  
50V  
100nF  
100nF  
10nF  
50V  
TAS5342ADDV  
GND  
GND  
1
2
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
GVDD_B  
OTW  
GVDD_A  
BST_A  
Microcontroller  
20uH  
GND  
1
2
1
2
A
33nF 25V  
GND  
3
NC  
NC  
I2C  
4
NC  
PVDD_A  
PVDD_A  
OUT_A  
GND_A  
GND_B  
OUT_B  
GND  
5
SD  
100nF  
50V  
PWM1_P  
6
PWM_A  
RESET_AB  
PWM_B  
OC_ADJ  
GND  
7
VALID  
GND  
8
PWM2_P  
100nF  
50V  
22k  
1
1
2
2
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
PVDD_B  
BST_B  
33nF 25V  
20uH  
20uH  
GND  
1
2
1
1
2
2
B
AGND  
VREG  
M3  
1
2
C
BST_C  
100nF  
33nF 25V  
PVDD_C  
OUT_C  
GND_C  
GND_D  
OUT_D  
PVDD_D  
PVDD_D  
NC  
M2  
100nF  
50V  
GND  
M1  
PWM3_P  
PWM4_P  
PWM_C  
RESET_CD  
PWM_D  
NC  
100nF  
50V  
TAS5508/18  
NC  
GND  
GND  
20uH  
0R  
1
2
1
2
1
2
D
VDD  
BST_D  
33nF 25V  
100nF  
GVDD_C  
GVDD_D  
PVDD  
3.3R  
GND  
470uF  
50V  
10nF  
50V  
100nF  
100nF  
2.2R  
2.2R  
GND  
GND  
GND  
VDD (+12V)  
GVDD (+12V)  
10nF  
50V  
10nF  
50V  
1
2
1
2
GND  
GND  
3.3R  
3.3R  
A
B
100nF  
50V  
100nF  
50V  
1uF  
1uF  
10k  
10k  
PVDD  
PVDD  
10k  
1%  
10k  
1%  
470uF  
50V  
100nF  
50V  
GND  
470uF  
50V  
100nF  
50V  
GND  
10k  
1%  
10k  
1%  
470uF  
50V  
470uF  
50V  
3.3R  
1
3.3R  
1
2
2
GND  
GND  
50V  
50V  
10nF  
10nF  
GND  
GND  
10nF  
50V  
10nF  
50V  
1
2
1
2
GND  
GND  
3.3R  
3.3R  
C
D
100nF  
50V  
100nF  
50V  
1uF  
1uF  
10k  
10k  
PVDD  
PVDD  
10k  
1%  
10k  
1%  
470uF  
50V  
100nF  
50V  
GND  
470uF  
50V  
100nF  
50V  
GND  
10k  
1%  
10k  
1%  
470uF  
50V  
470uF  
50V  
3.3R  
3.3R  
1
2
1
2
GND  
GND  
50V  
10nF  
50V  
10nF  
GND  
GND  
Figure 16. Typical SE Application  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
17  
Product Folder Link(s): TAS5342A  
TAS5342A  
SLAS623NOVEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
GVDD (+12 V)  
PVDD  
2.2 W  
2.2 W  
3.3 W  
470 µF  
50 V  
100 nF  
GND  
100 nF  
10 nF  
50 V  
TAS5342ADDV  
GVDD_A  
GND  
GND  
GVDD_B  
GND  
10 µH  
Microcontroller  
I2C  
BST_A  
NC  
OTW  
33 nF 25 V  
GND  
NC  
PVDD_A  
PVDD_A  
OUT_A  
GND_A  
GND_B  
OUT_B  
PVDD_B  
BST_B  
BST_C  
PVDD_C  
OUT_C  
GND_C  
GND_D  
OUT_D  
PVDD_D  
PVDD_D  
NC  
NC  
SD  
100 nF  
PWM1_P  
PWM_A  
RESET_AB  
PWM_B  
OC_ADJ  
GND  
VALID  
3.3 W  
GND  
100 nF  
50 V  
PWM1_M  
1 nF  
50 V  
27 k  
1R  
10 nF  
50 V  
100 nF  
50 V  
10 µH  
10 µH  
33 nF 25 V  
GND  
AGND  
VREG  
M3  
1 µF  
100 nF  
50 V  
10 nF  
50 V  
25V  
33 nF  
1 nF  
50 V  
100 nF  
GND  
M2  
100 nF  
50 V  
GND  
3.3 W  
M1  
PWM_C  
RESET_CD  
PWM_D  
NC  
100 nF  
50 V  
GND  
NC  
10 µH  
TAS5508/18  
0 W  
GND  
BST_D  
GVDD_D  
VDD  
33 nF 25 V  
100 nF  
GVDD_C  
PVDD  
3.3 W  
GND  
470 µF  
50 V  
10 nF  
50 V  
100 nF  
GND  
100 nF  
2.2 W  
2.2 W  
GND  
GND  
GVDD (+12 V)  
VDD (+12 V)  
Figure 17. Typical Differential (2N) PBTL Application With AD Modulation Filters  
GVDD (+12 V)  
PVDD  
2.2 W  
2.2 W  
3.3 W  
470 µF  
50 V  
100 nF  
GND  
100 nF  
10 nF  
50 V  
TAS5342ADDV  
GVDD_A  
GND  
GND  
GVDD_B  
GND  
10 µH  
Microcontroller  
I2C  
BST_A  
NC  
OTW  
33 nF 25 V  
GND  
NC  
PVDD_A  
PVDD_A  
OUT_A  
GND_A  
GND_B  
OUT_B  
PVDD_B  
BST_B  
BST_C  
PVDD_C  
OUT_C  
GND_C  
GND_D  
OUT_D  
PVDD_D  
PVDD_D  
NC  
NC  
SD  
100 nF  
50 V  
PWM1_P  
PWM_A  
RESET_AB  
PWM_B  
OC_ADJ  
GND  
VALID  
3.3 W  
GND  
100 nF  
50 V  
PWM1_M  
1 nF  
50 V  
27 k  
1R  
10 nF  
50 V  
100 nF  
50 V  
10 µH  
10 µH  
33 nF 25 V  
GND  
AGND  
VREG  
M3  
1 µF  
100 nF  
50 V  
10 nF  
50 V  
25V  
33 nF  
1 nF  
50 V  
100 nF  
GND  
M2  
100 nF  
50 V  
GND  
3.3 W  
M1  
PWM_C  
RESET_CD  
PWM_D  
NC  
100 nF  
50 V  
GND  
NC  
10 µH  
TAS5508/18  
0 W  
GND  
BST_D  
GVDD_D  
VDD  
33 nF 25 V  
100 nF  
GVDD_C  
PVDD  
3.3 W  
GND  
470 µF  
50 V  
10 nF  
50 V  
100 nF  
GND  
100 nF  
2.2 W  
2.2 W  
GND  
GND  
GVDD (+12 V)  
VDD (+12 V)  
Figure 18. Typical Non-Differential (1N) PBTL Application  
18  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TAS5342A  
TAS5342A  
www.ti.com ........................................................................................................................................................................................... SLAS623NOVEMBER 2008  
THEORY OF OPERATION  
Special attention should be paid to the power-stage  
POWER SUPPLIES  
power supply; this includes component selection,  
PCB placement, and routing. As indicated, each  
half-bridge has independent power-stage supply pins  
(PVDD_X). For optimal electrical performance, EMI  
compliance, and system reliability, it is important that  
each PVDD_X pin is decoupled with a 100-nF  
ceramic capacitor placed as close as possible to  
each supply pin. It is recommended to follow the PCB  
layout of the TAS5342A reference design. For  
additional information on recommended power supply  
and required components, see the application  
diagrams given previously in this data sheet.  
To facilitate system design, the TAS5342A needs  
only a 12-V supply in addition to the (typical) 31.5-V  
power-stage supply. An internal voltage regulator  
provides suitable voltage levels for the digital and  
low-voltage analog circuitry. Additionally, all circuitry  
requiring a floating voltage supply, e.g., the high-side  
gate drive, is accommodated by built-in bootstrap  
circuitry requiring only an external capacitor for each  
half-bridge.  
In order to provide outstanding electrical and  
acoustical characteristics, the PWM signal path  
including gate drive and output stage is designed as  
identical, independent half-bridges. For this reason,  
each half-bridge has separate gate drive supply  
(GVDD_X), bootstrap pins (BST_X), and power-stage  
supply pins (PVDD_X). Furthermore, an additional pin  
(VDD) is provided as supply for all common circuits.  
Although supplied from the same 12-V source, it is  
highly recommended to separate GVDD_A,  
GVDD_B, GVDD_C, GVDD_D, and VDD on the  
printed-circuit board (PCB) by RC filters (see  
application diagram for details). These RC filters  
provide the recommended high-frequency isolation.  
Special attention should be paid to placing all  
decoupling capacitors as close to their associated  
pins as possible. In general, inductance between the  
power supply pins and decoupling capacitors must be  
avoided. (See reference board documentation for  
additional information.)  
The 12-V supply should be from  
a low-noise,  
low-output-impedance voltage regulator. Likewise, the  
31.5-V power-stage supply is assumed to have low  
output impedance and low noise. The power-supply  
sequence is not critical as facilitated by the internal  
power-on-reset circuit. Moreover, the TAS5342A is  
fully protected against erroneous power-stage turnon  
due to parasitic gate charging. Thus, voltage-supply  
ramp rates (dV/dt) are non-critical within the specified  
range (see the Recommended Operating Conditions  
section of this data sheet).  
SYSTEM POWER-UP/POWER-DOWN  
SEQUENCE  
Powering Up  
The TAS5342A does not require  
a
power-up  
sequence. The outputs of the H-bridges remain in a  
high-impedance state until the gate-drive supply  
voltage (GVDD_X) and VDD voltage are above the  
undervoltage protection (UVP) voltage threshold (see  
the Electrical Characteristics section of this data  
sheet). Although not specifically required, it is  
recommended to hold RESET_AB and RESET_CD in  
a low state while powering up the device. This allows  
an internal circuit to charge the external bootstrap  
capacitors by enabling a weak pulldown of the  
half-bridge output.  
For a properly functioning bootstrap circuit, a small  
ceramic capacitor must be connected from each  
bootstrap pin (BST_X) to the power-stage output pin  
(OUT_X). When the power-stage output is low, the  
bootstrap capacitor is charged through an internal  
diode connected between the gate-drive power--  
supply pin (GVDD_X) and the bootstrap pin. When  
the power-stage output is high, the bootstrap  
capacitor potential is shifted above the output  
potential and thus provides a suitable voltage supply  
for the high-side gate driver. In an application with  
PWM switching frequencies in the range from 352  
kHz to 384 kHz, it is recommended to use 33-nF  
ceramic capacitors, size 0603 or 0805, for the  
bootstrap supply. These 33-nF capacitors ensure  
sufficient energy storage, even during minimal PWM  
duty cycles, to keep the high-side power stage FET  
(LDMOS) fully turned on during the remaining part of  
the PWM cycle. In an application running at a  
reduced switching frequency, generally 192 kHz, the  
bootstrap capacitor might need to be increased in  
value.  
When the TAS5342A is being used with TI PWM  
modulators such as the TAS5518, no special  
attention to the state of RESET_AB and RESET_CD  
is required, provided that the chipset is configured as  
recommended.  
Powering Down  
The TAS5342A does not require a power-down  
sequence. The device remains fully operational as  
long as the gate-drive supply (GVDD_X) voltage and  
VDD voltage are above the undervoltage protection  
(UVP) voltage threshold (see the Electrical  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
19  
Product Folder Link(s): TAS5342A  
TAS5342A  
SLAS623NOVEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
Characteristics section of this data sheet). Although  
not specifically required, it is a good practice to hold  
RESET_AB and RESET_CD low during power down,  
thus preventing audible artifacts including pops or  
clicks.  
signal using the system microcontroller and  
responding to an overtemperature warning signal by,  
e.g., turning down the volume to prevent further  
heating of the device resulting in device shutdown  
(OTE).  
When the TAS5342A is being used with TI PWM  
modulators such as the TAS5518, no special  
attention to the state of RESET_AB and RESET_CD  
is required, provided that the chipset is configured as  
recommended.  
To reduce external component count, an internal  
pullup resistor to 3.3 V is provided on both SD and  
OTW outputs. Level compliance for 5-V logic can be  
obtained by adding external pullup resistors to 5 V  
(see the Electrical Characteristics section of this data  
sheet for further specifications).  
Mid Z Sequence Compatability  
DEVICE PROTECTION SYSTEM  
The TAS5342A is compatable with the Mid  
Z
sequence of the TAS5086 Modulator. The Mid Z  
Sequence is a series of pulses that is generated by  
the modulator. This sequence causes the power  
stage to slowly enable its outputs as it begins to  
switch.  
The TAS5342A contains advanced protection circuitry  
carefully designed to facilitate system integration and  
ease of use, as well as to safeguard the device from  
permanent failure due to a wide range of fault  
conditions such as short circuits, overload,  
overtemperature, and undervoltage. The TAS5342A  
responds to a fault by immediately setting the power  
stage in a high-impedance (Hi-Z) state and asserting  
the SD pin low. In situations other than overload and  
By slowly starting the PWM switching, the impulse  
response created by the onset of switching is  
reduced. This impulse response is the acoustic  
artifact that is heard in the output transducers  
(loudspeakers) and is commonly termed "click" or  
"pop".  
over-temperature  
error  
(OTE),  
the  
device  
automatically recovers when the fault condition has  
been removed, i.e., the supply voltage has increased.  
The low acoustic artifact noise of the TAS5342A will  
be further decreased when used in conjunction with  
the TAS5086 modulator with the Mid Z Sequence  
enabled.  
The device will function on errors, as shown in the  
following table.  
BTL MODE  
Local  
Error Turns Off Error  
PBTL MODE  
SE MODE  
Local  
Local  
The Mid Z sequence is primarily used for the  
single-ended output configuration. It facilitates a  
"softer" PWM output start after the split cap output  
configuration is charged.  
Turns Off  
Error  
In  
Turns Off  
In  
A
B
C
D
In  
A
B
C
D
A
B
C
D
A + B  
C + D  
A + B  
C + D  
A + B + C  
+ D  
ERROR REPORTING  
The SD and OTW pins are both active-low,  
open-drain  
outputs.  
Their  
function  
is  
for  
Bootstrap UVP does not shutdown according to the  
table, it shutsdown the respective halfbridge.  
protection-mode signaling to a PWM controller or  
other system-control device.  
Use of TAS5342A in High-Modulation-Index  
Capable Systems  
Any fault resulting in device shutdown is signaled by  
the SD pin going low. Likewise, OTW goes low when  
the device junction temperature exceeds 125°C (see  
the following table).  
This device requires at least 30 ns of low time on the  
output per 384-kHz PWM frame rate in order to keep  
the bootstrap capacitors charged. As an example, if  
the modulation index is set to 99.2% in the TAS5508,  
this setting allows PWM pulse durations down to 10  
ns. This signal, which does not meet the 30-ns  
requirement, is sent to the PWM_X pin and this  
low-state pulse time does not allow the bootstrap  
capacitor to stay charged. The TAS5342A device  
requires limiting the TAS5508 modulation index to  
97.7% to keep the bootstrap capacitor charged under  
all signals and loads.  
SD OTW  
DESCRIPTION  
Overtemperature (OTE) or overload (OLP) or  
undervoltage (UVP)  
0
0
1
0
1
0
Overload (OLP) or undervoltage (UVP)  
Junction temperature higher than 125°C  
(overtemperature warning)  
Junction temperature lower than 125°C and no  
OLP or UVP faults (normal operation)  
1
1
Note that asserting either RESET_AB or RESET_CD  
low forces the SD signal high, independent of faults  
being present. TI recommends monitoring the OTW  
The TAS5342A contains a bootstrap capacitor under  
voltage protection circuit (BST_UVP) that monitors  
the voltage on the bootstrap capacitors. When the  
20  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TAS5342A  
TAS5342A  
www.ti.com ........................................................................................................................................................................................... SLAS623NOVEMBER 2008  
voltage on the bootstrap capacitors is less than  
required for proper control of the High-Side  
MOSFETs, the device will initiate bootstrap capacitor  
recharge sequences until the bootstrap capacitors are  
properly charged for robust operation. This function  
may be activated with PWM pulses less than 30 nS.  
In general, it is recommended to follow closely the  
external component selection and PCB layout as  
given in the Application section.  
For added flexibility, the OC threshold is  
programmable within a limited range using a single  
external resistor connected between the OC_ADJ pin  
and AGND. (See the Electrical Characteristics section  
of this data sheet for information on the correlation  
between programming-resistor value and the OC  
Therefore, TI strongly recommends using a TI PWM  
processor, such as TAS5518, TAS5086 or TAS5508,  
with the modulation index set at 97.7% to interface  
with TAS5342A.  
threshold.) It should be noted that  
a properly  
functioning overcurrent detector assumes the  
presence of a properly designed demodulation filter at  
the power-stage output. Short-circuit protection is not  
provided directly at the output pins of the power stage  
but only on the speaker terminals (after the  
demodulation filter). It is required to follow certain  
guidelines when selecting the OC threshold and an  
appropriate demodulation inductor:  
Overcurrent (OC) Protection With Current  
Limiting and Overload Detection  
The device has independent, fast-reacting current  
detectors with programmable trip threshold (OC  
threshold) on all high-side and low-side power-stage  
FETs. See the following table for OC-adjust resistor  
values. The detector outputs are closely monitored by  
two protection systems. The first protection system  
controls the power stage in order to prevent the  
output current from further increasing, i.e., it performs  
a current-limiting function rather than prematurely  
shutting down during combinations of high-level  
music transients and extreme speaker load  
impedance drops. If the high-current situation  
persists, i.e., the power stage is being overloaded, a  
OC-Adjust Resistor Values Max. Current Before OC Occurs  
(k)  
(A), TC=75°C  
27  
10.1  
9.1  
33  
47  
7.1  
The reported max peak current in the table above is  
measured with continuous current in 1 , one  
channel active and the other one muted.  
second protection system triggers  
a
latching  
shutdown, resulting in the power stage being set in  
the high-impedance (Hi-Z) state. Current limiting and  
overload protection are independent for half-bridges  
A and B and, respectively, C and D. That is, if the  
bridge-tied load between half-bridges A and B causes  
an overload fault, only half-bridges A and B are shut  
down.  
Pin-To-Pin Short Circuit Protection System  
(PPSC)  
The PPSC detection system protects the device from  
permanent damage in the case that a power output  
pin (OUT_X) is shorted to GND_X or PVDD_X. For  
comparison the OC protection system detects an over  
current after the demodulation filter where PPSC  
detects shorts directly at the pin before the filter.  
PPSC detection is performed at startup i.e. when  
VDD is supplied, consequently a short to either  
GND_X or PVDD_X after system startup will not  
activate the PPSC detection system. When PPSC  
detection is activated by a short on the output, all half  
bridges are kept in a Hi-Z state until the short is  
removed, the device then continues the startup  
sequence and starts switching. The detection is  
controlled globally by a two step sequence. The first  
step ensures that there are no shorts from OUT_X to  
GND_X, the second step tests that there are no  
shorts from OUT_X to PVDD_X. The total duration of  
this process is roughly proportional to the capacitance  
of the output LC filter. The typical duration is < 15  
ms/µF. While the PPSC detection is in progress, SD  
is kept low, and the device will not react to changes  
applied to the RESET pins. If no shorts are present  
the PPSC detection passes, and SD is released. A  
device reset will not start a new PPSC detection.  
For the lowest-cost bill of materials in terms of  
component selection, the OC threshold measure  
should be limited, considering the power output  
requirement and minimum load impedance.  
Higher-impedance loads require  
threshold.  
a lower OC  
The demodulation-filter inductor must retain at  
least 5 µH of inductance at twice the OC threshold  
setting.  
Unfortunately, most inductors have decreasing  
inductance with increasing temperature and  
increasing current (saturation). To some degree, an  
increase in temperature naturally occurs when  
operating at high output currents, due to core losses  
and the dc resistance of the inductor's copper  
winding. A thorough analysis of inductor saturation  
and thermal properties is strongly recommended.  
Setting the OC threshold too low might cause issues  
such as lack of enough output power and/or  
unexpected shutdowns due to too-sensitive overload  
detection.  
Copyright © 2008, Texas Instruments Incorporated  
Submit Documentation Feedback  
21  
Product Folder Link(s): TAS5342A  
TAS5342A  
SLAS623NOVEMBER 2008 ........................................................................................................................................................................................... www.ti.com  
PPSC detection is enabled in BTL and PBTL output  
configurations, the detection is not performed in SE  
mode. To make sure not to trip the PPSC detection  
system it is recommended not to insert resistive load  
to GND_X or PVDD_X.  
VDD or GVDD_X pin results in all half-bridge outputs  
immediately being set in the high-impedance (Hi-Z)  
state and SD being asserted low. The device  
automatically resumes operation when all supply  
voltages have increased above the UVP threshold.  
Overtemperature Protection  
DEVICE RESET  
The  
TAS5342A  
has  
a
two-level  
Two reset pins are provided for independent control  
of half-bridges A/B and C/D. When RESET_AB is  
asserted low, all four power-stage FETs in half--  
bridges A and B are forced into a high-impedance  
(Hi-Z) state. Likewise, asserting RESET_CD low  
forces all four power-stage FETs in half-bridges C  
and D into a high-impedance state. Thus, both reset  
pins are well suited for hard-muting the power stage if  
needed.  
temperature-protection system that asserts an  
active-low warning signal (OTW) when the device  
junction temperature exceeds 125°C (nominal) and, if  
the device junction temperature exceeds 155°C  
(nominal), the device is put into thermal shutdown,  
resulting in all half-bridge outputs being set in the  
high-impedance (Hi-Z) state and SD being asserted  
low. OTE is latched in this case. To clear the OTE  
latch, either RESET_AB or RESET_CD must be  
asserted. Thereafter, the device resumes normal  
operation.  
In BTL modes, to accommodate bootstrap charging  
prior to switching start, asserting the reset inputs low  
enables weak pulldown of the half-bridge outputs. In  
the SE mode, the weak pulldowns are not enabled,  
and it is therefore recommended to ensure bootstrap  
capacitor charging by providing a low pulse on the  
PWM inputs when reset is asserted high.  
Undervoltage Protection (UVP) and Power-On  
Reset (POR)  
The UVP and POR circuits of the TAS5342A fully  
protect the device in any power-up/down and  
brownout situation. While powering up, the POR  
circuit resets the overload circuit (OLP) and ensures  
that all circuits are fully operational when the  
GVDD_X and VDD supply voltages reach stated in  
the Electrical Characteristics Table. Although  
GVDD_X and VDD are independently monitored, a  
supply voltage drop below the UVP threshold on any  
Asserting either reset input low removes any fault  
information to be signalled on the SD output, i.e., SD  
is forced high.  
A rising-edge transition on either reset input allows  
the device to resume operation after an overload  
fault. To ensure thermal reliability, the rising edge of  
reset must occur no sooner than 4ms after the falling  
edge of SD.  
22  
Submit Documentation Feedback  
Copyright © 2008, Texas Instruments Incorporated  
Product Folder Link(s): TAS5342A  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Dec-2008  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0 (mm)  
B0 (mm)  
K0 (mm)  
P1  
W
Pin1  
Diameter Width  
(mm) W1 (mm)  
(mm) (mm) Quadrant  
TAS5342ADDVR  
HTSSOP DDV  
44  
2000  
330.0  
24.4  
8.6  
15.6  
1.8  
12.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Dec-2008  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP DDV 44  
SPQ  
Length (mm) Width (mm) Height (mm)  
346.0 346.0 41.0  
TAS5342ADDVR  
2000  
Pack Materials-Page 2  
IMPORTANT NOTICE  
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,  
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should  
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are  
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.  
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard  
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where  
mandated by government requirements, testing of all parameters of each product is not necessarily performed.  
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and  
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide  
adequate design and operating safeguards.  
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,  
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information  
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a  
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual  
property of the third party, or a license from TI under the patents or other intellectual property of TI.  
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied  
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive  
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional  
restrictions.  
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all  
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not  
responsible or liable for any such statements.  
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably  
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing  
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and  
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products  
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be  
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in  
such safety-critical applications.  
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are  
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military  
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at  
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.  
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are  
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated  
products in automotive applications, TI will not be responsible for any failure to meet such requirements.  
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:  
Products  
Applications  
Audio  
Automotive  
Broadband  
Digital Control  
Medical  
Amplifiers  
Data Converters  
DSP  
Clocks and Timers  
Interface  
amplifier.ti.com  
dataconverter.ti.com  
dsp.ti.com  
www.ti.com/clocks  
interface.ti.com  
logic.ti.com  
www.ti.com/audio  
www.ti.com/automotive  
www.ti.com/broadband  
www.ti.com/digitalcontrol  
www.ti.com/medical  
www.ti.com/military  
Logic  
Military  
Power Mgmt  
Microcontrollers  
RFID  
power.ti.com  
microcontroller.ti.com  
www.ti-rfid.com  
Optical Networking  
Security  
Telephony  
Video & Imaging  
Wireless  
www.ti.com/opticalnetwork  
www.ti.com/security  
www.ti.com/telephony  
www.ti.com/video  
RF/IF and ZigBee® Solutions www.ti.com/lprf  
www.ti.com/wireless  
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2008, Texas Instruments Incorporated  

相关型号:

TAS5342A_13

100 W STEREO DIGITAL AMPLIFIER POWER STAGE
TI

TAS5342DDV

100 W STEREO DIGITAL AMPLIFIER POWER STAGE
TI

TAS5342DDVG4

200W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO44, GREEN, PLASTIC, HTSSOP-44
TI

TAS5342DDVR

100-W Stereo Digital Amplifier Power Stage 44-HTSSOP 0 to 70
TI

TAS5342DDVRG4

100-W Stereo Digital Amplifier Power Stage 44-HTSSOP 0 to 70
TI

TAS5342L

100 W STEREO DIGITAL AMPLIFIER POWER STAGE
TI

TAS5342LA

100 W STEREO DIGITAL AMPLIFIER POWER STAGE
TI

TAS5342LADDV

100 W STEREO DIGITAL AMPLIFIER POWER STAGE
TI

TAS5342LADDVR

100 W STEREO DIGITAL AMPLIFIER POWER STAGE
TI

TAS5342LDDV

100 W STEREO DIGITAL AMPLIFIER POWER STAGE
TI

TAS5342LDDVG4

100 W STEREO DIGITAL AMPLIFIER POWER STAGE
TI

TAS5342LDDVR

100 W STEREO DIGITAL AMPLIFIER POWER STAGE
TI