TAS5441-Q1 [TI]

具有负载突降保护和 I2C 诊断功能的 22W 模拟输入单通道汽车级 D 类音频放大器;
TAS5441-Q1
型号: TAS5441-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有负载突降保护和 I2C 诊断功能的 22W 模拟输入单通道汽车级 D 类音频放大器

放大器 音频放大器
文件: 总36页 (文件大小:1687K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
TAS5441-Q1 22 具有负载突降I2C 诊断功能W 具有负载突降I2C 诊断功  
能的模拟输入单通道汽D 类音频放大器  
1 特性  
2 应用  
• 符合汽车应用要求AEC-Q100 标准  
汽车类紧急呼(eCall) 放大器  
车载通讯系统  
仪表板系统  
– 温度等1: 40 ° C 125 ° C T A  
• 单声BTL 数字功率放大器  
22 负载4ΩTHD+N 10% 时的输出功率为  
W
4.5V 18V 运行电压范围  
• 负载4Ω的效率85%  
• 差分模拟输入  
• 采用可调功率限制器Speaker Guard™ 扬声器保  
75dB 电源抑制(PSRR)  
• 负载诊断功能  
信息娱乐音频  
3 说明  
TAS5441-Q1 是一款单声道 D 类音频放大器适用于  
汽车类紧急呼叫 (eCall)、远程信息处理、仪表组和信  
息娱乐系统应用。该器件采用 14.4 VDC 汽车电池供  
可在负载为 4Ω 且 THD+N 不超过 10% 的情况下  
提供高达 22W 的功率。该器件具有宽工作电压范围和  
优异的效率是需要启停支持或使用备用电池运行时的  
理想选择。集成的负载突降保护能够缩减外部电压钳位  
电路的成本与尺寸板载负载诊断功能能够通过 I2C 报  
告扬声器状态。  
– 开路和短路输出负载  
– 输出到电源和输出到接地短接  
• 保护和监控功能:  
– 短路保护  
器件信息  
封装(1)  
40V 负载突降保护符ISO-7637-2 标准  
– 在音乐播放的同时进行输出直流电平检测  
– 过热保护  
封装尺寸标称值)  
器件型号  
TAS5441-Q1  
HTSSOP (16)  
5.00mm x 4.40mm  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 欠压和过压保护  
• 采PowerPAD封装焊盘朝下的耐热增强型  
16 HTSSOP (PWP) 封装  
• 旨在满足汽车电磁兼容(EMC) 要求  
ISO9000已通2002 TS16949 认证  
• 待机40V 负载突降保护  
• 待机时无阻I2C  
简化版方框图  
输出功率效率  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLOSE41  
 
 
 
 
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
Table of Contents  
7.4 Device Functional Modes..........................................17  
7.5 Register Maps...........................................................18  
8 Application and Implementation..................................20  
8.1 Application Information............................................. 20  
8.2 Typical Application.................................................... 20  
8.3 Power Supply Recommendations.............................23  
8.4 Layout....................................................................... 24  
9 Device and Documentation Support............................28  
9.1 Device Support......................................................... 28  
9.2 Documentation Support............................................ 28  
9.3 接收文档更新通知..................................................... 28  
9.4 支持资源....................................................................28  
9.5 Trademarks...............................................................28  
9.6 静电放电警告............................................................ 28  
9.7 术语表....................................................................... 28  
10 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Timing Requirements for I2C Interface Signals...........7  
6.7 Typical Characteristics................................................8  
7 Detailed Description......................................................10  
7.1 Overview...................................................................10  
7.2 Functional Block Diagram.........................................10  
7.3 Feature Description...................................................11  
Information.................................................................... 28  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision A (June 2020) to Revision B (January 2023)  
Page  
Changed Voltage gain minimum/maximum values in Electrical Characteristics table........................................5  
Added minimum value to Overcurrent (OC) Shutdown Protection in Electrical Characteristics table ............... 5  
Changes from Revision * (April 2020) to Revision A (June 2020)  
Page  
• 将数据表状态从预告信更改为生产数.........................................................................................................1  
Copyright © 2023 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TAS5441-Q1  
 
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
5 Pin Configuration and Functions  
16  
15  
14  
13  
GND  
GND  
1
2
STANDBY  
PVDD  
FAULT  
BYP  
SDA  
3
4
BSTP  
OUTP  
OUTN  
BSTN  
GND  
Thermal Pad  
12  
11  
10  
9
SCL  
IN_P  
5
6
7
8
IN_N  
MUTE  
Not to scale  
5-1. PWP Package, 16-Pin, TSSOP With Exposed Thermal Pad (Top View)  
5-1. Pin Functions Table  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
BSTN  
NO.  
10  
AI  
AI  
Bootstrap for negative-output high-side FET  
BSTP  
BYP  
13  
Bootstrap for positive-output high-side FET  
3
PBY  
DO  
GND  
AI  
Voltage-regulator bypass-capacitor pin  
FAULT  
GND  
14  
Active-low open-drain output used to report faults  
1, 9, 16  
Ground  
IN_N  
7
6
Inverting analog input  
IN_P  
AI  
Non-inverting analog input  
MUTE  
OUTN  
OUTP  
PVDD  
SCL  
8
DI  
Mute input, active-high (no internal pullup or pulldown)  
11  
12  
15  
5
PO  
PO  
PWR  
DI  
Output ()  
Output (+)  
Power supply  
I2C clock  
SDA  
4
DI/DO  
DI  
I2C data  
STANDBY  
Thermal pad  
2
Active-low STANDBY pin (no internal pullup or pulldown)  
Must be soldered to ground  
(1) DI = digital input, DO = digital output, AI = analog input, PWR = power supply, PBY = power bypass, PO = power output, GND =  
ground  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TAS5441-Q1  
 
 
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted) (1)  
MIN  
0.3  
1  
MAX  
30  
40  
15  
5
UNIT  
V
DC supply voltage range, V(PVDD)  
Pulsed supply voltage range, V(PVDD_MAX)  
Supply voltage ramp rate, ΔV(PVDD_RAMP)  
For SCL, SDA, and STANDBY, FAULT pins  
For IN_N, IN_P, , and MUTE pins  
BYP  
Relative to GND  
t 400 ms exposure  
V/ms  
Relative to GND  
Relative to GND  
Relative to GND  
Relative to BYP  
Relative to GND  
Relative to GND  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
Input voltage  
6.5  
7
V
BSTN, BSTP  
30  
36.3  
30  
±4  
±1  
7
BSTN, BSTP  
OUTN, OUTP  
DC current on PVDD, GND and OUTx pins, I(PVDD), IO  
A
(2)  
Current  
Maximum current, on all input pins, I(IN_MAX)  
mA  
°C  
Maximum sink current for open-drain pin, I(IN_ODMAX)  
Storage temperature, Tstg  
150  
55  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) See the section for information on analog input voltage and ac coupling.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human-body model (HBM), per AEC Q100-002(1)  
HBM ESD Classification Level H2  
±3500  
V(ESD)  
Electrostatic discharge  
V
Charged-device model (CDM), per AEC Q100-011  
CDM ESD Classification Level C5  
±1000  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
MIN  
4.5  
5
NOM  
14.4  
14.4  
MAX  
UNIT  
18  
4-Ω±20% load (or higher)  
2-Ω±20% load  
Supply voltage range relative to GND. Includes  
ac transients, requires proper decoupling.(3)  
V(PVDD_OP)  
V
18  
1
V(PVDD_RIPPLE)  
V(MUTE)  
Maximum ripple on PVDD  
V(PVDD) < 8 V  
Vpp  
V
MUTE pin voltage range relative to GND  
Analog audio input-signal level  
-0.3  
0
3.3  
5.5  
(1)  
0.251(2)  
V(AIN)  
AC-coupled input voltage  
Vrms  
MUTE and STANDBY pins input voltage for  
logic-level high  
V(IH_STANDBY)  
V(IL_STANDBY)  
V(IH_SCL)  
2
V
V
V
V
V
MUTE and STANDBY pins input voltage for  
logic-level low  
0.7  
R(PU_I2C) = 4.7-kΩpullup, supply voltage = 3.3  
V or 5 V  
SCL pin input voltage for logic-level high  
SDA pin input voltage for logic-level high  
SCL pin input voltage for logic-level low  
2.1  
2.1  
R(PU_I2C) = 4.7-kΩpullup, supply voltage = 3.3  
V or 5 V  
V(IH_SDA)  
R(PU_I2C) = 4.7-kΩpullup, supply voltage = 3.3  
V or 5 V  
V(IL_SCL)  
1.1  
R(PU_I2C) = 4.7-kΩpullup, supply voltage = 3.3  
V or 5 V  
V(IL_SDA)  
TA  
SDA pin input voltage for logic-level low  
Ambient temperature  
1.1  
V
125  
°C  
40  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TAS5441-Q1  
 
 
 
 
 
 
 
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
6.3 Recommended Operating Conditions (continued)  
MIN  
NOM  
MAX  
UNIT  
When using low-impedance loads, do not  
exceed overcurrent limit.  
R(L)  
Nominal speaker load impedance  
2
4
16  
Ω
Pullup voltage supply (for open-drain logic  
outputs)  
V(PU) must be less than (V(PVDD) - 1V) during  
normal operation.  
V(PU)  
3
3.3  
5.5  
V
External pullup resistor on open-drain logic  
outputs  
Resistor connected between open-drain logic  
output and V(PU) supply.  
R(PU_EXT)  
R(PU_I2C)  
C(PVDD)  
10  
1
50  
10  
kΩ  
kΩ  
μF  
I2C pullup resistance on SDA and SCL pins  
4.7  
10  
External capacitor on the PVDD pin, typical  
value ± 20%(3)  
External capacitor on the BYP pin, typical  
value ± 10%  
C(BYP)  
C(OUT)  
C(IN)  
1
μF  
μF  
μF  
External capacitance to GND on OUT_X pins  
4
External capacitance to analog input pin in  
series with input signal  
1
External boostrap capacitor, typical value ±  
20%  
C(BSTN), C(BSTP)  
220  
nF  
(1) Signal input for full unclipped output with gains of 36 dB, 32 dB, 26 dB, and 20 dB  
(2) Maximum recommended input voltage is determined by the gain setting.  
(3) See the section.  
6.4 Thermal Information  
TAS5441  
THERMAL METRIC(1)  
PWP (HTSSOP)  
UNIT  
16 PINS  
39.4  
24.9  
20  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.6  
ψJT  
19.8  
2
ψJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
TC = 25°C, PVDD = 14.4 V, RL = 4 Ω, P(O) = 1 W/ch, AES17 filter, default I2C settings (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
OPERATING CURRENT  
PVDD idle current  
PVDD standby current  
OUTPUT POWER  
In PLAY mode, no audio present  
16  
5
mA  
STANDBY mode, MUTE = 0 V  
20  
µA  
18  
22  
4 Ω, THD+N 1%, 1 kHz, TC = 75°C  
4 Ω, THD+N = 10%, 1 kHz, TC = 75°C  
4 Ω, P(O) = 22 W (10% THD)  
Output power per channel  
W
Power efficiency  
85%  
AUDIO PERFORMANCE  
Noise voltage at output  
G = 20 dB, zero input, and A-weighting  
f = 1 kHz, 100 mVrms referenced to GND, G = 20 dB  
PVDD = 14.4 Vdc + 1 Vrms, f = 1 kHz  
P(O) = 1 W, f = 1 kHz  
65  
63  
µV  
dB  
Common-mode rejection ratio  
Power-supply rejection ratio  
Total harmonic distortion + noise  
75  
0.05%  
400  
Switching frequency selectable for AM interference  
avoidance  
Switching frequency  
kHz  
500  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TAS5441-Q1  
 
 
 
 
 
 
 
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
TC = 25°C, PVDD = 14.4 V, RL = 4 Ω, P(O) = 1 W/ch, AES17 filter, default I2C settings (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Internal common-mode input bias voltage  
Internal bias applied to IN_N, IN_P pins  
3
V
19.25  
25.25  
31.25  
35.25  
20  
26  
32  
36  
20.75  
Source impedance = 0 Ω, register 0x03 bits 76 = 00  
Source impedance = 0 Ω, register 0x03 bits 76 = 01  
Source impedance = 0 Ω, register 0x03 bits 76 = 10  
Source impedance = 0 Ω, register 0x03 bits 76 = 11  
26.75  
dB  
32.75  
Voltage gain (VO / VIN  
)
36.75  
PWM OUTPUT STAGE  
FET drain-to-source resistance  
Output offset voltage  
TJ = 25°C  
180  
mΩ  
Zero input signal, G = 20 dB  
±25  
mV  
PVDD OVERVOLTAGE (OV) PROTECTION  
PVDD overvoltage-shutdown set  
PVDD overvoltage-shutdown hysteresis  
PVDD UNDERVOLTAGE (UV) PROTECTION  
PVDD undervoltage-shutdown set  
PVDD undervoltage-shutdown hysteresis  
BYP  
19.5  
3.6  
21  
22.5  
V
V
0.6  
4
4.4  
V
V
0.25  
BYP pin voltage  
6.4  
6.9  
0.3  
7.4  
4.1  
V
POWER-ON RESET (POR)  
PVDD voltage for POR  
V
V
PVDD recovery hysteresis voltage for POR  
OVERTEMPERATURE (OT) PROTECTION  
Junction temperature for overtemperature shutdown  
155  
170  
15  
°C  
°C  
Junction temperature overtemperature shutdown  
hystersis  
OVERCURRENT (OC) SHUTDOWN PROTECTION  
Maximum current (peak output current) (1)  
STANDBY PIN  
2.45  
3.5  
0.1  
2.9  
A
STANDBY pin current  
0.2  
µA  
DC DETECT  
DC detect threshold  
V
DC detect step response time  
FAULT REPORT  
700  
ms  
FAULT pin output voltage for logic-level high (open-drain  
logic output)  
2.4  
V
V
External 47-kΩpullup resistor to 3.3 V  
External 47-kΩpullup resistor to 3.3 V  
FAULT pin output voltage for logic-level low (open-drain  
logic output)  
0.5  
LOAD DIAGNOSTICS  
Resistance to detect a short from OUT pins to PVDD or  
ground  
200  
Ω
Open-circuit detection threshold  
Short-circuit detection threshold  
I2C  
Including speaker wires  
Including speaker wires  
70  
95  
120  
1.5  
Ω
Ω
0.9  
1.2  
SDA pin output voltage for logic-level high  
SDA pin output voltage for logic-level low  
Capacitance for SCL and SDA pins  
Capacitance for SDA pin  
2.4  
V
V
R(PU_I2C) = 4.7-kΩpullup, supply voltage = 3.3 V or 5 V  
3-mA sink current  
0.4  
10  
pF  
pF  
STANDBY mode  
30  
(1) This parameter is validated by design and verified during product characterization. It is not tested in production.  
Copyright © 2023 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TAS5441-Q1  
 
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
6.6 Timing Requirements for I2C Interface Signals  
over recommended operating conditions (unless otherwise noted)  
MIN  
NOM  
MAX  
400  
300  
300  
UNIT  
kHz  
ns  
f(SCL)  
tr  
SCL clock frequency  
Rise time for both SDA and SCL signals  
Fall time for both SDA and SCL signals  
SCL pulse duration, high  
tf  
ns  
tw(H)  
tw(L)  
tsu(2)  
th(2)  
tsu(1)  
th(1)  
tsu(3)  
C(B)  
0.6  
1.3  
0.6  
0.6  
100  
0(1)  
0.6  
µs  
SCL pulse duration, low  
µs  
Setup time for START condition  
START condition hold time before generation of first clock pulse  
Data setup time  
µs  
µs  
ns  
Data hold time  
ns  
Setup time for STOP condition  
Load capacitance for each bus line  
µs  
400  
pF  
(1) A device must internally provide a hold time of at least 300 ns for the SDA signal to bridge the undefined region of the falling edge of  
SCL.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TAS5441-Q1  
 
 
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
6.7 Typical Characteristics  
TC = 25°C, PVDD = 14.4 V, RL = 4 Ω, P(O) = 1 W/ch, AES17 filter, 1-kHz input, default I2C settings (unless  
otherwise noted)  
10  
2 W  
4 W  
1
0.1  
0.01  
0.01  
0.1  
1
Output Power (W)  
10  
30  
D002  
6-2. THD+N vs Output Power  
Gain = 26 dB  
f(SW) = 400 kHz  
TA = 25°C  
V(PVDD) = 14.4 V  
6-1. Efficiency vs Output Power  
1
30  
25  
20  
15  
10  
5
2 W, 1 W  
2 W, 5 W  
4 W, 1 W  
4 W, 5 W  
2 W, 1% THD  
2 W, 10% THD  
4 W, 1% THD  
4 W, 10% THD  
0.1  
0.01  
0.001  
0
20  
100  
1k  
Frequency (Hz)  
10k 20k  
5
6
7
8
9
Supply Voltage (V)  
10 11 12 13 14 15 16  
D004  
D003  
6-4. THD+N vs Frequency  
6-3. Output Power vs PVDD  
0
0
-20  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k  
Frequency (Hz)  
0
2k 4k 6k 8k 10k 12k 14k 16k 18k 20k 22k 24k  
Frequency (Hz)  
D005  
D006  
6-5. Noise FFT With 60-dB Output  
6-6. Noise FFT With 1-W Output  
Copyright © 2023 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TAS5441-Q1  
 
 
 
 
 
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
0
25  
35  
45  
55  
65  
75  
Ambient Temperature (ºC)  
85  
95 105 115 125  
D007  
6-7. Overcurrent Threshold vs Temperature  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TAS5441-Q1  
 
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
7 Detailed Description  
7.1 Overview  
The TAS5441-Q1 is a mono analog-input class-D audio amplifier for use in an automotive environment. The  
design uses an ultra-efficient class-D technology developed by Texas Instruments with additional features  
specific to the automotive industry. The class-D technology allows for reduced power consumption, reduced  
heat, and reduced peak currents in the electrical system. The device realizes an audio sound system design with  
smaller size and lower weight than traditional class-AB devices.  
The TAS5441-Q1 device has seven core design blocks:  
PWM  
Gate drive  
Power FETs  
Diagnostics  
Protection  
Power supply  
I2C serial communication bus  
7.2 Functional Block Diagram  
Overcurrent Detection  
PVDD  
SDA  
SCL  
LDO  
Regulator  
DC Detection  
Biases  
and  
References  
GVDD  
I2C  
Protection  
Control  
BYP  
Thermal Protection  
Voltage Protection  
GVDD  
BSTN  
Short-to-Ground  
Short-to-Power  
Shorted Load  
Open Load  
PVDD  
Control  
Diagnostics  
Control  
FAULT  
MUTE  
Gate  
Drive  
OUTN  
STANDBY  
GND  
Pulse  
Width  
GVDD  
IN_N  
IN_P  
Gain  
Control  
Speaker  
Guard  
Preamplifier  
BSTP  
Modulator  
(PWM)  
PVDD  
GND  
Gate  
Drive  
OUTP  
GND  
Copyright © 2023 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TAS5441-Q1  
 
 
 
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
7.3 Feature Description  
7.3.1 Analog Audio Input and Preamplifier  
The differential input stage of the amplifier cancels common-mode noise that appears on the inputs. For a  
differential audio source, connect the positive lead to IN_P and the negative lead to IN_N. The inputs must be  
ac-coupled to minimize the output dc-offset and make sure of correct ramping of the output voltages. For good  
transient performance, the impedance seen at each of the two differential inputs is the same.  
The gain setting impacts the analog input impedance of the amplifier. See Input Impedance and Gain for typical  
values.  
7-1. Input Impedance and Gain  
Gain  
20 dB  
26 dB  
32 dB  
36 dB  
Input Impedance  
60 kΩ± 20%  
30 kΩ± 20%  
15 kΩ± 20%  
9 kΩ± 20%  
7.3.2 Pulse-Width Modulator (PWM)  
The PWM converts the analog signal from the preamplifier into a switched signal of varying duty cycle. This is  
the critical stage that defines the class-D architecture. In the TAS5441-Q1, the modulator is an advanced design  
with high bandwidth, low noise, low distortion, and excellent stability.  
The pulse-width modulation scheme allows increased efficiency at low power. Each output is switching from 0 V  
to PVDD. The OUTP and OUTN pins are in phase with each other with no input so that there is little or no  
current in the speaker. The duty cycle of OUTP is greater than 50% and the duty cycle OUTN is less than 50%  
for positive output voltages. The duty cycle of OUTN is greater than 50% and the duty cycle of OUTP is less than  
50% for negative output voltages. The voltage across the load is at 0 V through most of the switching period,  
reducing power loss.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TAS5441-Q1  
 
 
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
OUTP  
OUTN  
No Output  
OUTP – OUTN  
0 V  
0 A  
Speaker  
Current  
OUTP  
OUTN  
Positive Output  
PVDD  
0 V  
OUTP – OUTN  
Speaker  
Current  
0 A  
OUTP  
OUTN  
Negative Output  
0 V  
OUTP – OUTN  
–PVDD  
0 A  
Speaker  
Current  
7-1. BD Mode Modulation  
Copyright © 2023 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TAS5441-Q1  
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
7.3.3 Gate Drive  
The gate driver accepts the low-voltage PWM signal and level-shifts the signal to drive a high-current, full-bridge,  
power FET stage. The device uses proprietary techniques to optimize EMI and audio performance.  
7.3.4 Power FETs  
The BTL output comprises four matched N-channel FETs for high efficiency and maximum power transfer to the  
load. By design, the FETs withstand large voltage transients during a load-dump event.  
7.3.5 Load Diagnostics  
The device incorporates load diagnostic circuitry designed for detecting and determining the status of output  
connections. The device supports the following diagnostics:  
Short to GND  
Short to PVDD  
Short across load  
Open load  
The device reports the presence of any of the short or open conditions to the system via I2C register read.  
7.3.5.1 Load Diagnostics Sequence  
The load diagnostic function runs on de-assertion of STANDBY or when the device is in a fault state (dc detect,  
overcurrent, overvoltage, undervoltage, and overtemperature). During this test, the outputs are in a Hi-Z state.  
The device determines whether the output is a short to GND, short to PVDD, open load, or shorted load. The  
load diagnostic biases the output, which therefore requires limiting the capacitance value for proper functioning;  
see the Recommended Operating Conditions. The load diagnostic test takes approximately 229 ms to run. Note  
that the check phase repeats up to five times if a fault is present or a large capacitor to GND is present on the  
output. On detection of an open load, the output still operates. On detection of any other fault condition, the  
output goes into a Hi-Z state, and the device checks the load continuously until removal of the fault condition.  
After detection of a normal output condition, the audio output starts. The load diagnostics run after every other  
overvoltage (OV) event. The load diagnostic for open load only has I2C reporting. All other faults have I2C and  
FAULT pin assertion.  
The device performs load diagnostic tests as shown in 7-2.  
7-3 illustrates how the diagnostics determine the load based on output conditions.  
Discharge  
(75 ms)  
Ramp Up  
(52 ms)  
Check  
(50 ms)  
Ramp Down  
(52 ms)  
7-2. Load Diagnostics Sequence of Events  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TAS5441-Q1  
 
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
Output Conditions  
Load Diagnostics  
Open Load  
Open Load Detected  
OL Max  
OL Min  
SL Max  
SL Min  
Normal or Open Load  
May Be Detected  
Open Load (OL)  
Detection Threshold  
Normal  
Load  
Play Mode  
Shorted Load (SL)  
Detection Threshold  
Normal or Shorted Load  
May Be Detected  
Shorted Load  
Detected  
Shorted  
Load  
7-3. Load Diagnostic Reporting Thresholds  
7.3.5.2 Faults During Load Diagnostics  
If the device detects a fault (such as overtemperature, overvoltage, or undervoltage) during the load diagnostics  
test, the device exits the load diagnostics, which can result in a pop or click on the output.  
7.3.6 Protection and Monitoring  
Overcurrent Shutdown (OCSD): The overcurrent shutdown forces the output into Hi-Z. The device asserts  
the FAULT pin and updates the I2C register.  
DC Detect: This circuit checks for a dc offset continuously during normal operation at the output of the  
amplifier. If a dc offset occurs, the device asserts the FAULT pin and updates the I2C register. Note that the  
dc detection threshold follows PVDD changes.  
Overtemperature Shutdown (OTSD): The device shuts down when the die junction temperature reaches  
the overtemperature threshold. The device asserts the FAULT pin asserts and updates I2C register. Recovery  
is automatic when the temperature returns to a safe level.  
Undervoltage (UV): The undervoltage (UV) protection detects low voltages on PVDD. In the event of an  
undervoltage condition, the device asserts the FAULT pin and resets the I2C register.  
Power-On Reset (POR): Power-on reset (POR) occurs when PVDD drops below the POR threshold. A POR  
event causes the I2C bus to go into a high-impedance state. After recovery from the POR event, the device  
restarts automatically with default I2C register settings.  
Overvoltage (OV) and Load Dump: OV protection detects high voltages on PVDD. If PVDD reaches the  
overvoltage threshold, the device asserts the FAULT pin and updates the I2C register. The device can  
withstand 40-V load-dump voltage spikes. The device supports load-dump in both standby and active modes.  
SpeakerGuard: This protection circuitry limits the output voltage to the value selected in I2C register 0x03.  
This value determines both the positive and negative limits. The user can use the SpeakerGuard feature to  
improve battery life or protect the speaker from exceeding the excursion limits.  
Adjacent-Pin Shorts: The device design is such that shorts between adjacent pins do not cause damage.  
Copyright © 2023 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TAS5441-Q1  
 
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
7.3.7 I2C Serial Communication Bus  
The device communicates with the system processor via the I2C serial communication bus as an I2C slave-only  
device. The processor can poll the device via I2C to determine the operating status. All reports of fault conditions  
and detections are via I2C. The system can also set numerous features and operating conditions via I2C. The I2C  
interface is active approximately 1 ms after the STANDBY pin is high.  
The I2C interface controls the following device features:  
Changing gain setting to 20 dB, 26 dB, 32 dB, or 36 dB.  
Controlling peak voltage value of SpeakerGuard protection circuitry  
Reporting load diagnostic results  
Changing of switching frequency for AM radio avoidance  
7.3.7.1 I2C Bus Protocol  
The device has a bidirectional serial control interface that is compatible with the Inter IC (I2C) bus protocol and  
supports 400-kbps data transfer rates for random and sequential write and read operations. This is a slave-only  
device that does not support a multimaster bus environment or wait-state insertion. The master device uses the  
I2C control interface to program the registers of the device and to read device status.  
The I2C bus employs two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a  
system. Data transfer on the bus is serial, one bit at a time. The transfer of address and data is in byte (8-bit)  
format with the most-significant bit (MSB) transferred first. In addition, the receiving device acknowledges each  
byte transferred on the bus with an acknowledge bit. Each transfer operation begins with the master device  
driving a start condition on the bus and ends with the master device driving a stop condition on the bus. The bus  
uses transitions on the data pin (SDA) while the clock is HIGH to indicate start and stop conditions. A HIGH-to-  
LOW transition on SDA indicates a start, and a LOW-to-HIGH transition indicates a stop. Normal data bit  
transitions must occur within the low time of the clock period. 7-4 shows these conditions. The master  
generates the 7-bit slave address and the read/write (R/ W) bit to open communication with another device and  
then waits for an acknowledge condition. The device holds SDA LOW during the acknowledge clock period to  
indicate an acknowledgment. When this occurs, the master transmits the next byte of the sequence. The  
address for each device is a unique 7-bit slave address plus a R/ W bit (1 byte). All compatible devices share the  
same signals via a bidirectional bus using a wired-AND connection. The SDA and SCL signals require the use of  
an external pullup resistor to set the HIGH level for the bus. There is no limit on the number of bytes that the  
communicating devices can transmit between start and stop conditions. After transfer of the last word, the  
master generates a stop condition to release the bus.  
8-Bit Register Data For  
Address (N)  
8-Bit Register Data For  
Address (N)  
R/  
W
8-Bit Register Address (N)  
7-Bit Slave Address  
A
A
A
A
SDA  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SCL  
Start  
Stop  
T0035-02  
7-4. Typical I2C Sequence  
To communicate with the device, the I2C master uses addresses shown in 7-4. Transmission of read and write  
data can be by single-byte or multiple-byte data transfers.  
7.3.7.2 Random Write  
As shown in 7-5, a single-byte data-write transfer begins with the master device transmitting a start condition  
followed by the I2C device address and the read/write bit. The read/write bit determines the direction of the data  
transfer. For a write data transfer, the read/write bit is a 0. After receiving the correct I2C device address and the  
read/write bit, the device responds with an acknowledge bit. Next, the master transmits the address byte  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TAS5441-Q1  
 
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
corresponding to the internal memory address being accessed. After receiving the address byte, the device  
again responds with an acknowledge bit. Next, the master device transmits the data byte for writing to the  
memory address being accessed. After receiving the data byte, the device again responds with an acknowledge  
bit. Finally, the master device transmits a stop condition to complete the single-byte data-write transfer.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
R/W  
A6 A5 A4 A3 A2 A1 A0  
ACK A7 A6 A5 A4 A3 A2 A1 A0 ACK D7 D6 D5 D4 D3 D2 D1 D0 ACK  
I2C Device Address and  
Read/Write Bit  
Subaddress  
Data Byte  
Stop  
Condition  
T0036-05  
7-5. Random Write Transfer  
7.3.7.3 Random Read  
As shown in 7-6, a single-byte data-read transfer begins with the master device transmitting a start condition  
followed by the I2C device address and the read/write bit. For the data-read transfer, the master device performs  
both a write and a following read. Initially, the master device performs a write to transfer the address byte of the  
internal memory address to be read. As a result, the read/write bit is a 0. After receiving the address and the  
read/write bit, the device responds with an acknowledge bit. In addition, after sending the internal memory  
address byte, the master device transmits another start condition followed by the device address and the read/  
write bit again. This time, the read/write bit is a 1, indicating a read transfer. After receiving the address and the  
read/write bit, the device again responds with an acknowledge bit. Next, the device transmits the data byte from  
the memory address being read. After receiving the data byte, the master device transmits a not-acknowledge  
followed by a stop condition to complete the single-byte data-read transfer.  
Repeat Start  
Condition  
Not  
Acknowledge  
Start  
Condition  
Acknowledge  
Acknowledge  
A0 ACK  
Acknowledge  
A6 A5  
A1 A0 R/W ACK A7 A6 A5 A4  
A6 A5  
A1 A0 R/W ACK D7 D6  
D1 D0 ACK  
I2C Device Address and  
Read/Write Bit  
Subaddress  
I2C Device Address and  
Read/Write Bit  
Data Byte  
Stop  
Condition  
T0036-03  
7-6. Random Read Transfer  
7.3.7.4 Sequential Read  
A sequential data-read transfer is identical to a single-byte data-read transfer except that the TAS5441-Q1  
transmits multiple data bytes to the master device as shown in 7-7. Except for the last data byte, the master  
device responds with an acknowledge bit after receiving each data byte and automatically increments the I2C  
subaddress by one. After receiving the last data byte, the master device transmits a not-acknowledge followed  
by a stop condition to complete the transfer.  
Repeat Start  
Condition  
Not  
Acknowledge  
Start  
Condition  
Acknowledge  
Acknowledge  
A0 ACK  
Acknowledge  
Acknowledge  
Acknowledge  
D0 ACK D7  
A6  
A0 R/W ACK A7 A6 A5  
A6  
A0 R/W ACK D7  
D0 ACK D7  
D0 ACK  
I2C Device Address and  
Read/Write Bit  
Subaddress  
I2C Device Address and First Data Byte  
Read/Write Bit  
Other Data Bytes  
Last Data Byte  
Stop  
Condition  
T0036-07  
7-7. Sequential Read Transfer  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TAS5441-Q1  
 
 
 
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
7.4 Device Functional Modes  
7.4.1 Hardware Control Pins  
Three discrete hardware pins are available for real-time control and indication of device status.  
1. FAULT pin: This active-low open-drain output pin indicates the presence of a fault condition which requires  
the device to go into the Hi-Z mode. On assertion of this pin, the device has protected itself and the system  
from potential damage. The system can read the exact nature of the fault via I2C with the exception of PVDD  
undervoltage faults below POR, in which case the I2C bus is no longer operational.  
2. STANDBY pin: Assertion of this active-low pin sends the device into a complete shutdown, limiting the  
current draw. Load-dump protection is supported. I2C is inactive and non-blocking (does not pull I2C bus low)  
and the device registers are reset.  
3. MUTE pin: On assertion of this active-high pin, the device is in mute mode. The output pins stop switching  
and audio does not pass from the input to the output. To place the device back into play mode, deassert this  
pin. The MUTE pin should be asserted low when the device is in STANDBY.  
7.4.2 EMI Considerations  
Automotive-level EMI performance depends on both careful integrated-circuit design and good system-level  
design. Controlling sources of electromagnetic interference (EMI) was a major consideration in all aspects of the  
design.  
The design has minimal parasitic inductances due to the short leads on the package, which dramatically reduces  
the EMI that results from current passing from the die to the system PCB. The design incorporates circuitry that  
optimizes output transitions that cause EMI.  
7.4.3 Operating Modes and Faults  
The following tables list operating modes and faults.  
7-2. Operating Modes  
STATE NAME  
OUTPUT  
OSCILLATOR  
I2C (1)  
STANDBY  
Hi-Z, floating  
Stopped  
Inactive, Registers  
Reset, Non-blocking  
Load diagnostic  
Mute (Hi-Z) / Fault  
Play  
DC biased  
Hi-Z, floating  
Active  
Active  
Active  
Active  
Active  
Active  
Switching with audio  
(1) See SLOA264 for I2C applications.  
7-3. Faults and Actions  
FAULT  
EVENT  
FAULT EVENT  
CATEGORY  
MONITORING  
MODES  
REPORTING  
METHOD  
ACTION  
TYPE  
ACTION  
RESULT  
CLEARING  
STANDBY  
POR  
UV  
Not applicable  
Standby  
Disabled  
Voltage fault  
Thermal fault  
Mute (Hi-Z), Play  
I2C + FAULT pin  
OV and Load  
dump(1)  
Protected, No  
Reporting  
Hard mute (no ramp)  
Hi-Z  
OTSD  
OC fault  
DC detect  
Mute (Hi-Z), Play  
Play  
Self-clearing  
Output channel  
fault  
I2C + FAULT pin  
Disabled  
Load diagnostic -  
short  
Hi-Z, re-run  
diagnostics  
Diagnostic  
Hi-Z  
None  
Load diagnostic -  
open  
Clears on next  
diagnostic cycle  
I2C  
None  
(1) Tested in accordance with ISO7637-1  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TAS5441-Q1  
 
 
 
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
I2C ADDRESS  
7.5 Register Maps  
7-4. I2C Address  
FIXED ADDRESS  
READ/WRITE BIT  
DESCRIPTION  
MSB  
6
1
1
5
0
0
4
3
1
1
2
0
0
1
0
0
LSB  
I2C write  
I2C read  
1
1
1
1
0
1
0xD8  
0xD9  
7.5.1 I2C Address Register Definitions  
7-5. I2C Address Register Definitions  
ADDRESS  
R/ W  
REGISTER DESCRIPTION  
0x01  
R
Latched fault register  
0x02  
R
Status and load diagnostics register  
Control register  
0x03  
R/ W  
7-6. Fault Register (0x01)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
0
0
0
0
0
0
0
0
No protection-created faults, default value  
Reserved  
1
1
1
1
1
1
1
1
Reserved  
A load-diagnostics fault has occurred.  
Overcurrent shutdown has occurred.  
PVDD undervoltage has occurred.  
PVDD overvoltage has occurred.  
DC offset protection has occurred.  
Overtemperature shutdown has occurred.  
7-7. Status and Load Diagnostic Register (0x02)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
No speaker-diagnostic-created faults, default value  
Output short to PVDD is present.  
Output short to ground is present.  
Open load is present.  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
Shorted load is present.  
In a fault condition  
Performing load diagnostics  
In mute mode  
In play mode  
Copyright © 2023 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TAS5441-Q1  
 
 
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
7-8. Control Register (0x03)  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
FUNCTION  
0
1
1
1
1
0
0
0
26-dB gain, switching frequency set to 400 kHz , SpeakerGuard protection  
circuitry disabled  
1
Switching frequency set to 500 khz  
0
0
1
1
0
1
1
-
Reserved  
SpeakerGuard protection circuitry set to 14-V peak output  
SpeakerGuard protection circuitry set to 11.8-V peak output  
SpeakerGuard protection circuitry set to 9.8-V peak output  
SpeakerGuard protection circuitry set to 8.4-V peak output  
SpeakerGuard protection circuitry set to 7-V peak output  
SpeakerGuard protection circuitry set to 5.9-V peak output  
SpeakerGuard protection circuitry set to 5-V peak output  
Gain set to 20 dB  
1
0
1
1
0
0
0
1
1
0
1
0
0
0
1
0
0
0
1
0
Gain set to 32 dB  
1
1
Gain set to 36 dB  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TAS5441-Q1  
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
8 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
8.1 Application Information  
The device is a mono high-efficiency class-D audio amplifier. Typical use of the device is to amplify an audio  
input to drive a speaker. The intent of use is for a bridge-tied load (BTL) application, not for support of single-  
ended configuration. This section presents how to use the device in the application, including what external  
components are necessary and how to connect unused pins.  
8.2 Typical Application  
PVDD  
10µH 330µF  
+
10µF 0.1µF  
2.2nF 82nF 4.7µF 4.7µF  
FAULT  
SDA  
FAULT  
SDA  
22µH  
0.22µF  
OUTP  
BSPP  
OUTP  
0.01µF  
3.3µF  
SCL  
SCL  
IN_P  
1µF  
49.9k  
5.6  
5.6ꢀ  
IN_P  
470pF  
470pF  
49.9kꢀ  
IN_N  
IN_N  
1µF  
OUTN  
BSPN  
MUTE  
0.22µF  
22µH  
OUTN  
0.01µF  
MUTE  
3.3µF  
STANDBY  
STANDBY  
1µF  
8-1. TAS5441-Q1 Typical Application Schematic  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TAS5441-Q1  
 
 
 
 
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
8.2.1 Design Requirements  
Use the following for the design requirements:  
Power supplies  
The device requires only a single power supply compliant with the recommended operation range. The  
device is designed to work with either a vehicle battery or regulated power supply such as from a backup  
battery.  
Communication  
The device communicates with the system controller with both discrete hardware control pins and with I2C.  
The device is an I2C slave and thus requires a master. If a master I2C-compliant device is not present in the  
system, the device can still be used, but only with the default settings. Diagnostic information is limited to the  
discrete reporting FAULT pin.  
External components  
8-1 lists the components required for the device.  
8-1. Supporting Components  
EVM  
QUANITY  
VALUE  
SIZE  
DESCRIPTION  
USE IN APPLICATION  
DESIGNATOR  
C7  
1
1
3
2
2
2
1
1
1
2
2
1
10 μF ± 10%  
330 μF ± 20%  
1 μF ± 10%  
1206  
X7R ceramic capacitor, 25-V  
Low-ESR aluminum capacitor, 25-V  
X7R ceramic capacitor, 25-V  
X7R ceramic capacitor, 25-V  
X7R ceramic capacitor, 25-V  
X7R ceramic capacitor, 250-V  
X7R ceramic capacitor, 25-V  
X7R ceramic capacitor, 50-V  
X7R ceramic capacitor, 25-V  
X7R ceramic capacitor, 25-V  
X7R ceramic capacitor, 25-V  
Power supply  
C8  
10 mm  
0805  
0603  
0805  
0603  
0603  
0603  
0603  
1206  
0603  
Power supply  
C9, C16, C20  
C10, C14  
C11, C17  
C13, C15  
C6  
Analog audio input filter, bypass  
Bootstrap capacitors  
Amplifier output filtering  
Amplifier output snubbers  
Power supply  
0.22 μF ± 10%  
3.3 μF ± 10%  
470 pF ± 10%  
0.1 μF ± 10%  
2200 pF ± 10%  
0.082 μF ± 10%  
4.7 μF ± 10%  
0.01 μF ± 10%  
10 μH ± 20%  
C2  
Power supply  
C3  
Power supply  
C4, C5  
C12, C18  
L1  
Power supply  
Output EMI filtering  
Power supply  
13.5 mm ×13.5 Shielded ferrite inductor  
mm  
L2  
1
2
2
22 μH ± 20%  
49.9 kΩ± 1%  
5.6 Ω± 5%  
8 mm × 8 mm Coupled inductor  
Amplifier output filtering  
Analog audio input filter  
Output snubbers  
R5, R6  
R4, R7  
0805  
0805  
Resistors, 0.125-W  
Resistors, 0.125-W  
8.2.1.1 Amplifier Output Filtering  
Output FETs drive the amplifier outputs in an H-bridge configuration. These transistors are either fully off or on.  
The result is a square-wave output signal with a duty cycle that is proportional to the amplitude of the audio  
signal. The amplifier outputs require a low-pass filter to filter out the PWM modulation carrier frequency. People  
frequently call this filter the L-C filter, due to the presence of an inductive element L and a capacitive element C  
to make up the 2-pole low-pass filter. The L-C filter attenuates the carrier frequency, reducing electromagnetic  
emissions and smoothing the current waveform which the load draws from the power supply. See Class-D LC  
Filter Design for a detailed description on proper component selection and design of an L-C filter based upon the  
desired load and response.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TAS5441-Q1  
 
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
8.2.1.2 Amplifier Output Snubbers  
A snubber is an RC network placed at the output of the amplifier to dampen ringing or overshoot on the PWM  
output waveform. Overshoot and ringing has several negative impacts including: potential EMI sources,  
degraded audio performance, and overvoltage stress of the output FETs or board components. For more  
information on the use and design of output snubbers, see Class-D Output Snubber Design Guide.  
8.2.1.3 Bootstrap Capacitors  
The output stage uses dual NMOS transistors; therefore, the circuit requires bootstrap capacitors for the high  
side of each output to turn on correctly. The required capacitor connection is from BSTN to OUTN and from  
BSTP to OUTP as shown in 8-1.  
8.2.1.4 Analog Audio Input Filter  
The circuit requires an input capacitor to allow biasing of the amplifier put to the proper dc level. The input  
capacitor and the input impedance of the amplifier form a high-pass filter with a 3-dB corner frequency  
determined by the equation: f = 1 / (2πR(i)C(i)), where R(i) is the input impedance of the device based on the  
gain setting and C(i) is the input capacitor value. 8-2 lists largest recommended input capacitor values. Use a  
capacitor which matches the application requirement for the lowest frequency but does not exceed the values  
listed.  
8-2. Recommended Input AC-Coupling Capacitors  
GAIN (dB)  
TYPICAL INPUT IMPEDANCE  
INPUT CAPACITANCE (µF)  
HIGH-PASS FILTER (Hz)  
(kΩ)  
1
2.7  
1.8  
5.3  
1.6  
2.3  
1.8  
20  
26  
60  
30  
1.5  
1
3.3  
5.6  
10  
32  
36  
15  
9
8.2.2 Detailed Design Procedure  
Use the following steps for the design procedure:  
Step 1: Hardware Schematic Design: Using the 8-1 as a guide, integrate the hardware into the system  
schematic.  
Step 2: Following the layout guidelines recommended in 8.4.1, integrate the device and the supporting  
components into the system PCB file.  
Step 3: Thermal Design: The device has an exposed thermal pad which requires proper soldering. For more  
information, see Semiconductor and IC Package Thermal Metrics and PowerPAD Thermally Enhanced  
Package.  
Step 4: Develop software: The EVM User's Guide has detailed instructions for how to set up the device,  
interpret diagnostic information, and so forth. For information about control registers, see 7.5.  
For questions and support, go to the E2E forums.  
8.2.2.1 Unused Pin Connections  
Even if unused, always connect pins to a fixed rail; do not leave them floating. Floating input pins represent an  
ESD risk, therefore the user must adhere to the following guidance for each pin.  
8.2.2.1.1 MUTE Pin  
If the MUTE pin is unused in the application, then connect the pin to GND through a high-impedance resistor.  
8.2.2.1.2 STANDBY Pin  
If the STANDBY pin is unused in the application, connect it to a low-voltage rail such as 3.3 V or 5 V through a  
high-impedance resistor.  
Copyright © 2023 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TAS5441-Q1  
 
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
8.2.2.1.3 I2C Pins (SDA and SCL)  
If there is no microcontroller in the system, use of the device without I2C communication is possible. In this  
situation, connect the SDA and SCL pins to 3.3 V.  
8.2.2.1.4 Terminating Unused Outputs  
If the FAULT pin does not report to a system microcontroller in the application, then connect the pin to GND.  
8.2.2.1.5 Using a Single-Ended Audio Input  
When using a single-ended audio source, ac-ground the negative input through a capacitor equal in value to the  
input capacitor on the positive input, and apply the audio source to the positive input. For best performance, the  
ac ground must be at the audio source instead of at the device input if possible.  
8.2.3 Application Curves  
See 6.7 for application performance plots.  
8-3. Table of Graphs  
GRAPH  
FIGURE NO.  
6-1  
Efficiency vs Output Power  
THD+N vs Output Power  
6-2  
Output Power vs PVDD  
6-3  
THD+N vs Frequency  
6-4  
Noise FFT With 60-dB Output  
Noise FFT With 1-W Output  
Overcurrent Threshold vs Temperature  
6-5  
6-6  
6-7  
8.3 Power Supply Recommendations  
A car battery that can have a large voltage range most commonly provides power for the device. PVDD, a  
filtered battery voltage, is the supply for the output FETs and the low-side FET gate driver. Good power-supply  
decoupling is necessary, especially at low voltage and temperature levels. To meet the PVDD specifications in  
the Electrical Characteristics section, TI uses 10-µF and 0.1-µF ceramic capacitors near the PVDD pin along  
with a larger bulk 330-µF electrolytic decoupling capacitor.  
An internal linear regulator, which powers the analog circuitry, provides the voltage on the BYP pin. This supply  
requires an external bypass ceramic capacitor at the BYP pin.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TAS5441-Q1  
 
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
8.4 Layout  
8.4.1 Layout Guidelines  
The EVM layout optimizes for thermal dissipation and EMC performance. The TAS5441-Q1 device has a thermal  
pad down, and good thermal conduction and dissipation require adequate copper area. Layout also affects EMC  
performance. TAS5411Q1EVM illustrations form the basis for the layout discussions.  
8.4.2 Layout Examples  
8.4.2.1 Top Layer  
The red boxes around number 1 are the copper ground on the top layer. Soldered directly to the thermal pad, the  
ground is the first significant thermal dissipation required. There are vias that go to the other layers for further  
thermal relief, but vias have high thermal resistance. TI recommends that use of the top layer be mostly for  
thermal dissipation. A further recommendation is short routes from output pins to the second-order LC filter for  
EMC suppression. The number 2 arrow indicates these short routes for better ECM results. A short route from  
the PVDD pin to the LC filter from the battery or power source, as indicated by the number 3 arrow, also  
improves EMC suppression. Route on an outside layer for added current capability. The red box around number  
4 indicates the ground plane that is common to both OUTP and OUTN. Place the capacitors of the LC filter in the  
common ground plane to help with common-mode noise and short ground loops  
8-2. Top layer  
Copyright © 2023 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TAS5441-Q1  
 
 
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
8.4.2.2 Second Layer Signal Layer  
Pour a full ground plane on an inner layer to keep current loops small to reduce EMI.  
8-3. Signal Layer  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TAS5441-Q1  
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
8.4.2.3 Third Layer Power Layer  
There is no requirement for a power plane, but TI recommends a wide single wide trace to keep the switching  
noise to a minimum and provide enough current to the device. The wide trace provides a low-impedance path  
from the power source. Suppression of switching noise (ripple voltage) on both the positive and return (ground)  
paths requires a low impedance.  
8-4. Power Layer  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TAS5441-Q1  
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
8.4.2.4 Bottom Layer Ground Layer  
The device has an exposed thermal pad on the bottom side for improved thermal performance. Conducting heat  
from the thermal pad to other layers requires thermal vias. Because the bottom layer is the secondary heat  
exchange surface to ambient, the thermal vias area must have low thermal resistance.  
8-5. Bottom Layer  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TAS5441-Q1  
TAS5441-Q1  
ZHCSL26B APRIL 2020 REVISED JANUARY 2023  
www.ti.com.cn  
9 Device and Documentation Support  
9.1 Device Support  
9.1.1 第三方产品免责声明  
TI 发布的与第三方产品或服务有关的信息不能构成与此类产品或服务或保修的适用性有关的认可不能构成此  
类产品或服务单独或与任TI 产品或服务一起的表示或认可。  
9.2 Documentation Support  
9.2.1 Related Documentation  
For related documentation see the following:  
AN-1737 Managing EMI in Class D Audio Applications (SNAA050)  
AN-1849 An Audio Amplifier Power Supply Design (SNAA057)  
Class-D LC Filter Design (SLOA119)  
Class-D Output Snubber Design Guide (SLOA201)  
Filter-Free™ Class-D Audio Amplifiers (SLOA145)  
Guidelines for Measuring Audio Power Amplifier Performance (SLOA068)  
Power Rating in Audio Amplifiers (SLEA047)  
PowerPAD Thermally Enhanced Package (SLMA002)  
9.3 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
9.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
9.5 Trademarks  
PowerPADand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
9.6 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
9.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
10 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most-  
current data available for the designated devices. This data is subject to change without notice and without  
revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TAS5441-Q1  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
18-Feb-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TAS5441QPWPRQ1  
ACTIVE  
HTSSOP  
PWP  
16  
2000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
TAS5441  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TAS5441QPWPRQ1  
HTSSOP PWP  
16  
2000  
330.0  
12.4  
6.9  
5.6  
1.6  
8.0  
12.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP PWP 16  
SPQ  
Length (mm) Width (mm) Height (mm)  
356.0 356.0 35.0  
TAS5441QPWPRQ1  
2000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
PWP0016B  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
4
0
0
PLASTIC SMALL OUTLINE  
C
6.6  
6.2  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
14X 0.65  
16  
1
2X  
5.1  
4.9  
4.55  
NOTE 3  
8
9
0.30  
16X  
4.5  
4.3  
0.19  
B
0.1  
C A  
B
(0.15) TYP  
SEE DETAIL A  
4X 0.15 MAX  
NOTE 5  
2X 0.95 MAX  
NOTE 5  
THERMAL  
PAD  
0.25  
GAGE PLANE  
3.0  
2.4  
1.2 MAX  
0.15  
0.05  
0 - 8  
0.75  
0.50  
DETAIL A  
TYPICAL  
(1)  
3.0  
2.4  
4218971/A 01/2016  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. Features may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
PWP0016B  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3.4)  
NOTE 9  
SOLDER MASK  
DEFINED PAD  
(3)  
16X (1.5)  
SYMM  
SEE DETAILS  
1
16  
16X (0.45)  
(1.1)  
TYP  
SYMM  
(3)  
(5)  
NOTE 9  
14X (0.65)  
8
9
(
0.2) TYP  
VIA  
(1.1) TYP  
METAL COVERED  
BY SOLDER MASK  
(5.8)  
LAND PATTERN EXAMPLE  
SCALE:10X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
0.05 MIN  
ALL AROUND  
0.05 MAX  
ALL AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
PADS 1-16  
4218971/A 01/2016  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
8. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
numbers SLMA002 (www.ti.com/lit/slma002) and SLMA004 (www.ti.com/lit/slma004).  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
PWP0016B  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
(3)  
BASED ON  
0.125 THICK  
STENCIL  
16X (1.5)  
(R0.05) TYP  
1
16  
16X (0.45)  
(3)  
SYMM  
BASED ON  
0.125 THICK  
STENCIL  
14X (0.65)  
9
8
SYMM  
(5.8)  
METAL COVERED  
BY SOLDER MASK  
SEE TABLE FOR  
DIFFERENT OPENINGS  
FOR OTHER STENCIL  
THICKNESSES  
SOLDER PASTE EXAMPLE  
EXPOSED PAD  
100% PRINTED SOLDER COVERAGE BY AREA  
SCALE:10X  
STENCIL  
THICKNESS  
SOLDER STENCIL  
OPENING  
0.1  
3.35 X 3.35  
3 X 3 (SHOWN)  
2.74 X 2.74  
0.125  
0.15  
0.175  
2.54 X 2.54  
4218971/A 01/2016  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TAS5441QPWPRQ1

具有负载突降保护和 I2C 诊断功能的 22W 模拟输入单通道汽车级 D 类音频放大器 | PWP | 16 | -40 to 125
TI

TAS5504

4 Channel Digital Audio PWM Processor
TI

TAS5504A

4-Channel Digital Audio PWM Processor
TI

TAS5504APAG

4-Channel Digital Audio PWM Processor
TI

TAS5504APAGG4

4-Channel Digital Audio PWM Processor
TI

TAS5504APAGR

4-Channel Digital Audio PWM Processor
TI

TAS5504APAGRG4

4-Channel Digital Audio PWM Processor
TI

TAS5504PAG

4 Channel Digital Audio PWM Processor
TI

TAS5504PAGG4

4 Channel Digital Audio PWM Processor
TI

TAS5504PAGR

4 Channel Digital Audio PWM Processor
TI

TAS5504PAGRG4

4 Channel Digital Audio PWM Processor
TI

TAS5504_06

4 Channel Digital Audio PWM Processor
TI