TAS5634DDVR [TI]

300W 立体声、600W 单声道、12V 至 62V 电源电压、PWM 输入 D 类音频放大器 | DDV | 44 | 0 to 70;
TAS5634DDVR
型号: TAS5634DDVR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

300W 立体声、600W 单声道、12V 至 62V 电源电压、PWM 输入 D 类音频放大器 | DDV | 44 | 0 to 70

放大器 光电二极管 商用集成电路 音频放大器
文件: 总51页 (文件大小:2134K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TAS5634  
ZHCSH20 OCTOBER 2017  
TAS5634 300W 立体声/600W 单声道高清数字输入、58V D 类放大器功率  
1 特性  
3 说明  
1
PWM 输入、D 类放大器功率级,与 TI 数字输入  
(I2S) 音频处理器和调制器兼容  
TAS5634 是一款 PWM 输入 D 类放大器功率级,可在  
58V 标称电源电压下提供 2 x 300W (6Ω) 1 x 600W  
(3Ω) 的输出功率。58V 电源电压支持较高阻抗的扬声  
器负载,其中 BTL 6ΩPBTL 3Ω。集成式  
MOSFET 和全新栅极驱动方案具有较高的峰值效率和  
较低的空闲损耗,能够减小散热器解决方案尺寸。  
高清集成闭环反馈,具备以下特性:  
在为 6负载提供 1W 功率时,THD 为  
0.025%  
PSRR 大于 70dB(无输入信号)  
SNR 大于 105dBA 加权)  
TAS5634 使用闭环反馈设计,具有恒定的电压增益。  
开关模式电源 (SMPS) 的使用,使得内部匹配的增益  
电阻器可确保实现较高的电源抑制比 (PSRR) 和较低  
的输出噪声。  
10% THD+N 时的输出功率  
600W/3ΩPBTL 单声道配置)  
300W/6ΩBTL 立体声配置)  
230W/8ΩBTL 立体声配置)  
TAS5634 是一款兼容 TI 的数字输入 (I2S) 音频处理器  
和调制器产品组合的全集成式功率级,与 TAS5548 和  
TAS5558 类似,也是一个完整的数字输入 D 类放大  
器。TAS5634 采用表面安装 44 引脚 HTSSOP 封装,  
PWM 输入 D 类功率级兼容引脚产品系列(包括  
TAS5612LATAS5614LA TAS5624A)中的一  
员。 PowerPAD™ PurePath™ 高清  
1% THD+N 时的输出功率  
465W/3ΩPBTL 单声道配置)  
240W/6ΩBTL 立体声配置)  
180W/8ΩBTL 立体声配置)  
集成式 80 mMOSFET,可降低散热器尺寸  
满量程输出功率下的效率大于 91%  
1/8 量程输出功率下的效率大于 75%  
启动时无喀哒声  
器件信息(1)  
封装  
器件保护:欠压保护、过热保护、过流保护、短路  
保护和直流扬声器保护  
器件型号  
TAS5634  
封装尺寸(标称值)  
HTSSOP  
14.00mm x 6.10mm  
适用于 G 类电源控制的预削波输出信号  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
44 引脚 HTSSOP (DDV) 封装,顶部带有散热焊盘  
简化电路原理图  
2 应用  
电动扬声器  
低音炮  
TAS55XX  
Digital Audio  
Processor  
TAS5634  
微型组件系统  
条形音箱  
DIGITAL  
AUDIO  
INPUT  
专业和公共广播 (PA) 扬声器  
+12V  
12V-58V  
+3.3V  
REG.  
Class G Power Supply  
Ref design  
105VAC->240VAC  
/opyright  
© 2017, Çexas Lnstruments Lncorporated  
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,  
intellectual property matters and other important disclaimers. PRODUCTION DATA.  
English Data Sheet: SLAS931  
 
 
 
TAS5634  
ZHCSH20 OCTOBER 2017  
www.ti.com.cn  
目录  
8.3 Feature Description................................................. 19  
8.4 Device Functional Modes........................................ 26  
Application and Implementation ........................ 29  
9.1 Application Information............................................ 29  
9.2 Typical Applications ................................................ 29  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison ............................................... 3  
Pin Configuration and Functions......................... 4  
Specifications......................................................... 7  
7.1 Absolute Maximum Ratings ...................................... 7  
7.2 ESD Ratings.............................................................. 7  
7.3 Recommended Operating Conditions...................... 8  
7.4 Thermal Information.................................................. 8  
7.5 Audio Specification Stereo (BTL).............................. 9  
7.6 Audio Specifications Mono (PBTL) ........................... 9  
7.7 Audio Specification 4 Channels (SE)...................... 10  
7.8 Electrical Characteristics......................................... 11  
7.9 Typical Characteristics............................................ 12  
Detailed Description ............................................ 16  
8.1 Overview ................................................................. 16  
8.2 Functional Block Diagrams ..................................... 17  
9
10 Power Supply Recommendations ..................... 36  
10.1 Power Supplies ..................................................... 36  
10.2 Bootstrap Supply................................................... 36  
11 Layout................................................................... 37  
11.1 Layout Guidelines ................................................. 37  
11.2 Layout Example .................................................... 39  
12 器件和文档支持 ..................................................... 41  
12.1 接收文档更新通知 ................................................. 41  
12.2 社区资源................................................................ 41  
12.3 ....................................................................... 41  
12.4 静电放电警告......................................................... 41  
12.5 Glossary................................................................ 41  
13 机械、封装和可订购信息....................................... 41  
8
4 修订历史记录  
日期  
修订版本  
说明  
2017 10 月  
*
首次公开发布。  
2
Copyright © 2017, Texas Instruments Incorporated  
 
TAS5634  
www.ti.com.cn  
ZHCSH20 OCTOBER 2017  
5 Device Comparison  
DEVICE NAME  
DESCRIPTION  
PVDD VOLTAGE (Nom.)  
RDrain-to-Source  
60 mΩ  
TAS5612LA  
TAS5614LA  
TAS5624A  
TAS5634  
125 W Stereo / 250 W Mono HD Digital-Input Power Stage  
150 W Stereo / 300 W Mono HD Digital-Input Power Stage  
200 W Stereo / 400 W Mono HD Digital-Input Power Stage  
300 W Stereo / 600 W Mono HD Digital-Input Power Stage  
32.5 V  
36 V  
60 mΩ  
36 V  
40 mΩ  
58 V  
80 mΩ  
Copyright © 2017, Texas Instruments Incorporated  
3
TAS5634  
ZHCSH20 OCTOBER 2017  
www.ti.com.cn  
6 Pin Configuration and Functions  
The TAS5634 is available in a thermally-enhanced, 44-Pin HTSSOP package (DDV).  
The package contains a PowerPAD™ that is located on the top side of the device for convenient thermal  
coupling to a heatsink.  
DDV Package  
44 Pin (HTSSOP)  
Top View  
GVDD_AB  
VDD  
1
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
BST_A  
BST_B  
GND  
2
OC_ADJ  
RESET  
INPUT_A  
INPUT_B  
C_START  
DVDD  
GND  
3
4
GND  
5
OUT_A  
OUT_A  
PVDD_AB  
PVDD_AB  
PVDD_AB  
OUT_B  
GND  
6
7
8
9
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
PowerPAD  
GND  
GND  
GND  
AVDD  
INPUT_C  
INPUT_D  
FAULT  
OTW  
OUT_C  
PVDD_CD  
PVDD_CD  
PVDD_CD  
OUT_D  
OUT_D  
GND  
CLIP  
M1  
M2  
GND  
M3  
BST_C  
BST_D  
GVDD_CD  
Not to scale  
4
Copyright © 2017, Texas Instruments Incorporated  
TAS5634  
www.ti.com.cn  
ZHCSH20 OCTOBER 2017  
Pin Functions  
PIN  
I/O/P(1) DESCRIPTION  
Sections  
NAME  
AVDD  
NO.  
VDD Supply, Internal  
Regulators (DVDD and  
AVDD)  
Analog internal voltage regulator output. Place 1 μF capacitor to  
GND.  
13  
P
BST_A  
BST_B  
BST_C  
BST_D  
44  
43  
24  
23  
P
P
P
P
Bootstrap pin, A-side. Connect 0.33 nF ceramic capacitor to OUT_A. BST, Bootstrap Supply  
Bootstrap pin, B-side. Connect 0.33 nF ceramic capacitor to OUT_B. BST, Bootstrap Supply  
Bootstrap pin, C-side. Connect 0.33 nF ceramic capacitor to OUT_C. BST, Bootstrap Supply  
Bootstrap pin, D-side. Connect 0.33 nF ceramic capacitor to OUT_D. BST, Bootstrap Supply  
Clipping warning; open drain; active low. Connect 10 kΩ pull-up  
Error Reporting  
CLIP  
18  
O
resistor to DVDD to monitor. If unused, do not connect.  
Startup and Shutdown  
Ramp Sequence  
(C_START)  
Startup ramp timing control pin. Connect capacitor to ground. 330nF  
for BTL / PBTL mode. 1 μF for SE mode.  
C_START  
7
O
VDD Supply, Internal  
Regulators (DVDD and  
AVDD)  
Digital internal voltage regulator output. Place 1 μF capacitor to  
GND.  
DVDD  
FAULT  
GND  
8
P
O
P
Fault signal output, open drain; active low. Connect 10 kΩ pull-up  
Error Reporting  
16  
resistor to DVDD to monitor. If unused, do not connect.  
9, 10, 11, 12,  
25, 26, 33,  
34, 41, 42  
Ground.  
Gate-drive voltage supply; AB-side. Place 100 nF decoupling  
capacitor to GND.  
GVDD, Gate-Drive Power  
Supply  
GVDD_AB  
GVDD_CD  
INPUT_A  
INPUT_B  
INPUT_C  
INPUT_D  
1
22  
5
P
P
I
Gate-drive voltage supply; CD-side. Place 100 nF decoupling  
capacitor to GND.  
GVDD, Gate-Drive Power  
Supply  
PWM Input signal for half-bridge A. If unused, connect INPUT_A to  
GND.  
PWM Input signal for half-bridge B. If unused, connect INPUT_B to  
GND.  
6
I
PWM Input signal for half-bridge C. If unused, connect INPUT_C to  
GND.  
14  
15  
I
PWM Input signal for half-bridge D. If unused, connect INPUT_D to  
GND.  
I
M1  
M2  
M3  
19  
20  
21  
I
I
I
Mode selection 1.  
Mode selection 2.  
Mode selection 3.  
Device Functional Modes  
Device Functional Modes  
Device Functional Modes  
Over-Current threshold programming pin. Connect programming  
resistor to GND. Use 27 kΩ for typical applications.  
Overload and Short Circuit  
Current Protection  
OC_ADJ  
OTW  
3
17  
O
O
O
O
O
O
P
Over-temperature warning; open drain; active low. Connect 10 kΩ  
pull-up resistor to DVDD to monitor. If unused, do not connect.  
Error Reporting  
Output, half-bridge A. If unused, remove BST_A capacitor and GND  
INPUT_A pin. Output pins can be left floating.  
OUT_A  
OUT_B  
OUT_C  
OUT_D  
PVDD_AB  
39, 40  
35  
Output, half-bridge B. If unused, remove BST_B capacitor and GND  
INPUT_B pin. Output pins can be left floating.  
Output, half-bridge C. If unused, remove BST_C capacitor and GND  
INPUT_C pin. Output pins can be left floating.  
32  
Output, half-bridge D. If unused, remove BST_D capacitor and GND  
INPUT_D pin. Output pins can be left floating.  
27, 28  
36, 37, 38  
PVDD supply for half-bridge A and B. Place a minimum of 1 μF  
decoupling capacitor near PVDD_AB pin.  
PVDD, Output Stage Power  
Supply  
PVDD supply for half-bridge C and D. Place a minimum of 1 μF  
decoupling capacitor near PVDD_CD pin.  
PVDD, Output Stage Power  
Supply  
PVDD_CD  
RESET  
29, 30, 31  
4
P
I
Device reset pin; active low.  
Device Reset  
(1) I = Input, O = Output, P = Power  
Copyright © 2017, Texas Instruments Incorporated  
5
TAS5634  
ZHCSH20 OCTOBER 2017  
www.ti.com.cn  
Pin Functions (continued)  
PIN  
I/O/P(1) DESCRIPTION  
Sections  
NAME  
VDD  
NO.  
VDD Supply, Internal  
Regulators (DVDD and  
AVDD)  
12V power supply input for internal analog and digital voltage  
regulators.  
2
P
P
PowerPAD  
Ground, connect to grounded heat sink.  
Table 1. Mode Selection Pins  
MODE PINS  
DC  
PWM  
Speaker  
C_START  
Capacitor  
Output Configuration Input A  
Input B  
Input C  
Input D  
Mode  
Input(1)  
Protection  
M3 M2 M1  
(2)  
0
0
0
0
0
1
0
1
0
2N  
1N(3)  
2N  
2 x BTL  
2 x BTL  
2 x BTL  
PWMa  
PWMa  
PWMa  
PWMb  
Unused  
PWMb  
PWMc  
PWMc  
PWMc  
PWMd  
Unused  
PWMd  
Enabled  
Enabled  
Disabled  
AD  
AD  
330 nF  
330 nF  
330 nF  
AD or BD  
Enabled  
(BTL only)  
0
1
1
2N/1N(3)  
1 x BTL + 2 x SE(4)  
PWMa  
PWMb  
PWMc  
PWMd  
AD  
1 μF  
1
1
1
1
0
0
0
0
0
0
0
1
2N  
1N(3)  
2N  
1 x PBTL  
1 x PBTL  
1 x PBTL  
4 x SE(5)  
PWMa  
PWMa  
PWMa  
PWMa  
PWMb  
Unused  
PWMb  
PWMb  
0
0
Enabled  
Enabled  
Disabled  
Disabled  
AD  
AD  
330 nF  
330 nF  
330 nF  
1 μF  
0
1
1
0
AD or BD  
AD  
1N1  
PWMc  
PWMd  
(1) The 1N and 2N naming convention is used to indicate the number of PWM lines to the power stage per channel in a specific mode.  
(2) DC Speaker Protection is disabled in BD mode due to in phase inductor ripple current.  
(3) Using 1N interface in BTL and PBTL mode results in increased DC offset on the output terminals.  
(4) In [011] 1 x BTL + 2 x SE mode, Output A and B refers to the BTL channel, and Output C and D the SE channels  
(5) The 4xSE mode can be used as 1 x BTL + 2 x SE configuration by feeding a 2N PWM signal to either INPUT_AB or INPUT_CD  
6
Copyright © 2017, Texas Instruments Incorporated  
 
 
TAS5634  
www.ti.com.cn  
ZHCSH20 OCTOBER 2017  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range unless otherwise noted  
(1)  
MIN  
–0.3  
–0.3  
-0.3  
-0.3  
-7  
MAX  
13.2  
65  
UNIT  
V
VDD to GND, GVDD_X(2) to GND  
PVDD_X(2) to GND  
PVDD_X(2) to GND(3) (Less than 8ns transient)  
V
71  
V
OUT_X to GND  
65  
V
OUT_X to GND(3) (Less than 8ns transient)  
BST_X to OUT_X(4)  
71  
V
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
13.2  
4.2  
8.5  
4.2  
4.2  
9
V
DVDD to GND  
V
AVDD to GND  
V
OC_ADJ, M1, M2, M3, C_START, INPUT_X to GND  
RESET, FAULT, OTW, CLIP, to GND  
Maximum continuous sink current (FAULT, OTW, CLIP)  
Maximum operating junction temperature range, TJ  
Storage temperature, Tstg  
V
V
mA  
°C  
°C  
0
150  
150  
–40  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
(2) GVDD_X and PVDD_X represents a full bridge gate drive or power supply. GVDD_X is GVDD_AB or GVDD_CD, PVDD_X is  
PVDD_AB or PVDD_CD  
(3) These voltages represents the DC voltage + peak AC waveform measured at the terminal of the device in all conditions.  
(4) Maximum BST_X to GND voltage is the sum of maximum PVDD to GND and GVDD to GND voltages minus a diode drop.  
7.2 ESD Ratings  
VALUE  
±2000  
±500  
UNIT  
V(ESD)  
Electrostatic discharge  
Electrostatic discharge  
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) (2)  
V
V
Charged-device model (CDM), per JEDEC specification JESD22-  
C101(3) (2)  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) Maximum BST_X to GND voltage is the sum of maximum PVDD to GND and GVDD to GND voltages minus a diode drop.  
(3) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
Copyright © 2017, Texas Instruments Incorporated  
7
TAS5634  
ZHCSH20 OCTOBER 2017  
www.ti.com.cn  
7.3 Recommended Operating Conditions  
MIN  
TYP MAX UNIT  
PVDD_X  
GVDD_X  
VDD  
Full-bridge supply  
DC supply voltage  
DC supply voltage  
DC supply voltage  
12  
58  
62  
V
V
V
Supply for logic regulators and gate-drive  
circuitry  
10.8  
12 13.2  
Digital regulator supply voltage  
BTL  
10.8  
12 13.2  
5
3
3
8
4
4
RL  
Load impedance  
PBTL  
SE  
Output filter: L = 15 uH, 0.68 µF  
Minimum inductance at overcurrent limit,  
including inductor tolerance, temperature  
and possible inductor saturation  
LOUTPUT  
Output filter inductance  
PWM frame rate  
7
15  
μH  
fPWM  
352  
384 500 kHz  
CPVDD  
PVDD close decoupling capacitors  
0.44  
1
330  
1
μF  
nF  
μF  
BTL and PBTL configuration  
C_START  
ROC  
Startup ramp capacitor  
SE and 1xBTL + 2xSE configuration  
Over-current programming resistor,  
Resistor tolerance = 5%  
24  
27  
56  
33  
kΩ  
Over-current programming resistor,  
Resistor tolerance = 5%  
ROC_LATCHED  
TJ  
47  
0
62  
kΩ  
Junction temperature  
125  
°C  
7.4 Thermal Information  
TAS5634  
THERMAL METRIC(1)  
DDV (HTSSOP)  
UNIT  
44 PINS  
2.6  
RθJA  
Junction-to-ambient thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
0.4  
2.0  
ψJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.4  
ψJB  
1.9  
RθJC(bot)  
n/a  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8
Copyright © 2017, Texas Instruments Incorporated  
 
TAS5634  
www.ti.com.cn  
ZHCSH20 OCTOBER 2017  
7.5 Audio Specification Stereo (BTL)  
Audio performance is recorded as a chipset consisting of a TAS5548 PWM Processor (AD-mode, modulation index limited to  
97.7%) and a TAS5634 power stage with PCB and system configurations in accordance with recommended guidelines. Audio  
frequency = 1 kHz, PVDD_X = 58 V, GVDD_X = 12 V, RL = 6 , fS = 384 kHz, ROC = 30 k, TC = 75°C, Output Filter: LDEM  
15 μH, CDEM = 680 nF, unless otherwise noted.  
=
PARAMETER  
TEST CONDITIONS  
RL = 8 , 10% THD+N  
MIN  
TYP MAX UNIT  
230  
300  
RL = 6 , 10% THD+N Tc = 25°C  
RL = 6 , 10% THD+N  
RL = 8 , 1% THD+N  
RL = 6 , 1% THD+N  
1 W, 1 kHz signal  
PO  
Power output per channel  
295  
W
180  
240  
THD+N  
Vn  
Total harmonic distortion + noise  
Output integrated noise  
Output offset voltage  
0.025  
%
μV  
mV  
dB  
A-weighted, AES17 measuring filter, dither off,  
noise shaper off(1)  
215  
50  
VOS  
No signal  
A-weighted, AES17 measuring filter, noise  
shaper off  
SNR  
Signal-to-noise ratio(2)  
105  
A-weighted, –60 dBFS (rel 1% THD+N), noise  
shaper on  
DNR  
Pidle  
Dynamic range  
102  
8.6  
dB  
W
Power dissipation due to Idle losses  
(IPVDD_X)  
PO = 0, channels switching(3)  
(1) It is recommended to turn off PWM processor noise shaper while no audio present for lowest output noise  
(2) SNR is calculated relative to 1% THD-N output level.  
(3) Actual system idle losses also are affected by core losses of output inductors.  
7.6 Audio Specifications Mono (PBTL)  
Audio performance is recorded as a chipset consisting of a TAS5548 PWM Processor (AD-mode, modulation index limited to  
97.7%) and a TAS5634 power stage with PCB and system configurations in accordance with recommended guidelines. Audio  
frequency = 1 kHz, PVDD_X = 58 V, GVDD_X = 12 V, RL = 3 , fS = 384 kHz, ROC = 30 k, TC = 75°C, Output Filter: LDEM  
15 μH, CDEM = 680 nF, CDCB = 470 µF, unless otherwise noted.  
=
PARAMETER  
TEST CONDITIONS  
RL = 4 , 10% THD+N  
MIN  
TYP  
460  
590  
600  
MAX  
UNIT  
RL = 3 , 10% THD+N  
RL = 3 , 10% THD+N, PVDD =  
58.5V  
PO  
Power output per channel  
W
RL = 4 , 1% THD+N  
365  
465  
0.04  
214  
RL = 3 , 1% THD+N  
THD+N  
Vn  
Total harmonic distortion + noise  
Output integrated noise  
Output offset voltage  
1 W, 1 kHz signal  
%
μV  
mV  
dB  
A-weighted, AES17 measuring filter,  
dither off, noise shaper off  
(1)  
VOS  
No signal  
50  
A-weighted, AES17 measuring filter,  
noise shaper off  
105  
SNR  
Signal-to-noise ratio(2)  
A-weighted, -60dBFS (rel 1%  
THD+N), noise shaper on  
Power dissipation due to Idle losses PO = 0, channels switching(3)  
(IPVDD_X)  
102  
8.6  
DNR  
Pidle  
Dynamic range  
dB  
W
(1) It is recommended to turn off PWM processor noise shaper while no audio present for lowest output noise  
(2) SNR is calculated relative to 1% THD-N output level.  
(3) Actual system idle losses also are affected by core losses of output inductors.  
Copyright © 2017, Texas Instruments Incorporated  
9
TAS5634  
ZHCSH20 OCTOBER 2017  
www.ti.com.cn  
7.7 Audio Specification 4 Channels (SE)  
Audio performance is recorded as a chipset consisting of a TAS5548 PWM Processor (AD-mode, modulation index limited to  
97.7%) and a TAS5634 power stage with PCB and system configurations in accordance with recommended guidelines. Audio  
frequency = 1 kHz, PVDD_X = 58 V, GVDD_X = 12 V, RL = 3 , fS = 384 kHz, ROC = 30 k, TC = 75°C, Output Filter: LDEM  
15 μH, CDEM = 680 nF, CDCB = 470 µF, unless otherwise noted.  
=
PARAMETER  
TEST CONDITIONS  
RL = 4 , 10% THD+N  
MIN  
TYP MAX UNIT  
110  
150  
145  
90  
RL = 3 , 10% THD+N Tc = 25°C  
RL = 3 , 10% THD+N  
RL = 4 , 1% THD+N  
RL = 3 , 1% THD+N  
1 W, 1 kHz signal  
PO  
Power output per channel  
W
115  
0.05  
THD+N  
Vn  
Total harmonic distortion + noise  
Output integrated noise  
%
A-weighted, AES17 measuring filter, dither off,  
noise shaper off(1)  
145  
102  
102  
8.6  
μV  
A-weighted, AES17 measuring filter, noise  
shaper off  
SNR  
DNR  
Pidle  
Signal-to-noise ratio(2)  
Dynamic range  
dB  
dB  
W
A-weighted, –60 dBFS (rel 1% THD+N), noise  
shaper on  
Power dissipation due to Idle losses  
(IPVDD_X)  
PO = 0, channels switching(3)  
(1) It is recommended to turn off PWM processor noise shaper while no audio present for lowest output noise  
(2) SNR is calculated relative to 1% THD-N output level.  
(3) Actual system idle losses also are affected by core losses of output inductors.  
10  
Copyright © 2017, Texas Instruments Incorporated  
TAS5634  
www.ti.com.cn  
ZHCSH20 OCTOBER 2017  
7.8 Electrical Characteristics  
PVDD_X = 58 V, GVDD_X = 12 V, VDD = 12 V, TC (Case temperature) = 75°C, fS = 384 kHz, unless otherwise specified.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
INTERNAL VOLTAGE REGULATOR AND CURRENT CONSUMPTION  
Voltage regulator, only used as a  
DVDD  
VDD = 12 V  
3.0  
3.3  
7.8  
3.6  
V
V
reference node  
Voltage regulator, only used as a  
reference node  
AVDD  
VDD = 12 V  
Operating, 50% duty cycle  
Idle, reset mode  
23  
23  
IVDD  
VDD supply current  
mA  
mA  
mA  
50% duty cycle  
22  
IGVDD_X  
Gate-supply current per full-bridge  
Full-bridge idle current  
Reset mode  
3
50% duty cycle without load  
RESET low  
148  
3.5  
IPVDD_X  
OUTPUT-STAGE MOSFETs  
Drain-to-source resistance, low side  
RDS(on), LS  
80  
80  
m  
mΩ  
(LS)  
TJ = 25°C, excludes metallization resistance,  
GVDD = 12 V  
Drain-to-source resistance, high side  
(HS)  
RDS(on), HS  
I/O PROTECTION  
Vuvp,GVDD  
8.5  
0.7  
8.5  
0.7  
8.5  
0.7  
125  
V
V
Undervoltage protection limit, GVDD_X  
Undervoltage protection limit, VDD  
(1)  
Vuvp,GVDD, hyst  
Vuvp,VDD  
V
(1)  
Vuvp,VDD, hyst  
V
Vuvp,PVDD  
V
Undervoltage protection limit, PVDD_X  
Overtemperature warning  
(1)  
Vuvp,PVDD,hyst  
OTW(1)  
V
115  
145  
135  
165  
°C  
Temperature drop needed below OTW  
temperature for OTW to be inactive  
after OTW event.  
(1)  
OTWhyst  
20  
°C  
OTE(1)  
Overtemperature error  
OTE-OTW differential  
155  
30  
°C  
°C  
(1)  
OTE-OTWdifferential  
A device reset is needed to clear  
FAULT after an OTE event  
(1)  
OTEHYST  
20  
2.6  
14  
°C  
ms  
A
OLPC  
IOC  
Overload protection counter  
Overcurrent limit protection  
fPWM = 384 kHz  
Resistor – programmable, nominal peak current in  
1load, ROC = 27 k(Typ)  
Resistor – programmable, nominal peak current in  
1load, ROC = 56 k(Typ)  
IOC_LATCHED  
Overcurrent limit protection, latched  
14  
A
IDC_OC  
Speaker DC protection limit  
Speaker DC protection limit  
Resistor – programmable, ROC = 27 kΩ  
Resistor – programmable, ROC = 56 kΩ  
1.5  
1.5  
A
A
IDC_OC_LATCHED  
Time from application of short condition to Hi-Z of  
affected half bridge  
IOCT  
IPD  
Overcurrent response time  
150  
3
ns  
Internal pulldown resistor at output of  
each half bridge  
Connected when RESET is active to provide  
bootstrap charge. Not used in SE mode.  
mA  
STATIC DIGITAL SPECIFICATIONS  
VIH  
High level input voltage  
1.9  
V
V
INPUT_X, M1, M2, M3, RESET  
VIL  
Low level input voltage  
Input leakage current  
0.8  
LEAKAGE  
100  
μA  
OTW / SHUTDOWN (FAULT)  
Internal pullup resistance, OTW, CLIP,  
FAULT to DVDD  
RINT_PU  
20  
3
26  
33  
kΩ  
VOH  
High level output voltage  
Low level output voltage  
Device fanout OTW, FAULT, CLIP  
Internal pullup resistor  
IO = 4mA  
3.3  
200  
30  
3.6  
V
VOL  
500  
mV  
FANOUT  
No external pullup  
devices  
(1) Specified by design.  
Copyright © 2017, Texas Instruments Incorporated  
11  
 
TAS5634  
ZHCSH20 OCTOBER 2017  
www.ti.com.cn  
7.9 Typical Characteristics  
7.9.1 BTL Configuration  
Measurement Conditions: TAS5548 PWM Processor (AD-mode, modulation index limited to 97.7%), Audio  
frequency = 1 kHz, PVDD_X = 58 V, GVDD_X = 12 V, RL = 6 Ω, fS = 384 kHz, ROC = 30 kΩ, TC = 75°C, Output  
Filter: LDEM = 15 μH, CDEM = 680 nF, 20 Hz to 20 kHz BW (AES17 low pass filter), unless otherwise noted.  
350  
10  
6W  
8W  
6W  
8W  
300  
250  
200  
150  
100  
50  
1
0.1  
0.01  
THD+N = 10%  
TC = 75èC  
TC = 75èC  
0
0.001  
10 15 20 25 30 35 40 45 50 55 60 65  
PVDD - Supply Voltage - V  
10m  
100m  
1
10  
100  
400  
Po - Output Power - W  
D003  
D001  
2. Output Power vs Supply Voltage  
1. Total Harmonic Distortion + Noise vs Output Power  
280  
240  
200  
160  
120  
80  
10  
6W  
8W  
RL = 6W  
TC = 75èC  
1W  
50W  
200W  
1
0.1  
0.01  
40  
THD+N = 1%  
TC = 75èC  
0
0.001  
10 15 20 25 30 35 40 45 50 55 60 65  
PVDD - Supply Voltage - V  
20  
100  
1k  
10k 20k  
f - Frequency - Hz  
D004  
D002  
4. Output Power vs Supply Voltage  
3. Total Harmonic Distortion + Noise vs Frequency  
12  
版权 © 2017, Texas Instruments Incorporated  
TAS5634  
www.ti.com.cn  
ZHCSH20 OCTOBER 2017  
BTL Configuration (接下页)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
80  
60  
40  
20  
0
6W  
8W  
6W  
8W  
10  
TC = 75èC  
TC = 75èC  
0
0
100  
200  
300  
400  
500  
600 650  
0
100  
200  
300  
400  
500  
600 650  
2 Channel Output Power - W  
2 Channel Output Power - W  
D005  
D006  
5. Efficiency vs 2 Channel Output Power  
6. Power Loss vs 2 Channel Output Power  
350  
300  
250  
200  
150  
100  
50  
0
TC = 75èC  
ref = 41.01 V  
FFT size = 16384  
6W  
V
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
6W  
8W  
THD+N = 10%  
75  
0
0
25  
50  
100  
0
5k  
10k  
15k  
20k  
24k  
TC - Case Temperature - èC  
f - Frequency - Hz  
D007  
D008  
7. Output Power vs Case Temperature  
8. Noise Amplitude vs Frequency  
版权 © 2017, Texas Instruments Incorporated  
13  
TAS5634  
ZHCSH20 OCTOBER 2017  
www.ti.com.cn  
7.9.2 PBTL Configuration  
Measurement Conditions: TAS5548 PWM Processor (AD-mode, modulation index limited to 97.7%), Audio  
frequency = 1 kHz, PVDD_X = 58 V, GVDD_X = 12 V, RL = 3 Ω, fS = 384 kHz, ROC = 30 kΩ, TC = 75°C, Output  
Filter: LDEM = 15 μH, CDEM = 680 nF, CDCB = 470 µF, 20 Hz to 20 kHz BW (AES17 low pass filter), unless  
otherwise noted.  
700  
10  
3W  
4W  
3W  
4W  
600  
500  
400  
300  
200  
100  
0
1
0.1  
0.01  
THD+N = 10%  
TC = 75èC  
TC = 75èC  
0.001  
10 15 20 25 30 35 40 45 50 55 60 65  
PVDD - Supply Voltage - V  
10m  
100m  
1
10  
100  
700  
Po - Output Power - W  
D016  
D014  
10. Output Power vs Supply Voltage  
9. Total Harmonic Distortion + Noise vs Output Power  
600  
500  
400  
300  
200  
100  
0
10  
3W  
4W  
RL = 3W  
TC = 75èC  
1W  
100W  
400W  
1
0.1  
0.01  
THD+N = 1%  
TC = 75èC  
0.001  
10 15 20 25 30 35 40 45 50 55 60 65  
PVDD - Supply Voltage - V  
20  
100  
1k  
10k 20k  
f - Frequency - Hz  
D017  
D015  
12. Output Power vs Supply Voltage  
11. Total Harmonic Distortion + Noise vs Frequency  
700  
600  
500  
400  
300  
200  
100  
3W  
4W  
THD+N = 10%  
75 100  
0
0
25  
50  
TC - Case Temperature - èC  
D018  
13. Output Power vs Case Temperature  
14  
版权 © 2017, Texas Instruments Incorporated  
TAS5634  
www.ti.com.cn  
ZHCSH20 OCTOBER 2017  
7.9.3 SE Configuration  
Measurement Conditions: TAS5548 PWM Processor (AD-mode, modulation index limited to 97.7%), Audio  
frequency = 1 kHz, PVDD_X = 58 V, GVDD_X = 12 V, RL = 3 Ω, fS = 384 kHz, ROC = 30 kΩ, TC = 75°C, Output  
Filter: LDEM = 15 μH, CDEM = 680 nF, CDCB = 470 µF, 20 Hz to 20 kHz BW (AES17 low pass filter), unless  
otherwise noted.  
175  
10  
3W  
4W  
3W  
4W  
150  
125  
100  
75  
1
0.1  
50  
0.01  
25  
THD+N = 10%  
TC = 75èC  
TC = 75èC  
100 200  
0
0.001  
10 15 20 25 30 35 40 45 50 55 60 65  
PVDD - Supply Voltage - V  
10m  
100m  
1
10  
Po - Output Power - W  
D011  
D009  
15. Output Power vs Supply Voltage  
14. Total Harmonic Distortion + Noise vs Output Power  
140  
120  
100  
80  
10  
3W  
4W  
RL = 3W  
TC = 75èC  
1W  
25W  
100W  
1
0.1  
60  
40  
0.01  
20  
THD+N = 1%  
TC = 75èC  
0
0.001  
10 15 20 25 30 35 40 45 50 55 60 65  
PVDD - Supply Voltage - V  
20  
100  
1k  
10k 20k  
f - Frequency - Hz  
D012  
D010  
17. Output Power vs Supply Voltage  
16. Total Harmonic Distortion + Noise vs Frequency  
160  
140  
120  
100  
80  
60  
40  
20  
0
3W  
4W  
THD+N = 10%  
75 100  
0
25  
50  
TC - Case Temperature - èC  
D013  
18. Output Power vs Case Temperature  
版权 © 2017, Texas Instruments Incorporated  
15  
TAS5634  
ZHCSH20 OCTOBER 2017  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TAS5634 is a PWM Input, Class-D Audio amplifier power stage that can be paired with TI digital-input PWM  
modulator like the TAS5548 or TAS5558. The TAS5634 supports up to 58V on the output stage power supply  
(PVDD) to deliver up to 2 x 300 W (6Ω) or 1 x 600 W (3Ω) for higher impedance loads. The output of the  
TAS5634 can be configured in single-ended (SE), bridge-tied load (BTL) or parallel bridge-tied load (PBTL)  
output, which supports 4-channels, stereo, or mono, respectively. It requires two power supply rails for operation,  
PVDD for the output power stage and 12 V for the gate drive (GVDD) and internal circuitry (VDD). 19 shows  
typical connections for BTL outputs. A detailed schematic can be viewed in TAS5634EVM User's Guide.  
16  
版权 © 2017, Texas Instruments Incorporated  
TAS5634  
www.ti.com.cn  
ZHCSH20 OCTOBER 2017  
8.2 Functional Block Diagrams  
Capacitors for  
External  
Filtering  
System  
microcontroller  
&
/AMP RESET  
I2C  
Startup/Stop  
TASxxxx PWM  
Modulator  
*NOTE1  
/RESET  
BST_A  
BST_B  
VALID  
Bootstrap  
Capacitors  
2nd Order  
L-C Output  
Filter for  
each  
PWM_A  
PWM_B  
INPUT_A  
INPUT_B  
OUT_A  
OUT_B  
Left-  
Channel  
Output  
Input  
H-Bridge 1  
Output  
H-Bridge 1  
H-Bridge  
2-CHANNEL  
H-BRIDGE  
BTL MODE  
2nd Order  
L-C Output  
Filter for  
each  
PWM_C  
PWM_D  
INPUT_C  
INPUT_D  
OUT_C  
OUT_D  
Right-  
Channel  
Output  
Input  
H-Bridge 2  
Output  
H-Bridge 2  
H-Bridge  
M1  
BST_C  
BST_D  
Hardwire  
Mode  
Control  
M2  
M3  
Bootstrap  
Capacitors  
Hardwire  
PVDD  
GND  
PVDD  
GVDD, VDD,  
PVDD  
Power Supply  
Decoupling  
Over-  
Current  
Limit  
AVDD & DVDD  
Power Supply  
Decoupling  
SYSTEM  
Power  
Supplies  
GND  
12V  
GVDD (12V)/VDD (12V)  
VAC  
/opyright © 2017, Çexas Lnstruments Lncorporated  
*NOTE1: Logic AND in or outside microcontroller  
(1) Logic AND is inside or outside the micro processor.  
19. Typical System Block Diagram  
版权 © 2017, Texas Instruments Incorporated  
17  
TAS5634  
ZHCSH20 OCTOBER 2017  
www.ti.com.cn  
Functional Block Diagrams (接下页)  
/CLIP  
/OTW  
/FAULT  
BST_X  
GVDD_X  
AVDD  
UVP  
DVDD  
/RESET  
MODE1-3  
POWER-UP  
RESET  
AVDD  
VDD  
AVDD  
DVDD  
TEMP  
SENSE  
CB3C OVER-  
LOAD  
PROTECTION  
DVDD  
STARTUP  
CONTROL  
C_START  
BST_A  
PVDD_AB  
OUT_A  
GND  
PWM  
RECEIVER  
PWM &  
TIMING  
CONTROL  
INPUT_A  
+
-
ANALOG  
LOOP FILTER  
GATE-DRIVE  
GVDD_AB  
BST_B  
PVDD_AB  
OUT_B  
GND  
PWM  
RECEIVER  
INPUT_B  
INPUT_C  
INPUT_D  
PWM &  
TIMING  
CONTROL  
+
-
ANALOG  
LOOP FILTER  
GATE-DRIVE  
GATE-DRIVE  
GATE-DRIVE  
BST_C  
PVDD_CD  
OUT_C  
GND  
PWM  
RECEIVER  
PWM &  
TIMING  
CONTROL  
+
-
ANALOG  
LOOP FILTER  
GVDD_CD  
BST_D  
PVDD_CD  
OUT_D  
GND  
PWM  
RECEIVER  
PWM &  
TIMING  
CONTROL  
+
-
ANALOG  
LOOP FILTER  
20. Functional Block Diagram  
18  
版权 © 2017, Texas Instruments Incorporated  
TAS5634  
www.ti.com.cn  
ZHCSH20 OCTOBER 2017  
8.3 Feature Description  
8.3.1 Closed-Loop Architecture  
The TAS5634 is designed with closed-loop feedback to reduce noise and eliminate distortion caused by the  
power supply and output stage FETs. The integrated closed-loop architecture makes it simple and easy to  
convert from an audio digital source directly to power delivery in one step while maintaining great performance.  
8.3.2 Power Supplies  
The TAS5634 requires only two supplies for normal operation including a high-voltage output stage supply,  
PVDD, and a lower voltage 12V voltage supply for gate drive and low-voltage analog and digital circuits. Two  
internal regulators provide voltage regulation for the digital (DVDD) and analog (AVDD) circuit using the 12V  
VDD voltage supply. Additionally, an integrated bootstrap (floating) supply provides the necessary voltage for the  
high-side MOSFETs for each half-bridge.  
To provide the best electrical and acoustical characteristics, the PWM signal path including gate drive and output  
stage are designed as identical, independent half-bridges. For this reason, each half-bridge has separate  
bootstrap pins (BST_X) and each full-bridge has separate power stage supply (PVDD_X) and gate supply  
(GVDD_X) pins.  
Special attention should be paid to the power-stage power supply; this includes component selection, PCB  
placement, and routing. As indicated, each full-bridge has independent power-stage supply pins (PVDD_X). For  
optimal electrical performance, EMI compliance, and system reliability, it is important that each PVDD_X  
connection is decoupled with a minimum of 470 nF ceramic capacitance and placed as close as possible to each  
supply pin. It is recommended to follow the PCB layout of the TAS5634 reference design. For additional  
information on recommended power supply and required components, see the application diagrams in this data  
sheet.  
The power-supply sequence is not critical because of the internal power-on-reset circuit. The TAS5634 is fully  
protected against erroneous power-stage turn on due to parasitic gate charging when power supplies are  
applied. Thus, voltage-supply ramp rates (dV/dt) are non-critical within the specified range (see the  
Recommended Operating Conditions table of this data sheet).  
8.3.2.1 BST, Bootstrap Supply  
The TAS5634 uses bootstrap circuits to properly turn on the high-side MOSFETs. A small ceramic capacitor  
must be connected from each bootstrap pin (BST_X) to the power-stage output pin (OUT_X). When the power-  
stage output is low, the bootstrap capacitor is charged through an internal diode connected between the gate-  
drive power-supply pin (GVDD_X) and the bootstrap pin (BST_X). When the power-stage output is high, the  
bootstrap capacitor potential is shifted above the output potential and thus provides a suitable voltage supply for  
the high-side gate driver. In an application with PWM switching frequencies in the range from 352kHz to 500  
kHz, it is recommended to use 33 nF ceramic capacitors, size 0603 or 0805, for the bootstrap supply. These 33-  
nF capacitors ensure sufficient energy storage, even during minimal PWM duty cycles, to keep the high-side  
power stage MOSFETs fully turned on during the remaining part of the PWM cycle.  
8.3.2.2 PVDD, Output Stage Power Supply  
The PVDD_x voltage pins supply the high voltage and current needed for driving the speaker load.  
1. Place at least 1 μF decoupling capacitance as close as possible to each supply pin, PVDD_AB and  
PVDD_CD. TI recommends to use ceramic capacitors, which have low series resistance (ESR). The  
decoupling capacitors provide current each output stage switch cycle.  
2. Add a minimum of 470 μF bulk capacitance to each PVDD_x pin. More capacitance may be required if the  
power supply has low bandwidth or does not respond quickly to transients.  
3. Minimize trace lengths between decoupling and bulk capacitance to reduce inductance between the  
TAS5634 and the supply capacitors.  
8.3.2.3 GVDD, Gate-Drive Power Supply  
The GVDD_x, 12 V power supply is required for the gate-drive section of the TAS5634. Place a minimum of 100  
nF decoupling capacitor near each GVDD_x pin. For best audio performance, place a total of 10 μF bulk  
capacitance on the 12V power supply.  
版权 © 2017, Texas Instruments Incorporated  
19  
TAS5634  
ZHCSH20 OCTOBER 2017  
www.ti.com.cn  
Feature Description (接下页)  
8.3.2.4 VDD Supply, Internal Regulators (DVDD and AVDD)  
The TAS5634 has two internal regulators, which are used to power the low voltage digital (DVDD) and analog  
(AVDD) circuitry. The 12V VDD pin can be supplied from the same power supply as GVDD_x. For best audio  
performance, separate VDD from GVDD_AB and GVDD_CD using RC filters. The RC filters will provide high-  
frequency isolation and minimize the amount of switching noise on DVDD and AVDD.  
8.3.3 System Power-Up / Power-Down Sequence  
8.3.3.1 Powering Up  
The TAS5634 does not require a power-up sequence. The outputs of the H-bridges remain in a high-impedance  
state until the gate-drive supply voltage (GVDD_X) and VDD voltage are above the undervoltage protection  
(UVP) voltage threshold (see the Electrical Characteristics table of this data sheet). Although not specifically  
required, it is recommended to hold RESET in a low state while powering up the device. This allows an internal  
circuit to charge the external bootstrap capacitors by enabling a weak pulldown of the half-bridge output.  
8.3.3.2 Powering Down  
The TAS5634 does not require a power-down sequence. The device remains fully operational as long as the  
gate-drive supply (GVDD_X) voltage and VDD voltage are above the undervoltage protection (UVP) voltage  
threshold (see the Electrical Characteristics table of this data sheet). Although not specifically required, it is a  
good practice to hold RESET low during power down, thus preventing audible artifacts including pops or clicks.  
8.3.4 Startup and Shutdown Ramp Sequence (C_START)  
The integrated startup and stop sequence ensures a click and pop free startup and shutdown sequence of the  
amplifier. The startup sequence uses a voltage ramp with a duration set by the CSTART capacitor. The  
sequence uses the input PWM signals to generate output PWM signals, hence input idle PWM should be present  
during both startup and shut down ramping sequences.  
VDD, GVDD_X and PVDD_X power supplies must be turned on and with settled outputs before starting  
the startup ramp by setting RESET high.  
During startup and shutdown ramp the input PWM signals should be in muted condition with the PWM processor  
noise shaper activity turned off (50% duty cycle).  
The duration of the startup and shutdown ramp is 100 ms + X ms, where X is the CSTART capacitor value in nF.  
It is recommended to use 330 nF CSTART in BTL and PBTL mode and 1 µF in SE mode configuration. This  
results in ramp times of 430 ms and 1.1 s respectively. The longer ramp time in SE configuration allows charge  
and discharge of the output AC coupling capacitor without audible artifacts. See the Table 1 Mode Selection Pins  
for a complete list of recommended C_START values.  
20  
版权 © 2017, Texas Instruments Incorporated  
TAS5634  
www.ti.com.cn  
ZHCSH20 OCTOBER 2017  
Feature Description (接下页)  
STARTUP/SHUTDOWN RAMP  
Ramp Start  
Ramp End  
Ramp Start  
Ramp End  
3.3V  
0V  
/RESET  
3.3V  
Hi-Z  
0V  
INPUT_X IS SWITCHING (MUTE)  
NOISE SHAPER OFF  
INPUT_X IS SWITCHING (MUTE)  
(UNMUTED)  
(UNMUTED)  
INPUT_X  
OUT_X  
NOISE SHAPER OFF  
PVDD_X  
Hi-Z  
OUT_X IS SWITCHING (MUTE)  
OUT_X IS SWITCHING (MUTE)  
0V  
C_START  
0V  
PVDD_X/2  
0V  
SPEAKER OUT_X  
tStartup Ramp  
tStartup Ramp  
INPUT_X IS SWITCHING (MUTE)  
NOISE SHAPER ON  
21. Start-Up and Shutdown Ramp  
8.3.5 Device Protection System  
The TAS5634 contains advanced protection circuitry carefully designed to facilitate system integration and ease  
of use, as well as to safeguard the device from permanent failure due to a wide range of fault conditions such as  
short circuits, overload, overtemperature, and undervoltage. The TAS5634 responds to a fault by immediately  
setting the power stage in a high-impedance (Hi-Z) state and asserting the FAULT pin low. In situations other  
than overload and overtemperature error (OTE), the device automatically recovers when the fault condition has  
been removed, i.e., the supply voltage has increased.  
The device will function on errors, as shown in the following table.  
2. Device Protection  
BTL Mode  
SE Mode  
Channel Fault  
Turns Off  
Channel Fault  
Turns Off  
A
B
C
D
A+B  
A
B
C
D
A+B  
C+D  
C+D  
Bootstrap UVP does not shutdown according to the table, it shuts down the respective high-side FET.  
版权 © 2017, Texas Instruments Incorporated  
21  
TAS5634  
ZHCSH20 OCTOBER 2017  
www.ti.com.cn  
8.3.6 Overload and Short Circuit Current Protection  
TAS5634 has fast reacting current sensors with a programmable trip threshold (OC threshold) on all high-side  
and low-side FETs. To prevent output current to increase beyond the programmed threshold, TAS5634 has the  
option of either limiting the output current for each switching cycle (Cycle By Cycle Current Control, CB3C) or to  
perform an immediate shutdown of the output in case of excess output current (Latching Shutdown). CB3C  
prevents premature shutdown due to high output current transients caused by high level music transients and a  
drop of real speaker’s load impedance, and will allow the output current to be limited to a maximum programmed  
level. If the maximum output current persists, i.e. the power stage being overloaded with too low load impedance,  
the device will shut down the affected output channel and the affected output will be put in a high-impedance (Hi-  
Z) state until a /RESET cycle is initiated. CB3C works individually for each half bridge output. If an over current  
event is triggered, CB3C will perform a state flip of the half bridge output that will be cleared upon beginning of  
next PWM frame.  
PWM_X  
RISING EDGE PWM  
SETS CB3C LATCH  
HS PWM  
LS PWM  
OC EVENT RESETS  
CB3C LATCH  
OC THRESHOLD  
OUTPUT CURRENT  
OCH  
HS GATE-DRIVE  
LS GATE-DRIVE  
22. CB3C Timing Example  
During CB3C an over load counter will increment for each over current event and decrease for each non-over  
current PWM cycle. This allows full amplitude transients into a low speaker impedance without a shutdown  
protection action. In case of a short circuit condition, the over current protection will limit the output current by the  
CB3C operation and eventually shut down the affected output if the overload counter reaches its maximum  
value. If a latched OC operation is required such that the device will shut down the affected output immediately  
upon first detected over current event, this protection mode should be selected.  
The over current threshold and mode (CB3C or Latched OC) is programmed by the OC_ADJ resistor value. The  
OC_ADJ resistor needs to be within its intentional value range for either CB3C operation or Latched OC  
operation.  
I_OC  
IOC_max  
IOC_min  
Not Defined  
ROC_ADJ  
23. OC Threshold versus OC_ADJ Resistor Value Example  
22  
版权 © 2017, Texas Instruments Incorporated  
TAS5634  
www.ti.com.cn  
ZHCSH20 OCTOBER 2017  
3. OC_ADJ Resistor Value for OC Threshold  
OC_ADJ Resistor Value Protection Mode  
OC Threshold  
15.5 A  
14 A  
24 kΩ  
27 kΩ (Typ)  
30 kΩ  
CB3C  
CB3C  
CB3C  
13 A  
33 kΩ  
CB3C  
12 A  
47 kΩ  
Latched OC  
Latched OC  
Latched OC  
Latched OC  
15.5 A  
14 A  
56 kΩ (Typ)  
68 kΩ  
13 A  
62 kΩ  
12 A  
TI recommends to use a 27kΩ (CB3C) or 56kΩ (Latched) overcurrent adjust resistor value for typical  
applications. When using 24 kΩ (CB3C) or 47 kΩ (Latched) OC_ADJ resistor values, layout is critical for device  
reliability due to increased current during overcurrent events. Please carefully follow the guidelines in section  
Printed Circuit Board Requirements and only use these resistor values if required to deliver the desired power to  
the load.  
8.3.7 DC Speaker Protection  
The output DC protection scheme protects a connected speaker from excess DC current caused by a speaker  
wire accidentally shorted to chassis ground. Such short circuit would result in a DC voltage of PVDD/2 across the  
speaker, which potentially can result in destructive current levels. The output DC protection detects any  
unbalance of the output and input current of a BTL output, and in case of the unbalance exceeding a  
programmed threshold, the overload counter will increment until its maximum value and the affected output  
channel will be shut down. Output DC protection is designed for use in BTL configuration with AD mode  
modulation, and should be disabled if BD mode operation is used due to the output filter inductors’ ripple currents  
being in phase in BD mode and will thus be counted as an unbalanced current. DC Speaker Protection can be  
disabled for BTL operation with BD mode modulation, see Mode Setup Table for configuration.  
8.3.8 Pin-To-Pin Short Circuit Protection (PPSC)  
The PPSC detection system protects the device from permanent damage if a power output pin (OUT_X) is  
shorted to GND or PVDD_X. For comparison, the OC protection system detects an over current after the  
demodulation filter where PPSC detects shorts directly at the pin before the filter. PPSC detection is performed at  
startup i.e. when VDD is supplied, consequently a short to either GND or PVDD_X after system startup will not  
activate the PPSC detection system. When PPSC detection is activated by a short on the output, all half bridges  
are kept in a Hi-Z state until the short is removed, the device then continues the startup sequence and starts  
switching. The detection is controlled globally by a two step sequence. The first step ensures that there are no  
shorts from OUT_X to GND, the second step tests that there are no shorts from OUT_X to PVDD_X. The total  
duration of this process is roughly proportional to the capacitance of the output LC filter. The typical duration is  
<15 ms/μF. While the PPSC detection is in progress, FAULT is kept low, and the device will not react to changes  
applied to the RESET pins. If no shorts are present the PPSC detection passes, and FAULT is released. A  
device reset will not start a new PPSC detection. PPSC detection is enabled in BTL output configuration, the  
detection is not performed in SE mode. To make sure not to trip the PPSC detection system it is recommended  
not to insert resistive load to GND or PVDD_X.  
8.3.9 Overtemperature Protection  
The TAS5634 has a two-level temperature-protection system that asserts an active-low warning signal (OTW)  
when the device junction temperature exceeds 125°C (typical). If the device junction temperature exceeds 155°C  
(typical), the device is put into thermal shutdown, resulting in all half-bridge outputs being set in the high-  
impedance (Hi-Z) state and FAULT being asserted low. OTE is latched in this case. To clear the OTE latch,  
RESET must be asserted. Thereafter, the device resumes normal operation.  
8.3.10 Overtemperature Warning, OTW  
The over temperature warning OTW asserts when the junction temperature has exceeded recommended  
operating temperature. Operation at junction temperatures above OTW threshold is exceeding recommended  
operation conditions and is strongly advised to avoid.  
版权 © 2017, Texas Instruments Incorporated  
23  
 
TAS5634  
ZHCSH20 OCTOBER 2017  
www.ti.com.cn  
If OTW asserts, action should be taken to reduce power dissipation to allow junction temperature to decrease  
until it gets below the OTW hysteresis threshold. This action can be decreasing audio volume or turning on a  
system cooling fan.  
8.3.11 Undervoltage Protection (UVP) and Power-On Reset (POR)  
The UVP and POR circuits of the TAS5634 fully protect the device in any power-up/down and brownout situation.  
While powering up, the POR circuit resets the overload circuit (OLP) and ensures that all circuits are fully  
operational when the GVDD_X and VDD supply voltages reach stated in the Electrical Characteristics table.  
Although GVDD_X and VDD are independently monitored, a supply voltage drop below the UVP threshold on  
any VDD or GVDD_X pin results in all half-bridge outputs immediately being set in the high-impedance (Hi-Z)  
state and FAULT being asserted low. The device automatically resumes operation when all supply voltages have  
increased above the UVP threshold.  
8.3.12 Error Reporting  
Note that asserting RESET low forces the FAULT signal high, independent of faults being present. TI  
recommends monitoring the OTW signal using the system micro controller and responding to an overtemperature  
warning signal by, e.g., turning down the volume to prevent further heating of the device resulting in device  
shutdown (OTE).  
To reduce external component count, an internal pullup resistor to 3.3 V is provided on FAULT, CLIP, and OTW  
outputs. See Electrical Characteristics table for actual values.  
The FAULT, OTW, pins are active-low, open-drain outputs. Their function is for protection-mode signaling to a  
PWM controller or other system-control device.  
Any fault resulting in device shutdown is signaled by the FAULT pin going low. Likewise, OTW goes low when  
the device junction temperature exceeds 125°C (see 4).  
4. Error Reporting  
FAULT  
OTW  
DESCRIPTION  
0
0
1
0
1
0
Overtemperature (OTE) or overload (OLP) or undervoltage (UVP)  
Overload (OLP) or undervoltage (UVP)  
Junction temperature higher than 125°C (overtemperature warning)  
Junction temperature lower than 125°C and no OLP or UVP faults (normal  
operation)  
1
1
24  
版权 © 2017, Texas Instruments Incorporated  
 
TAS5634  
www.ti.com.cn  
ZHCSH20 OCTOBER 2017  
8.3.13 Fault Handling  
If a fault situation occurs while in operation, the device will act accordingly to the fault being a global or a channel  
fault. A global fault is a chip-wide fault situation and will cause all PWM activity of the device to be shut down,  
and will assert FAULT low. A global fault is a latching fault and clearing FAULT and restart operation requires  
resetting the device by toggling RESET. Toggling RESET should never be allowed with excessive system  
temperature, so it is advised to monitor RESET by a system microcontroller and only allow releasing RESET  
(RESET high) if the OTW signal is cleared (high). A channel fault will result in shutdown of the PWM activity of  
the affected channel(s). Note that asserting RESET low forces the FAULT signal high, independent of faults  
being present. TI recommends monitoring the OTW signal using the system micro controller and responding to  
an over temperature warning signal by, that is, turning down the volume to prevent further heating of the device  
resulting in device shutdown (OTE).  
5. Fault Handling  
Fault/Event  
Description  
Global or  
Channel  
Reporting  
Method  
Latched/Self  
Clearing  
Fault/Event  
Action needed to Clear  
Output FETs  
PVDD_X UVP  
VDD UVP  
Increase affected supply  
voltage  
Voltage Fault  
Global  
FAULT Pin  
Self Clearing  
Hi-Z  
GVDD_X UVP  
AVDD UVP  
Power On  
Reset  
POR (DVDD UVP)  
BST UVP  
Global  
FAULT Pin  
None  
Self Clearing  
Self Clearing  
Self Clearing  
Allow DVDD to rise  
H-Z  
Allow BST cap to recharge  
(lowside on, VDD 12V)  
Channel (half  
bridge)  
Voltage Fault  
High-side Off  
Normal operation  
Thermal  
Warning  
Cool below lower OTW  
threshold  
OTW  
Global  
OTW Pin  
Thermal  
Shutdown  
OTE (OTSD)  
Global  
Channel  
Channel  
FAULT Pin  
FAULT Pin  
FAULT Pin  
Latched  
Latched  
Latched  
Toggle RESET  
Toggle RESET  
Toggle RESET  
Hi-Z  
Hi-Z  
Hi-Z  
OLP (CB3C >2.6 ms)  
OC shutdown  
OC shutdown  
Latched OC  
(ROC > 47 k)  
CB3C  
(24k < ROC < 33k)  
Stuck at Fault(1) (1 to 3  
channels)  
Stuck at Fault(1) (All  
channels)  
Reduce signal level or  
remove short  
Flip state, cycle by  
cycle at fs/2  
OC Limiting  
No PWM  
Channel  
Channel  
Global  
None  
None  
None  
Self Clearing  
Self Clearing  
Self Clearing  
Resume PWM  
Resume PWM  
Hi-Z  
Hi-Z  
No PWM  
(1) Stuck at Fault occurs when input PWM drops below minimum PWM frame rate given in the Recommended Operating Conditions table  
of this data sheet.  
8.3.14 System Design Consideration  
A rising-edge transition on RESET input allows the device to execute the startup sequence and starts switching.  
Apply audio only according to the timing information for startup and shutdown sequence. That will start and stop  
the amplifier without audible artifacts in the output transducers.  
The CLIP signal indicates that the output is approaching clipping (when output PWM starts skipping pulses due  
to loop filter saturation). The signal can be used to initiate an audio volume decrease or to adjust the power  
supply rail.  
The device inverts the audio signal from input to output.  
The DVDD and AVDD pins are not recommended to be used as a voltage source for external circuitry.  
版权 © 2017, Texas Instruments Incorporated  
25  
TAS5634  
ZHCSH20 OCTOBER 2017  
www.ti.com.cn  
8.4 Device Functional Modes  
There are three main output modes supported on the TAS5634 including stereo BTL mode, mono PBTL mode  
and 4-channel single-ended mode. In addition, a combination of one BTL channel and two SE channels for a 2.1  
system can also be selected. The device supports two PWM modulation modes, AD and BD. AD modulation  
mode supports single-ended (SE) or differential PWM inputs. AD modulation can also be configured to have SE,  
BTL, BTL + SE, or PBTL outputs. BD modulation requires differential PWM inputs. BD modulation can only be  
configured in BTL or PBTL mode.  
hÜÇ_!  
hÜÇ-!  
hÜÇ_.  
hÜÇ-.  
/lass-5  
!mplifier  
/lass-5  
!mplifier  
hÜÇ_/  
hÜÇ_5  
hÜÇ-/  
hÜÇ-5  
4-/ꢂannel, {ingle-ended ({9)  
{tereo, .ridge-Çied [oad (.Ç[)  
hÜÇ_!  
hÜÇ_.  
hÜÇ_/  
hÜÇ_5  
/lass-5  
!mplifier  
ꢀono, ꢁaralleled .ridge-Çied [oad (ꢁ.Ç[)  
24. Device Functional Modes Configurations  
8.4.1 Stereo, Bridge-tied Load (BTL)  
In bridge-tied load (BTL) mode, the device operates as a 2-channel, stereo amplifier. BTL uses two of the output  
stage half-bridges to product up to twice PVDD across the load. BTL mode has a few configuration options:  
AD or BD Modulation  
Single-ended (AD) or Differential Input (AD or BD)  
DC Speaker Protection in AD modulation mode  
When using the singled-ended input configuration, the input signal is converted to a differential signal to drive the  
output stage of the TAS5634.  
See Table 1. Mode Selection Pins for the appropriate pin configurations and section Typical BTL Application for  
specific application setup information.  
8.4.2 Mono, Paralleled Bridge-tied Load (PBTL)  
In parallel bridge-tied load (PBTL) mode, the device operates as a 1-channel, mono amplifier. PBTL is typically  
used for 3 Ω and 4 Ω impedances delivering up to twice the current compared with the BTL configuration. PBTL  
configuration options include:  
AD or BD Modulation  
Single-ended (AD) or Differential Input (AD or BD)  
DC Speaker Protection in AD modulation mode  
26  
版权 © 2017, Texas Instruments Incorporated  
TAS5634  
www.ti.com.cn  
ZHCSH20 OCTOBER 2017  
Device Functional Modes (接下页)  
When using the single-ended input configuration, the single-ended input signal is converted to a differential  
signal to drive the output stage of the TAS5634.  
See Table 1. Mode Selection Pins for the appropriate pin configurations and section Typical PBTL Application for  
specific application setup information.  
8.4.3 4-Channel, Single-ended (SE)  
In single-ended (SE) mode, the device operates as a 4-channel amplifier. Each output, OUT_A, OUT_B, OUT_C  
and OUT_D act as independent channels. Single-ended mode only supports AD mode and single-ended input.  
See Table 1. Mode Selection Pins for the appropriate pin configurations and section Typical SE Application for  
specific application setup information.  
8.4.4 BD Modulation  
The TAS5634 supports BD mode modulation. See table Mode Selection Pins to configure the device mode pins  
for BD mode modulation. BD mode requires a PWM modulator, like the TAS5548, to provide two BD modulated  
PWM signals to the inputs of the TAS5634. Note that DC Speaker Protection is disabled in BD mode operation.  
Figure 25 shows example BD modulation waveforms at idle, positive output, and negative output.  
OUTP_x (P)  
OUTP_x (N)  
No Output  
0V  
OUTP-OUTN  
Speaker  
0A  
Current  
OUTP_x (P)  
OUTP_x (N)  
Positive Output  
PVDD  
-
OUTP OUTN  
0V  
Speaker  
Current  
0A  
OUTP_x (P)  
OUTP_x (N)  
Negative Output  
0V  
OUTP-OUTN  
–PVDD  
0A  
Speaker  
Current  
25. BD Modulation Switching Waveforms  
8.4.5 Device Reset  
When RESET is asserted low, all power-stage FETs in the four half-bridges are forced into a high-impedance  
(Hi-Z) state.  
版权 © 2017, Texas Instruments Incorporated  
27  
 
TAS5634  
ZHCSH20 OCTOBER 2017  
www.ti.com.cn  
Device Functional Modes (接下页)  
In BTL modes, to accommodate bootstrap charging prior to switching start, asserting the reset input low enables  
weak pulldown of the half-bridge outputs. In the SE mode, the output is forced into a high impedance state when  
asserting the reset input low. Asserting reset input low removes any fault information to be signaled on the  
FAULT output, i.e., FAULT is forced high. A rising-edge transition on reset input allows the device to resume  
operation after an overload fault. To ensure thermal reliability, the rising edge of RESET must occur no sooner  
than 4 ms after the falling edge of FAULT.  
8.4.6 Unused Output Channels  
If any output channels are unused, it is recommended to disable switching of unused output nodes to reduce  
power consumption. Furthermore by disabling unused output channels the cost of unused output LC  
demodulation filters can be avoided.  
Disable a channel by leaving the bootstrap capacitor (BST) unpopulated and connecting the respective input to  
GND. The unused output pin(s) can be left floating. Please note that the PVDD decoupling capacitors still need  
to be populated.  
6. Unused Output Channels  
Operating  
Mode  
PWM  
Input  
Output  
Configuration  
Unused  
Channel  
INPUT_A  
INPUT_B  
INPUT_C  
INPUT_D  
Unpopulated Component(s)  
000  
001  
010  
2N  
1N  
2N  
AB  
CD  
GND  
PWMa  
GND  
PWMb  
PWMc  
GND  
PWMd  
GND  
BST_A & BST_B capacitor  
BST_C & BST_D capacitor  
2 x BTL  
4 x SE  
A
B
C
D
GND  
PWMb  
GND  
PWMc  
PWMc  
GND  
PWMd  
PWMd  
PWMd  
GND  
BST_A capacitor  
BST_B capacitor  
BST_C capacitor  
BST_D capacitor  
PWMa  
PWMa  
PWMa  
101  
1N  
PWMb  
PWMb  
PWMc  
28  
版权 © 2017, Texas Instruments Incorporated  
TAS5634  
www.ti.com.cn  
ZHCSH20 OCTOBER 2017  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Information  
These typical connection diagrams highlight the required external components and system level connections for  
proper operation of the device in several common use cases. Each of these configurations can be tested using  
the TAS5634EVM. Please contact TI through TI.com or by visiting the TI E2E Forum at www.e2e.ti.com for  
design assistance and join the audio amplifier discussion forum for additional information.  
9.2 Typical Applications  
9.2.1 Typical BTL Application  
See 26 for application schematic. In this application, differential PWM inputs are used with AD modulation  
from the PWM modulator (TAS5558). AD modulation scheme is defined as PWM(+) as opposite polarity from  
PWM(–).  
3.3R  
+12V  
GND  
10µF  
100nF  
100nF  
1
GVDD_AB  
VDD  
BST_A 44  
BST_B 43  
GND 42  
33nF  
2
33nF  
ROC-ADJUST  
15µH  
10nF  
3R3  
3
OC_ADJ  
/RESET  
INPUT_A  
INPUT_B  
C_START  
DVDD  
GND  
0.68uF  
1nF  
/RESET  
PWM_A  
PWM_B  
4
GND 41  
5
OUT_A 40  
OUT_A 39  
PVDD_AB 38  
PVDD_AB 37  
PVDD_AB 36  
OUT_B 35  
GND 34  
6
1uF  
1uF  
7
470uF  
3R3  
8
330nF  
1µF  
1µF  
0.68uF  
1nF  
9
10nF  
15µH  
15µH  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
GND  
GND  
PVDD  
GND  
GND  
GND 33  
AVDD  
OUT_C  
PVDD_CD  
PVDD_CD  
PVDD_CD  
OUT_D  
OUT_D  
GND  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
10nF  
3R3  
PWM_C  
PWM_D  
/FAULT  
/OTW  
INPUT_C  
INPUT_D  
/FAULT  
/OTW  
0.68uF  
1nF  
1uF  
1uF  
470uF  
/CLIP  
/CLIP  
3R3  
M1  
0.68uF  
1nF  
M2  
GND  
100nF  
10nF  
M3  
BST_C  
15µH  
33nF  
GVDD_CD  
BST_D  
33nF  
3.3R  
/opyright © 2017, Çexas Lnstruments Lncorporated  
26. Typical Differential (2N) BTL Application  
版权 © 2017, Texas Instruments Incorporated  
29  
 
TAS5634  
ZHCSH20 OCTOBER 2017  
www.ti.com.cn  
Typical Applications (接下页)  
9.2.1.1 Design Requirements  
For this design example, us the values shown in 7.  
7. BTL Design Requirements  
PARAMETERS  
PVDD Supply Voltage  
GVDD and VDD Voltage  
Device Configuration  
Mode Pins  
VALUES  
12 V to 58 V  
12 V  
AD Modulation, Differential Input  
M3 = GND, M2 = GND, M1 = GND  
PWM_1+  
INPUT_A  
INPUT_B  
PWM_1-  
INPUT_C  
PWM_2+  
INPUT_D  
PWM_2-  
PWM modulator  
Output filters  
TAS5548  
Inductor: 15 μH, Capacitor: 0.68 μF  
6 Ω minimum  
Speaker  
C_START Capacitor  
OC_ADJ Resistor  
330 nF  
27 kΩ (14 A per channel, Cycle-by-cycle Current Limit)  
9.2.1.2 Detailed Design Procedure  
Follow the recommended component placement, layout and routing guidelines shown in the Layout Example  
section.  
The most critical section of the circuit is the power supply pins, the amplifier output signals and the high  
frequency signals.  
For specific application questions and support go to the TI E2E Forum at www.e2e.ti.com.  
9.2.1.3 Pin Connections  
Pin 1 - GVDD_AB - The gate-drive voltage for half-bridges A and B. Place a 0.1-μF decoupling capacitor  
placed near the pin.  
Pin 2 - VDD - The supply pin for internal voltage regulators AVDD and DVDD. Place a 10-μF bulk capacitor  
and a 0.1-μF decoupling capacitor near the pin.  
Pin 3 - ROC - Programming resistor for the overcurrent (OC) threshold. Place a resistor to ground. See table  
OC_ADJ Resistor Value for OC Threshold for the appropriate resistor value.  
Pin 4 - RESET - Device reset. When asserted, output stage is Hi-Z and there is no PWM switching. This pin  
can be controlled by a switch, microcontroller or processor.  
Pins 5 and 6 - INPUT_A and INPUT_B - Differential PWM input pair for A and B BTL channel with signals  
provided by a PWM modulator such as the TAS5548.  
Pin 7 - C_START - Start-up ramp capacitor must be 330nf for BTL/PBTL or 1 μF for SE configuration.  
Pin 8 - DVDD - Digital output supply pin is connected to 1-μF decoupling capacitor  
Pins 9-12 - GND - Connect to board GND.  
Pin 13 - AVDD - Analog output supply pin. Connect a 1-μF decoupling capacitor to device GND, pins 9-12.  
Pins 14 and 15 - INPUT_C and INPUT_D - Differential PWM input pair for C and D BTL channel with signals  
provided by a PWM modulator such as the TAS5548.  
Pin 16 - FAULT - Fault pin can be monitored by a microcontroller through GPIO pin. System can decide to  
assert reset or shutdown.  
Pin 17 - OTW - Overtemperature warning pin can be monitored by a microcontroller through a GPIO pin.  
System can decide to turn on fan or lower output power.  
Pin 18 - CLIP - Output clip indicator can be monitored by a microcontroller through a GPIO pin. System can  
decide to lower the volume.  
Pins 19-21 - M1, M2, M3 - Mode pins set the input and output configurations. For this configuration M1-M3  
30  
版权 © 2017, Texas Instruments Incorporated  
 
 
TAS5634  
www.ti.com.cn  
ZHCSH20 OCTOBER 2017  
are grounded. These mode pins must be hardware configured and set before starting device. Do not adjust  
while TAS5634 is operating.  
Pin 22 - GVDD_CD - The gate-drive voltage for half-bridges C and D. Place a 0.1-μF decoupling capacitor  
placed near the pin.  
Pins 23, 24, 43, 44 - BST_A, BST_B, BST_C, BST_D - Bootstrap pins for half-bridges A, B, C, and D.  
Connect 33 nF from this pin to corresponding output pins.  
Pins 25, 26, 33, 34, 41, 42 - GND - Connect to board ground and decoupling capacitors connected to  
PVDD_X.  
Pins 27, 28, 32, 35, 39, 40 - OUT_A, OUT_B, OUT_C, OUT_D - Output pins from half-bridges A, B, C, and D.  
Connect bootstrap capacitors and differential LC filter.  
Pins 29, 30, 31, 36, 37, 38 - PVDD_AB, PVDD_CD - Power supply pins to half-bridges A, B, C, and D. A and  
B form a full-bridge and C and D form another full-bridge. A 470-μF bulk capacitor is recommended for each  
full-bridge power pins. Place one 1-μF decoupling capacitor next to each pin.  
9.2.1.4 Application Curves  
350  
300  
250  
200  
150  
100  
50  
10  
6W  
8W  
6W  
8W  
1
0.1  
0.01  
THD+N = 10%  
TC = 75èC  
TC = 75èC  
0
0.001  
10 15 20 25 30 35 40 45 50 55 60 65  
PVDD - Supply Voltage - V  
10m  
100m  
1
10  
100  
400  
Po - Output Power - W  
D003  
D001  
28. Output Power vs Supply Voltage  
27. Total Harmonic Distortion + Noise vs Output Power  
版权 © 2017, Texas Instruments Incorporated  
31  
TAS5634  
ZHCSH20 OCTOBER 2017  
www.ti.com.cn  
9.2.2 Typical PBTL Configuration  
Use the sectionDetailed Design Procedure in the Typical BTL Application section for a pin description and setup.  
3.3R  
+12V  
GND  
10µF  
100nF  
100nF  
1
GVDD_AB  
VDD  
BST_A 44  
BST_B 43  
GND 42  
33nF  
2
33nF  
ROC-ADJUST  
15µH  
3
OC_ADJ  
/RESET  
INPUT_A  
INPUT_B  
C_START  
DVDD  
GND  
/RESET  
PWM_A  
PWM_B  
4
GND 41  
5
OUT_A 40  
OUT_A 39  
PVDD_AB 38  
PVDD_AB 37  
PVDD_AB 36  
OUT_B 35  
GND 34  
6
1uF  
1uF  
7
470uF  
8
10nF  
3R3  
330nF  
1µF  
1µF  
9
0.68uF  
1nF  
15µH  
15µH  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
GND  
GND  
PVDD  
GND  
GND  
GND 33  
3R3  
AVDD  
OUT_C  
PVDD_CD  
PVDD_CD  
PVDD_CD  
OUT_D  
OUT_D  
GND  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
0.68uF  
1nF  
INPUT_C  
INPUT_D  
/FAULT  
/OTW  
10nF  
/FAULT  
/OTW  
/CLIP  
1uF  
1uF  
470uF  
/CLIP  
M1  
M2  
GND  
100nF  
M3  
BST_C  
15µH  
33nF  
GVDD_CD  
BST_D  
33nF  
3.3R  
/opyright © 2017, Çexas Lnstruments Lncorporated  
29. Typical Differential (2N) PBTL Application  
8. PBTL Design Requirements  
PARAMETERS  
PVDD Supply Voltage  
VALUES  
12 V to 58 V  
GVDD and VDD Voltage  
Device Configuration  
Mode Pins  
12 V  
AD Modulation, Differential Input  
M3 = DVDD, M2 = GND, M1 = GND  
INPUT_A  
PWM_A+  
INPUT_B  
PWM_A-  
INPUT_C  
GND  
INPUT_D  
GND  
PWM modulator  
Output filters  
TAS5548  
Inductor: 15 μH, Capacitor: 0.68 μF  
3 Ω minimum  
Speaker  
C_START Capacitor  
OC_ADJ Resistor  
330 nF  
27 kΩ (14 A per channel, Cycle-by-cycle Current Limit)  
32  
版权 © 2017, Texas Instruments Incorporated  
TAS5634  
www.ti.com.cn  
ZHCSH20 OCTOBER 2017  
9.2.2.1 Application Curves  
700  
600  
500  
400  
300  
200  
100  
0
10  
3W  
4W  
3W  
4W  
1
0.1  
0.01  
THD+N = 10%  
TC = 75èC  
TC = 75èC  
0.001  
10 15 20 25 30 35 40 45 50 55 60 65  
PVDD - Supply Voltage - V  
10m  
100m  
1
10  
100  
700  
Po - Output Power - W  
D016  
D014  
31. Output Power vs Supply Voltage  
30. Total Harmonic Distortion + Noise vs Output Power  
版权 © 2017, Texas Instruments Incorporated  
33  
TAS5634  
ZHCSH20 OCTOBER 2017  
www.ti.com.cn  
9.2.3 Typical SE Configuration  
See 32 for application schematic. In this application, four single-ended PWM inputs are used with AD  
modulation from the PWM modulator such as the TAS5558. AD modulation scheme is defined as PWM(+) is  
opposite polarity from PWM(–), but in this case there is only a single-ended signal. The single-ended (SE) output  
configuration is often used to drive four independent channels in one TAS5634 device.  
3.3R  
+12V  
GND  
10µF  
100nF  
100nF  
1
GVDD_AB  
VDD  
BST_A 44  
BST_B 43  
GND 42  
33nF  
[ow 9{ꢀ  
2
33nF  
ROC-ADJUST  
15µH  
10nF  
3R3  
3
OC_ADJ  
/RESET  
INPUT_A  
INPUT_B  
C_START  
DVDD  
GND  
470uF  
0.68uF  
1nF  
/RESET  
PWM_A  
PWM_B  
4
GND 41  
5
OUT_A 40  
OUT_A 39  
PVDD_AB 38  
PVDD_AB 37  
PVDD_AB 36  
OUT_B 35  
GND 34  
6
1uF  
1uF  
7
470uF  
3R3  
8
1µF  
1µF  
1µF  
0.68uF  
1nF  
9
[ow 9{ꢀ  
10nF  
15µH  
15µH  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
GND  
470uF  
[ow 9{ꢀ  
GND  
PVDD  
GND  
GND  
GND 33  
AVDD  
OUT_C  
PVDD_CD  
PVDD_CD  
PVDD_CD  
OUT_D  
OUT_D  
GND  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
10nF  
3R3  
470uF  
PWM_C  
PWM_D  
/FAULT  
/OTW  
INPUT_C  
INPUT_D  
/FAULT  
/OTW  
0.68uF  
1nF  
1uF  
1uF  
470uF  
/CLIP  
/CLIP  
3R3  
M1  
0.68uF  
1nF  
M2  
GND  
100nF  
[ow 9{ꢀ  
10nF  
M3  
BST_C  
15µH  
33nF  
GVDD_CD  
BST_D  
33nF  
470uF  
3.3R  
/opyright © 2017, Çexas Lnstruments Lncorporated  
32. Typical (1N) SE Application  
9. SE Design Requirements  
PARAMETERS  
VALUES  
PVDD Supply Voltage  
GVDD and VDD Voltage  
Device Configuration  
Mode Pins  
12 V to 58 V  
12 V  
AD Modulation, Single-Ended Input  
M3 = DVDD, M2 = GND, M1 = DVDD  
INPUT_A  
PWM_1  
INPUT_B  
PWM_2  
INPUT_C  
PWM_3  
INPUT_D  
PWM_4  
PWM modulator  
Output filters  
TAS5548  
Inductor: 15 μH, Capacitor: 0.68 μF  
3 Ω minimum  
Speaker  
C_START Capacitor  
OC_ADJ Resistor  
1 μF  
27 kΩ (14 A per channel, Cycle-by-cycle Current Limit)  
34  
版权 © 2017, Texas Instruments Incorporated  
 
TAS5634  
www.ti.com.cn  
ZHCSH20 OCTOBER 2017  
9.2.3.1 Application Curves  
175  
150  
125  
100  
75  
10  
3W  
4W  
3W  
4W  
1
0.1  
50  
0.01  
25  
THD+N = 10%  
TC = 75èC  
TC = 75èC  
100 200  
0
0.001  
10 15 20 25 30 35 40 45 50 55 60 65  
PVDD - Supply Voltage - V  
10m  
100m  
1
10  
Po - Output Power - W  
D011  
D009  
34. Output Power vs Supply Voltage  
33. Total Harmonic Distortion + Noise vs Output Power  
版权 © 2017, Texas Instruments Incorporated  
35  
TAS5634  
ZHCSH20 OCTOBER 2017  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 Power Supplies  
To simplify power supply design, the TAS5634 requires only two voltage supplies. A 12-V supply and 58-V  
(typical) power-stage supply. An internal voltage regulator provides the supply voltage for the digital and low-  
voltage analog circuitry. Additionally, a floating voltage supply, using the built-in bootstrap circuit, provides the  
high-side gate drive voltage for each half-bridge.  
The PWM signal paths, including gate drive and output stage, are designed as identical, independent half-  
bridges. Each half-bridge has separate bootstrap pins (BST_X) and each full-bridge has separate power stage  
supply (PVDD_X) and gate supply (GVDD_X). TI highly recommends separating GVDD_AB, GVDD_CD, and  
VDD on the printed-circuit-board (PCB) using RC filters (see Layout Example for details). These RC filters  
provide the recommended high-frequency isolation between GVDD_X and VDD. Place all decoupling capacitors  
close to the associated pins to avoid stray inductance.  
Pay special attention to the power-stage power supply; this includes component selection, PCB placement and  
routing. For optimal electrical performance, EMI compliance, and system reliability, it is important that each  
PVDD_X connection is decoupled with a minimum of 470-nF ceramic capacitors placed as close as possible to  
each supply pin. TI recommends following the PCB layout of the TAS5634EVM. For additional information on  
recommended power supply and required components, see the application diagrams in this data sheet.  
The 12-V supply must have low-noise and low-output-impedance from a voltage regulator. Likewise, the 58-V  
power stage supply is assumed to have low output impedance and low noise. The power-supply sequence is not  
critical because of the internal power-on reset circuit. This makes the TAS5634 protected against erroneous  
power-stage turn on due to parasitic gate charging when power supplies are applied. Thus, voltage-supply ramp  
rates (dV/dt) are non-critical within the specified range (see the Recommended Operating Conditions table of this  
data sheet).  
10.2 Bootstrap Supply  
For a properly functioning bootstrap circuit, a small ceramic capacitor must be connected from each bootstrap pin  
(BST_X) to the power-stage output pin (OUT_X). When the power-stage output is low, the bootstrap capacitor is  
charged through an internal diode connected between the gate-drive power-supply pin (GVDD_X) and the  
bootstrap pin. When the power-stage output is high, the bootstrap capacitor potential is shifted above the output  
potential and thus provides a suitable voltage supply for the high-side gate driver. In an application with PWM  
switching frequencies in the range from 300 kHz to 400 kHz, TI recommends using 33-nF ceramic capacitors,  
size 0603 or 0805, for the bootstrap supply. These 33-nF capacitors ensure sufficient energy storage, even  
during minimal PWM duty cycles, to keep the high-side power stage FET (LDMOS) fully turned on during the  
remaining part of the PWM cycle.  
36  
版权 © 2017, Texas Instruments Incorporated  
TAS5634  
www.ti.com.cn  
ZHCSH20 OCTOBER 2017  
11 Layout  
11.1 Layout Guidelines  
These requirements must be followed to achieve best performance and reliability and minimum ground bounce at  
rated output power of TAS5634.  
11.1.1 PCB Material Recommendation  
FR-4 Glass Epoxy material with 1oz. (35 μm) copper is recommended for use with the TAS5634. The use of this  
material can provide for higher power output, improved thermal performance and better EMI margin (due to lower  
PCB trace inductance).  
11.1.2 PVDD Capacitor Recommendation  
The large capacitors used in conjunction with each full-bridge, are referred to as the PVDD Capacitors. These  
capacitors should be selected for proper voltage margin and adequate capacitance to support the power  
requirements. In practice, with a well designed system power supply, 1000 μF, 75 V bulk capacitors should  
support most applications. The PVDD capacitors should be low ESR type because they are used in a circuit  
associated with high-speed switching.  
11.1.3 Decoupling Capacitor Recommendation  
To design an amplifier that has robust performance, passes regulatory requirements, and exhibits good audio  
performance, good quality decoupling capacitors should be used. In practice, X5R or better should be used in  
this application.  
The voltage of the decoupling capacitors should be selected in accordance with good design practices.  
Temperature, ripple current, and voltage overshoot must be considered. This fact is particularly true in the  
selection of the close decoupling capacitor that is placed on the power supply to each half-bridge. It must  
withstand the voltage overshoot of the PWM switching, the heat generated by the amplifier during high power  
output, and the ripple current created by high power output. A minimum voltage rating of 100V is required for use  
with a 58 V power supply.  
See the TAS5634EVM User's Guide for more details including layout and bill-of-material.  
11.1.4 Circuit Component Requirements  
A number of circuit components are critical to performance and reliability. They include LC filter inductors and  
capacitors, decoupling capacitors and the heatsink. The best detailed reference for these is the TAS5634EVM  
BOM in the user's guide, which includes components that meet all the following requirements.  
High frequency decoupling capacitors - small high frequency decoupling capacitors are placed next to the  
IC to control switching spikes and keep high frequency currents in a tight loop to achieve best performance  
and reliability and EMC. They must be high quality ceramic parts with material like X7R or X5R and voltage  
ratings at least 30% greater than PVDD, to minimize loss of capacitance caused by applied DC voltage.  
(Capacitors made of materials like Y5V or Z5U should never be used in decoupling circuits or audio circuits  
because their capacitance falls dramatically with applied DC and AC voltage, often to 20% of rated value or  
less.)  
Bulk decoupling capacitors - large bulk decoupling capacitors are placed as close as possible to the IC to  
stabilize the power supply at lower frequencies. They must be high quality aluminum parts with low ESR and  
ESL and voltage ratings at least 25% more than PVDD to handle power supply ripple currents and voltages.  
LC filter inductors - to maintain high efficiency, short circuit protection and low distortion, LC filter inductors  
must be linear to at least the OCP limit and must have low DC resistance and core losses. For SCP,  
minimum working inductance, including all variations of tolerance, temperature and current level, must be  
5µH. Inductance variation of more than 1% over the output current range can cause increased distortion.  
LC filter capacitors - to maintain low distortion and reliable operation, LC filter capacitors must be linear to  
twice the peak output voltage. For reliability, capacitors must be rated to handle the audio current generated  
in them by the maximum expected audio output voltage at the highest audio frequency.  
Heatsink - The heatsink must be fabricated with the PowerPAD™ contact area spaced 1.0mm +/-0.01mm  
above mounting areas that contact the PCB surface. It must be supported mechanically at each end of the IC.  
This mounting ensures the correct pressure to provide good mechanical, thermal and electrical contact with  
版权 © 2017, Texas Instruments Incorporated  
37  
TAS5634  
ZHCSH20 OCTOBER 2017  
www.ti.com.cn  
Layout Guidelines (接下页)  
TAS5634 PowerPAD™. The PowerPAD™ contact area must be bare and must be interfaced to the  
PowerPAD™ with a thin layer (about 1mil) of a thermal compound with high thermal conductivity.  
11.1.5 Printed Circuit Board Requirements  
PCB layout, audio performance, EMC and reliability are linked closely together, and solid grounding improves  
results in all these areas. The circuit produces high, fast-switching currents, and care must be taken to control  
current flow and minimize voltage spikes and ground bounce at IC ground pins. Critical components must be  
placed for best performance and PCB traces must be sized for the high audio currents that the IC circuit  
produces.  
Grounding - ground planes must be used to provide the lowest impedance and inductance for power and  
audio signal currents between the IC and its decoupling capacitors, LC filters and power supply connection.  
The area directly under the IC should be treated as central ground area for the device, and all IC grounds  
must be connected directly to that area. A matrix of vias must be used to connect that area to the ground  
plane. Ground planes can be interrupted by radial traces (traces pointing away from the IC), but they must  
never be interrupted by circular traces, which disconnect copper outside the circular trace from copper  
between it and the IC. Top and bottom areas that do not contain any power or signal traces should be flooded  
and connected with vias to the ground plane.  
Decoupling capacitors - high frequency decoupling capacitors must be located within 2mm of the IC and  
connected directly to PVDD and GND pins with solid traces. Vias must not be used to complete these  
connections, but several vias must be used at each capacitor location to connect top ground directly to the  
ground plane. Placement of bulk decoupling capacitors is less critical, but they still must be placed as close  
as possible to the IC with strong ground return paths. Typically the heatsink sets the distance.  
LC filters - LC filters must be placed as close as possible to the IC after the decoupling capacitors. The  
capacitors must have strong ground returns to the IC through top and bottom grounds for effective operation.  
PCB - PCB copper must be at least 1 ounce thickness. PVDD and output traces must be wide enough to  
carry expected average currents without excessive temperature rise. PWM input traces must be kept short  
and close together on the input side of the IC and must be shielded with ground flood to avoid interference  
from high power switching signals.  
Heat sink - The heatsink must be grounded well to the PCB near the IC, and a thin layer of highly conductive  
thermal compound (about 1mil) must be used to connect the heatsink to the PowerPAD™.  
38  
版权 © 2017, Texas Instruments Incorporated  
TAS5634  
www.ti.com.cn  
ZHCSH20 OCTOBER 2017  
11.2 Layout Example  
Note T1: Bottom and top layer ground plane areas are used to provide strong ground connections. The area under  
the IC must be treated as central ground, with IC grounds connected there and a strong via matrix connecting the  
area to bottom ground plane. The ground path from the IC to the power supply ground through top and bottom layers  
must be strong to provide very low impedance to high power and audio currents.  
Note T2: Low impedance X7R or X5R ceramic high frequency decoupling capacitors must be placed within 2mm of  
PVDD and GND pins and connected directly to them and to top ground plane to provide good decoupling of high  
frequency currents for best performance and reliability. Their DC voltage rating must be 2 times PVDD.  
Note T3: Low impedance electrolytic bulk decoupling capacitors must be placed as close as possible to the IC.  
Typically the heat sink sets the distance. Wide PVDD traces are routed on the top layer with direct connections to the  
pins, without going through vias.  
Note T4: LC filter inductors and capacitors must be placed as close as possible to the IC after decoupling capacitors.  
Inductors must have low DC resistance and switching losses and must be linear to at least the OCP (over current  
protection) limit. Capacitors must be linear to at least twice the maximum output voltage and must be capable of  
conducting currents generated by the maximum expected high frequency output.  
Note T5: Bulk decoupling capacitors and LC filter capacitors must have strong ground return paths through ground  
plane to the central ground area under the IC.  
Note T6: The heat sink must have a good thermal and electrical connection to PCB ground and to the IC  
PowerPAD™. It must be connected to the PowerPad through a thin layer, about 1 mil, of highly conductive thermal  
compound.  
35. Printed Circuit Board - Top Layer  
版权 © 2017, Texas Instruments Incorporated  
39  
TAS5634  
ZHCSH20 OCTOBER 2017  
www.ti.com.cn  
Layout Example (接下页)  
Note B1: A wide PVDD bus and a wide ground path must be used to provide very low impedance to high power and  
audio currents to the power supply. Top and bottom ground planes must be connected with vias at many points to  
reinforce the ground connections.  
Note B2: Wide output traces can be routed on the bottom layer and connected to output pins with strong via arrays.  
36. Printed Circuit Board - Bottom Layer  
40  
版权 © 2017, Texas Instruments Incorporated  
TAS5634  
www.ti.com.cn  
ZHCSH20 OCTOBER 2017  
12 器件和文档支持  
12.1 接收文档更新通知  
要接收文档更新通知,请转至 TI.com 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产品信  
息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.2 社区资源  
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商按照原样提供。这些内容并不构成 TI 技术规范,  
并且不一定反映 TI 的观点;请参阅 TI 《使用条款》。  
TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在  
e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。  
设计支持  
TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。  
12.3 商标  
PowerPAD, PurePath, E2E are trademarks of Texas Instruments.  
12.4 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
12.5 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。这些数据如有变更,恕不另行通知  
和修订此文档。如欲获取此产品说明书的浏览器版本,请参阅左侧的导航。  
版权 © 2017, Texas Instruments Incorporated  
41  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TAS5634DDV  
ACTIVE  
ACTIVE  
HTSSOP  
HTSSOP  
DDV  
DDV  
44  
44  
35  
RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
Level-3-260C-168 HR  
0 to 70  
0 to 70  
TAS5634  
TAS5634  
TAS5634DDVR  
2000 RoHS & Green  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TAS5634DDVR  
HTSSOP DDV  
44  
2000  
330.0  
24.4  
8.6  
15.6  
1.8  
12.0  
24.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HTSSOP DDV 44  
SPQ  
Length (mm) Width (mm) Height (mm)  
350.0 350.0 43.0  
TAS5634DDVR  
2000  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
5-Jan-2022  
TUBE  
*All dimensions are nominal  
Device  
Package Name Package Type  
DDV HTSSOP  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TAS5634DDV  
44  
35  
530  
11.89  
3600  
4.9  
Pack Materials-Page 3  
PACKAGE OUTLINE  
DDV0044D  
PowerPADTM TSSOP - 1.2 mm max height  
S
C
A
L
E
1
.
2
5
0
PLASTIC SMALL OUTLINE  
C
8.3  
7.9  
TYP  
SEATING PLANE  
PIN 1 ID  
AREA  
A
0.1 C  
42X 0.635  
44  
1
2X (0.3)  
NOTE 6  
14.1  
13.9  
NOTE 3  
2X  
13.335  
7.30  
6.72  
EXPOSED  
THERMAL  
PAD  
(0.15) TYP  
NOTE 6  
2X (0.6)  
NOTE 6  
23  
22  
0.27  
0.17  
44X  
4.43  
3.85  
0.08  
C A B  
6.2  
6.0  
B
(0.15) TYP  
0.25  
1.2  
1.0  
GAGE PLANE  
SEE DETAIL A  
0.75  
0.50  
0.15  
0.05  
0 - 8  
DETAIL A  
TYPICAL  
4218830/A 08/2016  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. Reference JEDEC registration MO-153.  
5. The exposed thermal pad is designed to be attached to an external heatsink.  
6. Features may differ or may not be present.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DDV0044D  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
SEE DETAILS  
SYMM  
44X (1.45)  
44X (0.4)  
1
44  
42X (0.635)  
SYMM  
(R0.05) TYP  
23  
22  
(7.5)  
LAND PATTERN EXAMPLE  
SCALE:6X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
OPENING  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4218830/A 08/2016  
NOTES: (continued)  
7. Publication IPC-7351 may have alternate designs.  
8. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DDV0044D  
PowerPADTM TSSOP - 1.2 mm max height  
PLASTIC SMALL OUTLINE  
44X (1.45)  
44X (0.4)  
SYMM  
1
44  
42X (0.635)  
SYMM  
23  
22  
(7.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE :6X  
4218830/A 08/2016  
NOTES: (continued)  
9. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
10. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TAS563J020P1A-F

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 20V, 5% +Tol, 5% -Tol, 0.056uF, Through Hole Mount, AXIAL LEADED
CDE

TAS563J035P1A

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 35V, 5% +Tol, 5% -Tol, 0.056uF, Through Hole Mount, AXIAL LEADED
CDE

TAS563K020P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS563K035P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS563K050P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS563K075P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS563K100P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS563M035P1A

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 35V, 20% +Tol, 20% -Tol, 0.056uF, Through Hole Mount, AXIAL LEADED
CDE

TAS563M050P1A

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 50V, 20% +Tol, 20% -Tol, 0.056uF, Through Hole Mount, AXIAL LEADED
CDE

TAS563M075P1A-F

Tantalum Capacitor, Polarized, Tantalum (dry/solid), 75V, 20% +Tol, 20% -Tol, 0.056uF, Through Hole Mount, AXIAL LEADED
CDE

TAS564K015P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS564K020P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE