TAS6424MS-Q1 [TI]

汽车类 45W、2MHz、4 通道、4.5V 至 18V 数字输入 D 类音频放大器;
TAS6424MS-Q1
型号: TAS6424MS-Q1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类 45W、2MHz、4 通道、4.5V 至 18V 数字输入 D 类音频放大器

放大器 音频放大器
文件: 总68页 (文件大小:3795K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
TAS6424MS-Q1 具有负载突降保I2C 断功能的 45W2MHz 数字4 通  
道汽D 放大器  
1 特性  
2 应用  
符合面向汽车应用的 AEC-Q100 标准  
温度等级 1–40°C +125°C TA  
高级负载诊断  
汽车音响主机  
汽车外部放大器  
3 说明  
直流诊断功能,无需输入时钟即可执行  
交流诊断功能,可通过阻抗和相位响应实现高频  
扬声器检测  
TAS6424MS-Q1 器件是一款采用 2.1MHz PWM 开关  
频率的四通道数字输入 D 类音频放大器,以非常小的  
PCB 尺寸实现成本优化的解决方案,可针对启停事件  
在低至 4.5V 的电压下全面运行,并可在高达 40kHz 的  
音频带宽下提供出色的音质。  
可轻松满足 CISPR25-L5 EMC 规范  
音频输入  
– 4 通道 I2S 4/8 通道 TDM 输入  
输入采样率:44.1kHz48kHz96kHz  
输入格式:16 位至 32 I2S TDM  
音频输出  
输出开关频率既可以设置为高于调幅 (AM) 频带,以消  
AM 频带干扰并降低输出滤波需求及成本;也可以  
设置为低于 AM 频带,以优化器件效率。  
四通道桥接式负载 (BTL)  
双通道并行 BTL (PBTL)  
最高可达 2.1MHz 的输出开关频率  
4Ω 负载、14.4V BTL 条件下,输出功率为  
27WTHD 10%  
2Ω 负载、14.4V BTL 条件下,输出功率为  
45WTHD 10%  
2Ω 负载、18V PBTL 条件下,输出功率为  
80WTHD 10%  
4Ω 负载、14.4V BTL 条件下的音频性能  
输出功率为 1W 时,THD+N < 0.02%  
– 42µVRMS 输出噪声  
– –90dB 串扰  
负载诊断功能  
该器件内置负载诊断功能,用于检测和诊断误接的输  
出,以及检测交流耦合型高频扬声器,从而帮助缩短制  
造过程中的测试时间。  
TAS6424MS-Q1 D 类音频放大器专为汽车音响主机和  
外部放大器模块而设计。有关引脚兼容的单通道、双通  
道及四通道器件,请参阅器件选项表。  
器件信息  
器件型号  
封装(1)  
封装尺寸(标称值)  
TAS6424MS-Q1  
HSSOP (56)  
18.41mm × 7.49mm  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
开路和短路输出负载  
输出至电池短路或接地短路  
线路输出检测能力高达 6kΩ  
独立于主机运行  
保护  
输出电流限制和短路保护  
– 40V 负载突降  
可承受接地开路和电源开路  
直流失调电压  
温度过高  
欠压和过压  
常规运行  
PCB 区域  
– 4.5V 18V 的电源电压  
– I2C 控制,具有 4 个地址选项  
锁存或非锁存削波检测  
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLOSE66  
 
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Options................................................................ 3  
6 Pin Configuration and Functions...................................4  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings ....................................... 6  
7.2 ESD 等级.................................................................... 6  
7.3 Recommended Operating Conditions ........................6  
7.4 Thermal Information ...................................................7  
7.5 Electrical Characteristics ............................................7  
7.6 Typical Characteristics..............................................12  
8 Parameter Measurement Information..........................17  
9 Detailed Description......................................................18  
9.1 Overview...................................................................18  
9.2 Functional Block Diagram.........................................18  
9.3 Feature Description...................................................19  
9.4 Device Functional Modes..........................................30  
9.5 Programming............................................................ 31  
9.6 Register Maps...........................................................34  
10 Application Information Disclaimer...........................50  
10.1 Application Information........................................... 50  
10.2 Typical Applications ............................................... 52  
11 Power Supply Recommendations..............................57  
12 Layout...........................................................................58  
12.1 Layout Guidelines................................................... 58  
12.2 Layout Example...................................................... 58  
12.3 Thermal Considerations..........................................58  
13 Device and Documentation Support..........................60  
13.1 Documentation Support.......................................... 60  
13.2 Related Documentation.......................................... 60  
13.3 Receiving Notification of Documentation Updates..60  
13.4 支持资源..................................................................60  
13.5 商标.........................................................................60  
13.6 静电放电警告.......................................................... 60  
13.7 术语表..................................................................... 60  
14 Mechanical, Packaging, and Orderable  
Information.................................................................... 60  
4 Revision History  
注:以前版本的页码可能与当前版本的页码不同  
DATE  
REVISION  
NOTES  
November 2020  
*
Initial release.  
spacer  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
2
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
5 Device Options  
Non-  
Latching  
Output Power per channel / 10% THD  
Channel  
Current Limit  
(Typ)  
Channel Power-Supply Voltage  
Part Number  
4 Ω / BTL  
14.4 V  
4 Ω / BTL  
2 Ω / BTL  
14.4 V  
2 Ω / PBTL  
Max Voltage  
Count  
Range  
Clip Detect  
WARN Pin(1)  
Max Voltage  
TAS6424-Q1  
TAS6424M-Q1  
TAS6424L-Q1  
TAS6422-Q1  
4
4
4
2
1
4
4
2
4.5 V to 26.4 V  
4.5 V to 18 V  
4.5 V to 18 V  
4.5 V to 26.4 V  
4.5 V to 26.4 V  
4.5 V to 18 V  
4.5 V to 18 V  
4.5 V to 26.4 V  
6.5 A  
6.5 A  
4.8 A  
6.5 A  
6.5 A  
4.8 A  
6.5 A  
6.5 A  
N
N
N
N
Y
Y
Y
Y
27 W  
27 W  
27 W  
27 W  
27 W  
27 W  
27 W  
27 W  
75 W at 25 V  
45 W at 18 V  
45 W at 18 V  
75 W at 25 V  
75 W at 25 V  
75 W at 25 V  
45 W at 18 V  
75 W at 25 V  
45 W  
45 W  
27 W  
45 W  
45 W  
27 W  
45 W  
45 W  
150 W at 25 V  
80 W at 18 V  
80 W at 18 V  
150 W at 25 V  
N/A  
TAS6421-Q1  
TAS6424LS-Q1  
TAS6424MS-Q1  
TAS6422E-Q1  
80 W at 18 V  
80 W at 18 V  
150 W at 25 V  
(1) Register configurable function. N = Latched clip detect only. Y = Supports both latched and non-latched clip detect .  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
 
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
6 Pin Configuration and Functions  
GND  
PVDD  
VBAT  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
PVDD  
2
PVDD  
3
BST_4P  
OUT_4P  
GND  
AREF  
4
VREG  
VCOM  
AVSS  
5
6
OUT_4M  
BST_4M  
GND  
7
AVDD  
GVDD  
GVDD  
GND  
8
9
BST_3P  
OUT_3P  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
MCLK  
SCLK  
OUT_3M  
BST_3M  
PVDD  
FSYNC  
SDIN1  
SDIN2  
GND  
Thermal  
Pad  
PVDD  
BST_2P  
OUT_2P  
GND  
GND  
VDD  
OUT_2M  
BST_2M  
GND  
SCL  
SDA  
I2C_ADDR0  
I2C_ADDR1  
STANDBY  
MUTE  
FAULT  
WARN  
GND  
BST_1P  
OUT_1P  
GND  
OUT_1M  
BST_1M  
PVDD  
PVDD  
Not to scale  
6-1. DKQ Package, 56-Pin HSSOP With Exposed Thermal Pad, Top View  
6-1. Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
AREF  
AVDD  
AVSS  
NO.  
4
PWR  
PWR  
PWR  
VREG and VCOM bypass capacitor return  
8
Voltage regulator bypass. Connect 1 µF capacitor from AVDD to AVSS  
AVDD bypass capacitor return  
7
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
4
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
6-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
31  
35  
37  
41  
44  
48  
50  
54  
26  
14  
BST_1M  
BST_1P  
BST_2M  
BST_2P  
BST_3M  
BST_3P  
BST_4M  
BST_4P  
FAULT  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
PWR  
DO  
Bootstrap capacitor connection pins for high-side gate driver  
Bootstrap capacitor connection pins for high-side gate driver  
Bootstrap capacitor connection pins for high-side gate driver  
Bootstrap capacitor connection pins for high-side gate driver  
Bootstrap capacitor connection pins for high-side gate driver  
Bootstrap capacitor connection pins for high-side gate driver  
Bootstrap capacitor connection pins for high-side gate driver  
Bootstrap capacitor connection pins for high-side gate driver  
Reports a fault (active low, open drain), 100-kΩ internal pull-up resistor  
Audio frame clock input  
FSYNC  
DI  
1, 11, 17, 18,  
28, 33, 36, 39,  
46, 49, 52  
GND  
GND  
Ground  
9
Gate drive voltage regulator derived from VBAT input pin. Connect 2.2 µF capacitor to GND  
Gate drive voltage regulator derived from VBAT input pin. Connect 2.2 µF capacitor to GND  
GVDD  
PWR  
DI  
10  
22  
23  
12  
I2C_ADDR0  
I2C_ADDR1  
MCLK  
I2C address pins. Refer to 9-8  
DI  
DI  
Audio master clock input  
Mutes the device outputs (active low) while keeping output FETs switching at 50%, 100-kΩ  
internal pull-down resistor  
MUTE  
25  
OUT_1M  
OUT_1P  
OUT_2M  
OUT_2P  
OUT_3M  
OUT_3P  
OUT_4M  
OUT_4P  
32  
34  
38  
40  
45  
47  
51  
53  
NO  
PO  
NO  
PO  
NO  
PO  
NO  
PO  
Negative output for the channel  
Positive output for the channel  
Negative output for the channel  
Positive output for the channel  
Negative output for the channel  
Positive output for the channel  
Negative output for the channel  
Positive output for the channel  
2, 29, 30, 42,  
43, 55, 56  
PVDD voltage input (can be connected to battery). Bulk capacitor and bypass capacitor  
required  
PVDD  
PWR  
SCL  
20  
13  
21  
15  
16  
24  
3
DI  
DI  
I2C clock input  
SCLK  
SDA  
Audio bit and serial clock input  
DI/O  
DI  
I2C data input and output  
SDIN1  
SDIN2  
STANDBY  
VBAT  
VCOM  
VDD  
TDM data input and audio I2S data input for channels 1 and 2  
Audio I2S data input for channels 3 and 4  
Enables low power standby state (active Low), 100-kΩ internal pull-down resistor  
Battery voltage input  
DI  
DI  
PWR  
PWR  
PWR  
PWR  
DO  
6
Bias voltage  
19  
5
3.3 V external supply voltage  
VREG  
WARN  
Voltage regulator bypass  
27  
Clip and overtemperature warning (active low, open drain), 100-kΩ internal pull-up resistor  
Provides both electrical and thermal connection for the device. Heatsink must be connected to  
GND.  
Thermal Pad  
GND  
(1) GND = ground, PWR = power, PO = positive output, NO = negative output, DI = digital input, DO = digital output, DI/O = digital input  
and output, NC = no connection  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
MAX  
UNIT  
PVDD, VBAT  
VMAX  
DC supply voltage relative to GND  
Transient supply  
-0.3  
30  
V
voltage: PVDD,  
VBAT  
t ≤ 400 ms exposure  
-1  
40  
V
VRAMP  
VDD  
IMAX  
Supply-voltage ramp rate: PVDD, VBAT  
DC supply voltage relative to GND  
75  
3.5  
±8  
V/ms  
V
-0.3  
Maximum current per pin (PVDD, VBAT, OUT_xP, OUT_xM, GND)  
Pulsed supply  
A
IMAX_PULSED  
current per PVDD  
pin (one shot)  
t < 100 ms  
±12  
A
V
Input voltage for logic pins (SCL, SDA, SDIN1, SDIN2, MCLK,  
BCLK, LRCLK, MUTE,/STANDBY, I2C_ADDRx)  
VLOGIC  
-0.3  
VDD + 0.5  
VGND  
TJ  
Maximum voltage between GND pins  
Maximum operating junction temperature  
Storage temperature  
-0.3  
-55  
-55  
0.3  
150  
150  
V
°C  
°C  
Tstg  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress  
ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
7.2 ESD 等级  
单位  
人体放电模型 (HBM),符合 AEC Q100-002(1)  
HBM ESD 分类等级 2  
±3000  
±500  
±1000  
V
V
V(ESD)  
静电放电  
所有引脚  
充电器件模型 (CDM),符合 AEC Q100–011  
CDM ESD 分类等级 C4B  
转角引脚(12829 和  
56)  
(1) (1) AEC Q100–002 指示应当按照 ANSI/ESDA/JEDEC JS–001 规范执行 HBM 应力测试。  
7.3 Recommended Operating Conditions  
MIN  
4.5  
TYP  
MAX UNIT  
PVDD  
VBAT  
VDD  
TA  
Output FET Supply Voltage Range  
Battery Supply Voltage Input  
DC Logic supply  
Relative to GND  
Relative to GND  
Relative to GND  
18  
4.5  
14.4  
3.3  
18  
3.5  
V
3.0  
Ambient temperature  
–40  
125  
°C  
An adequate thermal design is  
required  
TJ  
Junction temperature  
–40  
150  
BTL Mode  
2
1
1
4
2
RL  
Minimum speaker load impedance  
PBTL Mode  
RPU_I2C  
CBypass  
CGVDD  
I2C pullup resistance on SDA and SCL pins  
External capacitance on bypass pins  
External capacitance on GVDD pins  
4.7  
1
10  
kΩ  
µF  
µF  
Pin 2, 3, 5, 6, 8, 19  
Pin 9, 10  
2.2  
Limit set by DC-diagnostic  
timing  
COUT  
External capacitance to GND on OUT pins  
1
3.3  
µF  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
6
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
 
 
 
 
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
7.3 Recommended Operating Conditions (continued)  
MIN  
TYP  
MAX UNIT  
Minimum inductance at ISD  
current  
levels  
LO  
Output filter inductance  
1
µH  
7.4 Thermal Information  
TAS6424MS-Q1(2)  
TAS6424MS-Q1(3)  
THERMAL METRIC(1)  
DKQ (HSSOP)  
DKQ(HSSOP)  
56 PINS  
37.3  
0.4  
56 PINS  
RθJA  
Junction-to-ambient thermal resistance  
-
1.1  
-
RθJC(top)  
RθJB  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
15.2  
0.2  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
-
ΨJB  
14.7  
n/a  
10  
-
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report, SPRA953.  
(2) JEDEC Standard 4 Layer PCB.  
(3) Measured using the TAS6424MS-Q1 EVM layout and heat sink. The device is not intended to be used without a heatsink.  
7.5 Electrical Characteristics  
Test conditions (unless otherwise noted): TC = 25°C, PVDD = VBAT = 14.4 V, VDD = 3.3 V, RL = 4 Ω, Pout = 1 W/ch, f =  
1kHz, fSW = 2.11 MHz, AES17 Filter, default I2C settings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
OPERATING CURRENT  
IPVDD_IDLE  
IVBAT_IDLE  
IPVDD_STBY  
IVBAT_STBY  
IVDD  
PVDD idle current  
All channels playing, no audio input  
All channels playing, no audio input  
STANDBY Active, VDD = 0 V  
75  
90  
0.5  
4
90  
100  
1
mA  
mA  
µA  
VBAT idle current  
PVDD standby current  
VBAT standby current  
VDD supply current  
STANDBY Active, VDD = 0 V  
6
µA  
All channels playing, –60-dB signal  
15  
18  
mA  
OUTPUT POWER  
4 Ω, PVDD = 14.4 V, THD+N = 1%,  
TC = 75°C  
20  
25  
38  
42  
30  
40  
22  
27  
40  
45  
33  
45  
4 Ω, PVDD = 14.4 V, THD+N = 10%,  
TC = 75°C  
2 Ω, PVDD = 14.4 V, THD+N = 1%,  
TC = 75°C  
PO_BTL  
Output power per channel, BTL  
W
2 Ω, PVDD = 14.4 V, THD+N = 10%,  
TC = 75°C  
4 Ω, PVDD = 18 V, THD+N = 1%,  
TC = 75°C  
4 Ω, PVDD = 18 V, THD+N = 10%,  
TC = 75°C  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
 
 
 
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
Test conditions (unless otherwise noted): TC = 25°C, PVDD = VBAT = 14.4 V, VDD = 3.3 V, RL = 4 Ω, Pout = 1 W/ch, f =  
1kHz, fSW = 2.11 MHz, AES17 Filter, default I2C settings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
2 Ω, PVDD = 14.4 V, THD+N = 1%,  
TC = 75°C  
35  
40  
2 Ω, PVDD = 14.4 V, THD+N = 10%,  
TC = 75°C  
45  
72  
80  
60  
75  
50  
80  
90  
65  
80  
1 Ω, PVDD = 14.4 V, THD+N = 1%,  
TC = 75°C  
Output power per channel in parallel  
mode, PBTL  
PO_PBTL  
W
1 Ω, PVDD = 14.4 V, THD+N = 10%,  
TC = 75°C  
2 Ω, PVDD = 18 V, THD+N = 1%,  
TC = 75°C  
2 Ω, PVDD = 18 V, THD+N = 10%,  
TC = 75°C  
4 channels operating, 25-W output  
power/ch 4 Ω load,PVDD = 14.4 V,  
TC = 25°C  
EFFP  
Power efficiency  
86%  
AUDIO PERFORMANCE  
Zero input, A-weighting, gain level 1,  
PVDD = 14.4 V  
42  
55  
67  
85  
7.5  
15  
21  
29  
Zero input, A-weighting, gain level 2,  
PVDD = 14.4 V  
Vn  
Output noise voltage  
µV  
Zero input, A-weighting, gain level 3,  
PVDD = 18 V  
Zero input, A-weighting, gain level 4,  
PVDD = 18 V  
gain level 1, Register 0x01, bit 1-0 =  
00  
gain level 2, Register 0x01, bit 1-0 =  
01  
GAIN  
Peak Output Voltage/dBFS  
V/FS  
gain level 3, Register 0x01, bit 1-0 =  
10  
gain level 4, Register 0x01, bit 1-0 =  
11  
GAINVAR  
Crosstalk  
Channel Gain Variation  
Channel crosstalk  
Gain variation for all gain levels.  
-0.5  
-0.5  
0.5  
0.5  
dB  
dB  
PVDD = 14.4 Vdc + 1 VRMS, f = 1  
kHz  
-90  
75  
PVDD = 14.4 Vdc + 1 VRMS, f = 1  
kHz  
PSRR  
Power-supply rejection ratio  
dB  
dB  
THD+N  
GCH  
Total harmonic distortion + noise  
Channel-to-channel gain variation  
0.02  
0
LINE OUTPUT PERFROMANCE  
Zero input, A-weighting, channel set  
to LINE MODE  
Vn_LINEOUT  
VO_LINEOUT  
THD+N  
LINE output noise voltage  
LINE output voltage  
42  
5.5  
µV  
0dB input, channel set to LINE  
MODE  
VRMS  
Line output total harmonic distortion + VO = 2 VRMS , channel set to LINE  
0.01  
noise  
MODE  
DIGITAL INPUT PINS  
VIH  
VIL  
IIH  
Input logic level high  
70  
%VDD  
%VDD  
µA  
Input logic level low  
30  
15  
Input logic current, high  
VI = VDD  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
8
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
Test conditions (unless otherwise noted): TC = 25°C, PVDD = VBAT = 14.4 V, VDD = 3.3 V, RL = 4 Ω, Pout = 1 W/ch, f =  
1kHz, fSW = 2.11 MHz, AES17 Filter, default I2C settings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
IIL  
Input logic current, low  
VI = 0  
-15  
µA  
PWM OUTPUT STAGE  
Not including bond wire and  
package resistance  
RDS(on)  
FET drain-to-source resistance  
90  
mΩ  
OVER VOLTAGE (OV) PROTECTIONI  
VPVDD_OV  
PVDD overvoltage shutdown  
19.3  
20  
20  
0.8  
22  
23  
V
V
V
PVDD overvoltage shutdown  
hysteresis  
VPVDD_OV_HY S  
VVBAT_OV  
VBAT overvoltage shutdown  
21.5  
0.6  
VBAT overvoltage shutdown  
hysteresis  
VVBAT_OV_HY S  
UNDER VOLTAGE (UV) PROTECTIONI  
VBATUV  
VBAT undervoltage shutdown  
4
0.2  
4
4.5  
4.5  
V
V
V
V
VBAT undervoltage shutdown  
hysteresis  
VBATUV_HYS  
PVDDUV  
PVDD undervoltage shutdown  
PVDD undervoltage shutdown  
hysteresis  
PVDDUV_HY S  
0.2  
BYPASS VOLTAGES  
VGVDD  
VAVDD  
VVCOM  
VVREG  
Gate drive bypass pin voltage  
7
6
V
V
V
V
Analog bypass pin voltage  
Common bypass pin voltage  
Regulator bypass pin voltage  
2.5  
5.5  
POWER-ON RESET(POR)  
VPOR  
VDD voltage for POR  
VDD POR recovery hysteresis voltage  
2.1  
0.5  
2.7  
V
V
VPOR_HY  
OVER TEMPERATURE (OT) PROTECTION  
OTW(i)  
Channel overtemperature warning  
Channel overtemperature shutdown  
150  
175  
°C  
°C  
OTSD(i)  
Global junction overtemperature  
warning  
OTW  
130  
°C  
Global junction overtemperature  
shutdown  
OTSD  
OTHYS  
160  
15  
°C  
°C  
Overtemperature hysteresis  
LOAD OVER CURRENT PROTECTION  
OC Level 1  
OC Level 2  
4.0  
6.0  
4.8  
7
A
A
ILIM Overcurrent cycle-by-cycle limit  
OC Level 1, Any short to supply,  
ground, or other channels  
7
9
A
A
ISD  
Overcurrent shutdown  
OC Level 2, Any short to supply,  
ground, or other channels  
MUTE MODE  
GMUTE  
Output attenuation  
100  
7
dB  
CLICK AND POP  
ITU-R 2k filter, High-Z/MUTE to  
Play, Play to Mute/High-Z  
VCP  
Output click and pop voltage  
mV  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
Test conditions (unless otherwise noted): TC = 25°C, PVDD = VBAT = 14.4 V, VDD = 3.3 V, RL = 4 Ω, Pout = 1 W/ch, f =  
1kHz, fSW = 2.11 MHz, AES17 Filter, default I2C settings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
mV  
V
DC OFFSET  
VOFFSET  
Output offset voltage  
Output DC fault protection  
2
5
DC DETECT  
DCFAULT  
2
2.5  
DIGITAL OUTPUT PINS  
VOH  
VOL  
Output voltage for logic level high  
I = ±2 mA  
90  
%VDD  
%VDD  
Output voltage for logic level low  
I = ±2 mA  
10  
20  
Signal delay when output clipping  
detected  
tDELAY_CLIPDE T  
µs  
LOAD DIAGNOSTICS  
Maximum resistance to detect a short  
from OUT pin(s) to PVDD  
S2P  
S2G  
500  
Ω
Ω
Maximum resistance to detect a short  
from OUT pin(s) to ground  
200  
SL  
Shorted load detection tolerance  
Open load  
Other channels in Hi-Z  
Other channels in Hi-Z  
All 4 Channels  
±0.5  
Ω
Ω
OL  
40  
70  
TDC_DIAG  
LO  
DC diagnostic time  
Line output  
230  
ms  
kΩ  
ms  
Ω
6
TLINE_DIAG  
Line output diagnostic time  
40  
Offset  
±0.5  
0.25  
ACIMP  
AC impedance accuracy  
AC diagnostic time  
Gain linearity, ƒ = 19 kHz, RL = 2 Ω  
to 16 Ω  
TAC_DIAG  
All 4 Channels  
520  
300  
ms  
µs  
I2C_ADDR PINS  
Time delay needed for I2C address  
set-up  
tI2C_ADDR  
I2C CONTROL PORT  
Bus free time between start and stop  
conditions  
tBUS  
1.3  
µs  
tHOLD1  
tHOLD2  
Hold time, SCL to SDA  
Hold time, start condition to SCL  
0
ns  
µs  
0.6  
I2C startup time after VDD power on  
reset  
tSTART  
12  
ms  
tRISE  
tFALL  
tSU1  
tSU2  
tSU3  
tW(H)  
tW(L)  
Rise time, SCL and SDA  
300  
300  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
Fall time, SCL and SDA  
Setup, SDA to SCL  
100  
0.6  
0.6  
0.6  
1.3  
Setup, SCL to start condition  
Setup, SCL to stop condition  
Required pulse duration SCL high  
Required pulse duration SCL low  
SERIAL AUDIO PORT  
DMCLK, DSCLK Allowable input clock duty cycle  
fMCLK  
fMCLK_Max  
tSCY  
0.45  
128  
0.5  
0.55  
512  
25  
Supported MCLK frequencies  
Maximum frequency  
128, 256, or 512  
xFS  
MHz  
ns  
SCLK pulse cycle time  
40  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
10  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
7.5 Electrical Characteristics (continued)  
Test conditions (unless otherwise noted): TC = 25°C, PVDD = VBAT = 14.4 V, VDD = 3.3 V, RL = 4 Ω, Pout = 1 W/ch, f =  
1kHz, fSW = 2.11 MHz, AES17 Filter, default I2C settings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
tSCL  
tSCH  
tRISE/FALL  
tSF  
SCLK pulse-with LOW  
SCLK pulse-with HIGH  
Rise and fall time  
16  
ns  
16  
ns  
<5  
ns  
Required FSYNC to SCLK rising edge  
FSYNC rising edge to SCLK edge  
DATA set-up time  
8
8
8
8
ns  
tFS  
ns  
tDS  
ns  
tDH  
DATA hold time  
ns  
Required SDIN hold time after SCLK  
rising edge  
th  
15  
15  
ns  
ns  
pf  
Required SDIN setup time before  
SCLK rising edge  
tsu  
Ci  
Input capacitance, pins MCLK, SCLK,  
FSYNC, SDIN1, SDIN2  
10  
FSYNC = 44.1 kHz or 48 kHz  
FSYNC = 96 kHz  
30  
12  
Latency from input to output measured  
in FSYNC sample count  
TLA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
7.6 Typical Characteristics  
TA = 25 °C, VVDD = 3.3 V, VBAT = PVDD = 14.4 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, fSW = 2.1 MHz, AES17 filter, default I2C  
settings, see 10-2 and 10-3 (unless otherwise noted)  
0
0
-20  
Ch 1 to Ch 2  
Ch 2 to Ch 1  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-100  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
20  
100  
1k  
Frequency  
10k  
D002  
D068  
PO = 1 W  
7-1. Crosstalk vs Frequency  
PO = 1 W  
7-2. PVDD PSRR vs Frequency  
0
-20  
10  
4 : Load  
5
2
1
-40  
0.5  
0.2  
0.1  
-60  
0.05  
0.02  
0.01  
-80  
0.005  
-100  
0.002  
0.001  
20  
100  
1k  
10k 20k  
-120  
Frequency (Hz)  
20  
100  
1k  
Frequency  
10k 20k  
D005  
D070  
PO = 1 W  
fSW = 384 kHz  
PO = 1 W  
7-4. THD+N vs Frequency  
7-3. VBAT PSRR vs Frequency  
10  
2 W Load  
4 W Load  
10  
5
4 : Load  
2
1
1
0.1  
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
0.01  
0.005  
0.002  
0.001  
0.001  
10m  
100m  
1
10 20  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
Output Power (W)  
D009  
D006  
PO = 1 W  
fSW = 2.1 MHz  
fSW = 384 kHz  
7-5. THD+N vs Frequency  
7-6. THD+N vs Power  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
12  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
TA = 25 °C, VVDD = 3.3 V, VBAT = PVDD = 14.4 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, fSW = 2.1 MHz, AES17 filter, default I2C  
settings, see 10-2 and 10-3 (unless otherwise noted)  
10  
2 W Load  
4 W Load  
100  
80  
60  
40  
20  
0
2 : Load  
4 : Load  
1
0.1  
0.01  
10m  
100m  
1
Output Power (W)  
10  
100  
D010  
5
10  
15  
18  
Supply Voltage (V)  
fSW = 2.1 MHz  
D013  
7-7. THD+N vs Power  
10% THD  
fSW = 384 kHz  
7-8. Output Power vs Supply Voltage  
60  
50  
40  
30  
20  
10  
0
160  
150  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
Gain Level 1  
2 W Load  
4 W Load  
Gain Level 2  
Gain Level 3  
Gain Level 4  
40  
30  
20  
10  
0
5
7
9
11 13  
Supply Voltage (V)  
15  
17 18  
5
7
9
11 13  
Supply Voltage (V)  
15  
17 18  
D062  
D083  
A-weighted Noise  
fSW = 2.1 MHz  
10% THD  
7-10. Noise vs Supply voltage  
7-9. Output Power vs Supply Voltage  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = 14.4 V  
80 100  
PVDD = 14.4 V  
80 100  
0
230  
40 60  
Output Power (W)  
0
230  
40 60  
Output Power (W)  
D065  
D066  
4 Ω  
fSW = 384 kHz  
4 Ω  
fSW = 2.1 MHz  
7-11. PVDD Power Efficiency vs Total Output Power  
7-12. PVDD Power Efficiency vs Total Output Power  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
TA = 25 °C, VVDD = 3.3 V, VBAT = PVDD = 14.4 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, fSW = 2.1 MHz, AES17 filter, default I2C  
settings, see 10-2 and 10-3 (unless otherwise noted)  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
PVDD = 14.4 V  
80 100  
PVDD = 14.4 V  
80 100  
0
320  
40 60  
Output Power (W)  
0
230  
40 60  
Output Power (W)  
D063  
D064  
2 Ω  
fSW = 384 kHz  
2 Ω  
fSW = 2.1 MHz  
7-13. PVDD Power Efficiency vs Total Output Power  
7-14. PVDD Power Efficiency vs Total Output Power  
100  
50  
40  
30  
20  
10  
95  
90  
85  
80  
75  
70  
65  
60  
FPWM = 2.1 MHz  
15 18  
0
5
10  
6
8
10 12  
Supply Voltage (V)  
14  
16  
18  
Supply Voltage (V)  
D071  
D026  
7-16. VBAT Idle Current vs Voltage  
7-15. PVDD Idle Current vs Voltage  
10  
1
5
4
3
2
1
0
2 W Load  
4 W Load  
0.1  
0.01  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
5
10  
Supply Voltage (V)  
15  
18  
D028  
D073  
1 W  
fSW = 384 kHz  
7-17. PVDD Standby Current vs Voltage  
7-18. PBTL THD+N vs Frequency  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
14  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
TA = 25 °C, VVDD = 3.3 V, VBAT = PVDD = 14.4 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, fSW = 2.1 MHz, AES17 filter, default I2C  
settings, see 10-2 and 10-3 (unless otherwise noted)  
10  
10  
1
2 W Load  
4 W Load  
2 W Load  
4 W Load  
1
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
20  
100  
1k  
Frequency (Hz)  
10k 20k  
10m  
100m  
1
Output Power (W)  
10 20  
100  
D029  
D032  
PO = 1 W  
fSW = 2.1 MHz  
fSW = 384 kHz  
7-19. PBTL THD+N vs Frequency  
7-20. PBTL THD+N vs Power  
10  
1
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2 W Load  
4 W Load  
0.1  
0.01  
2 W Load  
4 W Load  
0.001  
10m  
100m  
1
Output Power (W)  
10  
100  
5
10  
Supply Voltage (V)  
15  
18  
D008  
D078  
fSW = 2.1 MHz  
10 % THD  
fSW = 384 kHz  
7-21. PBTL THD+N vs Power  
7-22. PBTL Output Power vs Voltage  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
10  
0
2 W Load  
4 W Load  
2 W Load  
4 W Load  
5
10  
Supply Voltage (V)  
15  
18  
0
20  
40 60  
Total Output Power (W)  
80  
100  
D079  
D080  
10 % THD  
fSW = 2.1 MHz  
fSW = 384 kHz  
7-23. PBTL Output Power vs Voltage  
7-24. Power Dissipation vs Total Output Power  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
7.6 Typical Characteristics (continued)  
TA = 25 °C, VVDD = 3.3 V, VBAT = PVDD = 14.4 V, RL = 4 Ω, fIN = 1 kHz, fs = 48 kHz, fSW = 2.1 MHz, AES17 filter, default I2C  
settings, see 10-2 and 10-3 (unless otherwise noted)  
20  
2 W Load  
4 W Load  
10  
0
0
20  
40 60  
Total Output Power (W)  
80  
100  
D081  
fSW = 2.1 MHz  
7-25. Power Dissipation vs Total Output Power  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
16  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
8 Parameter Measurement Information  
The parameters for the TAS6424MS-Q1 device were measured using the circuit in 10-2.  
For measurements with 2.1 MHz switching frequency the 3.3 µH inductor from the TAS6424MS-Q1 EVM is  
used.  
For measurements with 384 kHz switching frequency a 10 µH inductor was used.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TAS6424MS-Q1 is a four-channel digital-input Class-D audio amplifier specifically tailored for use in the  
in the automotive industry. The device is designed for vehicle battery operation. This ultra-efficient Class-D  
technology allows for reduced power consumption, reduced PCB area and reduced heat. The device realizes an  
audio sound-system design with smaller size and lower weight than traditional Class-AB solutions.  
The core design blocks are as follows:  
Serial audio port  
Clock management  
High-pass filter and volume control  
Pulse width modulator (PWM) with output stage feedback  
Gate drive  
Power FETs  
Diagnostics  
Protection  
Power supply  
I2C serial communication bus  
9.2 Functional Block Diagram  
VDD  
VCOM VREG  
VBAT  
GVDD  
PVDD  
MUTE  
Gate Drive  
Regulator  
Reference  
Regulators  
STANDBY  
Digital Core  
WARN  
Closed Loop Class D Amplifier  
OUT_1P  
OUT_1M  
Channel 1  
Powerstage  
FAULT  
MCLK  
Digital to PWM  
OUT_2P  
OUT_2M  
OUT_3P  
OUT_3M  
Channel 2  
Powerstage  
SCLK  
Serial  
Volume Control  
-100 to +24 dB  
0.5 dB steps  
Gate  
Drives  
Audio  
Port  
FSYNC  
SDIN1  
SDIN2  
Channel 3  
Powerstage  
Clip  
Detection  
OUT_4P  
OUT_4M  
Channel 4  
Powerstage  
PLL and Clock  
Management  
Protection  
DC Load Diagnostics  
Short to GND  
Short to Power  
Open Load  
Overcurrent Limit  
Overcurrent  
SCL  
SDA  
2
I C Control  
Overtemperature  
I2C_ADDR0  
I2C_ADDR1  
Overvoltage and Undervoltage  
DC Detection  
Shorted Load  
AC Load Diagnostics  
Copyright © 2016, Texas Instruments Incorporated  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
18  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
 
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Serial Audio Port  
The serial audio port (SAP) receives audio in either I2S, left justified, right justified, or TDM formats.  
Settings for the serial audio port are programmed in the SAP control register (address 0x03), see the 9.6.4  
section.  
9-1 shows the digital audio data connections for I2S and TDM8 mode for an eight channel system.  
i2S  
TDM8  
SOC  
MCLK  
SOC  
MCLK  
Device A  
MCLK  
Device A  
MCLK  
SCLK  
FSYNC  
DATA1  
DATA2  
DATA3  
DATA4  
SCLK  
SCLK  
FSYNC  
DATA  
SCLK  
FSYNC  
SDIN1  
SDIN2  
FSYNC  
SDIN1  
SDIN2  
Device B  
Device B  
MCLK  
SCLK  
MCLK  
SCLK  
FSYNC  
SDIN1  
SDIN2  
FSYNC  
SDIN1  
SDIN2  
9-1. Digital-Audio Data Connection  
9.3.1.1 I2S Mode  
I2S timing uses the FSYNC pin to define when the data being transmitted is for the left channel and when the  
data is for the right channel. The FSYNC pin is low for the left channel and high for the right channel. The bit  
clock, SCLK, runs at 32 × fS or 64 × fS and is used to clock in the data. A delay of one bit clock occurs from  
the time the FSYNC signal changes state to the first bit of data on the data lines. The data is presented in  
2s-complement form (MSB-first). The data is valid on the rising edge of the bit clock and is used to clock in the  
data.  
9.3.1.2 Left-Justified Timing  
Left-justified (LJ) timing also uses the FSYNC pin to define when the data being transmitted is for the left  
channel and when the data is for the right channel. The FSYNC pin is high for the left channel and low for the  
right channel. A bit clock running at 32 × fS or 64 × fS is used to clock in the data. The first bit of data appears  
on the data lines at the same time FSYNC toggles. The data is written MSB-first and is valid on the rising edge  
of the bit clock. Digital words can be 16-bits or 24-bits wide and pad any unused trailing data-bit positions in the  
left-right (L/R) frame with zeros.  
9.3.1.3 Right-Justified Timing  
Right-justified (RJ) timing also uses the FSYNC pin to define when the data being transmitted is for the left  
channel and when the data is for the right channel. The FSYNC pin is high for the left channel and low for the  
right channel. A bit clock running at 32 × fS or 64 × fS is used to clock in the data. The first bit of data appears on  
the data 8-bit clock periods (for 24-bit data) after the FSYNC pin toggles. In RJ mode the LSB of data is always  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
clocked by the last bit clock before the FSYNC pin transitions. The data is written MSB-first and is valid on the  
rising edge of bit clock. The device pads the unused leading data-bit positions in the L/R frame with zeros.  
9.3.1.4 TDM Mode  
TDM mode supports 4 or 8 channels of audio data. The TDM mode is automatically selected when the TDM  
clocks are present. The device can be configured through I2C to use different stereo pairs in the TDM data  
stream. The TDM mode supports 16-bit, 24-bit, and 32-bit input data lengths  
In TDM mode, SCLK must be 128 x fs or 256 x fs, depending on the TDM slot size. In TDM mode SCLK and  
MCLK can be connected together. If SCLK and MCLK are connected together or the frequency of SCLK and  
MCLK is equal, FSYNC should be minimum 2 MCLK pulses long.  
In TDM mode, the SDIN1 pin (pin 15) is used for digital audio data. TI recommends to connect the unused  
SDIN2 pin (pin 16) to ground. 9-1 lists register settings for the TDM channel selection.  
9-1. TDM Channel Selection  
REGISTER SETTING  
TDM8 CHANNEL SLOT  
0x03  
BIT 5  
0x03  
BIT 3  
1
2
3
4
5
6
7
8
0
1
0
1
0
0
1
1
CH1  
CH2  
CH3  
CH4  
CH1  
CH2  
CH3  
CH4  
CH3  
CH4  
CH1  
CH2  
CH3  
CH4  
CH1  
CH2  
If PBTL mode is programmed for channel 1/2 or channel 3/4 the datasource can be set according to 9-2.  
9-2. TDM Channel Selection in PBTL Mode  
REGISTER SETTING  
TDM8 CHANNEL SLOT  
0x03  
BIT 5  
0x03  
BIT 3  
0x21  
BIT 6  
1
2
3
4
5
6
7
8
PBTL  
CH1/2  
PBTL  
CH3/4  
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
0
PBTL  
CH1/2  
PBTL  
CH3/4  
0
1
1
0
0
1
1
PBTL  
CH1/2  
PBTL  
CH3/4  
PBTL  
CH1/2  
PBTL  
CH3/4  
PBTL  
CH3/4  
PBTL  
CH1/2  
PBTL  
CH3/4  
PBTL  
CH1/2  
PBTL  
CH3/4  
PBTL  
CH1/2  
PBTL  
CH3/4  
PBTL  
CH1/2  
9.3.1.5 Supported Clock Rates  
The device supports MCLK rates of 128 × fS, 256 × fS, or 512 × fS.  
The device supports SCLK rates of 32 × fS or 64 × fS in I2S, LJ or RJ modes or 128 × fS, or 256 × fS in TDM  
mode.  
The device supports FSYNC rates of 44.1 kHz, 48 kHz, or 96 kHz.  
The maximum clock frequency is 25 MHz. Therefore, for a 96 kHz FSYNC rate, the maximum MCLK rate is  
256 × fS.  
Copyright © 2023 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
Duty cycle of 50% is required for 128x FSYNC, for 256x and 512x 50% duty cycle is not required.  
9.3.1.6 Audio-Clock Error Handling  
When any kind of clock error, MCLK-FSYNC or SCLK-FSYNC ratio, or clock halt is detected, the device puts  
all channels into the Hi-Z state. When all audio clocks are within the expected range, the device automatically  
returns to the state it was in. See the Electrical Characteristics table for timing requirements.  
FSYNC  
(Input)  
0.5 × DVDD  
t
t
t
FS  
SCH  
SCL  
SCLK  
(Input)  
0.5 × DVDD  
t
t
SF  
SCY  
DATA  
(Input)  
0.5 × DVDD  
t
t
DH  
DS  
9-2. Serial Audio Timing  
1/f  
S
FSYNC  
SCLK  
L-channel  
R-channel  
Audio data word = 16 bit, SCLK = 64 f  
S
S
0
1
14 15  
0
1
14 15  
SDIN  
MSB  
LSB  
MSB  
LSB  
Audio data word = 24 bit, SCLK = 64 f  
0
1
22 23  
0
1
22 23  
SDIN  
MSB  
LSB  
MSB  
LSB  
Audio data word = 32 bit, SCLK = 64 f  
S
0
1
30 31  
0
1
30 31  
LSB  
SDIN  
MSB  
LSB  
MSB  
9-3. Left-Justified Audio Data Format  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
1/f  
S
FSYNC  
L-channel  
R-channel  
SCLK  
Audio data word = 16 bit, SCLK = 64 f  
S
S
0
1
14 15  
0
1
14 15  
SDIN  
MSB  
LSB  
MSB  
LSB  
Audio data word = 24 bit, SCLK = 64 f  
0
1
22 23  
0
1
22 23  
SDIN  
MSB  
LSB  
MSB  
LSB  
Audio data word = 32 bit, SCLK = 64 f  
S
0
1
30 31  
LSB  
0
1
30 31  
LSB  
SDIN  
MSB  
MSB  
9-4. I2S Audio Data Format  
1/Fs (256 sbclks)  
FSYNC  
SCLK  
SDIN (I2S mode)  
23  
22  
1
0
23  
22  
1
0
23  
22  
1
0
23  
22  
32 SCLK  
32 SCLK  
8 blocks of 32 SCLK  
Audio Data Format: TDM8 mode  
9-5. TDM8 Audio Data Format  
9.3.2 High-Pass Filter  
Direct-current (DC) content in the audio signal can damage speakers. The data path has a high-pass filter to  
remove any DC from the input signal. The corner frequency is selectable from 4 Hz, 8 Hz, or 15 Hz to 30 Hz with  
bits 0 through 3 in register 0x26. The default value of –3 dB is approximately 4 Hz for 44.1 kHz or 48 kHz and  
approximately 8 Hz for 96 kHz sampling rates.  
9.3.3 Volume Control and Gain  
Each channel has an independent digital-volume control with a range from –100 dB to +24 dB with 0.5-dB steps.  
The volume control is set through I2C. The gain-ramp rate is programmable through I2C to take one step every 1,  
2, 4, or 8 FSYNC cycles.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
22  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
The peak output-voltage swing is also configurable in the gain control register through I2C. The four gain settings  
are 7.5 V, 15 V, 21 V, and 29 V. TI recommends selecting the lowest possible for the expected PVDD operation  
to optimize output noise and dynamic range performance.  
9.3.4 High-Frequency Pulse-Width Modulator (PWM)  
The PWM converts the PCM input data into a switched signal of varying duty cycle. The PWM modulator is  
an advanced design with high bandwidth, low noise, low distortion, and excellent stability. The output switching  
rate is synchronous to the serial audio-clock input and is programmed through I2C to be between 8× and 48×  
the input-sample rate. The option to switch at high frequency allows the use of smaller and lower cost external  
filtering components. 9-3 lists the switch frequency options for bits 4 through 6 in the Miscellaneous Control 2  
Register (address 0x02).  
9-3. Output Switch Frequency Option  
INPUT SAMPLE RATE  
BIT 6:4 SETTINGS  
000  
001  
010 to 100  
101  
110  
111  
44.1 kHz  
48 kHz  
96 kHz  
352.8 kHz  
384 kHz  
384 kHz  
441 kHz  
480 kHz  
480 kHz  
RESERVED  
RESERVED  
RESERVED  
1.68 MHz  
1.82 MHz  
1.82 MHz  
1.94 MHz  
2.11 MHz  
2.11 MHz  
2.12 MHz  
Not supported  
Not supported  
9.3.5 Channel-to-Channel Phase Control  
The TAS6424MS-Q1 has configurable output PWM phase control to manage conducted and radiated emissions.  
This feature allows the channel output PWM phase offset, relative to other channels, to be changed..  
When the connected output loads have an impedance of 4 Ω or larger, a channel phase offset of 180 degrees,  
210 degrees, 225 degrees or 240 degrees can be selected. For loads with an impedance of less than 4 Ω, only  
the channel phase offsets of 210 degrees, 225 degrees or 240 degrees should be selected and the default value  
of 180 degree needs to be adjusted.  
The phase options available can be found in Miscellaneous Control 2 Register (address = 0x02) [default = 0x62].  
9.3.6 Gate Drive  
The gate driver accepts the low-voltage PWM signal and level shifts it to drive a high-current, full-bridge,  
power-FET stage. The device uses proprietary techniques to optimize EMI and audio performance.  
The gate-driver power-supply voltage, GVDD, is internally generated and a decoupling capacitor is connected at  
pin 9 and pin 10.  
The full H-bridge output stages use only NMOS transistors. Therefore, bootstrap capacitors are required for the  
proper operation of the high side NMOS transistors. A 1-µF ceramic capacitor of quality X7R or better, rated  
for at least 16 V, must be connected from each output to the corresponding bootstrap input (see the application  
circuit diagram in 10-2).  
The bootstrap capacitors connected between the BST pins and corresponding output function as a floating  
power supply for the high-side N-channel power MOSFET gate drive circuitry. During each high-side switching  
cycle, the bootstrap capacitors hold the gate-to-source voltage high keeping the high-side MOSFETs turned on.  
9.3.7 Power FETs  
The BTL output for each channel comprises four N-channel 90 mΩ FETs for high efficiency and maximum power  
transfer to the load. These FETs are designed to handle the fast switching frequency and large voltage transients  
during load dump.  
9.3.8 Load Diagnostics  
The device incorporates both DC-load and AC-load diagnostics, which are used to determine the status of  
the load. The DC diagnostics are turned on by default, but if a fast startup without diagnostics is required,  
the DC diagnostics can be bypassed through I2C. The DC diagnostics runs when any channel is directed to  
leave the Hi-Z state and enter the MUTE or PLAY state. The DC diagnostics can also be enabled manually to  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
run on any or all channels, even if the other channels are playing audio. DC Diagnostics can be started from  
any operating condition, but if the channel is in PLAY state, then the time to complete the diagnostic is longer  
because the device must ramp down the audio signal of that channel before transitioning to the Hi-Z state.  
The DC diagnostics are available as soon as the device supplies are within the recommended operating range.  
The DC diagnostics do not rely on the audio input clocks to be available to function. DC Diagnostic results are  
reported for each channel separately through the I2C registers.  
9.3.8.1 DC Load Diagnostics  
The DC load diagnostics are used to verify the load connected. The DC diagnostics consists of four tests:  
short-to-power (S2P), short-to-ground (S2G), open-load (OL), and shorted-load (SL). The S2P and S2G tests  
trigger if the impedance to GND or a power rail is below that specified in the Electrical Characteristics section.  
The diagnostic detects a short to vehicle battery, even when the supply is boosted. The SL test has an  
I2C-configurable threshold depending on the expected load to be connected. Because the speakers connected  
to each channel might be different, each channel can be assigned a unique threshold value. The OL test reports  
if the select channel has a load impedance greater than the limits in the Electrical Characteristics section.  
Open Load  
Open Load Detected  
OL Maximum  
Open Load (OL)  
Detection Threshold  
Normal or Open Load  
May Be Detected  
OL Minimum  
SL Maximum  
SL Minimum  
Normal Load  
Play Mode  
Shorted Load (SL)  
Detection Threshold  
Normal or Shorted Load  
May Be Detected  
Shorted Load  
Shorted Load Detected  
9-6. DC Load Diagnostic Reporting Thresholds  
9.3.8.2 Line Output Diagnostics  
The device also includes an optional test to detect a line-output load. A line-output load is a high-impedance load  
that is above the open-load (OL) threshold such that the DC-load diagnostics report an OL condition. After an OL  
condition is detected on a channel, if the line output detection bit is also set, the channel checks if a line-output  
load is present as well. This test is not pop free, so if an external amplifier is connected it should be muted.  
9.3.8.3 AC Load Diagnostics  
The AC load diagnostic is used to determine the proper connection of a capacitively-coupled speaker or tweeter  
when used with a passive crossover. The AC load diagnostic is controlled through I2C. The AC diagnostics  
requires an external input signal and reports the approximate load impedance and phase. The selected signal  
frequency should create current flow through the desired speaker for proper detection. If multiple channels must  
be tested, the diagnostics should be run in series. The AC load-diagnostic test procedure is as follows.  
9.3.8.3.1 Impedance Magnitude Measurement  
For load-impedance detection, use the following test procedure:  
1. Set the channels to be tested into the Hi-Z state.  
2. Set the AC_DIAGS_LOOPBACK bit (bit 7 in register 0x16) to 0.  
3. Apply a full-scale input signal from the DSP for the tested channels with the desired frequency  
(recommended 10 kHz to 20 kHz).  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
24  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
备注  
The device ramps the signal up and down automatically to prevent pops and clicks.  
4. Set the device into the AC diagnostic mode (set bit 3 through bit 0 as needed in register 0x15 to 1 for CH1 to  
CH4. (For PBTL mode, test channel 1 for PBTL12 and channel 3 for PBTL34))  
5. Read back the AC impedance (register 0x17 through register 0x1A).  
When the test is complete, the channel reporting register indicates the status change from the AC diagnostic  
mode to the Hi-Z state. The detected impedance is stored in the appropriate I2C register.  
The hexadecimal register value must be converted to decimal and used to calculate the impedance magnitude  
using the following equation:  
AC Magnitude Calculation  
Impedance _ CHxì2.371mV  
(Gain)(I mA)  
Channelx Impedance =  
(Ohms)  
(1)  
9.3.8.3.2 Impedance Phase Reference Measurement  
The first stage to determine the AC phase is to utilize the built-in loopback mode to determine the reference  
value for the phase measurement. This reference nullifies any phase offset in the device and measure only the  
phase of the load. This is measured for channel 1 and 3 only. Channel 2 uses the results of channel 1 for the  
calculations. Channel 4 uses the results of channel 3 for the calculations. Measure channel 1 and channel 3  
sequentially, they cannot be measured at the same time.  
For loopback delay detection, use the following test procedure for either BTL mode or PBTL mode:  
BTL mode  
1. Set the AC_DIAGS_LOOPBACK bit (bit 7 in register 0x16) to 1 to enable AC loopback mode.  
2. Apply a 0-dBFS 19 kHz signal and enable AC load diagnostics. CH1 and CH2 reuse the AC sensing loop  
of CH1 (set bit 3 in register 0x15 to 1). CH3, CH4 reuse the AC sensing loop of CH3 (set bit 1 in register  
0x15 to 1).  
3. Read back the 16bit hexadecimal, AC_LDG_PHASE1 value. Register 0x1B holds the MSB and register  
0x1C holds the LSB.  
4. For channel 1/2 set bit 3 in register 0x15 to 0. For channel 3/4 set bit 1 in register 0x15 to 0.  
PBTL mode  
1. Set the AC_DIAGS_LOOPBACK bit (bit 7 in register 0x16) to 1 to enable AC loopback mode.  
2. Set the PBTL CH12 and PBTL CH34 bits (see register 0x00) to 0 without toggling SDz pin to enter BTL  
mode only for load diagnostics.  
3. Apply a 0 dBFS 19 kHz signal and enable AC load diagnostics. For PBTL_12, enable the AC sensing  
loop of CH1 (set bit 3 in register 0x15 to 1). For PBTL_34, enable the AC sensing loop of CH3 (set bit 1 in  
register 0x15 to 1).  
4. Read back the AC_LDG_PHASE1 value. Register 0x1B holds the MSB and register 0x1C holds the LSB.  
5. Set the PBTL CH12 and PBTL CH34 bits (see register 0x00) to 1 to go back to PBTL mode for load  
diagnostics.  
6. For PBTL_12 set bit 3 in register 0x15 to 0. For PBTL_34 set bit 1 in register 0x15 to 0.  
When the test is complete, the channel reporting register indicates the status change from the AC diagnostic  
mode to the Hi-Z state. The detected impedance is stored in the appropriate I2C register.  
9.3.8.3.3 Impedance Phase Measurement  
After performing the phase reference measurements, measure the phase of the speaker load. This is performed  
in the same manner as the reference measurements, except the loopback is disabled in bit 7 register 0x16.  
Previously, the phase reference is measured on channel 1 and channel 3. In this test stage all four channels are  
measured. Measure the channels sequentially as they cannot be measured at the same time.  
For loopback delay detection, use the following test procedure for either BTL mode or PBTL mode:  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
BTL mode  
1. Set the AC_DIAGS_LOOPBACK bit (bit 7 in register 0x16) to 0 to disable AC loopback mode.  
2. Apply a 0-dBFS 19 kHz signal and enable AC load diagnostics. CH1 and CH2 reuse the AC sensing loop  
of CH1 (set bit 3 in register 0x15 to 1). CH3, CH4 reuse the AC sensing loop of CH3 (set bit 1 in register  
0x15 to 1).  
3. Read back the 16 bit hexadecimal, AC_LDG_PHASE1 value. Register 0x1B holds the MSB and register  
0x1C holds the LSB.  
4. Read back the hexadecimal stimulus value, STI. register 0x1D holds the MSB and register 0x1E holds  
the LSB.  
5. For channel 1/2 set bit 3 in register 0x15 to 0. For channel 3/4 set bit 1 in register 0x15 to 0.  
When the test is complete, the channel reporting register indicates the status change from the AC diagnostic  
mode to the Hi-Z state. The detected impedance is stored in the appropriate I2C register.  
PBTL mode  
1. Set the AC_DIAGS_LOOPBACK bit (bit 7 in register 0x16) to 0 to disable AC loopback mode.  
2. Set the PBTL CH12 and PBTL CH34 bits (see register 0x00) to 0 without toggling SDz pin to enter BTL  
mode only for load diagnostics.  
3. Apply a 0 dBFS 19 kHz signal and enable AC load diagnostics. For PBTL_12, enable the AC sensing  
loop of CH1 (set bit 3 in register 0x15 to 1). For PBTL_34, enable the AC sensing loop of CH3 (set bit 1 in  
register 0x15 to 1).  
4. Read back the AC_LDG_PHASE1 value. register 0x1B holds the MSB and register 0x1C holds the LSB.  
5. Read back the hexadecimal stimulus value, STI. register 0x1D holds the MSB and register 0x1E holds  
the LSB  
6. Set the PBTL CH12 and PBTL CH34 bits (see register 0x00) to 1 to go back to PBTL mode for load  
diagnostics.  
7. For PBTL_12 set bit 3 in register 0x15 to 0. For PBTL_34 set bit 1 in register 0x15 to 0.  
The AC phase in degrees is calculated with the AC Phase Calculation equation:  
:
;
2D=OA_%*T .$- F 2D=OA_%*T(.&/)  
2D=OA_%*T = 360(  
)
56+_%*T(.&/)  
(2)  
Where:  
Phase_CHx(LBK) is the reference phase measurement. LBK stands for loopback mode  
Phase_CHx(LDM) is the phase measure of the load. LDM stands for load mode  
STI_CHx(LDM) is the stimulus value  
Copyright © 2023 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
9-4. AC Impedance Code to Magnitude  
MAPPING FROM CODE  
TO MAGNITUDE (Ω/  
Code)  
MEASUREMENT RANGE  
SETTING  
GAIN AT 19 kHz  
I(A)  
(Ω)  
Gain = 4, I = 10 mA  
(recommended)  
4.28  
4.28  
1
0.01  
0.019  
0.01  
12  
6
0.05832  
0.0307  
0.2496  
0.1314  
Gain = 4, I = 19 mA  
Gain = 1, I = 10 mA  
(recommended)  
48  
24  
Gain = 1, I = 19 mA  
1
0.019  
9.3.9 Protection and Monitoring  
9.3.9.1 Overcurrent Limit (ILIMIT  
The overcurrent limit terminates each PWM pulse to limit the output current flow when the current limit (ILIMIT  
)
)
is exceeded. Power is limited, but operation continues without disruption and prevents undesired shutdown for  
transient music events. ILIMIT is not reported as a fault condition to either registers or the FAULT pin but as  
warning condition to the WARN pin and ILIMIT Status Register (address = 0x25). Each channel is independently  
monitored and limited. The two programable levels can be set by bit 4 in the Miscellaneous Control 1 register  
(address 0x01).  
9.3.9.2 Overcurrent Shutdown (ISD  
)
If the output load current reaches ISD, such as an output short to GND, then a peak current limit occurs, which  
shuts down the channel. The time to shutdown the channel varies depending on the severity of the short  
condition. The affected channel is placed into the Hi-Z state, the fault is reported to the register, and the FAULT  
pin is asserted. The device remains in this state until the CLEAR FAULT bit is set in Miscellaneous Control 3  
Register, 0x21 bit 7. After clearing this bit and if the diagnostics are enabled, the device automatically starts  
diagnostics on the channel and, if no load failure is found, the device restarts. If a load fault is found the device  
continues to rerun the diagnostics once per second. Because this hiccup mode uses the diagnostics, no high  
current is created. If the diagnostics are disabled, the device sets the state for that channel to Hi-Z and requires  
the MCU to take the appropriate action, setting the CLEAR FAULT bit after the fault got removed, in order to  
return to Play state.  
Two programable levels can be set by bit 4 in the Miscellaneous Control 1 register (address 0x01).  
9.3.9.3 DC Detect  
This circuit detects a DC offset continuously during normal operation at the output of the amplifier. If the DC  
offset exceeds the threshold, that channel is placed in the Hi-Z state, the fault is reported to the I2C register, and  
the FAULT pin is asserted. A register bit can be used to mask reporting to the FAULT pin if required.  
9.3.9.4 Clip Detect  
The clip detect is reported on the WARN pin if 100% duty-cycle PWM is reached for a minimum number of PWM  
cycles set by the Clip Window Register (address 0x23). The default is 20 PWM cycles. If any channel is clipping,  
the clipping is reported to the pin. The clip detect is latched and can be cleared by I2C. Masking the clip reporting  
to the pin is possible through I2C. If desired, the Clip Detect can be configured to be non-latching in Clip Control  
Register (address = 0x22). In non-latching mode, Clip Detect is reported when the PWM duty cycle reaches  
100%, and deasserted once the PWM duty cycle falls below 100%.  
9.3.9.5 Global Overtemperature Warning (OTW), Overtemperature Shutdown (OTSD)  
Four overtemperature warning levels are available in the device (see the Register Maps section for thresholds).  
When the junction temperature exceeds the warning level, the WARN pin is asserted, unless the mask bit has  
been set to disable reporting. The device functions until the OTSD value is reached at which point all channels  
are placed in the Hi-Z state, and the FAULT pin is asserted. By default, the device remains shut down after the  
temperature drops to normal levels. This configuration can be changed in bit 3 of the Miscellaneous Control 3  
Register (address = 0x21) to auto-recovery: When the junction temperature returns to normal levels, the device  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
automatically recovers and places the channel into the state indicated by the state control register. Note that  
even in auto-recovery configuration the FAULT pin remains asserted until the CLEAR FAULT bit (bit 7) is set in  
register 0x21.  
9.3.9.6 Channel Overtemperature Warning [OTW(i)] and Shutdown [OTSD(i)]  
In addition to the global OTW, each channel also has an individual overtemperature warning and shutdown. If  
a channel exceeds the OTW(i) threshold, the warning register bit is set as the WARN pin is asserted, unless  
the mask bit has been set to disable reporting. If the channel temperature exceeds the OTSD(i) threshold then  
the channel goes to the Hi-Z state and either remains there or auto-recovers to the state indicated by the state  
control register when the temperature drops below the OTW(i) threshold, depending on the setting of bit 3 of the  
Miscellaneous Control 3 Register (address = 0x21).  
9.3.9.7 Undervoltage (UV) and Power-On-Reset (POR)  
The undervoltage (UV) protection detects low voltages on the PVDD and VBAT pins. In the event of an UV  
condition, the FAULT pin is asserted, and the I2C register is updated. A power-on reset (POR) on the VDD  
pin causes the I2C to goes to the high-impedance (Hi-Z) state, and all registers are reset to default values. At  
power-on or after a POR event, the POR warning bit and WARN pin are asserted.  
9.3.9.8 Overvoltage (OV) and Load Dump  
The overvoltage (OV) protection detects high voltages on the PVDD pin. If the PVDD pin reaches the OV  
threshold, the FAULT pin is asserted and the I2C register is updated. The device can withstand 40 V load-dump  
voltage spikes.  
9.3.10 Power Supply  
The device has three power supply inputs, VDD, PVDD, and VBAT, which are described as follows:  
VDD This pin is a 3.3V supply pin that provides power to the low voltage circuitry.  
VBAT This pin is a higher voltage supply that can be connected to the vehicle battery or the regulated voltage  
rail in a boosted system within the recommended limits. For best performance, this rail should be 10 V or  
higher. See the Recommended Operating Conditions table for the maximum supply voltage. This supply  
rail is used for higher voltage analog circuits but not the output FETs.  
PVDD This pin is a high-voltage supply that can either be connected to the vehicle battery or to another voltage  
rail in a boosted system. The PVDD pin supplies the power to the output FETs and can be within the  
recommended operating limits, even if that is below the VBAT supply, to allow for dynamic voltage  
systems.  
Several on-chip regulators are included for generating the voltages necessary for the internal circuitry. The  
external pins are provided only for bypass capacitors to filter the supply and should not be used to power other  
circuits.  
The device can withstand fortuitous open ground and power conditions within the absolute maximum ratings  
for the device. Fortuitous open ground usually occurs when a speaker wire is shorted to ground, allowing for a  
second ground path through the body diode in the output FETs.  
9.3.10.1 Vehicle-Battery Power-Supply Sequence  
Power-Up Sequence  
In a typical system, the VBAT and PVDD supplies are both connected to the vehicle battery and power up at the  
same time. The VDD supply should be applied after the VBAT and PVDD supplies are within the recommended  
operating range.  
9.3.10.2 Power-Down Sequence  
To power-down the device, first set the STANDBY pin low for at least 15ms before removing PVDD, VBAT or  
VDD. After 15ms, the power supplies can be removed.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
28  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
9.3.10.3 Boosted Power-Supply Sequence  
In this case, the VBAT and PVDD inputs are not connected to the same supply.  
When powering up, apply the VBAT supply first, the VDD supply second, and the PVDD supply last.  
When powering down, first set the STANDBY pin low for at least 15ms before removing PVDD, VBAT or VDD.  
After 15 ms, the power supplies can be removed.  
9.3.11 Hardware Control Pins  
The device has four pins for control and device status: FAULT, MUTE, WARN, and STANDBY.  
9.3.11.1 FAULT  
The FAULT pin reports faults and is active low under any of the following conditions:  
Any channel faults (overcurrent or DC detection)  
Overtemperature shutdown  
Overvoltage or undervoltage conditions on the VBAT or PVDD pins  
Clock errors  
For all listed faults, the FAULT pin remains asserted after the fault condition is rectified. Deassert the FAULT pin  
by writing the CLEAR FAULT bit (bit 7) in register 0x21.  
The register reports for all fault reports remain asserted until they are cleared by writing the CLEAR FAULT bit  
(bit 7) in register 0x21.  
Register bits are available to mask fault categories from reporting to the FAULT pin. These bits only mask the  
setting of the pin and do not affect the register reporting or protection of the device. By default all faults are  
reported to the pin. See the Register Maps section for a description of the mask settings.  
This pin is an open-drain output with an internal 100 kΩ pull-up resistor to VDD.  
9.3.11.2 WARN  
This active-low output pin reports audio clipping, overtemperature warnings, overcurrent limit warnings and POR  
events.  
Clipping is reported if any channel is at the maximum modulation for 20 consecutive PWM clocks (default value)  
which results in a 10-µs delay to report the onset of clipping. Changing the number of required consecutive PWM  
clocks in the Clip Window Register (address = 0x23) impacts the report delay time. The Clip Detect warning bit is  
sticky in latching mode and can be cleared by the CLEAR FAULT bit (bit 7) in register 0x21.  
An overtemperature warning (OTW) is reported if the general temperature or any of the channel temperature  
warnings are set. The warning temperature can be set through bits 5 and 6 in Miscellaneous Control 1 Register  
(address = 0x01).  
Register bits are available to mask either clipping or OTW reporting to the pin. These bits only mask the setting  
of the pin and do not affect the register reporting. By default clipping, ILIMIT and OTW are reported.  
The WARN pin is latched and can be cleared by writing the CLEAR FAULT bit (bit 7) in register 0x21.  
This pin is an open-drain output with an internal 100 kΩ pull-up resistor to VDD.  
9.3.11.3 MUTE  
This active-low input pin is used for hardware control of the mute and unmute function for all channels.  
This pin has a 100 kΩ internal pull-down resistor.  
9.3.11.4 STANDBY  
When this active-low input pin is asserted, the device goes into shutdown and current draw is limited. This pin  
can be used to shut down the device rapidly. The outputs are ramped down in less than 5 ms if the device is not  
already in the Hi-Z state.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
This pin has a 100 kΩ internal pull-down resistor.  
9.4 Device Functional Modes  
9.4.1 Operating Modes and Faults  
The operating modes and faults are listed in the following tables.  
9-5. Operating Modes  
STATE NAME  
STANDBY  
Hi-Z  
OUTPUT FETS  
OSCILLATOR  
Stopped  
Active  
I2C  
Hi-Z  
Active  
Active  
Active  
Active  
Hi-Z  
MUTE  
Switching at 50%  
Switching with audio  
Active  
PLAY  
Active  
9-6. Global Faults and Actions  
FAULT/  
EVENT  
FAULT/EVENT  
MONITORING  
MODES  
REPORTING  
METHOD  
ACTION  
RESULT  
CATEGORY  
POR  
VBAT UV  
PVDD UV  
VBAT or PVDD OV  
OTW  
All  
I2C + WARN pin  
Standby  
Voltage fault  
Hi-Z, mute, normal  
I2C + FAULT pin  
Hi-Z  
Thermal warning  
Hi-Z, mute, normal  
Hi-Z, mute, normal  
I2C + WARN pin  
I2C + FAULT pin  
None  
Hi-Z  
OTSD  
Thermal shutdown  
9-7. Channel Faults and Actions  
FAULT/  
EVENT  
FAULT/EVENT  
MONITORING  
MODES  
REPORTING  
METHOD  
ACTION  
TYPE  
CATEGORY  
Clipping  
Overcurrent limiting  
Overcurrent fault  
DC detect  
Warning  
None  
I2C + WARN pin  
Protection  
Current limit  
Mute and play  
Output channel fault  
I2C + FAULT pin  
Hi-Z  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
30  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
9.5 Programming  
9.5.1 I2C Serial Communication Bus  
The device communicates with the system processor through the I2C serial communication bus as an I2C  
slave-only device. The processor can poll the device through I2C to determine the operating status, configure  
settings, or run diagnostics. For a complete list and description of all I2C controls, see the Register Maps section.  
The device includes two I2C address pins, so up to four devices can be used together in a system with no  
additional bus switching hardware. The I2C ADDRx pins set the slave address of the device as listed in 9-8.  
9-8. I2C Addresses  
DESCRIPTION  
I2C ADDR1  
I2C ADDR0  
I2C Write  
0xD4  
I2C Read  
0xD5  
Device 0  
Device 1  
Device 2  
Device 3  
0
0
1
1
0
1
0
1
0xD6  
0xD7  
0xD8  
0xD9  
0xDA  
0xDB  
9.5.2 I2C Bus Protocol  
The device has a bidirectional serial-control interface that is compatible with the Inter IC (I2C) bus protocol and  
supports 100 kbps and 400 kbps data transfer rates for random and sequential write and read operations. The  
TAS6424MS-Q1 device is a slave-only device that does not support a multimaster bus environment or wait-state  
insertion. The control interface is used to program the registers of the device and to read device status.  
The I2C bus uses two signals, SDA (data) and SCL (clock), to communicate between integrated circuits in a  
system. Data is transferred on the bus serially, one bit at a time. The address and data are transferred in  
byte (8-bit) format with the most-significant bit (MSB) transferred first. In addition, each byte transferred on the  
bus is acknowledged by the receiving device with an acknowledge bit. Each transfer operation begins with the  
master device driving a start condition on the bus and ends with the master device driving a stop condition on  
the bus. The bus uses transitions on the data terminal (SDA) while the clock is HIGH to indicate a start and  
stop conditions. A HIGH-to-LOW transition on SDA indicates a start, and a LOW-to-HIGH transition indicates  
a stop. Normal data bit transitions must occur within the low time of the clock period. The master generates  
the 7-bit slave address and the read/write (R/W) bit to open communication with another device and then wait  
for an acknowledge condition. The device holds SDA LOW during the acknowledge-clock period to indicate  
an acknowledgment. When this occurs, the master transmits the next byte of the sequence. Each device is  
addressed by a unique 7-bit slave address plus a R/W bit (1 byte). All compatible devices share the same  
signals via a bidirectional bus using a wired-AND connection. An external pullup resistor must be used for the  
SDA and SCL signals to set the HIGH level for the bus. The number of bytes that can be transmitted between  
start and stop conditions is unlimited. When the last word transfers, the master generates a stop condition to  
release the bus.  
R/  
W
8-Bit Register Data for  
Address (N)  
8-Bit Register Data for  
Address (N)  
7-Bit Slave Address  
A
8-Bit Register Address (N)  
A
A
A
SDA  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SCL  
Start  
Stop  
9-7. Typical I2C Sequence  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
t
t
t
r
t
f
w(H)  
w(L)  
SCL  
t
t
h1  
su1  
SDA  
9-8. SCL and SDA Timing  
Use the I2C ADDRx pins to program the device slave address. Read and write data can be transmitted using  
single-byte or multiple-byte data transfers.  
9.5.3 Random Write  
As shown in 9-9, a single-byte data-write transfer begins with the master device transmitting a start condition  
followed by the I2C device address and the R/W bit. The R/W bit determines the direction of the data transfer.  
For a write data transfer, the R/W bit is a 0. After receiving the correct I2C device address and the R/W bit, the  
device responds with an acknowledge bit. Next, the master transmits the address byte or bytes corresponding to  
the internal memory address being accessed. After receiving the address byte, the device again responds with  
an acknowledge bit. Next, the master device transmits the data byte to be written to the memory address being  
accessed. After receiving the data byte, the device again responds with an acknowledge bit. Finally, the master  
device transmits a stop condition to complete the single-byte data-write transfer.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
ACK  
A4  
R/W  
A7  
ACK  
A6 A5 A4 A3 A2 A1 A0  
D7 D6 D5  
ACK  
A6 A5  
A3 A2 A1 A0  
D4 D3 D2 D1 D0  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
Data Byte  
9-9. Random Write Transfer  
9.5.4 Sequential Write  
A sequential data-write transfer is identical to a single-byte data-write transfer except that multiple data bytes are  
transmitted by the master to the device as shown in 9-10. After receiving each data byte, the device responds  
with an acknowledge bit and the I2C subaddress is automatically incremented by one.  
Start  
Condition  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
A5  
A0  
R/W ACK  
A4 A3  
A0  
ACK  
ACK  
ACK  
ACK  
D0  
A6  
A1  
A7  
A6  
A5  
A1  
D7  
D0  
D7  
D0  
D7  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
First Data Byte  
Other Data Byte  
Last Data Byte  
9-10. Sequential Write Transfer  
9.5.5 Random Read  
As shown in 9-11, a single-byte data-read transfer begins with the master device transmitting a start condition  
followed by the I2C device address and the R/W bit. For the data-read transfer, both a write followed by a  
read occur. Initially, a write occurs to transfer the address byte or bytes of the internal memory address to be  
read. As a result, the R/W bit is a 0. After receiving the address and the R/W bit, the device responds with  
an acknowledge bit. In addition, after sending the internal memory address byte or bytes, the master device  
transmits another start condition followed by the address and the R/W bit again. This time the R/W bit is a  
Copyright © 2023 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
1, indicating a read transfer. After receiving the address and the R/W bit, the device again responds with an  
acknowledge bit. Next, the device transmits the data byte from the memory address being read. After receiving  
the data byte, the master device transmits a not-acknowledge followed by a stop condition to complete the  
single-byte data-read transfer.  
Repeat Start  
Condition  
Acknowledge  
Start  
Condition  
Not  
Acknowledge  
Acknowledge  
Acknowledge  
R/W ACK  
ACK  
R/W ACK  
ACK  
D0 D6  
A6 A5  
A1 A0  
A7 A6 A5 A4  
Subaddress  
A0  
A6 A5  
A1 A0  
D7 D6  
I2C Device Address  
and R/W Bit  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Data Byte  
9-11. Random Read Transfer  
9.5.6 Sequential Read  
A sequential data-read transfer is identical to a single-byte data-read transfer except that multiple data bytes  
are transmitted by the device to the master device as shown in 9-12. Except for the last data byte, the  
master device responds with an acknowledge bit after receiving each data byte and automatically increments  
the I2C subaddress by one. After receiving the last data byte, the master device transmits a not-acknowledge bit  
followed by a stop condition to complete the transfer.  
Repeat Start  
Condition  
Acknowledge  
Start  
Condition  
Not  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
Acknowledge  
R/W ACK  
ACK  
R/W ACK  
ACK  
ACK  
ACK  
D0  
A6  
A0  
A7 A6 A5  
A0  
A6  
A0  
D7  
D0  
D7  
D0  
D7  
I2C Device Address  
and R/W Bit  
I2C Device Address  
and R/W Bit  
Stop  
Condition  
Subaddress  
First Data Byte Other Data Byte Last Data Byte  
9-12. Sequential Read Transfer  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
9.6 Register Maps  
9-9. I2C Address Register Definitions  
Address  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
0x1B  
0x1C  
0x1D  
0x1E  
0x1F  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
0x26  
0x27  
Type  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Register Description  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Mode Control  
Miscellaneous Control 1  
Miscellaneous Control 2  
SAP Control (Serial Audio-Port Control)  
Channel State Control  
Channel 1 Volume Control  
Channel 2 Volume Control  
Channel 3 Volume Control  
Channel 4 Volume Control  
DC Diagnostic Control 1  
DC Diagnostic Control 2  
DC Diagnostic Control 3  
DC Load Diagnostic Report 1 (Channels 1 and 2)  
DC Load Diagnostic Report 2 (Channels 3 and 4)  
DC Load Diagnostic Report 3-Line Output  
Channel State Reporting  
Channel Faults (Overcurrent, DC Detection)  
Global Faults 1  
R
R
R
R
R
R
Global Faults 2  
R
Warnings  
R/W  
R/W  
R/W  
R
Pin Control  
AC Load Diagnostic Control 1  
AC Load Diagnostic Control 2  
AC Load Diagnostic Report Channel 1  
AC Load Diagnostic Report Channel 2  
AC Load Diagnostic Report Channels 3  
AC Load Diagnostic Report Channels 4  
AC Load Diagnostic Phase Report High  
AC Load Diagnostic Phase Report Low  
AC Load Diagnostic STI Report High  
AC Load Diagnostic STI Report Low  
RESERVED  
R
R
R
R
R
R
R
R
R
RESERVED  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
Miscellaneous Control 3  
Go  
Go  
Go  
Go  
Go  
Go  
Clip Control  
Clip Window  
Clip Warning  
ILIMIT Status  
Miscellaneous Control 4  
RESERVED  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
34  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
9.6.1 Mode Control Register (address = 0x00) [default = 0x00]  
The Mode Control register is shown in 9-13 and described in 9-10.  
9-13. Mode Control Register  
7
6
5
4
3
2
1
0
RESET  
R/W-0  
RESERVED  
R/W-0  
PBTL CH34  
R/W-0  
PBTL CH12  
R/W-0  
CH1 LO MODE CH2 LO MODE CH3 LO MODE CH4 LO MODE  
R/W-0 R/W-0 R/W-0 R/W-0  
9-10. Mode Control Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESET  
R/W  
0
0: Normal operation  
1: Resets the device. Self-clearing, reads back 0.  
6
5
RESERVED  
PBTL CH34  
R/W  
R/W  
0
0
RESERVED  
0: Channels 3 and 4 are in BTL mode  
1: Channels 3 and 4 are in parallel BTL mode  
4
3
2
1
0
PBTL CH12  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0: Channels 1 and 2 are in BTL mode  
1: Channels 1 and 2 are in parallel BTL mode  
CH1 LO MODE  
CH2 LO MODE  
CH3 LO MODE  
CH4 LO MODE  
0: Channel 1 is in normal/speaker mode  
1: Channel 1 is in line output mode  
0: Channel 2 is in normal/speaker mode  
1: Channel 2 is in line output mode  
0: Channel 3 is in normal/speaker mode  
1: Channel 3 is in line output mode  
0: Channel 4 is in normal/speaker mode  
1: Channel 4 is in line output mode  
9.6.2 Miscellaneous Control 1 Register (address = 0x01) [default = 0x32]  
The Miscellaneous Control 1 register is shown in 9-14 and described in 9-11.  
9-14. Miscellaneous Control 1 Register  
7
6
5
4
3
2
1
0
HPF BYPASS  
R/W-0  
OTW CONTROL  
R/W-01  
OC CONTROL  
R/W-1  
VOLUME RATE  
R/W-00  
GAIN  
R/W-10  
9-11. Misc Control 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
HPF BYPASS  
R/W  
0
0: High pass filter eneabled  
1: High pass filter disabled  
6–5  
OTW CONTROL  
R/W  
01  
00: Global overtemperature warning set to 140°C  
01: Global overtemperature warning set to 130C  
10: Global overtemperature warning set to 120°C  
11: Global overtemperature warning set to 110°C  
4
OC CONTROL  
VOLUME RATE  
R/W  
R/W  
1
0: Overcurrent is level 1  
1: Overcurrent is level 2  
3–2  
00  
00: Volume update rate is 1 step / FSYNC  
01: Volume update rate is 1 step / 2 FSYNCs  
10: Volume update rate is 1 step / 4 FSYNCs  
11: Volume update rate is 1 step / 8 FSYNCs  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
 
 
 
 
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
9-11. Misc Control 1 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1–0  
GAIN  
R/W  
10  
00: Gain level 1 = 7.5 V peak output voltage  
01: Gain Level 2 = 15 V peak output voltage  
10: Gain Level 3 = 21 V peak output voltage  
11: Gain Level 4 = 29 V peak output voltage  
9.6.3 Miscellaneous Control 2 Register (address = 0x02) [default = 0x62]  
The Miscellaneous Control 2 register is shown in 9-15 and described in 9-12.  
9-15. Miscellaneous Control 2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0  
PWM FREQUENCY  
R/W-110  
RESERVED  
R/W-0  
SDM_OSR  
R/W-0  
OUTPUT PHASE  
R/W-10  
9-12. Misc Control 2 Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7
R/W  
0
RESERVED  
6–4  
PWM FREQUENCY  
R/W  
110  
000: 8 × fS (352.8 kHz / 384 kHz)  
001: 10 × fS (441 kHz / 480 kHz)  
010: RESERVED  
011: RESERVED  
100: RESERVED  
101: 38 × fS (1.68 MHz / 1.82 MHz)  
110: 44 × fS (1.94 MHz / 2.11 MHz)  
111: 48 × fS (2.12 MHz / not supported)  
3
2
RESERVED  
SDM_OSR  
R/W  
R/W  
0
0
RESERVED  
0: 64x OSR  
1: 128x OSR  
1–0  
OUTPUT PHASE  
R/W  
10  
00: 0 degrees output-phase switching offset  
01: 30 degrees output-phase switching offset  
10: 45 degrees output-phase switching offset  
11: 60 degrees output-phase switching offset  
9.6.4 SAP Control (Serial Audio-Port Control) Register (address = 0x03) [default = 0x04]  
The SAP Control (serial audio-port control) register is shown in 9-16 and described in 9-13.  
9-16. SAP Control Register  
7
6
5
4
3
2
1
0
INPUT SAMPLING RATE  
8 Ch TDM  
SLOT SELECT  
TDM SLOT  
SIZE  
TDM SLOT  
SELECT 2  
INPUT FORMAT  
R/W-00  
R/W-0  
R/W-0  
R/W-0  
R/W-100  
9-13. SAP Control Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–6  
INPUT SAMPLING RATE  
R/W  
00  
00: 44.1 kHz  
01: 48 kHz  
10: 96 kHz  
11: RESERVED  
5
8 Ch TDM SLOT SELECT  
R/W  
0
0: First four TDM slots  
1: Last four TDM slots  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
36  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
 
 
 
 
 
 
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
9-13. SAP Control Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
4
TDM SLOT SIZE  
R/W  
0
0: TDM slot size is 24-bit or 32-bit  
1: TDM slot size is 16-bit  
3
TDM SLOT SELECT 2  
INPUT FORMAT  
R/W  
R/W  
0
0: Normal  
1: swap channel 1/2 with channel 3/4  
2–0  
100  
000: 24-bit right justified  
001: 20-bit right justified  
010: 18-bit right justified  
011: 16-bit right justified  
100: I2S (16-bit or 24-bit)  
101: Left justified (16-bit or 24-bit)  
110: DSP mode (16-bit or 24-bit)  
111: RESERVED  
9.6.5 Channel State Control Register (address = 0x04) [default = 0x55]  
The Channel State Control register is shown in 9-17 and described in 9-14.  
9-17. Channel State Control Register  
7
6
5
4
3
2
1
0
CH4 STATE CONTROL  
R/W-01  
CH1 STATE CONTROL  
R/W-01  
CH2 STATE CONTROL  
R/W-01  
CH3 STATE CONTROL  
R/W-01  
9-14. Channel State Control Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–6  
5–4  
3–2  
1–0  
CH1 STATE CONTROL  
R/W  
01  
00: PLAY  
01: Hi-Z  
10: MUTE  
11: DC load diagnostics  
CH2 STATE CONTROL  
CH3 STATE CONTROL  
CH4 STATE CONTROL  
R/W  
R/W  
R/W  
01  
01  
01  
00: PLAY  
01: Hi-Z  
10: MUTE  
11: DC load diagnostics  
00: PLAY  
01: Hi-Z  
10: MUTE  
11: DC load diagnostics  
00: PLAY  
01: Hi-Z  
10: MUTE  
11: DC load diagnostics  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
 
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
9.6.6 Channel 1 Through 4 Volume Control Registers (address = 0x05–0x08) [default = 0xCF]  
The Channel 1 Through 4 Volume Control registers are shown in 9-18 and described in 9-15.  
9-18. Channel x Volume Control Register  
7
6
5
4
3
2
1
0
CH x VOLUME  
R/W-CF  
9-15. Ch x Volume Control Field Descriptions  
Bit  
Field  
CH x VOLUME  
Type  
Reset  
Description  
7–0  
R/W  
0xCF  
8-Bit Volume Control for each channel, register address for Ch1  
is 0x05, Ch2 is 0x06, Ch3 is 0x07 and Ch4 is 0x08, 0.5 dB/step:  
0xFF: 24 dB  
0xCF: 0 dB  
0x07: –100 dB  
< 0x07: MUTE  
9.6.7 DC Load Diagnostic Control 1 Register (address = 0x09) [default = 0x00]  
The DC Diagnostic Control 1 register is shown in 9-19 and described in 9-16.  
9-19. DC Load Diagnostic Control 1 Register  
7
6
5
4
3
2
1
0
DC LDG  
ABORT  
2x_RAMP  
2x_SETTLE  
RESERVED  
LDG LO  
ENABLE  
LDG BYPASS  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
9-16. DC Load Diagnostics Control 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
DC LDG ABORT  
R/W  
0
0: Default state, clear after abort  
1: Aborts the load diagnostics in progress  
6
5
2x_RAMP  
R/W  
R/W  
0
0
0: Normal ramp time  
1: Double ramp time  
2x_SETTLE  
0: Normal Settle time  
1: Double settling time  
4–2  
1
RESERVED  
R/W  
R/W  
000  
0
RESERVED  
LDG LO ENABLE  
0: Line output diagnostics are disabled  
1: Line output diagnostics are enabled  
0
LDG BYPASS  
R/W  
0
0: Automatic diagnostics when leaving Hi-Z and after  
channel fault  
1: Diagnostics are not run automatically  
9.6.8 DC Load Diagnostic Control 2 Register (address = 0x0A) [default = 0x11]  
The DC Diagnostic Control 2 register is shown in 9-20 and described in 9-17.  
9-20. DC Load Diagnostic Control 2 Register  
7
6
5
4
3
2
1
0
CH1 DC LDG SL  
R/W-0001  
CH2 DC LDG SL  
R/W-0001  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
38  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
 
 
 
 
 
 
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
9-17. DC Load Diagnostics Control 2 Field Descriptions  
Bit  
Field  
CH1 DC LDG SL  
Type  
Reset  
Description  
7–4  
R/W  
0001  
DC load diagnostics shorted-load threshold  
0000: 0.5 Ω  
0001: 1 Ω  
0010: 1.5 Ω  
...  
1001: 5 Ω  
3–0  
CH2 DC LDG SL  
R/W  
0001  
DC load diagnostics shorted-load threshold  
0000: 0.5 Ω  
0001: 1 Ω  
0010: 1.5 Ω  
...  
1001: 5 Ω  
9.6.9 DC Load Diagnostic Control 3 Register (address = 0x0B) [default = 0x11]  
The DC Diagnostic Control 3 register is shown in 9-21 and described in 9-18.  
9-21. DC Load Diagnostic Control 3 Register  
7
6
5
4
3
2
1
0
CH3 DC LDG SL  
R/W-0001  
CH4 DC LDG SL  
R/W-0001  
9-18. DC Load Diagnostics Control 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–4  
CH3 DC LDG SL  
R/W  
0001  
DC load diagnostics shorted-load threshold  
0000: 0.5 Ω  
0001: 1 Ω  
0010: 1.5 Ω  
...  
1001: 5 Ω  
3–0  
CH4 DC LDG SL  
R/W  
0001  
DC load diagnostics shorted-load threshold  
0000: 0.5 Ω  
0001: 1 Ω  
0010: 1.5 Ω  
...  
1001: 5 Ω  
9.6.10 DC Load Diagnostic Report 1 Register (address = 0x0C) [default = 0x00]  
DC Load Diagnostic Report 1 register is shown in 9-22 and described in 9-19.  
9-22. DC Load Diagnostic Report 1 Register  
7
6
5
4
3
2
1
0
CH1 S2G  
R-0  
CH1 S2P  
R-0  
CH1 OL  
R-0  
CH1 SL  
R-0  
CH2 S2G  
R-0  
CH2 S2P  
R-0  
CH2 OL  
R-0  
CH2 SL  
R-0  
9-19. DC Load Diagnostics Report 1 Field Descriptions  
Bit  
Field  
CH1 S2G  
Type  
Reset  
Description  
7
R
0
0: No short-to-GND detected  
1: Short-To-GND Detected  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
 
 
 
 
 
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
9-19. DC Load Diagnostics Report 1 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6
CH1 S2P  
R
0
0: No short-to-power detected  
1: Short-to-power detected  
5
4
3
2
1
0
CH1 OL  
CH1 SL  
CH2 S2G  
CH2 S2P  
CH2 OL  
CH2 SL  
R
R
R
R
R
R
0
0
0
0
0
0
0: No open load detected  
1: Open load detected  
0: No shorted load detected  
1: Shorted load detected  
0: No short-to-GND detected  
1: Short-to-GND detected  
0: No short-to-power detected  
1: Short-to-power detected  
0: No open load detected  
1: Open load detected  
0: No shorted load detected  
1: Shorted load detected  
9.6.11 DC Load Diagnostic Report 2 Register (address = 0x0D) [default = 0x00]  
The DC Load Diagnostic Report 2 register is shown in 9-23 and described in 9-20.  
9-23. DC Load Diagnostic Report 2 Register  
7
6
5
4
3
2
1
0
CH3 S2G  
R-0  
CH3 S2P  
R-0  
CH3 OL  
R-0  
CH3 SL  
R-0  
CH4 S2G  
R-0  
CH4 S2P  
R-0  
CH4 OL  
R-0  
CH4 SL  
R-0  
9-20. DC Load Diagnostics Report 2 Field Descriptions  
Bit  
Field  
CH3 S2G  
Type  
Reset  
Description  
7
R
0
0: No short-to-GND detected  
1: Short-to-GND detected  
6
5
4
3
2
1
0
CH3 S2P  
CH3 OL  
CH3 SL  
CH4 S2G  
CH4 S2P  
CH4 OL  
CH4 SL  
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0: No short-to-power detected  
1: Short-to-power detected  
0: No open load detected  
1: Open load detected  
0: No shorted load detected  
1: Shorted load detected  
0: No short-to-GND detected  
1: Short-to-GND detected  
0: No short-to-power detected  
1: Short-to-power detected  
0: No open load detected  
1: Open load detected  
0: No shorted load detected  
1: Shorted load detected  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
40  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
 
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
9.6.12 DC Load Diagnostics Report 3 Line Output Register (address = 0x0E) [default = 0x00]  
The DC Load Diagnostic Report, Line Output, register is shown in 9-24 and described in 9-21.  
9-24. DC Load Diagnostics Report 3 Line Output Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0000  
CH1 LO LDG  
R-0  
CH2 LO LDG  
R-0  
CH3 LO LDG  
R-0  
CH4 LO LDG  
R-0  
9-21. DC Load Diagnostics Report 3 Line Output Field Descriptions  
Bit  
Field  
Type  
Reset  
0000  
0
Description  
7–4  
RESERVED  
R
RESERVED  
3
2
1
0
CH1 LO LDG  
CH2 LO LDG  
CH3 LO LDG  
CH4 LO LDG  
R
0: No line output detected on channel 1  
1: Line output detected on channel 1  
R
R
R
0
0
0
0: No line output detected on channel 2  
1: Line output detected on channel 2  
0: No line output detected on channel 3  
1: Line output detected on channel 3  
0: No line output detected on channel 4  
1: Line output detected on channel 4  
9.6.13 Channel State Reporting Register (address = 0x0F) [default = 0x55]  
The Channel State Reporting register is shown in 9-25 and described in 9-22.  
9-25. Channel State-Reporting Register  
7
6
5
4
3
2
1
0
CH1 STATE REPORT  
R-01  
CH2 STATE REPORT  
R-01  
CH3 STATE REPORT  
R-01  
CH4 STATE REPORT  
R-01  
9-22. State-Reporting Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–6  
5–4  
3–2  
1–0  
CH1 STATE REPORT  
R
01  
00: PLAY  
01: Hi-Z  
10: MUTE  
11: DC load diagnostics  
CH2 STATE REPORT  
CH3 STATE REPORT  
CH4 STATE REPORT  
R
R
R
01  
01  
01  
00: PLAY  
01: Hi-Z  
10: MUTE  
11: DC load diagnostics  
00: PLAY  
01: Hi-Z  
10: MUTE  
11: DC load diagnostics  
00: PLAY  
01: Hi-Z  
10: MUTE  
11: DC load diagnostics  
9.6.14 Channel Faults (Overcurrent, DC Detection) Register (address = 0x10) [default = 0x00]  
The Channel Faults (overcurrent, DC detection) register is shown in 9-26 and described in 9-23.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
 
 
 
 
 
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
9-26. Channel Faults Register  
7
6
5
4
3
2
1
0
CH1 OC  
R-0  
CH2 OC  
R-0  
CH3 OC  
R-0  
CH4 OC  
R-0  
CH1 DC  
R-0  
CH2 DC  
R-0  
CH3 DC  
R-0  
CH4 DC  
R-0  
9-23. Channel Faults Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH1 OC  
R
0
0: No overcurrent fault detected  
1: Overcurrent fault detected  
6
5
4
3
2
1
0
CH2 OC  
CH3 OC  
CH4 OC  
CH1 DC  
CH2 DC  
CH3 DC  
CH4 DC  
R
R
R
R
R
R
R
0
0
0
0
0
0
0
0: No overcurrent fault detected  
1: Overcurrent fault detected  
0: No overcurrent fault detected  
1: Overcurrent fault detected  
0: No overcurrent fault detected  
1: Overcurrent fault detected  
0: No DC fault detected  
1: DC fault detected  
0: No DC fault detected  
1: DC fault detected  
0: No DC fault detected  
1: DC fault detected  
0: No DC fault detected  
1: DC fault detected  
9.6.15 Global Faults 1 Register (address = 0x11) [default = 0x00]  
The Global Faults 1 register is shown in 9-27 and described in 9-24.  
9-27. Global Faults 1 Register  
7
6
5
4
3
2
1
0
RESERVED  
INVALID  
CLOCK  
PVDD OV  
VBAT OV  
PVDD UV  
VBAT UV  
R-0  
R-0  
R-0  
R-0  
R-0  
R-000  
9-24. Global Faults 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–5  
RESERVED  
R
000  
RESERVED  
4
3
2
1
0
INVALID CLOCK  
R
R
R
R
R
0
0
0
0
0
0: No clock fault detected  
1: Clock fault detected  
PVDD OV  
VBAT OV  
PVDD UV  
VBAT UV  
0: No PVDD overvoltage fault detected  
1: PVDD overvoltage fault detected  
0: No VBAT overvoltage fault detected  
1: VBAT overvoltage fault detected  
0: No PVDD undervoltage fault detected  
1: PVDD undervoltage fault detected  
0: No VBAT undervoltage fault detected  
1: VBAT undervoltage fault detected  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
42  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
 
 
 
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
9.6.16 Global Faults 2 Register (address = 0x12) [default = 0x00]  
The Global Faults 2 register is shown in 9-28 and described in 9-25.  
9-28. Global Faults 2 Register  
7
6
5
4
3
2
1
0
RESERVED  
R-000  
OTSD  
R-0  
CH1 OTSD  
R-0  
CH2 OTSD  
R-0  
CH3 OTSD  
R-0  
CH4 OTSD  
R-0  
9-25. Global Faults 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
000  
0
Description  
7–5  
RESERVED  
OTSD  
R
RESERVED  
4
3
2
1
0
R
0: No global overtemperature shutdown  
1: Global overtemperature shutdown  
CH1 OTSD  
CH2 OTSD  
CH3 OTSD  
CH4 OTSD  
R
R
R
R
0
0
0
0
0: No overtemperature shutdown on Ch1  
1: Overtemperature shutdown on Ch1  
0: No overtemperature shutdown on Ch2  
1: Overtemperature shutdown on Ch2  
0: No overtemperature shutdown on Ch3  
1: Overtemperature shutdown on Ch3  
0: No overtemperature shutdown on Ch4  
1: Overtemperature shutdown on Ch4  
9.6.17 Warnings Register (address = 0x13) [default = 0x20]  
The Warnings register is shown in 9-29 and described in 9-26.  
9-29. Warnings Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00  
VDD POR  
R-0  
OTW  
R-0  
OTW CH1  
R-0  
OTW CH2  
R-0  
OTW CH3  
R-0  
OTW CH4  
R-0  
9-26. Warnings Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
RESERVED  
R
00  
RESERVED  
5
4
3
2
1
0
VDD POR  
R
R
R
R
R
R
0
0
0
0
0
0
0: No VDD POR has occurred  
1 VDD POR occurred  
OTW  
0: No global overtemperature warning  
1: Global overtemperature warning  
OTW CH1  
OTW CH2  
OTW CH3  
OTW CH4  
0: No overtemperature warning on channel 1  
1: Overtemperature warning on channel 1  
0: No overtemperature warning on channel 2  
1: Overtemperature warning on channel 2  
0: No overtemperature warning on channel 3  
1: Overtemperature warning on channel 3  
0: No overtemperature warning on channel 4  
1: Overtemperature warning on channel 4  
9.6.18 Pin Control Register (address = 0x14) [default = 0x00]  
The Pin Control register is shown in 9-30 and described in 9-27.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
 
 
 
 
 
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
9-30. Pin Control Register  
7
6
5
4
3
2
1
0
MASK OC  
R/W-0  
MASK OTSD  
R/W-0  
MASK UV  
R/W-0  
MASK OV  
R/W-0  
MASK DC  
R/W-0  
RESERVED  
R/W-0  
MASK CLIP  
R/W-0  
MASK OTW  
R/W-0  
9-27. Pin Control Field Descriptions  
Bit  
Field  
MASK OC  
Type  
Reset  
Description  
7
R/W  
0
0: Report overcurrent faults on the FAULT pin  
1: Do not report overcurrent faults on the FAULT Pin  
6
5
4
3
MASK OTSD  
MASK UV  
MASK OV  
MASK DC  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0: Report overtemperature faults on the FAULT pin  
1: Do not report overtemperature faults on the FAULT pin  
0: Report undervoltage faults on the FAULT pin  
1: Do not report undervoltage faults on the FAULT pin  
0: Report overvoltage faults on the FAULT pin  
1: Do not report overvoltage faults on the FAULT pin  
0: Report DC faults on the FAULT pin  
1: Do not report DC faults on the FAULT pin  
2
1
RESERVED  
MASK CLIP  
R/W  
R/W  
0
0
RESERVED  
0: Report clipping on the configured pin  
1: Do not report clipping on the configured pin  
0
MASK OTW  
R/W  
0
0: Report overtemperature warnings on the WARN pin  
1: Do not report overtemperature warnings on the WARN pin  
9.6.19 AC Load Diagnostic Control 1 Register (address = 0x15) [default = 0x00]  
The AC Load Diagnostic Control 1 register is shown in 9-31 and described in 9-28.  
9-31. AC Load Diagnostic Control 1 Register  
7
6
5
4
3
2
1
0
CH1 GAIN  
R/W-0  
CH2 GAIN  
R/W-0  
CH3 GAIN  
R/W-0  
CH4 GAIN  
R/W-0  
CH1 ENABLE  
R/W-0  
CH2 ENABLE  
R/W-0  
CH3 ENABLE  
R/W-0  
CH4 ENABLE  
R/W-0  
9-28. AC Load Diagnostic Control 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CH1, PBTL12: GAIN  
R/W  
0
0: Gain 1  
1: Gain 4  
6
5
4
3
2
1
CH2 GAIN  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0: Gain 1  
1: Gain 4  
CH3, CH4, PBTL34: GAIN  
CH4 GAIN  
0: Gain 1  
1: Gain 4  
0: Gain 1  
1: Gain 4  
CH1 ENABLE  
0: AC diagnostics disabled  
1: Enable AC diagnostics  
CH2 ENABLE  
0: AC diagnostics disabled  
1: Enable AC diagnostics  
CH3 ENABLE  
0: AC diagnostics disabled  
1: Enable AC diagnostics  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
44  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
 
 
 
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
9-28. AC Load Diagnostic Control 1 Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
0
CH4 ENABLE  
R/W  
0
0: AC diagnostics disabled  
1: Enable AC diagnostics  
9.6.20 AC Load Diagnostic Control 2 Register (address = 0x16) [default = 0x00]  
The AC Load Diagnostic Control 2 register is shown in 9-32 and described in 9-29.  
9-32. AC Load Diagnostic Control 2 Register  
7
6
5
4
3
2
1
0
AC_DIAGS_LO  
OPBACK  
RESERVED  
AC TIMING  
AC CURRENT  
RESERVED  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0  
R/W-0 R/W-0  
9-29. AC Load Diagnostic Control 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
AC_DIAGS_LOOPBACK  
R/W  
0
0: Disable AC Diag loopback  
1: Enable AC Diag loopback  
6-5  
4
RESERVED  
AC TIMING  
R/W  
R/W  
00  
0
RESERVED  
0: 32 Cycles  
1: 64 Cycles  
3-2  
AC CURRENT  
R/W  
00  
00: 10mA  
01: 19 mA  
10: RESERVED  
11: RESERVED  
1-0  
RESERVED  
R/W  
00  
RESERVED  
9.6.21 AC Load Diagnostic Impedance Report Ch1 through Ch4 Registers (address = 0x17–0x1A) [default  
= 0x00]  
The AC Load Diagnostic Report Ch1 through Ch4 registers are shown in 9-33 and described in 9-30.  
9-33. AC Load Diagnostic Impedance Report Chx Register  
7
6
5
4
3
2
1
0
CHx IMPEDANCE  
R-00000000  
9-30. Chx AC LDG Impedance Report Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
CH x IMPEDANCE  
R
00000000  
8-bit AC-load diagnostic report for each channel with a step size  
of 0.2496 Ω/bit (control by register 0x15 and register 0x16)  
0x00: 0 Ω  
0x01: 0.2496 Ω  
...  
0xFF: 63.65 Ω  
9.6.22 AC Load Diagnostic Phase Report High Register (address = 0x1B) [default = 0x00]  
The AC Load Diagnostic Phase High value registers are shown in 9-34 and described in 9-31.  
9-34. AC Load Diagnostic (LDG) Phase High Report Register  
7
6
5
4
3
2
1
0
AC Phase High  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
 
 
 
 
 
 
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
9-34. AC Load Diagnostic (LDG) Phase High Report Register (continued)  
R-00000000  
9-31. AC LDG Phase High Report Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
AC Phase High  
R
00000000 Bit 15:8  
9.6.23 AC Load Diagnostic Phase Report Low Register (address = 0x1C) [default = 0x00]  
The AC Load Diagnostic Phase Low value registers are shown in 9-35 and described in 9-32.  
9-35. AC Load Diagnostic (LDG) Phase Low Report Register  
7
6
5
4
3
2
1
0
AC Phase Low  
R-00  
9-32. AC LDG Phase Low Report Field Descriptions  
Bit  
Field  
AC Phase Low  
Type  
Reset  
Description  
7–0  
R
00  
Bit 7:0  
9.6.24 AC Load Diagnostic STI Report High Register (address = 0x1D) [default = 0x00]  
The AC Load Diagnostic STI High value registers are shown in 9-36 and described in 9-33.  
9-36. AC Load Diagnostic (LDG) STI High Report Register  
7
6
5
4
3
2
1
0
AC STI High  
R-00  
9-33. AC LDG STI High Report Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
AC STI High  
R
00  
Bit 15:8  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
46  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
 
 
 
 
 
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
9.6.25 AC Load Diagnostic STI Report Low Register (address = 0x1E) [default = 0x00]  
The AC Load Diagnostic STI Low value registers are shown in 9-37 and described in 9-34.  
9-37. AC Load Diagnostic (LDG) STI Low Report Register  
7
6
5
4
3
2
1
0
AC STI Low  
R-00  
9-34. Chx AC LDG STI Low Report Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7–0  
AC STI Low  
R
00  
Bit 7:0  
9.6.26 Miscellaneous Control 3 Register (address = 0x21) [default = 0x00]  
The Miscellaneous Control 3 register is shown in 9-38 and described in 9-35.  
9-38. Miscellaneous Control 3 Register  
7
6
5
4
3
2
1
0
CLEAR FAULT PBTL_CH_SEL  
RESERVED  
RESERVED  
OTSD AUTO  
RECOVERY  
RESERVED  
R/W-0 R/W-0  
R/W-0  
R/W-0  
R/W-0  
9-35. Misc Control 3 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
CLEAR FAULT  
R/W  
0
0: Normal operation  
1: Clear fault  
6
PBTL_CH_SEL  
R/W  
0
0: PBTL normal signal source  
1: PBTL flip signal source  
5
4
3
RESERVED  
R/W  
R/W  
R/W  
0
0
0
RESERVED  
RESERVED  
RESERVED  
OTSD AUTO RECOVERY  
0: OTSD is latched  
1: OTSD is autorecovery  
2–0  
RESERVED  
0
RESERVED  
9.6.27 Clip Control Register (address = 0x22) [default = 0x01]  
The Clip Detect register is shown in 9-39 and described in 9-36. To ensure the Clip Detect Warning is  
operating according to the expectation, the related bit values in the Clip Window Register (address = 0x23) and  
Clip Warning Register (address = 0x24) must be set accordingly.  
9-39. Clip Control Register  
7
6
5
4
3
2
1
0
RESERVED  
CLIP_PIN  
R/W-0  
CLIP_LATCH  
R/W-0  
CLIPDET_EN  
R/W-1  
9-36. Clip Control Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-3  
RESERVED  
RESERVED  
2
CLIP_PIN  
R/W  
0
0: CH1-4 Clip Detect report to WARN pin  
1: CH1-2 Clip Detect report to WARN pin, CH3-4 Clip Detect  
report to FAULT pin  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
 
 
 
 
 
 
 
 
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
9-36. Clip Control Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
1
CLIP_LATCH  
R/W  
0
0: Pin latching  
1: Pin non-latching  
0
CLIPDET_EN  
R/W  
1
0: Clip Detect disable  
1: Clip Detect Enable  
9.6.28 Clip Window Register (address = 0x23) [default = 0x14]  
The Clip Window register is shown in 9-40 and described in 9-37. The register value represents the  
minimum number of 100% duty-cycle PWM cycles before Clip Detect is reported.  
9-40. Clip Window Register  
7
6
5
4
3
2
1
0
CLIP_WINDOW_SEL[7:1]  
R/W-00010100  
9-37. Clip Window Field Descriptions  
Bit  
Field  
CLIP_WINDOW_SEL[7:1]  
Type  
Reset  
Description  
7-0  
R/W  
00010100  
Default value is 20. Acceptable range is from 0-20 cycles.  
00010100: 20-100% duty-cycle PWM cycles before Clip  
Detect is triggered  
9.6.29 Clip Warning Register (address = 0x24) [default = 0x00]  
The Clip Window register is shown in 9-41 and described in 9-38.  
9-41. Clip Warning Register  
7
6
5
4
3
2
1
0
RESERVED  
CH4_CLIP  
R-0  
CH3_CLIP  
R-0  
CH2_CLIP  
R-0  
CH1_CLIP  
R-0  
9-38. Clip Warning Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
RESERVED  
0
RESERVED  
3
2
1
0
CH4_CLIP  
CH3_CLIP  
CH2_CLIP  
CH1_CLIP  
R
R
R
R
0
0
0
0
0: No Clip Detect  
1: Clip Detect  
0: No Clip Detect  
1: Clip Detect  
0: No Clip Detect  
1: Clip Detect  
0: No Clip Detect  
1: Clip Detect  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
48  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
 
 
 
 
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
9.6.30 ILIMIT Status Register (address = 0x25) [default = 0x00]  
The ILIMIT Status register is shown in 9-42 and described in 9-39.  
9-42. ILIMIT Status Register  
7
6
5
4
3
2
1
0
RESERVED  
CH4_ILIMIT_W CH3_ILIMIT_W CH2_ILIMIT_W CH1_ILIMIT_W  
ARN  
ARN  
ARN  
ARN  
R-0  
R-0  
R-0  
R-0  
9-39. ILIMIT Status Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
RESERVED  
0
RESERVED  
3
2
1
0
CH4_ILIMIT_WARN  
CH3_ILIMIT_WARN  
CH2_ILIMIT_WARN  
CH1_ILIMIT_WARN  
R
R
R
R
0
0
0
0
0: No ILIMIT  
1: ILIMIT Warning  
0: No ILIMIT  
1: ILIMIT Warning  
0: No ILIMIT  
1: ILIMIT Warning  
0: No ILIMIT  
1: ILIMIT Warning  
9.6.31 Miscellaneous Control 4 Register (address = 0x26) [default = 0x40]  
The Miscellaneous Control 4 register is shown in 9-43 and described in 9-40.  
9-43. Miscellaneous Control 4 Register  
7
6
5
4
3
2
1
0
RESERVED  
R/W-0100  
BCLK_INV  
R/W-0  
HPF_CORNER[2:0]  
R/W-000  
9-40. Misc Control 4 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
RESERVED  
R/W  
0100  
RESERVED  
3
BCLK_INV  
R/W  
R/W  
0
0: All other MCLK/BCLK frequency / phase use cases  
1: Inverted MCLK/BCLK phase relationship when MCLK/BCLK  
run at the same frequency  
2-0  
HPF_CORNER[2:0]  
000  
000: 3.7 Hz  
001: 7.4 Hz  
010: 15 Hz  
011: 30 Hz  
100: 59 Hz  
101: 118 Hz  
110: 235 Hz  
111: 463 Hz  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
 
 
 
 
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
10 Application Information Disclaimer  
备注  
以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。  
10.1 Application Information  
The TAS6424MS-Q1 is a two-channel class-D digital-input audio-amplifier design for use in automotive head  
units and external amplifier modules. The TAS6424MS-Q1 incorporates the necessary functionality to perform in  
demanding OEM applications.  
10.1.1 AM-Radio Band Avoidance  
AM-radio frequency interference can be avoided by setting the switching frequency of the device above the AM  
band. The switching frequency options available are 38 fs, 44 fs, and 48 fs. If the switch frequency cannot be set  
above the AM band, then use the two options of 8 fs and 10 fs. These options should be changed to avoid AM  
active channels.  
10.1.2 Parallel BTL Operation (PBTL)  
The device can drive more current-paralleling BTL channels on the load side of the LC output filter. For parallel  
operation, the parallel BTL mode, PBTL, must be used and the paralleled channels must have the same state in  
the state control register. If the two states are not aligned the device reports a fault condition.  
To set the requested channels to PBTL mode the device must be in standby mode for the commands to take  
effect.  
A load diagnostic is supported for PBTL channels. Paralleling on the device side of the LC output filter is not  
supported.  
10.1.3 Demodulation Filter Design  
The amplifier outputs are driven by high-current LDMOS transistors in an H-bridge configuration. These  
transistors are either fully off or fully on. The result is a square-wave output signal with a duty cycle that is  
proportional to the amplitude of the audio signal. An LC demodulation filter is used to recover the audio signal.  
The filter attenuates the high-frequency components of the output signals that are out of the audio band. The  
design of the demodulation filter significantly affects the audio performance of the power amplifier. Therefore, to  
meet the system THD+N requirements, the selection of the inductors used in the output filter should be carefully  
considered.  
10.1.4 Line Driver Applications  
In many automotive audio applications, the same head unit must drive either a speaker (with several ohms of  
impedance) or an external amplifier input (with several kΩ of impedance). The design is capable of supporting  
both applications and has special line-drive gain and diagnostics. Coupled with the high switching frequency, the  
device is well suited for this type of application. Set the desired channel in line driver mode through I2C register  
0x00, the externally connected amplifier must have a differential impedance from 600 Ω to 4.7 kΩ for the DC line  
diagnostic to detect the connected external amplifier. 10-1 shows the recommended external amplifier input  
configuration.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
50  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
Output Filter  
External Amplifier  
3.3 µH  
3.3 µH  
1 F  
1 F  
1 F  
1 F  
1 nF  
600  
to  
4.7 kꢀ  
1 nF  
100 kꢀ  
100 kꢀ  
10-1. External Amplifier Input Configuration for Line Driver  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
10.2 Typical Applications  
10.2.1 BTL Application  
10-2 shows the schematic of a typical 4-channel solution for a head-unit application.  
PVDD  
Input  
PVDD  
1 F  
1 nF  
470 F  
56  
PVDD  
PVDD  
PVDD  
1
GND  
0.1 F  
10 F  
10 F  
10 F  
1 F  
55  
2
3
4
5
PVDD  
VBAT  
AREF  
VREG  
PVDD  
54  
53  
52  
51  
BST_4P  
OUT_4P  
GND  
1 F  
3.3 H  
1 F  
1 F  
1 nF  
1 nF  
1 F  
1 F  
4 ꢁ  
3.3 H  
6
VCOM  
OUT_4M  
50  
49  
7
8
1 F  
1 F  
BST_4M  
GND  
AVSS  
AVDD  
1 F  
48  
47  
46  
45  
9
BST_3P  
OUT_3P  
GND  
GVDD  
2.2 F  
3.3 H  
10  
GVDD  
GND  
1 F  
1 F  
1 nF  
1 nF  
2.2 F  
4 ꢁ  
11  
3.3 H  
OUT_3M  
12  
13  
14  
15  
16  
MCLK  
SCLK  
44  
43  
1 F  
BST_3M  
PVDD  
PVDD  
FSYNC  
SDIN1  
SDIN2  
DSP  
0.1 F  
42  
PVDD  
41  
40  
39  
38  
BST_2P  
OUT_2P  
GND  
1 F  
17  
18  
GND  
GND  
3.3 H  
1 F  
1 F  
1 nF  
1 nF  
1 uF  
4 ꢁ  
19  
3.3 H  
VDD  
SCL  
VDD  
2 kꢁ  
OUT_2M  
2 kꢁ  
20  
21  
37  
36  
1 F  
1 F  
BST_2M  
GND  
SDA  
22  
23  
I2C_ADDR0  
35  
34  
33  
32  
BST_1P  
OUT_1P  
GND  
3.3 H  
I2C_ADDR1  
STANDBY  
Micro  
24  
25  
1 F  
1 F  
1 nF  
1 nF  
4 ꢁ  
3.3 H  
MUTE  
FAULT  
WARN  
GND  
OUT_1M  
26  
27  
28  
31  
30  
1 F  
BST_1M  
PVDD  
PVDD  
0.1 F  
29  
PVDD  
10-2. Typical 4-Channel BTL Application Schematic  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
52  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
10.2.1.1 Design Requirements  
Use the following requirements for this design:  
This head-unit example is focused on the smallest solution size for 4 × 50 W output power into 2 Ω with a  
battery supply of 14.4 V.  
The switching frequency is set above the AM-band with 44 times the input sample rate of 48 kHz which  
results in a frequency of 2.11 MHz.  
The selection of a 2.11 MHz switch frequency enables the use of a small output inductor value of 3.3 µH  
which leads to a very small solution size.  
10.2.1.1.1 Communication  
All communications to the TAS6424MS-Q1 are through the I2C protocol. A system controller can communicate  
with the device through the SDA pins and SCL pins. The device is an I2C slave and requires a master. The  
device cannot generate an I2C clock or initiate a transaction. The maximum clock speed accepted by the device  
is 400 kHz. If multiple TAS6424MS-Q1devices are on the same I2C bus, the I2C address must be different for  
each device. Up to four TAS6424MS-Q1 devices can be on the same I2C bus.  
The I2C bus is shared internally.  
备注  
Complete any internal operations, such as load diagnostics, before reading the registers for the  
results.  
10.2.1.2 Detailed Design Procedure  
10.2.1.2.1 Hardware Design  
Use the following procedure for the hardware design:  
Determine the input format. The input format can be either I2S or TDM mode. The mode determines the  
correct pin connections and the I2C register settings.  
Determine the power output that is required into the load. The power requirement determines the required  
power-supply voltage and current. The output reconstruction-filter components that are required are also  
driven by the output power.  
With the requirements, adjust the typical application schematic in 10-2 for the input connections.  
10.2.1.2.2 Digital Input and the Serial Audio Port  
The TAS6424MS-Q1 device supports four different digital input formats which are: I2S, Right Justified, Left  
Justified, and TDM mode. Depending on the format, the device can support 16, 18, 20, 24, and 32 bit data. The  
supported frequencies are 96 kHz, 48 kHz, and 44.1 kHz. Please see SAP Control (Serial Audio-Port Control)  
Register (address = 0x03) [default = 0x04] for the complete matrix to set up the serial audio port.  
备注  
Bits 3, 4, and 5 in this register are ignored in all input formats except for TDM. Setting up all the  
control registers to the system requirements should be done before the device is placed in Mute mode  
or Play mode. After the registers are setup, use bit 7 in Miscellaneous Control 3 Register (address =  
0x21)to clear any faults. Then read the fault registers to make sure no faults are present. When no  
faults are present, use SAP Control (Serial Audio-Port Control) Register (address = 0x03) [default =  
0x04] to place the device properly into Play mode.  
10.2.1.2.3 Bootstrap Capacitors  
The bootstrap capacitors provide the gate-drive voltage of the upper N-channel FET. These capacitors must be  
sized appropriately for the system specification. A special condition can occur where the bootstrap may sag if  
the capacitor is not sized accordingly. The special condition is just below clipping where the PWM is slightly less  
than 100% duty cycle with sustained low-frequency signals. Changing the bootstrap capacitor value to 2.2 µF for  
driving subwoofers that require frequencies below 30 Hz may be necessary.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
10.2.1.2.4 Output Reconstruction Filter  
The output FETs drive the amplifier outputs in an H-Bridge configuration. These transistors are either fully off or  
fully on. The result is a square-wave output signal with a duty cycle that is proportional to the amplitude of the  
audio signal. The amplifier outputs require a reconstruction filter that comprises a series inductor and a capacitor  
to ground on each output, generally called an LC filter. The LC filter attenuates the PWM frequency and reduces  
electromagnetic emissions, allowing the reconstructed audio signal to pass to the speakers. refer to the Class-D  
LC Filter Design Application Report, (SLAA701A) for a detailed description of proper component description and  
design of the LC filter based upon the specified load and frequency response. The recommended low-pass  
cutoff frequency of the LC filter is dependent on the selected switching frequency. The low-pass cutoff frequency  
can be as high as 100 kHz for a PWM frequency of 2.1 MHz. At a PWM frequency of 384 kHz the low-pass  
cutoff frequency should be less than 40 kHz. Certain specifications must be understood for a proper inductor.  
The inductance value is given at zero current, but the device has current. Use the inductance versus current  
curve for the inductor to make sure the inductance does not drop below 1 µH (for fSW = 2.1 MHz) at the  
maximum current provided by the system design. The DCR of the inductor directly affects the output power of  
the system design. The lower the DCR, the more power is provided to the speakers. The typical inductor DCR  
for a 4 Ω system is 40 to 50 mΩ and for a 2 Ω system is 20 to 25 mΩ. Further guidance is provided in the  
Inductor Selection Guide for 2.1 MHz Class-D Amplifiers.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
54  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
10.2.2 PBTL Application  
10-3 shows a schematic of a typical 2-channel solution for a head unit or external amplifier application where  
high power into 2 Ω is required.  
PVDD  
Input  
PVDD  
1 F  
1 nF  
470 F  
56  
55  
PVDD  
PVDD  
PVDD  
1
GND  
0.1 F  
3.3 H  
10 F  
1 F  
2
3
4
5
PVDD  
VBAT  
AREF  
VREG  
PVDD  
54  
53  
52  
51  
BST_4P  
OUT_4P  
GND  
1 F  
1 F  
1 F  
1 F  
3.3 H 1 F  
6
VCOM  
OUT_4M  
50  
49  
7
8
1 F  
1 F  
BST_4M  
GND  
AVSS  
AVDD  
1 nF  
1 nF  
2 ꢁ  
1 F  
48  
47  
46  
45  
9
BST_3P  
OUT_3P  
GND  
GVDD  
2.2 F  
3.3 H  
10  
GVDD  
GND  
1 F  
2.2 F  
11  
3.3 H 1 F  
OUT_3M  
12  
13  
14  
15  
16  
MCLK  
SCLK  
44  
43  
1 F  
1 F  
BST_3M  
PVDD  
PVDD  
FSYNC  
SDIN1  
SDIN2  
DSP  
0.1 F  
10 F  
42  
PVDD  
41  
40  
39  
38  
BST_2P  
OUT_2P  
GND  
GND  
GND  
3.3 H  
18  
19  
1 F  
1 uF  
3.3 H 1 F  
VDD  
SCL  
OUT_2M  
2 kꢁ  
2 kꢁ  
20  
21  
37  
36  
1 F  
1 F  
BST_2M  
GND  
1 nF  
1 nF  
2 ꢁ  
SDA  
22  
23  
I2C_ADDR0  
36  
34  
33  
32  
BST_1P  
OUT_1P  
GND  
3.3 H  
I2C_ADDR1  
STANDBY  
Micro  
24  
25  
1 F  
3.3 H 1 F  
MUTE  
FAULT  
WARN  
GND  
OUT_1M  
26  
27  
28  
31  
30  
BST_1M  
PVDD  
1 F  
PVDD  
0.1 F  
10 F  
29  
PVDD  
10-3. Typical 2-Channel PBTL Application Schematic  
To operate in PBTL mode the output stage must be paralleled according to the schematic in 10-3. The device  
can operate in a mix of PBTL and BTL mode. This application can be set up for 3-channels, with one channel  
in PBTL mode and two channels in BTL mode. The device does not support a parallel configuration of all four  
channels for a one channel amplifier.  
10.2.2.1 Design Requirements  
Use the following requirements for this design:  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
This head-unit example is focused on the smallest solution size for 2 x 50 W output power into 2 Ω with a  
battery supply of 14.4 V.  
The switching frequency is set above the AM-band with 44 times the input sample rate of 48 kHz which  
results in a frequency of 2.11 MHz.  
The selection of a 2.11 MHz switch frequency enables the use of a small output inductor value of 3.3 µH  
which leads to a very small solution size.  
10.2.2.1.1 Detailed Design Procedure  
As a starting point, refer to the section for the BTL application. PBTL mode requires schematic changes in the  
output stage as shown in 10-3. The other required changes include setting up the I2C registers correctly (see  
9-13) and selecting which frame or channel to use on each output. Bit 6 in register 0x21 controls the frame  
selection.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
56  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
11 Power Supply Recommendations  
The TAS6424MS-Q1 requires three power supplies. The PVDD supply is the high-current supply in the  
recommended supply range. The VBAT supply is lower current supply that must be in the recommended supply  
range. The PVDD and VBAT pins can be connected to the same supply if the recommended supply range for  
VBAT is maintained. The VDD supply is the 3.3 Vdc logic supply and must be maintained in the tolerance as  
shown in the Recommended Operating Conditions table.  
For best device performance and to avoid unexpected device behavior follow the recommendations in the  
Vehicle-Battery Power-Supply Sequence section.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
The pinout of the TAS6424MS-Q1 was selected to provide flowthrough layout with all high-power connections on  
the right side, and all low-power signals and supply decoupling on the left side.  
12-1 shows the area for the components in the application example (see the Typical Applications section).  
The TAS6424MS-Q1 EVM uses a four-layer PCB. The copper thickness was selected as 70 µm to optimize  
power loss.  
The small value of the output filter provides a small size and, in this case, the low height of the inductor enables  
double-sided mounting.  
The EVM PCB shown in 12-1 is the basis for the layout guidelines.  
12.2 Layout Example  
Power Supply  
and  
Amplifier  
Section  
B
C
F
A
D
E
12-1. EVM Layout  
12.3 Thermal Considerations  
The thermally enhanced PowerPAD package has an exposed pad up for connection to a heat sink. The output  
power of any amplifier is determined by the thermal performance of the amplifier as well as limitations placed on  
it by the system, such as the ambient operating temperature. The heat sink absorbs heat from the TAS6424MS-  
Q1 and transfers it to the air. With proper thermal management this process can reach equilibrium and heat  
can be continually transferred from the device. Heat sinks can be smaller than that of classic linear amplifier  
design because of the excellent efficiency of class-D amplifiers. This device is intended for use with a heat sink,  
therefore, RθJC is used as the thermal resistance from junction to the exposed metal package. This resistance  
dominates the thermal management, so other thermal transfers is not considered. The thermal resistance of  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
58  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
 
 
 
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
RθJA (junction to ambient) is required to determine the full thermal solution. The thermal resistance is comprised  
of the following components:  
RθJC of the TAS6424MS-Q1  
Thermal resistance of the thermal interface material  
Thermal resistance of the heat sink  
The thermal resistance of the thermal interface material can be determined from the manufacturer’s value for the  
area thermal resistance (expressed in °Cmm2/W) and the area of the exposed metal package. For example, a  
typical, white, thermal grease with a 0.0254 mm (0.001 inch) thick layer is approximately 4.52°C mm2/W. The  
TAS6424MS-Q1 in the DKQ package has an exposed area of 47.6 mm2. By dividing the area thermal resistance  
by the exposed metal area determines the thermal resistance for the thermal grease. The thermal resistance of  
the thermal grease is 0.094°C/W  
12-1 lists the modeling parameters for one device on a heat sink. The junction temperature is assumed to be  
115°C while delivering and average power of 10 watts per channel into a 4 Ω load. The thermal-grease example  
previously described is used for the thermal interface material. Use 方程式 3 to design the thermal system.  
RθJA = RθJC + thermal interface resistance + heat sink resistance  
(3)  
12-1. Thermal Modeling  
Description  
Ambient Temperature  
Value  
25°C  
40W (4 x 10W)  
Average Power to load  
Power dissipation  
8W (4 x 2W)  
Junction Temperature  
115°C  
ΔT inside package  
5.6°C (0.7°C/W × 8W)  
0.75°C (0.094°C/W × 8W)  
10.45°C/W ([115°C – 25°C – 5.6°C – 0.75°C] / 8W)  
11.24°C/W  
ΔT through thermal interface material  
Required heat sink thermal resistance  
System thermal resistance to ambient RθJA  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TAS6424MS-Q1  
English Data Sheet: SLOSE66  
 
 
TAS6424MS-Q1  
ZHCSMI4 – NOVEMBER 2020  
www.ti.com.cn  
13 Device and Documentation Support  
13.1 Documentation Support  
13.2 Related Documentation  
For related documentation see the following:  
PurePathConsole 3 Graphical Development Suite  
TAS6422E-Q1 EVM User's Guide (SLOU541)  
13.3 Receiving Notification of Documentation Updates  
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper  
right corner, click on Alert me to register and receive a weekly digest of any product information that has  
changed. For change details, review the revision history included in any revised document.  
13.4 支持资源  
TI E2E支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者按原样提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI  
《使用条款》。  
13.5 商标  
PurePathis a trademark of Texas Instruments.  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
13.6 静电放电警告  
静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序,可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
13.7 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
14 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLOSE66  
60  
Submit Document Feedback  
Product Folder Links: TAS6424MS-Q1  
 
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TAS6424MSQDKQRQ1  
ACTIVE  
HSSOP  
DKQ  
56  
1000 RoHS & Green  
NIPDAU  
Level-3-260C-168 HR  
-40 to 125  
TAS  
6424MS  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Nov-2020  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TAS6424MSQDKQRQ1 HSSOP  
DKQ  
56  
1000  
330.0  
32.4  
11.35 18.67  
3.1  
16.0  
32.0  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
7-Nov-2020  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
HSSOP DKQ 56  
SPQ  
Length (mm) Width (mm) Height (mm)  
367.0 367.0 55.0  
TAS6424MSQDKQRQ1  
1000  
Pack Materials-Page 2  
PACKAGE OUTLINE  
DKQ0056A  
PowerPADTM HSSOP - 2.475 mm max height  
S
C
A
L
E
1
.
0
0
0
PLASTIC SMALL OUTLINE  
C
10.67  
10.03  
TYP  
SEATING PLANE  
A
PIN 1 ID AREA  
0.1 C  
54X 0.635  
56  
1
EXPOSED  
THERMAL PAD  
18.54  
18.29  
NOTE 3  
8.661  
8.611  
2X  
17.15  
5.533  
5.483  
28  
29  
0.37  
56X  
0.17  
0.13  
(2.29)  
7.59  
7.39  
B
C A B  
NOTE 4  
0.25  
0.13  
2.29 0.05  
TYP  
2.475  
2.240  
NOTE 6  
0.25  
GAGE PLANE  
SEE DETAIL A  
0.08  
0.00  
1.02  
0.51  
0 - 8  
DETAIL A  
TYPICAL  
4221870/D 01/2019  
PowerPAD is a trademark of Texas Instruments.  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. The exposed thermal pad is designed to be attached to an external heatsink.  
6. For clamped heatsink design, refer to overall package height above the seating plane as 2.325 +/- 0.075 and molded body  
thickness dimension.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DKQ0056A  
PowerPADTM HSSOP - 2.475 mm max height  
PLASTIC SMALL OUTLINE  
56X (1.9)  
SEE DETAILS  
SYMM  
1
56  
56X (0.4)  
54X (0.635)  
SYMM  
28  
29  
(R0.05) TYP  
(9.5)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:6X  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
METAL  
SOLDER MASK  
OPENING  
OPENING  
EXPOSED METAL  
EXPOSED METAL  
0.05 MIN  
AROUND  
0.05 MAX  
AROUND  
SOLDER MASK  
DEFINED  
NON SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
NOT TO SCALE  
4221870/D 01/2019  
NOTES: (continued)  
7. Publication IPC-7351 may have alternate designs.  
8. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
9. Size of metal pad may vary due to creepage requirement.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DKQ0056A  
PowerPADTM HSSOP - 2.475 mm max height  
PLASTIC SMALL OUTLINE  
56X (1.9)  
SYMM  
1
56  
56X (0.4)  
54X (0.635)  
SYMM  
28  
29  
(R0.05) TYP  
(9.5)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 MM THICK STENCIL  
SCALE:6X  
4221870/D 01/2019  
NOTES: (continued)  
10. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
11. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TAS6424MSQDKQRQ1

汽车类 45W、2MHz、4 通道、4.5V 至 18V 数字输入 D 类音频放大器 | DKQ | 56 | -40 to 125
TI

TAS6424QDKQRQ1

汽车类 75W、2MHz、4 通道、4.5V 至 26.4V 数字输入 D 类音频放大器 | DKQ | 56 | -40 to 125
TI

TAS6584-Q1

具有电流检测功能的汽车类 45V、10A 数字输入、四通道 D 类音频放大器
TI

TAS6584QPHDRQ1

具有电流检测功能的汽车类 45V、10A 数字输入、四通道 D 类音频放大器 | PHD | 64 | -40 to 125
TI

TAS682K035P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS682K050P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS682K075P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS682K100P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS683K020P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS683K035P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS683K050P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE

TAS683K075P1A

Hermetically Sealed Axial Lead Solid Tantalum Capacitors
CDE