TCA9800 [TI]

具有内部 0.5mA 拉电流的 2 位电平转换 400kHz I2C/SMBus 缓冲器/中继器;
TCA9800
型号: TCA9800
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有内部 0.5mA 拉电流的 2 位电平转换 400kHz I2C/SMBus 缓冲器/中继器

中继器
文件: 总38页 (文件大小:1097K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TCA9800  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
TCA9800 电平转换 I2C 总线缓冲器/中继器  
1 特性  
TCA9800 能够在不使用静态电压偏移或增量偏移的情  
1
况下提供真正的缓冲(而不是 pass-FET 解决方案)。  
这意味着 TCA9800 A 侧和 B 侧上的 VOL 极低(约  
0.2V),有助于消除由于固定的 VIL 阈值导致的通  
信问题。TCA9800 的另一个重要特性是没有电源定序  
要求或电源依赖性。VCCA 可以大于、小于或等于  
双通道双向缓冲器  
B 侧集成了电流源,不需要外部 B 侧电阻器  
超低功耗  
无静态电压偏移,低 VOL  
I2C 总线和 SMBus 兼容  
VCCB。这使得系统设计人员可以灵活地使用  
A 侧上,工作电源电压范围为 0.8V 3.6V  
B 侧上,工作电源电压范围为 1.65V 3.6V  
高电平有效中继器使能输入  
A 侧断电高阻抗 I2C 总线引脚  
断电反射功率保护 I2C 总线引脚  
支持时钟拉伸和多主仲裁  
TCA9800。  
TCA9800 是由四种器件组成的产品系列中的一部分,  
每种器件有不同的电流源强度(请参见器件比较表)。  
器件信息(1)  
器件型号  
TCA9800  
封装  
VSSOP (8)  
封装尺寸(标称值)  
0.5mA 3mA 的电流源选项系列  
3.00mm × 3.00mm  
2 应用  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
服务器  
路由器(路由设备)  
工业设备  
器件比较  
器件型号  
ICS:电流源值(典型  
值)  
个人计算机  
TCA9800  
TCA9801  
TCA9802  
TCA9803  
0.54mA  
1.1mA  
2.2mA  
3.3mA  
功耗敏感型 应用  
3 说明  
TCA9800 是一款适用于 I2C 总线和 SMBus/PMBus 系  
统的双通道双向缓冲器。它在低电压(低至 0.8V)和  
较高电压(1.65V 3.6V)之间提供双向电平转换。  
TCA9800 在器件 B 侧 具有 一个内部电流源,因而 B  
侧不需要外部上拉电阻器。该电流源还提供改进的上升  
时间和超低功耗。  
简化原理图  
1
8
VCCA  
SDAA  
VCCB  
SDAB  
3
2
5
6
7
I2C or SMBus Master  
(e.g. Processor)  
I2C Slave Devices  
TCA9800  
SCLA  
EN  
SCLB  
GND  
4
Copyright © 2017, Texas Instruments Incorporated  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SCPS264  
 
 
 
 
TCA9800  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
目录  
9.2 Functional Block Diagram ....................................... 11  
9.3 Feature Description................................................. 12  
9.4 Device Functional Modes........................................ 13  
10 Application and Implementation........................ 16  
10.1 Application Information.......................................... 16  
10.2 Typical Application ................................................ 18  
11 Power Supply Recommendations ..................... 29  
12 Layout................................................................... 30  
12.1 Layout Guidelines ................................................. 30  
12.2 Layout Example .................................................... 30  
13 器件和文档支持 ..................................................... 31  
13.1 文档支持................................................................ 31  
13.2 接收文档更新通知 ................................................. 31  
13.3 支持资源................................................................ 31  
13.4 ....................................................................... 31  
13.5 静电放电警告......................................................... 31  
13.6 Glossary................................................................ 31  
14 机械、封装和可订购信息....................................... 31  
1
2
3
4
5
6
7
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Device Comparison Table..................................... 3  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
7.1 Absolute Maximum Ratings ...................................... 4  
7.2 ESD Ratings.............................................................. 4  
7.3 Recommended Operating Conditions....................... 4  
7.4 Thermal Information.................................................. 4  
7.5 Electrical Characteristics........................................... 5  
7.6 Timing Requirements................................................ 6  
7.7 Switching Characteristics.......................................... 6  
7.8 Typical Characteristics.............................................. 7  
Parameter Measurement Information .................. 9  
Detailed Description ............................................ 10  
9.1 Overview ................................................................. 10  
8
9
4 修订历史记录  
Changes from Revision A (March 2017) to Revision B  
Page  
Added last sentence: "When enable is a logic LOW while VCCB is powered on, the internal current source on B  
side is still enabled...." to the Active-High Repeater Enable Input section........................................................................... 12  
Changes from Original (March 2017) to Revision A  
Page  
Updated ICS typical values in Device Comparison Table........................................................................................................ 3  
2
Copyright © 2017–2020, Texas Instruments Incorporated  
 
TCA9800  
www.ti.com.cn  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
5 Device Comparison Table  
Part Number  
TCA9800  
TCA9801  
TCA9802  
TCA9803  
ICS: Current Source Value (Typical)  
0.54 mA  
1.1 mA  
2.2 mA  
3.3 mA  
6 Pin Configuration and Functions  
DGK Package  
8-Pin VSSOP  
Top View  
VCCA  
SCLA  
SDAA  
GND  
1
2
3
4
8
7
6
5
VCCB  
SCLB  
SDAB  
EN  
Not to scale  
Pin Functions  
PIN  
TYPE  
DESCRIPTION  
NO.  
1
NAME  
VCCA  
SCLA  
SDAA  
GND  
Supply  
A-side supply voltage (0.8 V to 3.6 V)  
2
I/O  
I/O  
I
Serial clock bus, A-side. Connect to VCCA through a pull-up resistor, even if unused  
Serial data bus, A-side. Connect to VCCA through a pull-up resistor, even if unused  
Ground  
3
4
5
EN  
Active-high repeater enable input, referenced to VCCA  
Serial data bus, B-side. Do NOT connect to VCCB through a pull-up resistor for proper operation. If  
unused, leave floating  
6
SDAB  
I/O  
Serial clock bus, B-side. Do NOT connect to VCCB through a pull-up resistor for proper operation. If  
unused, leave floating  
7
8
SCLB  
VCCB  
I/O  
Supply  
B-side and device supply voltage (1.65 V to 3.6 V)  
Copyright © 2017–2020, Texas Instruments Incorporated  
3
 
TCA9800  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
7 Specifications  
7.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
–0.5  
–0.5  
–0.5  
–0.5  
MAX  
4
UNIT  
V
VCCA  
VCCB  
VEN  
VI/O  
IOL  
Supply voltage on A-side  
Supply voltage on B-side  
4
V
Enable input voltage  
I2C bus voltage  
4
V
4
V
Maximum SDAA, SCLA IOL current  
Input clamp current (SDAB/SCLB)  
Input clamp current (EN, VCCA, VCCB, SDAA, SCLA)  
Output clamp current (SDAB/SCLB)  
Output clamp current (EN, VCCA, VCCB, SDAA, SCLA)  
20  
–20  
–20  
–20  
–20  
mA  
mA  
mA  
mA  
mA  
IIK  
IOK  
Operating junction  
temperature  
TJ  
130  
150  
°C  
°C  
Storage temperature  
Tstg  
–60  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating  
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
7.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/JEDEC JS-  
001, all pins(1)  
±2000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per JEDEC specification  
JESD22-C101, all pins(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
7.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
–40  
0.8  
1.65  
0
MAX  
125  
3.6  
UNIT  
°C  
V
TA  
Operating free-air temperature  
Supply voltage  
VCCA  
VCCB  
Supply voltage  
3.6  
V
SDAA, SCLA  
3.6  
VI/O  
Input-output voltage  
SDAB, SCLB  
EN  
0
3.6  
V
0
3.6  
7.4 Thermal Information  
TCA9800  
THERMAL METRIC(1)  
DGK (VSSOP)  
8 PINS  
174.1  
UNIT  
RθJA  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
85  
104.4  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
18.3  
ΨJB  
102.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
4
Copyright © 2017–2020, Texas Instruments Incorporated  
TCA9800  
www.ti.com.cn  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
7.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN TYP(1)  
MAX  
UNIT  
OUTPUT CHARACTERISTICS  
SDAA, SCLA  
SDAB, SCLB  
IOL = 6 mA, VILB = 0 V  
VIA = 0 V  
0.04  
0.13  
0.26  
200  
100  
VOL  
Low-level output voltage  
V
0.22  
(2)  
IEXT-I  
IEXT-O  
ICS  
Allowed input leakage current of ICS  
SDAB, SCLB  
SDAB, SCLB  
0
0
µA  
µA  
mA  
%
(2)  
Allowed output leakage current of ICS  
Current source value  
0.54  
–25  
Current source tolerance  
25  
INPUT CHARACTERISTICS  
REN  
Enable pin pull-up  
150  
250  
450  
k  
0.7 ×  
VCCA  
SDAA, SCLA  
SDAB, SCLB(3)  
EN  
VCCA  
0.7 ×  
VCCB  
VIH  
High-level input voltage  
VCCB  
VCCA  
V
0.7 ×  
VCCA  
0.3 ×  
VCCA  
SDAA, SCLA  
SDAB, SCLB(4) (3)  
EN  
0
0
0.3 ×  
VCCB  
VIL  
Low-level input voltage  
V
0.3 ×  
VCCA  
0
IILC  
Low-level input current contention  
Low-level allowed pull-down resistance  
Bus capacitance limit  
SDAB, SCLB(4)  
SDAB, SCLB(3)  
SDAB, SCLB(5)  
300  
µA  
RILC  
CBUS  
150  
400  
0
pF  
DC CHARACTERISTICS  
VCCA rising and falling; VCCB  
1.65 or 3.6 V  
=
VCCA  
VCCB  
0.3  
0.55  
0.8  
UVLO  
Under-voltage lock out  
V
VCCB rising; VCCA = 0.8 or 3.6 V  
VCCB falling; VCCA = 0.8 or 3.6 V  
VCCA = 0.8 V  
1.3  
1.2  
1.51  
1.4  
0.1  
0.1  
0.2  
0.2  
16  
1.6  
1.6  
7
SDAA = SCLA =  
VCCA or  
Quiescent supply current for VCCA GND, SDAB =  
SCLB = open,  
VCCA = 1.8 V  
8
ICCA  
µA  
VCCA = 2.5 V  
9
EN = VCCA  
VCCA = 3.6 V  
12  
40  
44  
Both channels  
high, SDAA =  
SCLA = pulled  
up to  
VCCB = 1.8 V  
VCCB = 2.5 V  
19  
µA  
VCCA, SDAB =  
SCLB = open,  
VCCB = 3.6 V  
24  
52  
EN = VCCA  
ICCB  
Quiescent supply current for VCCB  
Both channels  
low, SDAA =  
SCLA = GND.  
SDAB = SCLB =  
open, EN =  
VCCA  
VCCB = 1.8 V  
VCCB = 2.5 V  
1.2  
1.2  
1.6  
1.6  
mA  
VCCB = 3.6 V  
1.2  
1.7  
(1) All typical values are at nominal supply voltage (1.8 V) and TA = 25 °C unless otherwise specified.  
(2) SDAB, SCLB may not sink current from external sources. It is required that no source of external current be used on these pins for  
proper device operation due to the internal current source.  
(3) Parameter specified by design. Not tested in production.  
(4) VIL specification is for the first low-level seen by the SDAB and SCLB pins. IILC must also be satisfied in order to be interpreted as a low.  
(5) SDAB, SCLB have a maximum supported capacitive load for device operation. If this load capacitance maximum is violated, the device  
does not function properly. SDAA, SCLA have no maximum capacitance limit.  
Copyright © 2017–2020, Texas Instruments Incorporated  
5
TCA9800  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCCA = VCCB = 1.8 V,  
SDAA/SCLA = VCCA  
SDAB/SCLB = VCCB  
MIN TYP(1)  
MAX  
UNIT  
ICCA + ICCB Total quiescent supply current  
,
18  
µA  
VI = VCCA, EN = GND  
±10  
±10  
±10  
10  
SDAA, SCLA  
II  
Input leakage current  
I/O Capacitance  
VI = GND, EN = GND  
µA  
pF  
SDAB, SCLB  
SDAA, SCLA  
SDAB, SCLB  
VCCB = 0 V, VI = 3.6 V  
VI = 0 V or 3.3 V, f = 1 MHz  
VCCB = GND, VI = 0 V, f = 1 MHz  
2
8
CIO  
7.6 Timing Requirements  
PARAMETER  
MIN  
TYP  
MAX  
UNIT  
fSCL(MAX)  
Max SCL clock frequency  
100  
kHz  
Port A  
57  
66  
70  
110  
170  
270  
30  
Port B; VCCB = 1.65 V  
Port B; VCCB = 2.5 V  
Port B; VCCB = 3.6 V  
Port A  
(1)  
tr  
Rise time  
ns  
100  
144  
9
(1)  
tf  
Fall time  
ns  
ns  
ns  
Port B  
35  
85  
Port A to Port B  
Port B to Port A  
Port A to Port B  
Port B to Port A  
75  
200  
250  
150  
350  
(1)  
tPHL  
Propagation delay high-to-low  
Propagation delay low-to-high  
85  
40  
(1)  
tPLH  
100  
(1) Times are specified with loads of 1.35 kand 50 pF on A-side and 50 pF on B-side. Different load resistance and capacitance alter the  
rise and fall times, thereby changing the propagation delay.  
7.7 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Startup time  
MIN  
TYP  
72  
MAX  
340  
UNIT  
µs  
tstartup  
ten  
Enable time  
Disable time  
280  
740  
1000  
1800  
ns  
tdis  
ns  
6
Copyright © 2017–2020, Texas Instruments Incorporated  
TCA9800  
www.ti.com.cn  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
7.8 Typical Characteristics  
575  
550  
525  
500  
475  
60  
55  
50  
45  
40  
35  
30  
25  
20  
15  
10  
1.8 V  
2.5 V  
3.3 V  
IOLA = 6 mA  
1.8 V  
2.5 V  
3.3 V  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TA - Ambient Temperature (°C)  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TA - Ambient Temperature (°C)  
D001  
D002  
Figure 1. Current Source vs Ambient Temperature for  
Different VCCB  
Figure 2. A-Side Output Low Voltage vs Ambient  
Temperature for Different VCCB (IOLA = 6 mA)  
210  
150  
125  
100  
75  
-40èC  
25èC  
85èC  
125èC  
-40èC  
25èC  
85èC  
125èC  
180  
150  
120  
90  
VCCB = 2.5 V  
VCCB = 1.65 V  
50  
60  
25  
30  
0
0
0
2
4
6
IOLA - Low Level Current (mA)  
8
10  
12  
14  
16  
18  
20  
0
2
4
6
IOLA - Low Level Current (mA)  
8
10  
12  
14  
16  
18  
20  
D003  
D004  
Figure 3. A-Side Output Low Voltage vs Low Level Current  
for Different TA (VCCB = 1.65 V)  
Figure 4. A-Side Output Low Voltage vs Low Level Current  
for Different TA (VCCB = 2.5 V)  
120  
3
-40èC  
0.8 V  
1.8 V  
2.5 V  
25èC  
85èC  
125èC  
105  
90  
75  
60  
45  
30  
15  
0
2.5  
3.6 V  
2
1.5  
1
0.5  
0
0
2
4
6
8
10  
12  
14  
IOLA - Low Level Current (mA)  
16  
18  
20  
-40 -25 -10  
5
20 35 50 65 80 95 110 125  
TA - Ambient Temperature (°C)  
D005  
D006  
Figure 5. A-Side Output Low Voltage vs Low Level Current  
for Different TA (VCCB = 3.6 V)  
Figure 6. Operating Current A-Side vs Ambient Temperature  
for Different VCCA (A-Side = VCCA & GND)  
Copyright © 2017–2020, Texas Instruments Incorporated  
7
TCA9800  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
Typical Characteristics (continued)  
35  
1.5  
1.4  
1.3  
1.2  
1.1  
1.8 V  
2.5 V  
3.3 V  
1.8 V  
2.5 V  
3.3 V  
30  
SDAB = VCCB  
SCLB = VCCB  
SDAB = GND  
SCLB = GND  
25  
20  
15  
10  
-40 -25 -10  
5 20 35 50 65 80 95 110 125  
TA - Ambient Temperature (°C)  
-40 -25 -10  
5 20 35 50 65 80 95 110 125  
TA - Ambient Temperature (°C)  
D007  
D008  
Figure 7. Operating Current B-Side vs Ambient Temperature  
for Different VCCB (B-Side = VCCB  
Figure 8. Operating Current B-Side vs Ambient Temperature  
for Different VCCB (B-Side = GND)  
)
8
Copyright © 2017–2020, Texas Instruments Incorporated  
TCA9800  
www.ti.com.cn  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
8 Parameter Measurement Information  
External  
pull-down  
External  
pull-down  
(B-side)  
Off  
On  
Off  
Off  
On  
Off  
(A-side)  
A Side  
tr:B  
B Side  
tf:B  
tf:B  
tr:A  
0.7 VCCA  
tPLH:AB  
0.7 VCCB  
0.7 VCCB  
0.7 VCCA  
(1)  
(3)  
VOL  
VOL  
(2)  
0.3 VCCB  
0.3 VCCB  
VOL  
0.3 VCCA  
0.3 VCCA  
tPHL:BA  
tr:A  
0.7 VCCA  
tPHL:AB  
tf:A  
A Side  
tf:A  
tr:B  
tPLH:BA  
B Side  
0.7 VCCA  
tPLH:AB  
0.7 VCCB  
0.7 VCCB  
0.3 VCCA  
0.3 VCCA  
0.3 VCCB  
0.3 VCCB  
1) The VOL of only the external device, pulling down on the bus  
2) The VOL of both the external device and the TCA980x translator  
3) The VOL of only the TCA980x, after the external device releases  
Figure 9. Propagation Delay and Transition Times  
for A-Side to B-Side  
Figure 10. Propagation Delay for B-Side to A-Side  
0.7 VCCB  
SDAB  
SCLB  
UVLOB  
(Max)  
VCCB  
0.3 VCCB  
tstartup  
0.9 VCCA  
SDAA  
SCLA  
0.5 VCCA  
0.5 VCCA  
EN  
1) VCCA is powered, SDAA/SCLA are connected to GND  
1) VCCA is powered, SDAB/SCLB are connected to GND  
Figure 11. Startup Time (tstartup  
)
Figure 12. Enable and Disable Time (ten and tdis)  
Copyright © 2017–2020, Texas Instruments Incorporated  
9
TCA9800  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
The TCA9800 is a dual-channel bidirectional buffer intended for I2C bus and SMBus/PMBus systems. It provides  
bidirectional level shifting (up-translation and down-translation) between low voltages (down to 0.8 V) and higher  
voltages (1.65 V to 3.6 V). The TCA9800 features an internal current source on the B-side of the device, allowing  
the removal of external pull-up resistors on the B-side. The current source also provides an improved rise time  
and ultra-low power consumption.  
The TCA9800 is able to provide true buffering (rather than a pass-FET solution) without using a static voltage  
offset or incremental offset. This means that the VOL on both the A and B sides of the TCA9800 are very low  
(approximately 0.2 V), helping to eliminate communication issues as a result of fixed VIL thresholds. Another key  
feature of the TCA9800 is that there are no power sequencing requirements, or power supply dependencies.  
VCCA can be greater than, less than, or equal to VCCB. This gives the system designer flexibility with how the  
TCA9800 is used.  
The TCA9800 is part of a four device family with varying current source strengths (see the Device Comparison  
Table).  
10  
Copyright © 2017–2020, Texas Instruments Incorporated  
TCA9800  
www.ti.com.cn  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
9.2 Functional Block Diagram  
VCCA  
VCCB  
1
8
VCCB  
ICS  
3
6
SDAA  
SDAB  
VCCB  
ICS  
2
7
SCLA  
SCLB  
VCCA  
REN  
5
EN  
4
GND  
For proper device operation, no external current sources (pull-up resistors) must be used on the SDAB and SCLB  
ports  
Copyright © 2017–2020, Texas Instruments Incorporated  
11  
TCA9800  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
9.3 Feature Description  
9.3.1 Integrated Current Source  
The TCA980x family has an integrated current source on the B side. By using an integrated current source, the  
device is able to measure current to determine if an external device is pulling down on the bus or not. This  
innovative detection method removes the need for a static voltage offset on the B side.  
9.3.2 Ultra-Low Power Consumption  
The TCA980x family features ultra low power consumption, to help maximum battery life, or cut down on power  
dissipation in sensitive applications.  
9.3.3 No Static-Voltage Offset  
The TCA980x family has no static-voltage offset, which are commonly used in buffered translators to prevent a  
device lock-up situation where the buffer's own output low could trip the input low threshold. The removal of the  
static voltage offset is significant because it allows the device to have low a low VOL on the B side, which helps  
prevents communication issues that arise from connecting a static-voltage offset output device to an input with  
an input low threshold which is below the static voltage VOL  
.
9.3.4 Active-High Repeater Enable Input  
The TCA980x has an active-high enable (EN) input with an internal pull-up to VCCA, which allows the user to  
select when the repeater is active. This can be used to isolate a badly behaved slave on power-up reset. The EN  
input must change state only when the global bus and repeater port are in an idle state. to prevent system or  
communication failures. When enable is a logic LOW while VCCB is powered on, the internal current source on  
B side is still enabled. The enable pin does not disable the internal current source.  
9.3.5 Powered Off High Impedance I2C Bus Pins on A-Side  
The SCLA and SDAA pins enters a high impedance state when either VCCA or VCCB fall below their UVLO  
voltages. These pins are safe to continue having I2C communication on, even when the device is disabled or has  
no power.  
The SCLB and SDAB pins remain powered by their current source (ICS), even when VCCA is below UVLO.  
When VCCB falls below UVLO, the current source turns off, and a weak pull-up is connected to prevent the B-  
pins from floating. This is intended behavior, because no external pull-up resistors are to be used on the SDAB  
or SCLB pins. This behavior prevents the bus pins from floating, and allows it to follow VCCB.  
9.3.6 Powered-Off Back-Power Protection for I2C Bus Pins  
All I2C bus pins has protection circuitry to prevent current from flowing to the VCC pins from the I2C bus pins.  
9.3.7 Clock Stretching and Multiple Master Arbitration Support  
The TCA980x family supports clock stretching and multiple master arbitration methods, and helps to minimize  
overshoot during these hand offs between master and slave (or multiple masters).  
12  
Copyright © 2017–2020, Texas Instruments Incorporated  
TCA9800  
www.ti.com.cn  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
9.4 Device Functional Modes  
Table 1 shows the TCA980x function table.  
Table 1. Enable Function Table  
INPUT  
EN  
FUNCTION  
L
Outputs disabled  
SDAA = SDAB  
SCLA = SCLB  
H
Table 2 lists the TCA980x B-Side current source functions.  
Table 2. B-Side Current Source Function Table  
VCCB  
FUNCTION  
Current sources disabled, weak pull-up is connected with back-power protection  
Current sources enabled  
L
H
9.4.1 Device Operation Considerations  
9.4.1.1 B-Side Input Low (VIL/IILC/RILC  
)
The TCA980x family utilizes the current source on the B side to determine whether an external device is driving  
the bus low, or if it is driving the bus low itself. As such, there are some parameters that must be met to ensure a  
successful transmission of a low from the B-side to the A-side. These parameters are listed in Table 3.  
Table 3. B-side Input Low-Level Parameters  
PARAMETER  
SHORT DESCRIPTION  
DETAILED INFORMATION  
The input voltage that is interpreted as a low. On the B-side, IILC must  
also be satisfied to maintain a low  
VIL  
Low-level input voltage  
See the VILC & IILC section  
Low-level input current  
(contention)  
The minimum amount of current that an external device must be sinking  
from the TCA980x to transmit a low. VIL must also be satisfied  
IILC  
RILC  
See the VILC & IILC section  
See the RILC section  
Low-level allowed pull-  
down resistance  
The maximum allowed pull-down resistance of an external device in  
order to successful transmit a low  
9.4.1.1.1 VILC & IILC  
The IILC parameter is the minimum amount of current that the external device must sink from the TCA980x in  
order for the TCA980x to accept the low on the B-side.  
In order for the TCA980x to accept a low on the B-side, both VIL and IILC parameters must be satisfied. In an idle  
bus condition (both A and B sides are high), meeting the VIL threshold with an external device pull-down meets  
the IILC requirement, since the pull-down has to sink the entire ICS (current source value) current before the  
voltage on the pin falls.  
In a contention situation (the A-side is being driven low externally, and the B-side is driven low by the TCA980x),  
the VIL requirement is already satisfied by the TCA980x alone (Since the output low voltage is less than the VIL  
threshold). In order for a device on the B-side to over-drive the A-side, it must sink the IILC value for the TCA980x  
to accept that the low is now being driven by the B-side. This helps reduce or eliminate overshoot during the  
hand off between a slave an master during a clock-stretching event, or an acknowledge.  
External pull-up resistors on the B-side are not allowed for this reason. As the additional current provided by  
them may hinder an external device from being able to satisfy the TCA980x's IILC requirement. For more  
information on this and allowed external current into the device, see the Input and Output Leakage Current (IEXT-  
I/IEXT-O) section.  
Copyright © 2017–2020, Texas Instruments Incorporated  
13  
 
 
 
 
TCA9800  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
9.4.1.1.2 RILC  
The RILC parameter describes the maximum allowed pull-down resistance. This parameter comes from the  
combination of IILC and ICS, and states the maximum resistance that can satisfy the IILC parameter. Note that  
series resistors on the bus are going to affect this, as seen with other types of buffers (voltage delta across the  
series resistor. This increases the effective VOL of the external device pulling the bus low).  
The calculated resistance of the internal pull-down FET of an external device can be calculated from the VOL and  
IOL measurements of the external device in question using Equation 1. Take care to consider any series resistors  
placed in the path from the TCA980x to any external device. Note that RPD is the calculated resistance of the  
internal pull-down FET, and not a resistor to ground. This is for determining if the external device's output  
characteristics meet the TCA980x RILC requirement (150 Ω).  
RPD = VOL /IOL  
(1)  
9.4.1.2 Input and Output Leakage Current (IEXT-I/IEXT-O  
)
The Input external current (IEXT-I) and output external current (IEXT-O) parameters describe the amount of parasitic  
current either injected into the device or pulled from the device (such as leakage from ESD cells) without  
affecting device operation as shown in Table 4.  
Table 4. B-Side Input and Output Leakage Current  
DETAILED  
INFORMATION  
PARAMETER  
SHORT DESCRIPTION  
Current that is external, but pulled up to supply, leaking current into the TCA980x  
B-side. An example is a leaky ESD cell from VCC, or an external pull-up resistor.  
See the IEXT-I  
IEXT-I  
Input leakage current  
section  
Current that is pulled from the TCA980x B-side. ESD cells are the most common  
form of output leakage. Care must be taken not to violate this spec, otherwise the  
leakage current can create a false low.  
See the IEXT-O  
IEXT-O Output leakage current  
section  
9.4.1.2.1 IEXT-I  
IEXT-I is a current source that is external to the TCA980x B-side, but leaks current into the device. This type of  
input leakage may not exceed the IEXT-I maximum spec, or else the minimum IILC value does not apply.  
I2C Slave  
TCA980x  
VCCB  
ICS  
A-Side  
B-Side  
Figure 13. IEXT-I Example  
As shown in Figure 13, IEXT-I is a source of additional current into the device, shown as a leaky ESD cell. The  
user must keep IEXT-I as close to 0 as possible, since the TCA980x has a current source as a pull-up internally,  
and uses this current source to help detect which side is driving a low. As IEXT-I increases, it increases the  
minimum IILC value, requiring that an external device sink more current from the TCA980x in order to transmit a  
low. There must be no external pull-up resistor on the B-side to contribute to IEXT-I  
.
14  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
 
 
 
TCA9800  
www.ti.com.cn  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
9.4.1.2.2 IEXT-O  
IEXT-O is an unintentional current from the TCA980x's internal current source that is external. Leaking ESD cells  
are a common contributor to leakage current. This type of input leakage may not exceed the IEXT-O maximum  
spec, or else the TCA980x can interpret this excessive current as an external device transmitting a low, causing  
the bus to latch. It is important to consider the total sum of I2C slave device's leakage to ground, and that it does  
not violate IEXT-O. An example showing a typical IEXT-O leakage path through an ESD cell is shown in Figure 14.  
I2C Slave  
TCA980x  
VCCB  
ICS  
A-Side  
B-Side  
Figure 14. IEXT-O Example  
Copyright © 2017–2020, Texas Instruments Incorporated  
15  
 
TCA9800  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
10 Application and Implementation  
NOTE  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
10.1 Application Information  
10.1.1 Device Selection Guide  
The TCA980x family has 4 different variants, with different strengths of the internal current source as shown in  
Table 5.  
Table 5. TCA980x Family  
Part Number  
TCA9800  
TCA9801  
TCA9802  
TCA9803  
ICS: Current Source Value  
0.54 mA  
1.1 mA  
2.2 mA  
3.3 mA  
It is acceptable to select the TCA9803 as the default, since it is able to drive 400-pF bus capacitance loads at  
400 kHz. For system designers looking to optimize selection, see the Detailed Design Procedure section for  
single device for detailed examples of how to select a part number for a specific application.  
10.1.2 Special Considerations for the B-side  
The TCA980x supports many types of connections between other TCA980x and other buffers/translators. Care  
must be taken to ensure that all of the B-side requirements be satisfied. For example, FET/pass-gate based  
translators typically cannot be used on the B-side, because they require pull-up resistors on both sides, and  
when one side is pulling low, the FET/switch closes, likely causing IEXT-I to be violated (See the IEXT-I section for  
more information).  
The FET or Pass-Gate Translators and Buffered Translators/Level-shifters sections list some use-cases that are  
not supported or require special considerations when connected to the B-ports, note that these considerations  
only apply to the B-side of the TCA980x family.  
10.1.2.1 FET or Pass-Gate Translators  
Some translators are based on pass-gates for translation support. In most of the use cases, external pull-up  
resistors are required to pull the bus to the voltage rail.  
16  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
 
TCA9800  
www.ti.com.cn  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
1.65 V  
3.3 V  
1.65 V  
5 k  
5 kꢀ  
5 kꢀ  
VCCA  
5 kꢀ  
VCCA  
VCCB  
VCCB  
TCA980x  
SDA  
SDAA  
SCLA  
SDAB  
SCLB  
SDA  
SCL  
SCL  
BUS  
FET Based  
MASTER  
400 kHz  
SLAVE  
EN  
400 kHz  
Copyright © 2017, Texas Instruments Incorporated  
Figure 15. Incorrect B-Side Pass-Gate Based Translator Use Case  
1.65 V  
3.3 V  
1.65 V  
5 k  
5 kꢀ  
5 kꢀ  
VCCA  
5 kꢀ  
VCCB  
VCCA  
VCCB  
TCA980x  
SDA  
SCL  
SDAB  
SCLB  
SDAA  
SCLA  
SDA  
SCL  
BUS  
FET Based  
MASTER  
400 kHz  
SLAVE  
EN  
400 kHz  
Open Drain  
Copyright © 2017, Texas Instruments Incorporated  
Figure 16. A-Side Pass-Gate Based Translator Use Case  
As shown in Figure 15, it may appear that this use case is valid, but actually it is not. When either the TCA980x  
B-side or the slave pull down on the bus, the FET isolating the bus closes (low RDS_ON) and current from the 5-  
kΩ resistor is observed by the TCA980x, violating IEXT-I. See the IEXT-I section for more information.  
Figure 16 shows the correct way to pair with a FET base translator (connecting to the A-side).  
Rather than using a FET-based translator, it is recommended that a buffered translator be used, such as another  
TCA980x or a TCA9517. See the Typical Application section for single device for more information on concerns  
with B-side connections to buffered translators.  
10.1.2.2 Buffered Translators/Level-shifters  
The TCA980x family supports connections with buffered translators, but care must be taken to ensure that no  
operating conditions be violated. In a general sense, the following must be avoided on the B-side ports of the  
TCA980x:  
Sources of current other than the individual TCA980x (B-side of the other TCA980x, external pull-up resistors,  
current sources, rise time accelerators, etc)  
Static-voltage offset buffer outputs (B-side of the TCA9517, etc)  
Outputs with RILC (equivalent pull-down resistance) > 150 Ω  
Copyright © 2017–2020, Texas Instruments Incorporated  
17  
 
 
TCA9800  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
It is important to note that these special operating requirements apply only to the B-side ports of the TCA980x.  
For example, the TCA9517 B-side can be safely connected to the A-side of the TCA980x, but not to the B-side of  
the TCA980x. However, it is OK to connect the A-side of the TCA9517 to the B-side (or A-side) of the TCA980x,  
because the A-side does not have a static voltage offset based output.  
Figure 17 shows an example of the incorrect connection on the B-side to a buffer with a static voltage offset  
output. The reason this is unacceptable is because the equivalent output resistance of the output buffer is  
greater than the maximum RILC allowed. See the RILC section for more information.  
1.65 V  
3.3 V  
1.65 V  
5 k  
5 kꢀ  
5 kꢀ  
VCCA  
T/PCA9517  
5 kꢀ  
VCCA  
VCCB  
VCCB  
TCA980x  
SDA  
SCL  
SDAA  
SCLA  
SDAB  
SCLB  
SDAB  
SCLB  
SDAA  
SCLA  
SDA  
SCL  
BUS  
MASTER  
400 kHz  
SLAVE  
EN  
400 kHz  
Copyright © 2017, Texas Instruments Incorporated  
Figure 17. Incorrect B-Side Static Voltage Offset Buffer Connection  
1.65 V  
3.3 V  
5 V  
5 k  
5 kꢀ  
5 kꢀ  
VCCB  
T/PCA9517  
5 kꢀ  
VCCA  
VCCB  
VCCA  
TCA980x  
SDA  
SCL  
SDAA  
SCLA  
SDAB  
SCLB  
SDAA  
SCLA  
SDAB  
SCLB  
SDA  
SCL  
BUS  
MASTER  
400 kHz  
SLAVE  
EN  
400 kHz  
Copyright © 2017, Texas Instruments Incorporated  
Figure 18. Correct Connection With Other Buffers  
NOTE  
Decoupling capacitors are not shown to keep the illustration simple. Decoupling capacitors  
(1 µF and 0.1 µF) must be placed close to each power supply pin.  
As shown in Figure 18, this connection is acceptable for use on the B-side ports of the TCA980x, because the  
equivalent RILC of the A-side of this example buffer is less than 150 Ω.  
10.2 Typical Application  
10.2.1 Single Device  
The typical application for the TCA980x family is to be used as a buffering translator, where the VCCA and VCCB  
are at different values in order to level-shift the I2C bus voltages.  
18  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
TCA9800  
www.ti.com.cn  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
Typical Application (continued)  
It is critical to note that there are no external sources of current allowed on the B-side ports, since this can affect  
device operation as shown in the IEXT-I section.  
1.2 V  
3.3 V  
5 k  
5 kꢀ  
VCCA VCCB  
TCA980x  
SDA  
SCL  
SDAA SDAB  
SDA  
SCL  
SCLA SCLB  
BUS  
MASTER  
400 kHz  
SLAVE  
EN  
400 kHz  
Copyright © 2017, Texas Instruments Incorporated  
Figure 19. Typical Level-Shifting Application Example (Master on A-side)  
NOTE  
Decoupling capacitors are not shown to keep the illustration simple. Decoupling capacitors  
(1 µF and 0.1 µF) must be placed close to each power supply pin.  
As shown in Figure 20, the I2C master can be on the B-side, and that it is ok to have VCCA > VCCB. The only  
requirements are that no external source of current (pull-up resistor or current source) be on the B-pins of the  
TCA980x, and that both VCCA/VCCB values are within the recommended range. As a note, since the EN pin is  
referenced to the VCCA supply voltage, when the master is on the A-side, the system designer must ensure that  
the enable pin voltage is pulled up to VCCA (either with an external or the internal pull-up resistor) to ensure that  
the device is enabled.  
1.65 V  
3.3 V  
5 k  
VCCB VCCA  
5 kꢀ  
TCA980x  
SDA  
SCL  
SDAB SDAA  
SDA  
SCL  
SCLB SCLA  
BUS  
MASTER  
400 kHz  
SLAVE  
EN  
400 kHz  
Copyright © 2017, Texas Instruments Incorporated  
Figure 20. Typical Level-Shifting Application Example (Master on B-side)  
NOTE  
Decoupling capacitors are not shown to keep the illustration simple. Decoupling capacitors  
(1 µF and 0.1 µF) must be placed close to each power supply pin.  
Copyright © 2017–2020, Texas Instruments Incorporated  
19  
 
 
TCA9800  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
Typical Application (continued)  
10.2.1.1 Design Requirements  
The system designer must first select the correct variant of the TCA980x family for the load. In order to do this,  
the information in Table 6 must be known. The setup in Figure 19 is used for these example design  
requirements.  
CL is the capacitance of the bus, including the pin capacitance of each slave device connected, and the  
capacitance of the board trace. It is possible to estimate the bus capacitance by summing up the pin  
capacitances of each slave device on the node (using 10-pF per slave is a safe estimate, since this is the  
maximum allowed per the I2C specification), but trace capacitance requires an estimation through simulation or  
by getting the capacitance per unit length from the board manufacturer.  
Table 6. Design Requirements  
Parameter  
Description  
Acceptable Range  
Example Value/Target  
Load capacitance (bus capacitance) on B-  
side  
CL  
up to 400 pF  
100 pF  
tr  
Rise time  
up to 300 ns  
0.8 V-3.6 V  
1.65 V-3.6 V  
150 ns  
1.2 V  
VCCA  
VCCB  
fSCL  
VCCA supply voltage  
VCCB supply voltage  
I2C clock frequency  
3.3 V  
400 kHz  
10.2.1.2 Detailed Design Procedure  
Selection of the correct device is important for designers wanting optimize power consumption while transmitting.  
Selecting the pull-up resistor required for the A-side is well documented already, see the I2C Bus Pullup Resistor  
Calculation application report. The rest of this section deals only with selection of a device based on the B-side  
design requirements.  
Since the B-ports of the TCA980x family have an integrated current source, the rise time is easily calculated with  
Equation 2. The graphs in the Application Curves section show the maximum capacitance load that each device  
can drive (based on minimum ICS value) to achieve a desired rise time, for different VCCB voltages.  
(0.4ìVCCB )  
ICS  
tr = CL  
(2)  
The target design requirements example is intended for 400-kHz I2C, so the appropriate selection graph to use is  
Figure 22, and specifically Figure 27 since VCCB supply voltage is 3.3 V. In Figure 21, the graph has the  
appropriate regions shaded to help illustrate how to select the appropriate device. When looking at the general  
selection graphs, note that voltage line shifts evenly between the 1.65 V and 3.6 V traces in the general selection  
graphs. For example, if VCCB in another example is 2.5 V, then the selection graph is based on a line in the  
middle of the 1.65 V and the 3.6 V trace.  
As shown in Figure 21, the shaded region is the appropriate region based on design requirements listed in  
Table 6. Any line that touches this shaded region is able to meet the design requirements. In this example, the  
TCA9803 and the TCA9802 both are able to satisfy the design requirements, since they both touch the shaded  
region. The TCA9800 and the TCA9801 both fall below the shaded region. While the TCA9801 is able to meet a  
rise time of about 190 ns at 100 pF (acceptable by the fast-mode rise time requirements), the design target in  
this example was 150 ns. This is a consideration a system designer can make, sacrificing rise time for a lower-  
power device, but in this example, the 150 ns limit is going to be upheld).  
20  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
 
TCA9800  
www.ti.com.cn  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
400  
300  
200  
100  
0
TCA9800  
TCA9801  
TCA9802  
TCA9803  
VCCB = 3.3 V  
0
50  
100  
150  
tr - Rise Time (ns)  
200  
250  
300  
D001  
Figure 21. Selection Guide Based on Example Design Requirements  
NOTE  
Decoupling capacitors are not shown to keep the illustration simple. Decoupling capacitors  
(1 µF and 0.1 µF) must be placed close to each power supply pin.  
Based on the selection graph shown above, the TCA9802 is selected, since it is the lowest-power device's trace  
(grey trace) which touches the shaded region. The TCA9803 may also be used without any consequences.  
Copyright © 2017–2020, Texas Instruments Incorporated  
21  
TCA9800  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
10.2.1.3 Application Curves  
The application curves can be used to select the appropriate part for a given design requirement, or to estimate  
the rise-time.  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
TCA9803 (1.65 V)  
TCA9803 (1.65 V)  
TCA9801 (1.65 V)  
TCA9801 (1.65 V)  
TCA9803 (3.6 V)  
TCA9803 (3.6 V)  
TCA9802 (1.65 V)  
TCA9802 (3.6 V)  
TCA9802 (1.65 V)  
TCA9802 (3.6 V)  
TCA9800 (1.65 V)  
TCA9800 (1.65 V)  
TCA9801 (3.6 V)  
TCA9800 (3.6 V)  
TCA9801 (3.6 V)  
TCA9800 (3.6 V)  
0
30  
60  
90 120 150 180 210 240 270 300  
tr - Rise Time (ns)  
0
30  
60  
90 120 150 180 210 240 270 300  
tr - Rise Time (ns)  
D001  
D001  
Figure 22. Maximum Load Capacitance vs Rise Time (400-  
kHz I2C)  
Figure 23. Maximum Load Capacitance vs Rise Time (100-  
kHz I2C)  
400  
400  
TCA9800  
TCA9801  
TCA9802  
TCA9800  
TCA9801  
TCA9802  
TCA9803  
TCA9803  
300  
200  
100  
0
300  
200  
100  
0
VCCB = 1.65 V  
VCCB = 1.8 V  
0
50  
100  
150  
tr - Rise Time (ns)  
200  
250  
300  
0
50  
100  
150  
tr - Rise Time (ns)  
200  
250  
300  
D001  
D001  
Figure 24. Maximum Load Capacitance vs Rise Time (400-  
kHz I2C, VCCB = 1.65 V)  
Figure 25. Maximum Load Capacitance vs Rise Time (400-  
kHz I2C, VCCB = 1.8 V)  
400  
400  
TCA9800  
TCA9801  
TCA9802  
TCA9800  
TCA9801  
TCA9802  
TCA9803  
TCA9803  
300  
200  
100  
0
300  
200  
100  
0
VCCB = 2.5 V  
VCCB = 3.3 V  
0
50  
100  
150  
tr - Rise Time (ns)  
200  
250  
300  
0
50  
100  
150  
tr - Rise Time (ns)  
200  
250  
300  
D001  
D001  
Figure 26. Maximum Load Capacitance vs Rise Time (400-  
kHz I2C, VCCB = 2.5 V)  
Figure 27. Maximum Load Capacitance vs Rise Time (400-  
kHz I2C, VCCB = 3.3 V)  
22  
Copyright © 2017–2020, Texas Instruments Incorporated  
TCA9800  
www.ti.com.cn  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
400  
300  
200  
100  
0
TCA9800  
TCA9801  
TCA9802  
TCA9803  
VCCB = 3.6 V  
0
50  
100  
150  
tr - Rise Time (ns)  
200  
250  
300  
D001  
Figure 28. Maximum Load Capacitance vs Rise Time (400-kHz I2C, VCCB = 3.6 V)  
10.2.2 Buffering Without Level-Shifting  
The TCA980x family supports buffering use cases which do not need level-shifting or voltage-translation.  
It is critical to note that there are no external sources of current allowed on the B-side ports, since this can affect  
device operation as shown in the IEXT-I section.  
2.5 V  
5 k  
5 kꢀ  
VCCA VCCB  
TCA980x  
SDA  
SCL  
SDAA SDAB  
SDA  
SCL  
SCLA SCLB  
BUS  
MASTER  
400 kHz  
SLAVE  
EN  
400 kHz  
Copyright © 2017, Texas Instruments Incorporated  
Figure 29. Buffering Use Case Without Level-Shifting  
NOTE  
Decoupling capacitors are not shown to keep the illustration simple. Decoupling capacitors  
(1 µF and 0.1 µF) must be placed close to each power supply pin.  
10.2.2.1 Design Requirements  
The system designer must first select the correct variant of the TCA980x family for the load. In order to do this,  
the information in Table 7 must be known. The setup in Figure 29 is used for these example design  
requirements.  
Table 7. Design Requirements  
Parameter  
Description  
Acceptable Range  
Example Value/Target  
200 pF  
Load capacitance (bus capacitance) on B-  
side  
CL  
tr  
up to 400 pF  
Rise time  
up to 300 ns  
300 ns  
Copyright © 2017–2020, Texas Instruments Incorporated  
23  
 
 
TCA9800  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
Table 7. Design Requirements (continued)  
Parameter  
VCCA  
Description  
Acceptable Range  
0.8 V-3.6 V  
Example Value/Target  
VCCA supply voltage  
VCCB supply voltage  
I2C clock frequency  
2.5 V  
2.5 V  
VCCB  
1.65 V-3.6 V  
fSCL  
400 kHz  
10.2.2.2 Detailed Design Procedure  
Selecting the pull-up resistor required for the A-side is well documented already, see the I2C Bus Pullup Resistor  
Calculation application report. The rest of this section deals only with selection of a device based on the B-side  
design requirements.  
Selection process of each device is identical to the procedure described in the Device Selection Guide section,  
except that it must be done for each individual TCA980x. This section jumps straight to the selection graphs to  
show the selection process. See the Detailed Design Procedure section for single device for detailed information.  
As shown in Figure 30, the shaded region is the appropriate region based on design requirements listed in  
Table 7. Any line that touches this shaded region is able to meet the design requirements. In this example, the  
TCA9803, TCA9802, and TCA9801 are able to satisfy the design requirements, since they all touch the shaded  
region. The TCA9800 falls below the shaded region.  
Based on the selection graph shown above, the TCA9801 is selected, since it is the lowest-power device which  
touches the shaded region (red trace). The TCA9803 or the TCA9802 may also be used without any  
consequences.  
10.2.2.3 Application Curve  
400  
TCA9800  
TCA9801  
TCA9802  
TCA9803  
300  
200  
100  
0
VCCB = 2.5 V  
0
50  
100  
150  
tr - Rise Time (ns)  
200  
250  
300  
D001  
Figure 30. Selection Guide Based On Example Design Requirements  
10.2.3 Parallel Device Use Case  
The TCA980x family supports multiple TCA980x used in parallel. The A-sides of the TCA980x are allowed to be  
connected together.  
It is critical to note that there are no external sources of current allowed on the B-side ports, since this can affect  
device operation shown in the IEXT-I section.  
NOTE: B-sides of TCA980x devices may never be connected to each other, because the IEXT-I specification limit  
is violated. See the IEXT-I section for more information.  
NOTE: The B-side may not be connected to another translator if it uses a static-voltage offset. The RILC spec is  
violated since the static voltage offset adjusts the output resistance to ground to be outside of the RILC spec  
requirement, causing the TCA980x to be unable to recognize a low.  
24  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
TCA9800  
www.ti.com.cn  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
1.65 V  
3.3 V  
5 k  
5 kꢀ  
VCCA VCCB  
TCA980x  
SDA  
SCL  
SDAA SDAB  
SDA  
SCL  
SCLA SCLB  
BUS  
MASTER  
400 kHz  
SLAVE  
EN  
400 kHz  
1.65 V  
BUS B  
VCCA VCCB  
TCA980x  
SDAA SDAB  
SDA  
SCL  
SCLA SCLB  
SLAVE  
EN  
400 kHz  
BUS A  
BUS C  
Copyright © 2017, Texas Instruments Incorporated  
Figure 31. Parallel Use Case  
NOTE  
Decoupling capacitors are not shown to keep the illustration simple. Decoupling capacitors  
(1 µF and 0.1 µF) must be placed close to each power supply pin.  
10.2.3.1 Design Requirements  
The system designer must first select the correct variant of the TCA980x family for the load. In order to do this,  
the information shown in Table 8 and Table 9 must be known. The setup in Figure 31 is used for these example  
design requirements.  
Table 8. Design Requirements for Bus B  
Parameter  
Description  
Acceptable Range  
Example Value/Target  
Load capacitance (bus capacitance) on B-  
side  
CL  
up to 400 pF  
300 pF  
tr  
Rise time  
up to 300 ns  
0.8 V-3.6 V  
1.65 V-3.6 V  
300 ns  
1.65 V  
3.3 V  
VCCA  
VCCB  
VCCA supply voltage  
VCCB supply voltage  
Copyright © 2017–2020, Texas Instruments Incorporated  
25  
 
 
TCA9800  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
Table 8. Design Requirements for Bus B (continued)  
Parameter  
Description  
Acceptable Range  
Example Value/Target  
fSCL  
I2C clock frequency  
400 kHz  
Table 9. Design Requirements for Bus C  
Parameter  
Description  
Acceptable Range  
Example Value/Target  
Load capacitance (bus capacitance) on B-  
side  
CL  
up to 400 pF  
40 pF  
tr  
Rise time  
up to 300 ns  
0.8 V-3.6 V  
1.65 V-3.6 V  
300 ns  
1.65 V  
VCCA  
VCCB  
fSCL  
VCCA supply voltage  
VCCB supply voltage  
I2C clock frequency  
1.65 V  
400 kHz  
10.2.3.2 Detailed Design Procedure  
Selecting the pull-up resistor required for the A-side (Bus A) is well documented already, see the I2C Bus Pullup  
Resistor Calculation application report. The rest of this section deals only with selection of a device based on the  
B-side design requirements.  
Selection process of each device is identical to the procedure described in the Device Selection Guide section,  
except that it must be done for each individual TCA980x. This section jumps straight to the selection graphs to  
show the selection process. See the Detailed Design Procedure section for single device for detailed information.  
Based on Figure 32, the TCA9802 or the TCA9803 are the devices which are able to meet the design  
requirements. The TCA9802 is the most optimized selection, but the TCA9803 can be used without issue.  
Based on Figure 33, all 4 variants of the TCA980x family meet the design requirements. The TCA9800 is the  
most optimized selection, but any of the variants can be used without issue.  
As the system designer, the choice can be made to go for the most optimized part selections (TCA9802 for bus  
B and TCA9800 for bus C), but it is also ok to use the TCA9802 or the TCA9803 on both busses, because they  
both satisfy the design requirements of both busses.  
10.2.3.3 Application Curves  
400  
300  
200  
100  
0
400  
300  
200  
100  
0
TCA9800  
TCA9801  
TCA9802  
TCA9803  
TCA9800  
TCA9801  
TCA9802  
TCA9803  
VCCB = 3.3 V  
VCCB = 1.65 V  
0
50  
100  
150  
tr - Rise Time (ns)  
200  
250  
300  
0
50  
100  
150  
tr - Rise Time (ns)  
200  
250  
300  
D001  
D001  
Figure 32. Selection Guide Based On Example Design  
Requirements for Bus B  
Figure 33. Selection Guide Based On Example Design  
Requirements for Bus C  
10.2.4 Series Device Use Case  
The TCA980x family supports multiple TCA980x used in series. It is acceptable to connect A sides together, or  
have A sides connect to B sides, but B-sides may never be connected together.  
It is critical to note that there are no external sources of current allowed on the B-side ports, since this can affect  
device operation as shown in the IEXT-I section.  
26  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
TCA9800  
www.ti.com.cn  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
NOTE: B-sides of TCA980x devices may never be connected to each other, because the IEXT-I specification limit  
is violated. See the IEXT-I for more information.  
NOTE: The B-side may not be connected to another translator if it uses a static-voltage offset. The RILC spec is  
violated since the static voltage offset adjusts the output resistance to ground to be outside of the RILC spec  
requirement, causing the TCA980x to be unable to recognize a low.  
1.65 V  
3.3 V  
1.65 V  
5 k  
5 kꢀ  
VCCA VCCB  
VCCA VCCB  
TCA980x  
TCA980x  
SDA  
SCL  
SDAA SDAB  
SDAA SDAB  
SDA  
SCL  
SCLA SCLB  
SCLA SCLB  
BUS  
MASTER  
400 kHz  
SLAVE  
EN  
EN  
400 kHz  
BUS A  
BUS B  
BUS C  
Copyright © 2017, Texas Instruments Incorporated  
Figure 34. Series Use Case  
NOTE  
Decoupling capacitors are not shown to keep the illustration simple. Decoupling capacitors  
(1 µF and 0.1 µF) must be placed close to each power supply pin.  
10.2.4.1 Design Requirements  
The system designer must first select the correct variant of the TCA980x family for the load. In order to do this,  
the information in Table 10 and Table 11 must be known. The setup in Figure 34 is used for these example  
design requirements.  
Table 10. Design Requirements for Bus B / 1st TCA980x  
Parameter  
Description  
Acceptable Range  
Example Value/Target  
Load capacitance (bus capacitance) on B-  
side  
CL  
up to 400 pF  
300 pF  
tr  
Rise time  
up to 300 ns  
0.8 V-3.6 V  
1.65 V-3.6 V  
200 ns  
1.65 V  
VCCA  
VCCB  
fSCL  
VCCA supply voltage  
VCCB supply voltage  
I2C clock frequency  
3.3 V  
400 kHz  
Table 11. Design Requirements for Bus C / 2nd TCA980x  
Parameter  
Description  
Acceptable Range  
Example Value/Target  
Load capacitance (bus capacitance) on B-  
side  
CL  
up to 400 pF  
100 pF  
tr  
Rise time  
up to 300 ns  
0.8 V-3.6 V  
1.65 V-3.6 V  
250 ns  
3.3 V  
VCCA  
VCCB  
fSCL  
VCCA supply voltage  
VCCB supply voltage  
I2C clock frequency  
1.65 V  
400 kHz  
Copyright © 2017–2020, Texas Instruments Incorporated  
27  
 
 
 
TCA9800  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
10.2.4.2 Detailed Design Procedure  
Selecting the pull-up resistor required for the A-side (Bus A) is well documented already, see the I2C Bus Pullup  
Resistor Calculation application report. The rest of this section deals only with selection of a device based on the  
B-side design requirements.  
Selection process of each device is identical to the procedure described in the Device Selection Guide section,  
except that it must be done for each individual TCA980x. This section jumps straight to the selection graphs to  
show the selection process. See the Detailed Design Procedure section for single device for detailed information.  
400  
TCA9800  
TCA9801  
TCA9802  
TCA9803  
300  
200  
100  
0
VCCB = 3.3 V  
0
50  
100  
150  
tr - Rise Time (ns)  
200  
250  
300  
D001  
Figure 35. Selection Guide Based On Example Design Requirements for Bus B  
Based on Figure 35, the TCA9803 is the only device which can satisfy the design requirements. Had the rise  
time requirement been 300 ns, then the TCA9802 also works, but the design requirement was 200 ns.  
Based on Figure 36, all 4 variants of the TCA980x family meet the design requirements. The TCA9800 is the  
most optimized selection, but any of the variants can be used without issue.  
As the system designer, the choice can be made to go for the most optimized part selections (TCA9803 for bus  
B and TCA9800 for bus C), but it is also ok to use the TCA9803 on both busses, because it can satisfy the  
design requirements of both busses.  
10.2.4.3 Application Curve  
400  
TCA9800  
TCA9801  
TCA9802  
TCA9803  
300  
200  
100  
0
VCCB = 1.65 V  
0
50  
100  
150  
tr - Rise Time (ns)  
200  
250  
300  
D001  
Figure 36. Selection Guide Based on Example Design Requirements for Bus C  
28  
Copyright © 2017–2020, Texas Instruments Incorporated  
 
 
TCA9800  
www.ti.com.cn  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
11 Power Supply Recommendations  
The following need to be ensured when designing with the TCA980x family:  
VCCA is within the recommended voltage range  
VCCB is within the recommended voltage range  
There are no supply sequencing requirements, VCCA may ramp before, after, or at the same time as VCCB  
.
There are no supply dependency requirements. VCCA may be greater than, less than, or equal to VCCB. Each  
supply has its own requirement of voltage range, but there is no required relationship between VCCA and VCCB  
values.  
It is recommended that decoupling capacitors be used on the power supplies (0.1 µF and 1 µF) and that they be  
placed as close as possible to the VCCA and VCCB pins.  
Copyright © 2017–2020, Texas Instruments Incorporated  
29  
TCA9800  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
www.ti.com.cn  
12 Layout  
12.1 Layout Guidelines  
There are no special considerations required for most I2C translators, but there are common practices which are  
always recommended.  
It is recommended that decoupling capacitors be used on the power supplies (0.1 µF and 1 µF) and that they be  
placed as close as possible to the VCCA and VCCB pins.  
12.2 Layout Example  
= Via to GND Plane  
To VCCA Plane  
VCCA  
SCLA  
SDAA  
GND  
VCCB  
SCLB  
SDAB  
EN  
To VCCB Plane  
Figure 37. TCA980x DGK Layout Example  
30  
版权 © 2017–2020, Texas Instruments Incorporated  
TCA9800  
www.ti.com.cn  
ZHCSG32B MARCH 2017REVISED FEBRUARY 2020  
13 器件和文档支持  
13.1 文档支持  
相关文档请参见以下部分:  
I2C 总线上拉电阻计算》  
I2C 总线在采用中继器时的最高时钟频率》  
《逻辑器件简介》  
《理解 I2C 总线》  
《为新设计挑选合适的 I2C 器件》  
13.2 接收文档更新通知  
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
13.3 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
13.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
13.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
13.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
14 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。  
版权 © 2017–2020, Texas Instruments Incorporated  
31  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-May-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TCA9800DGKR  
TCA9800DGKT  
ACTIVE  
ACTIVE  
VSSOP  
VSSOP  
DGK  
DGK  
8
8
2500 RoHS & Green  
250 RoHS & Green  
NIPDAUAG | SN  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 125  
-40 to 125  
15B  
15B  
Samples  
Samples  
NIPDAUAG | SN  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
20-May-2023  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TCA9800DGKR  
TCA9800DGKR  
TCA9800DGKT  
TCA9800DGKT  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
DGK  
DGK  
DGK  
DGK  
8
8
8
8
2500  
2500  
250  
330.0  
330.0  
178.0  
330.0  
12.4  
12.4  
13.4  
12.4  
5.3  
5.3  
5.3  
5.3  
3.4  
3.4  
3.4  
3.4  
1.4  
1.4  
1.4  
1.4  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
3-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TCA9800DGKR  
TCA9800DGKR  
TCA9800DGKT  
TCA9800DGKT  
VSSOP  
VSSOP  
VSSOP  
VSSOP  
DGK  
DGK  
DGK  
DGK  
8
8
8
8
2500  
2500  
250  
366.0  
364.0  
202.0  
366.0  
364.0  
364.0  
201.0  
364.0  
50.0  
27.0  
28.0  
50.0  
250  
Pack Materials-Page 2  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TCA9800DGKR

具有内部 0.5mA 拉电流的 2 位电平转换 400kHz I2C/SMBus 缓冲器/中继器 | DGK | 8 | -40 to 125
TI

TCA9800DGKT

具有内部 0.5mA 拉电流的 2 位电平转换 400kHz I2C/SMBus 缓冲器/中继器 | DGK | 8 | -40 to 125
TI

TCA9801

具有内部 1mA 拉电流的 2 位电平转换 400kHz I2C/SMBus 缓冲器/中继器
TI

TCA9801DGKR

具有内部 1mA 拉电流的 2 位电平转换 400kHz I2C/SMBus 缓冲器/中继器 | DGK | 8 | -40 to 125
TI

TCA9801DGKT

具有内部 1mA 拉电流的 2 位电平转换 400kHz I2C/SMBus 缓冲器/中继器 | DGK | 8 | -40 to 125
TI

TCA9802

具有内部 2mA 拉电流的 2 位电平转换 400kHz I2C/SMBus 缓冲器/中继器
TI

TCA9802DGKR

具有内部 2mA 拉电流的 2 位电平转换 400kHz I2C/SMBus 缓冲器/中继器 | DGK | 8 | -40 to 125
TI

TCA9802DGKT

具有内部 2mA 拉电流的 2 位电平转换 400kHz I2C/SMBus 缓冲器/中继器 | DGK | 8 | -40 to 125
TI

TCA9803

具有内部 3mA 拉电流的 2 位电平转换 400kHz I2C/SMBus 缓冲器/中继器
TI

TCA9803DGKR

具有内部 3mA 拉电流的 2 位电平转换 400kHz I2C/SMBus 缓冲器/中继器 | DGK | 8 | -40 to 125
TI

TCA9803DGKT

具有内部 3mA 拉电流的 2 位电平转换 400kHz I2C/SMBus 缓冲器/中继器 | DGK | 8 | -40 to 125
TI

TCA980K

IC AUDIO PREAMPLIFIER, MBCY10, Audio/Video Amplifier
NXP