TCAL9539 [TI]

具有中断、复位和灵活 I/O 配置的 16 位低压 I²C 总线/SMBus I/O 扩展器;
TCAL9539
型号: TCAL9539
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有中断、复位和灵活 I/O 配置的 16 位低压 I²C 总线/SMBus I/O 扩展器

文件: 总42页 (文件大小:2292K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TCAL9539  
ZHCSP01 JULY 2022  
TCAL9539 具有中断输出、复位和配置寄存器的低电压转换、16 I2C 总线、  
SMBus I/O 扩展器  
1 特性  
3 说明  
• 工作电源电压范围1.08V 3.6V  
1.8mV 时具1µA典型值的低待机电流消耗  
1MHz 快速+ I2C 总线  
• 硬件地址引脚允许在同I2C/SMBus 总线上支持  
两个器件  
• 低电平有效复位输(RESET)  
• 开漏低电平有效中断输(INT)  
• 输入或输出配置寄存器  
TCAL9539 器件可为两线双向 I2C 总线SMBus)  
协议提供通用并行输入/输出 (I/O) 扩展并在 1.08V 至  
3.6V VCC 下运行。  
该器件支持 100kHz标准模式400kHz快速模  
1MHz快速+ 模式I2C 时钟频率。当开  
关、传感器、按钮、LED、风扇等设备需要额外使用  
I/O I/O 扩展器TCAL9539可提供简单解决  
方案。  
• 极性反转寄存器  
• 可配I/O 驱动强度寄存器  
• 上拉电阻和下拉电阻配置寄存器  
• 内部上电复位  
SCL SDA 输入端上有噪声滤波器  
• 具有最大高电流驱动能力的锁存输出适用于直接  
LED  
• 闩锁性能超100mAJESD 78 II 类规范的  
要求  
ESD 保护性能超JESD 22 规范要求  
TCAL9539 具有灵活的 I/O 端口可提供旨在增强 I/O  
速度、功耗和 EMI 性能的附加特性。此类附加特性包  
可编程输出驱动强度、可编程上拉和下拉电阻、可  
锁存输入、可屏蔽中断、中断状态寄存器和可编程开漏  
或推挽输出。  
封装信息  
封装(1)  
TSSOP (24)  
WQFN (24)  
封装尺寸标称值)  
7.80mm × 4.40mm  
4.00mm × 4.00mm  
器件型号  
TCAL9539  
2000V 人体放电模(A114-A)  
1000V 充电器件模(C101)  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
2 应用  
• 服务器  
• 路由器电信交换设备)  
个人计算机  
个人电子产品  
工业自动化  
游戏机  
• 采GPIO 受限处理器的产品  
VCC  
Peripheral  
P00  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
Devices  
SDA  
SCL  
I2C or SMBus  
INT  
Controller  
(processor)  
RESET,  
ENABLE,  
or control  
inputs  
RESET  
TCAL9539  
INT or  
Status  
outputs  
P10  
P11  
P12  
P13  
LEDs  
P14  
P15  
P16  
P17  
A1  
A0  
GND  
Keypads  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SCPS241  
 
 
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
Table of Contents  
8.4 Device Functional Modes..........................................15  
8.5 Programming............................................................ 15  
8.6 Register Maps...........................................................17  
9 Application and Implementation..................................25  
9.1 Application Information............................................. 25  
9.2 Typical Application.................................................... 25  
9.3 Power Supply Recommendations.............................27  
9.4 Layout....................................................................... 29  
10 Device and Documentation Support..........................31  
10.1 接收文档更新通知................................................... 31  
10.2 支持资源..................................................................31  
10.3 Trademarks.............................................................31  
10.4 Electrostatic Discharge Caution..............................31  
10.5 术语表..................................................................... 31  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Information....................................................5  
6.5 Electrical Characteristics.............................................5  
6.6 Timing Requirements..................................................6  
6.7 I2C Bus Timing Requirements.....................................6  
6.8 Switching Characteristics............................................8  
7 Parameter Measurement Information............................9  
8 Detailed Description......................................................13  
8.1 Overview...................................................................13  
8.2 Functional Block Diagrams....................................... 13  
8.3 Feature Description...................................................14  
Information.................................................................... 31  
11.1 Tape and Reel Information......................................32  
11.2 Mechanical Data..................................................... 34  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Date  
Revision  
Notes  
July 2022  
*
Initial release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TCAL9539  
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
INT  
A1  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VCC  
SDA  
SCL  
A0  
2
RESET  
P00  
3
4
P00  
P01  
P02  
P03  
P04  
P05  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
A0  
P01  
5
P17  
P16  
P15  
P14  
P13  
P12  
P11  
P10  
P17  
P16  
P15  
P14  
P13  
P02  
6
Thermal  
Pad  
P03  
7
P04  
8
P05  
9
P06  
10  
11  
12  
P07  
Not to scale  
GND  
Not to scale  
5-1. PW (TSSOP) Package, 24-Pin  
5-2. RTW (WQFN) Package, 24-Pin  
(Top View)  
(Top View)  
5-1. Pin Functions  
PIN  
TSSOP WQFN TYPE(1)  
DESCRIPTION  
NAME  
(PW)  
21  
2
(RTW)  
18  
23  
9
A0  
I
I
Address input. Connect directly to VCC or ground  
A1  
Address input. Connect directly to VCC or ground  
GND  
INT  
12  
1
Ground  
22  
24  
1
O
Interrupt output. Connect to VCC through a pull-up resistor  
RESET  
P00  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
SCL  
SDA  
VCC  
3
I
Active-low reset input. Connect to VCC through a pull-up resistor if no active connection is used  
P-port input/output (push-pull design structure). At power on, P00 is configured as an input  
P-port input/output (push-pull design structure). At power on, P01 is configured as an input  
P-port input/output (push-pull design structure). At power on, P02 is configured as an input  
P-port input/output (push-pull design structure). At power on, P03 is configured as an input  
P-port input/output (push-pull design structure). At power on, P04 is configured as an input  
P-port input/output (push-pull design structure). At power on, P05 is configured as an input  
P-port input/output (push-pull design structure). At power on, P06 is configured as an input  
P-port input/output (push-pull design structure). At power on, P07 is configured as an input  
P-port input/output (push-pull design structure). At power on, P10 is configured as an input  
P-port input/output (push-pull design structure). At power on, P11 is configured as an input  
P-port input/output (push-pull design structure). At power on, P12 is configured as an input  
P-port input/output (push-pull design structure). At power on, P13 is configured as an input  
P-port input/output (push-pull design structure). At power on, P14 is configured as an input  
P-port input/output (push-pull design structure). At power on, P15 is configured as an input  
P-port input/output (push-pull design structure). At power on, P16 is configured as an input  
P-port input/output (push-pull design structure). At power on, P17 is configured as an input  
Serial clock bus. Connect to VCC through a pull-up resistor  
4
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
5
2
6
3
7
4
8
5
9
6
10  
11  
13  
14  
15  
16  
17  
18  
19  
20  
22  
23  
24  
7
8
10  
11  
12  
13  
14  
15  
16  
17  
19  
20  
21  
I/O  
Serial data bus. Connect to VCC through a pull-up resistor  
Supply voltage  
(1) I = Input, O = Output, I/O = Input or Output  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TCAL9539  
 
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
0.5  
0.5  
0.5  
MAX  
UNIT  
V
VCC  
VI  
Supply voltage  
4
4
Input voltage(2)  
V
VO  
IIK  
Output voltage(2)  
4
V
Input clamp current  
VI < 0  
±20  
±20  
±20  
50  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
IOK  
IIOK  
IOL  
IOH  
ICC  
ICC  
TJ  
Output clamp current  
VO < 0  
Input-output clamp current  
Continuous output low current  
Continuous output high current  
Continuous current through GND  
Continuous current through VCC  
Junction temperature  
VO < 0 or VO > VCC  
VO = 0 to VCC  
VO = 0 to VCC  
50  
200  
160  
130  
150  
Tstg  
Storage temperature  
°C  
65  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/  
JEDEC specification JS-002, all pins(2)  
±1000  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
3.6  
UNIT  
V
VCC  
VIH  
VIL  
IOH  
IOL  
TA  
Supply voltage  
1.08  
High-level input voltage  
Low-level input voltage  
High-level output current  
Low-level output current  
Ambient temperature  
Junction temperature  
All Pins  
All Pins  
P00-P17  
P00-P17  
0.7 * VCC  
3.6  
V
-0.5 0.3 * VCC  
V
mA  
mA  
°C  
°C  
10  
25  
125  
125  
40  
TJ  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TCAL9539  
 
 
 
 
 
 
 
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
6.4 Thermal Information  
Package  
THERMAL METRIC (1)  
PW (TSSOP)  
PINS  
101.4  
45.2  
RTW (WQFN)  
PINS  
47.1  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
41.2  
56.6  
26.6  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
6.9  
2.2  
ΨJT  
56.2  
26.5  
ΨJB  
RθJC(bot)  
NA  
15.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN TYP MAX UNIT  
VIK  
Input diode clamp voltage  
1.08 V to 3.6 V  
V
V
V
II = 18 mA  
1.2  
VPORR Power-on reset voltage, VCC rising  
VPORF Power-on reset voltage, VCC falling  
VI = VCC or GND, IO = 0  
VI = VCC or GND, IO = 0  
0.85  
1.0  
0.6 0.75  
0.8  
1.08 V  
1.65 V  
2.3 V  
3 V  
1.4  
IOH = 8 mA; CCX.X =  
11b  
2.1  
2.8  
VOH  
P-port high-level output voltage  
V
1.08 V  
1.65 V  
2.3 V  
0.75  
IOH = 2.5mA & CCX.X  
= 00b; IOH = 5mA &  
CCX.X = 01b; IOH = –  
7.5mA & CCX.X =  
1.4  
2.1  
10b; IOH = 10mA &  
CCX.X = 11b;  
3 V  
2.8  
1.08 V  
1.65 V  
2.3 V  
0.2  
0.15  
0.1  
P ports  
P ports  
IOL = 8 mA; CCX.X = 11b  
V
V
3.0 V  
0.1  
IOL = 2.5 mA and CCX.X 1.08 V  
0.25  
0.15  
0.1  
VOL  
Low-level output voltage  
= 00b;  
IOL = 5 mA and CCX.X =  
01b;  
IOL = 7.5 mA and CCX.X  
= 10b;  
IOL = 10 mA and CCX.X  
= 11b;  
1.65 V  
2.3 V  
3.0 V  
0.1  
SDA  
INT  
VOL = 0.4 V  
VOL = 0.4 V  
VI = VCC or GND  
VI = 3.6 V  
20  
4
IOL  
Low-level output current  
Input leakage current  
1.08 V to 3.6 V  
mA  
µA  
1.08 V to 3.6 V  
0 V  
±1  
±1  
II  
P ports  
SCL, SDA,  
RESETZ  
II  
II  
Input leakage current  
Input leakage current  
VI = VCC or GND  
VI = VCC or GND  
1.08 V to 3.6 V  
1.08 V to 3.6 V  
±1  
A0, A1  
±1 µA  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TCAL9539  
 
 
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
VCC  
MIN TYP MAX UNIT  
3.6 V  
11  
8
15  
10  
8
SDA, RESET =VCC, P  
ports, ADDR = VCC or  
GND,  
I/O = inputs, fSCL = 400  
kHz  
2.7 V  
Operating mode  
(400 kHz)  
µA  
µA  
1.95 V  
1.32 V  
3.6 V  
5
2
5
38  
28  
18  
15  
2.5  
2.0  
1.6  
SDA, RESET = VCC, P  
ports, ADDR = VCC or  
GND,  
I/O = inputs, fSCL = 1  
MHz  
2.7 V  
Operating mode  
(1 MHz)  
1.95 V  
1.32 V  
3.6 V  
ICC  
Quiescent current  
SDA, RESET = VCC, P  
port, ADDR = VCC or  
GND,  
I/O = inputs, IO = 0, fSCL  
0 kHz,  
1
0.8  
0.6  
2.7 V  
µA  
µA  
1.95 V  
=
=
1.32 V  
0.6  
1.4  
-40 °C < TA 85 °C  
Standby mode  
SDA, RESET = VCC. P  
port, ADDR = VCC or  
GND,  
I/O = inputs, IO = 0, fSCL  
0 kHz,  
3.6 V  
2.7 V  
1.95 V  
7
6
5
1.32 V  
4
85 °C < TA 125 °C  
Rpu(int) internal pull-up resistance  
Rpd(int) internal pull-down resistance  
P port  
70  
100  
140  
kΩ  
pF  
pF  
CI  
Input pin capacitance  
SCL  
VI = VCC or GND  
VIO = VCC or GND  
VIO = VCC or GND  
1.08 V to 3.6 V  
1.08 V to 3.6 V  
1.08 V to 3.6 V  
2.5  
6
3
7
7
SDA  
P port  
CIO  
Input-output pin capacitance  
6
6.6 Timing Requirements  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
RESET  
tw  
Reset pulse duration  
Reset recovery time  
Time to reset  
80  
0
ns  
ns  
ns  
tREC  
tRESET  
P-Ports  
tPH  
400  
Minimum pulse width on P-Port that causes an interrupt  
30  
ns  
6.7 I2C Bus Timing Requirements  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
I2C Bus - Standard Mode  
fscl  
tsch  
tscl  
tsp  
I2C clock frequency  
I2C clock high time  
I2C clock low time  
I2C spike time  
0
4
100  
kHz  
µs  
µs  
ns  
ns  
ns  
ns  
4.7  
50  
tsds  
tsdh  
ticr  
I2C serial-data setup time  
I2C serial-data hold time  
I2C input rise time  
250  
0
1000  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TCAL9539  
 
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
6.7 I2C Bus Timing Requirements (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
300  
UNIT  
ns  
ticf  
I2C input fall time  
tocf  
tbuf  
tsts  
tsth  
tsps  
I2C output fall time  
10-pF to 400-pF bus  
300  
ns  
I2C bus free time between stop and start  
I2C start or repeated start condition setup  
I2C start or repeated start condition hold  
I2C stop condition setup  
4.7  
4.7  
4
µs  
µs  
µs  
4
µs  
SCL low to SDA  
output valid  
tvd(data)  
Valid data time  
3.45  
µs  
ACK signal from SCL  
low to SDA (out) low  
tvd(ack)  
Cb  
Valid data time of ACK condition  
I2C bus capacitive load  
3.45  
400  
µs  
pF  
I2C Bus - Fast Mode  
fscl  
tsch  
tscl  
tsp  
I2C clock frequency  
0
0.6  
1.3  
400  
50  
kHz  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
I2C clock high time  
I2C clock low time  
I2C spike time  
tsds  
tsdh  
ticr  
I2C serial-data setup time  
I2C serial-data hold time  
I2C input rise time  
100  
0
20  
300  
300  
300  
ticf  
I2C input fall time  
20 × (VCC / 5.5 V)  
tocf  
tbuf  
tsts  
tsth  
tsps  
I2C output fall time  
10-pF to 400-pF bus  
20 × (VCC / 5.5 V)  
I2C bus free time between stop and start  
I2C start or repeated start condition setup  
I2C start or repeated start condition hold  
I2C stop condition setup  
1.3  
0.6  
0.6  
0.6  
SCL low to SDA  
output valid  
tvd(data)  
Valid data time  
0.9  
µs  
ACK signal from SCL  
low to SDA (out) low  
tvd(ack)  
Cb  
Valid data time of ACK condition  
I2C bus capacitive load  
0.9  
µs  
pF  
400  
I2C Bus - Fast Mode Plus  
fscl  
tsch  
tscl  
tsp  
I2C clock frequency  
0
0.26  
0.5  
1000  
50  
kHz  
µs  
µs  
ns  
ns  
ns  
ns  
ns  
ns  
µs  
µs  
µs  
µs  
I2C clock high time  
I2C clock low time  
I2C spike time  
tsds  
tsdh  
ticr  
I2C serial-data setup time  
I2C serial-data hold time  
I2C input rise time  
50  
0
120  
120  
120  
ticf  
I2C input fall time  
20 × (VCC / 5.5 V)  
tocf  
tbuf  
tsts  
tsth  
tsps  
I2C output fall time  
10-pF to 550-pF bus  
20 × (VCC / 5.5 V)  
I2C bus free time between stop and start  
I2C start or repeated start condition setup  
I2C start or repeated start condition hold  
I2C stop condition setup  
0.5  
0.26  
0.26  
0.26  
SCL low to SDA  
output valid  
tvd(data)  
Valid data time  
0.45  
µs  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TCAL9539  
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
6.7 I2C Bus Timing Requirements (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
MAX  
UNIT  
µs  
ACK signal from SCL  
low to SDA (out) low  
tvd(ack)  
Cb  
Valid data time of ACK condition  
I2C bus capacitive load  
0.45  
550  
pF  
6.8 Switching Characteristics  
over operating free-air temperature range (unless otherwise noted)  
PARAMETER  
FROM (INPUT)  
TO (OUTPUT)  
INT  
MIN  
TYP  
MAX UNIT  
tiv  
Interrupt valid time  
P port  
1
1
µs  
µs  
ns  
ns  
ns  
tir  
Interrupt reset delay time  
Output data valid time  
Input data setup time  
Input data hold time  
SCL  
INT  
tpv  
tps  
tph  
SCL  
P port  
SCL  
SCL  
400  
P port  
P port  
0
300  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TCAL9539  
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
V
CC  
R
L
= 1 kW  
SDA  
DUT  
C
L
= 50 pF  
(see Note A)  
SDA LOAD CONFIGURATION  
Three Bytes for Complete  
Device Programming  
Stop  
Condition Condition  
(P) (S)  
Start  
Address  
Bit 7  
(MSB)  
R/W  
Data  
Bit 7  
(MSB)  
Data  
Stop  
Address  
Bit 6  
Address  
Bit 1  
ACK  
(A)  
Bit 0  
(LSB)  
Bit 0 Condition  
(LSB)  
(P)  
t
scl  
t
sch  
0.7 × V  
0.3 × V  
CC  
SCL  
SDA  
CC  
t
icr  
t
sts  
t
vd(ack)  
t
icf  
t
buf  
t
vd(data)  
t
sp  
0.7 × V  
0.3 × V  
CC  
CC  
t
icf  
t
icr  
t
sdh  
t
sps  
t
sth  
t
sds  
Repeat  
Start  
Stop  
Condition  
Start or  
Repeat  
Start  
Condition  
Condition  
VOLTAGE WAVEFORMS  
BYTE  
1
DESCRIPTION  
2
I C address  
2, 3  
P-port data  
A. CL includes probe and jig capacitance. tocf is measured with CL of 10 pF or 400 pF.  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
C. All parameters and waveforms are not applicable to all devices.  
7-1. I2C Interface Load Circuit and Voltage Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TCAL9539  
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
V
CC  
R
L
= 4.7 k  
INT  
DUT  
C
= 100 pF  
(see Note A)  
L
INTERRUPT LOAD CONFIGURATION  
ACK  
From Slave  
ACK  
Start  
Condition  
8 Bits  
From Slave  
R/W  
(One Data Byte)  
From Port  
Slave Address  
Data From Port  
Data 2  
Data 1  
A
1
P
S
1
1
1
0
1
A1 A0  
1
A
1
2
3
4
5
6
7
8
A
A
t
ir  
B
B
t
ir  
INT  
A
t
iv  
t
sps  
A
Data  
Into  
Port  
Address  
Data 1  
Data 2  
0.7 × V  
0.3 × V  
CC  
0.7 × V  
0.3 × V  
CC  
SCL  
INT  
R/W  
A
CC  
CC  
t
iv  
t
ir  
0.7 × V  
0.3 × V  
0.7 × V  
0.3 × V  
CC  
CC  
INT  
Pn  
CC  
CC  
View A−A  
A. CL includes probe and jig capacitance.  
View B−B  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
C. All parameters and waveforms are not applicable to all devices.  
7-2. Interrupt Load Circuit and Voltage Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TCAL9539  
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
Pn  
500 Ω  
DUT  
2 × V  
CC  
C
= 50 pF  
L
500 Ω  
(see Note A)  
P-PORT LOAD CONFIGURATION  
0.7 × V  
CC  
SCL  
SDA  
P0  
A
P3  
0.3 × V  
CC  
Slave  
ACK  
t
pv  
(see Note B)  
P
n
Last Stable Bit  
Unstable  
Data  
WRITE MODE (R/W = 0)  
0.7 × V  
0.3 × V  
CC  
SCL  
P0  
A
P3  
CC  
t
ph  
t
ps  
0.7 × V  
0.3 × V  
CC  
P
n
CC  
READ MODE (R/W = 1)  
A. CL includes probe and jig capacitance.  
B. tpv is measured from 0.7 × VCC on SCL to 50% I/O (Pn) output.  
C. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
D. The outputs are measured one at a time, with one transition per measurement.  
E. All parameters and waveforms are not applicable to all devices.  
7-3. P-Port Load Circuit and Timing Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TCAL9539  
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
V
CC  
Pn  
500 Ω  
R
L
= 1 kΩ  
DUT  
2 × V  
CC  
SDA  
DUT  
C
L
= 50 pF  
500 Ω  
(see Note A)  
C
L
= 50 pF  
(see Note A)  
SDA LOAD CONFIGURATION  
P-PORT LOAD CONFIGURATION  
Start  
SCL  
ACK or Read Cycle  
SDA  
0.3  
V
CC  
t
RESET  
RESET  
V /2  
CC  
t
REC  
t
w
Px  
(see Note D)  
V /2  
CC  
t
RESET  
A. CL includes probe and jig capacitance.  
B. All inputs are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr/tf 30 ns.  
C. The outputs are measured one at a time, with one transition per measurement.  
D. I/Os are configured as inputs.  
E. All parameters and waveforms are not applicable to all devices.  
7-4. Reset Load Circuits and Voltage Waveforms  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TCAL9539  
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TCAL9539 digital core consists of 8-bit data registers which allow the user to configure the I/O port  
characteristics. At power on or after a reset, the I/Os are configured as inputs. However, the system controller  
can configure the I/Os as either inputs or outputs by writing to the Configuration registers. The data for each  
input or output is kept in the corresponding Input Port or Output Port register. The polarity of the Input Port  
register can be inverted with the Polarity Inversion register. All registers can be read by the system controller.  
Additionally, the TCAL9539 has Agile I/O functionality which is specifically targeted to enhance the I/O ports. The  
Agile I/O features and registers include programmable output drive strength, programmable pull-up and pull-  
down resistors, latchable inputs, maskable interrupts, interrupt status register, and programmable open-drain or  
push-pull outputs. These configuration registers improve the I/O by increasing flexibility and allowing the user to  
optimize their design for power consumption, speed, and EMI.  
Other features of the device include an interrupt that is generated on the INT pin whenever an input port  
changes state. The device can be reset to its default state by applying a low logic level to the RESET pin, issuing  
a software reset command, or by cycling power to the device and causing a power-on reset. The hardware  
selectable address pins allow multiple TCAL9539 devices to be connected to the same I2C bus.  
The TCAL9539 open-drain interrupt (INT) output is activated when any input state differs from its corresponding  
Input Port register state and is used to indicate to the system controller that an input state has changed. The INT  
pin can be connected to the interrupt input of a processor. By sending an interrupt signal on this line, the device  
can inform the processor if there is incoming data on the remote I/O ports without having to communicate via the  
I2C bus. Thus, the device can remain a simple responder device.  
The system controller can reset the device in the event of a timeout or other improper operation by asserting a  
low on the RESET input pin or by cycling the power to the VCC pin and causing a power-on reset (POR). A reset  
puts the registers in their default state and initializes the I2C /SMBus state machine. The RESET feature and a  
POR cause the same reset/initialization to occur, but the RESET feature does so without needing to power down  
the device.  
Two hardware pins (A0 and A1) can be used to program and vary the fixed I2C address and allow mutiple  
devices to share the same I2C bus or SMBus.  
8.2 Functional Block Diagrams  
INT  
Interrupt Logic  
A0  
A1  
P00-P07  
P10-P17  
SCL  
Input  
Filter  
I/O  
Port  
16 Bits  
I2C Bus  
Control  
Shift  
Register  
SDA  
Write Pulse  
Read Pulse  
RESET  
VCC  
Power-On  
Reset  
GND  
A. All I/Os are set to inputs at reset.  
8-1. Logic Diagram (Positive Logic)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TCAL9539  
 
 
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
Output Port  
Register Data  
Data from  
Shift Register  
Configuration  
Register  
V
CC  
Data from  
Shift Register  
Q1  
Q2  
D
Q
FF  
Write  
Configuration  
Pulse  
D
Q
CK  
Q
P0 to P7  
FF  
ESD  
Protection  
Diode  
Write Pulse  
CK  
Output Port  
Register  
V
SS  
Input Port  
Register Data  
D
Q
FF  
Read Pulse  
CK  
V
CC  
Interrupt  
Mask  
to INT  
Input Port  
Register  
100 k  
Pull-Up/Pull-Down  
Control  
D
Q
Latch  
Input Latch  
Register  
Data from  
Shift Register  
EN  
D
Q
Read Pulse  
FF  
Input Port  
Latch  
Write Input  
Latch Pulse  
Polarity Inversion  
Register  
CK  
Data from  
Shift Register  
D
Q
FF  
Write Polarity  
Pulse  
CK  
A. On power up or reset, all registers return to default values.  
8-2. Simplified Schematic of P0 to P7  
8.3 Feature Description  
8.3.1 I/O Port  
When an I/O is configured as an input, FETs Q1 and Q2 are off (see Figure 8-2), which creates a high-  
impedance input. The input voltage may be raised above the supply voltage to a maximum of 3.6V.  
If the I/O is configured as an output, Q1 or Q2 is enabled, depending on the state of the output port register. In  
this case, there are low-impedance paths between the I/O pin and either supply or GND. The external voltage  
applied to this I/O pin should not exceed the recommended levels for proper operation.  
8.3.2 Adjustable Output Drive Strength  
The Output drive strength registers allow the user to control the drive level of the GPIO. Each GPIO can be  
configured independently to one of the four possible current levels. By programming these bits the user is  
changing the number of transistor pairs or 'fingers' that drive the I/O pad. Figure 8-3 shows a simplified output  
stage. The behavior of the pad is affected by the Configuration register, the output port data, and the current  
control register. When the Current Control register bits are programmed to 10b, then only two of the fingers are  
active, reducing the current drive capability by 50%.  
Reducing the current drive capability may be desirable to reduce system noise. When the output switches there  
is a peak current that is a function of the output drive selection. This peak current runs through the supply and  
GND package inductances and creates a noise (some radiated, but more critically Simultaneous Switching  
Noise (SSN)). In other words, switching many outputs at the same time will create ground and supply noise. The  
output drive strength control through the Output Drive Strength registers allows the user to mitigate SSN issues  
without the need of addtional external components.  
8.3.3 Interrupt Output (INT)  
An interrupt is generated by any rising or falling edge of the port inputs in the input mode provided the interrupt  
feature is unmasked. After time tiv, the INT signal is valid. Resetting the interrupt circuit is achieved when data on  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TCAL9539  
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
the port is changed back to the original setting or when data is read from the port that generated the interrupt.  
Resetting occurs in the read mode at the acknowledge (ACK) bit after the rising edge of the SCL signal.  
Interrupts that occur during the ACK clock pulse can be lost (or be very short) due to the resetting of the interrupt  
during this pulse. Each change of the I/Os after resetting is detected and is transmitted as INT.  
Reading from or writing to another device does not affect the interrupt circuit, and a pin configured as an output  
cannot cause an interrupt. Changing an I/O from an output to an input may cause a false interrupt to occur if the  
state of the pin does not match the contents of the Input Port register.  
The INT output has an open-drain structure and requires an external pull-up resistor to VCC  
.
8.3.4 Reset Input (RESET)  
The RESET input can be asserted to initialize the system while keeping the VCC supply at its operating level. A  
reset can be accomplished by holding the RESET pin low for a minimum of tW. The TCAL9539 registers and I2C/  
SMBus state machine are changed to their default state once RESET is low (0). When RESET is high (1), the  
I/O levels at the P port can be changed externally or through the controller. This input requires a pull-up resistor  
to VCC, if no active connection is used. When RESET is toggled the input port register is updated to reflect the  
state of the GPIO pins.  
8.3.5 Software Reset Call  
The Software Reset call is a command sent from the controller on the I2C bus that instructs all devices that  
support the command to be reset to the power-up default state. In order for it to function as expected, the I2C  
bus must be functional and no devices can be hanging the bus.  
The Software Reset Call is defined as the following steps:  
1. A start condition is sent by the I2C bus controller.  
2. The address used is the reserved General Call I2C bus address '0000 0000' with the R/W bit set to 0. The  
byte sent is 0x00.  
3. Any devices supporting the General Call functionality will ACK. If the R/W bit is set to 1 (read), the device will  
NACK.  
4. Once the General Call address is acknowledged, the controller sends only 1 byte of data equal to 0x06. If  
the data byte is any other value, the device will not acknowledge or reset. If more than 1 byte is sent, no  
more bytes will be acknowledged, and the device will ignore the I2C message considering it invalid.  
5. After the 1 byte of data (0x06) is sent, the controller sends a STOP condition to end the Software Reset  
sequence. A repeated START condition will be ignored by the device and no reset is performed.  
One the above steps are completed successfully, the device will perform a reset. This will clear all register  
values back to power-on defaults. The input port register is also updated to reflect the state of the GPIO pins.  
8.4 Device Functional Modes  
8.4.1 Power-On Reset  
When power (from 0 V) is applied to VCC, an internal power-on reset holds the TCAL9539 in a reset condition  
until the supply has reached VPOR. At that time, the reset condition is released, and the TCAL9539 registers and  
I2C/SMBus state machine initializes to their default states. After that, VCC must be lowered to below VPORF and  
back up to the operating voltage for a power-reset cycle.  
8.5 Programming  
8.5.1 I2C Interface  
The bidirectional I2C bus consists of the serial clock (SCL) and serial data (SDA) lines. Both lines must be  
connected to a positive supply through a pull-up resistor when connected to the output stages of a device. Data  
transfer may be initiated only when the bus is not busy.  
I2C communication with this device is initiated by a controller sending a Start condition, a high-to-low transition  
on the SDA input/output, while the SCL input is high (see 8-3). After the Start condition, the device address  
byte is sent, most significant bit (MSB) first, including the data direction bit (R/ W).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TCAL9539  
 
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
After receiving the valid address byte, this device responds with an acknowledge (ACK), a low on the SDA input/  
output during the high of the ACK-related clock pulse. The address input of the responder device must not be  
changed between the Start and the Stop conditions.  
On the I2C bus, only one data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the high pulse of the clock period, as changes in the data line at this time are interpreted as control  
commands (Start or Stop) (see 8-4).  
A Stop condition, a low-to-high transition on the SDA input/output while the SCL input is high, is sent by the  
controller (see 8-3).  
Any number of data bytes can be transferred from the transmitter to receiver between the Start and the Stop  
conditions. Each byte of eight bits is followed by one ACK bit. The transmitter must release the SDA line before  
the receiver can send an ACK bit. The device that acknowledges must pull down the SDA line during the ACK  
clock pulse, so that the SDA line is stable low during the high pulse of the ACK-related clock period (see 8-5).  
When a responder receiver is addressed, it must generate an ACK after each byte is received. Similarly, the  
controller must generate an ACK after each byte that it receives from the responder transmitter. Setup and hold  
times must be met to ensure proper operation.  
A controller receiver signals an end of data to the responder transmitter by not generating an acknowledge  
(NACK) after the last byte has been clocked out of the responder. This is done by the controller receiver by  
holding the SDA line high. In this event, the transmitter must release the data line to enable the controller to  
generate a Stop condition.  
SDA  
SCL  
S
P
Stop Condition  
Start Condition  
8-3. Definition of Start and Stop Conditions  
SDA  
SCL  
Data Line  
Change  
8-4. Bit Transfer  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TCAL9539  
 
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
Data Output  
by Transmitter  
NACK  
Data Output  
by Receiver  
ACK  
SCL From  
Controller  
1
2
8
9
S
Clock Pulse for  
Acknowledgment  
Start  
Condition  
8-5. Acknowledgment on the I2C Bus  
8-1. Interface Definition  
BIT  
BYTE  
7 (MSB)  
6
5
4
3
2
1
0 (LSB)  
Device I2C address  
I/O data bus  
H
H
H
L
H
A1  
A0  
R/ W  
P00  
P10  
P07  
P17  
P06  
P16  
P05  
P15  
P04  
P14  
P03  
P13  
P02  
P12  
P01  
P11  
8.6 Register Maps  
8.6.1 Device Address  
The address of the TCAL9539 is shown in 8-6.  
R/W  
Slave Address  
1
1
1
0
1
A1 A0  
Fixed  
Programmable  
8-6. TCAL9539 Address  
8-2. Address Reference  
Inputs  
I2C BUS RESPONDER ADDRESS  
A1  
L
A0  
L
116 (decimal), 74 (hexadecimal)  
117 (decimal), 75 (hexadecimal)  
118 (decimal), 76 (hexadecimal)  
119 (decimal), 77 (hexadecimal)  
L
H
L
H
H
H
The last bit of the responder address defines the operation (read or write) to be performed. A high (1) selects a  
read operation, while a low (0) selects a write operation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TCAL9539  
 
 
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
8.6.2 Control Register and Command Byte  
Following the successful acknowledgment of the address byte, the bus controller sends a command byte, which  
is stored in the control register in the TCAL9539. The lower bits of this data byte reflect the internal registers  
(input, output, polarity inversion, or configuration) that are affected. Bit 6 in conjunction with the lower three bits  
of the Command byte are used to point to the extended features of the device (Agile IO). The command byte is  
sent only during a write transmission.  
Once a new command has been sent, the register that was addressed continues to be accessed by reads until a  
new command byte has been sent. Upon power-up, hardware reset, or software reset, the control register  
defaults to 00h.  
B7 B6  
B5 B4 B3 B2 B1 B0  
8-7. Control Register Bits  
8-3. Command Byte  
CONTROL REGISTER BITS  
COMMAND BYTE  
POWER-UP  
DEFAULT  
REGISTER  
PROTOCOL  
(HEX)  
B7  
0
B6  
0
B5  
0
B4  
0
B3  
0
B2  
0
B1  
0
B0  
0
00  
01  
02  
03  
04  
05  
06  
07  
40  
Input Port 0  
Input Port 1  
Read byte  
xxxx xxxx  
xxxx xxxx  
1111 1111  
1111 1111  
0000 0000  
0000 0000  
1111 1111  
1111 1111  
1111 1111  
0
0
0
0
0
0
0
1
Read byte  
0
0
0
0
0
0
1
0
Output Port 0  
Read/write byte  
Read/write byte  
Read/write byte  
Read/write byte  
Read/write byte  
Read/write byte  
0
0
0
0
0
0
1
1
Output Port 1  
0
0
0
0
0
1
0
0
Polarity Inversion 0  
Polarity Inversion 1  
Configuration 0  
Configuration 1  
0
0
0
0
0
1
0
1
0
0
0
0
0
1
1
0
0
0
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
Output Drive Strength 0 Read/write byte  
Output Drive Strength 0 Read/write byte  
Output Drive Strength 1 Read/write byte  
41  
42  
1111 1111  
1111 1111  
Output drive strength  
Read/write byte  
register 1  
0
1
0
0
0
0
1
1
43  
1111 1111  
0
0
1
1
0
0
0
0
0
0
1
1
0
0
0
1
44  
45  
Input latch register 0  
Input latch register 1  
Read/write byte  
Read/write byte  
0000 0000  
0000 0000  
Pull-up/pull-down enable  
register 0  
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
0
0
0
1
0
1
46  
47  
48  
49  
Read/write byte  
Read/write byte  
Read/write byte  
Read/write byte  
0000 0000  
0000 0000  
1111 1111  
1111 1111  
pull-up/pull-down enable  
register 1  
pull-up/pull-down selection  
register 0  
pull-up/pull-down selection  
register 1  
0
0
0
0
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
1
1
0
0
0
1
0
1
4A  
4B  
4C  
4D  
Interrupt mask register 0 Read/write byte  
Interrupt mask register 1 Read/write byte  
1111 1111  
1111 1111  
0000 0000  
0000 0000  
Interrupt status register 0  
Interrupt status register 1  
Read byte  
Read byte  
Output port configuration  
register  
0
1
0
0
1
1
1
1
4F  
Read/write byte  
0000 0000  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TCAL9539  
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
8.6.3 Register Descriptions  
The Input Port registers (registers 0 and 1) reflect the incoming logic levels of the pins, regardless of whether the  
pin is defined as an input or an output by the Configuration register. The input port registers are read only. Writes  
to these registers have no effect. The default value (X) is determined by the externally applied logic level. Before  
a read operation, a write transmission is sent with the command byte to indicate to the I2C device that the Input  
Port register will be accessed next.  
8-4. Registers 0 and 1 (Input Port Registers)  
BIT  
I-07  
I-06  
I-05  
I-04  
I-03  
I-02  
I-01  
X
I-00  
X
DEFAULT  
BIT  
X
X
X
X
X
X
I-17  
X
I-16  
X
I-15  
X
I-14  
X
I-13  
X
I-12  
X
I-11  
X
I-10  
X
DEFAULT  
The Output Port registers (registers 2 and 3) shows the outgoing logic levels of the pins defined as outputs by  
the Configuration register. Bit values in these registers have no effect on pins defined as inputs. In turn, reads  
from these registers reflect the value that is in the flip-flop controlling the output selection, not the actual pin  
value.  
8-5. Registers 2 and 3 (Output Port Registers)  
BIT  
O-07  
O-06  
O-05  
O-04  
O-03  
O-02  
O-01  
1
O-00  
1
DEFAULT  
BIT  
1
1
1
1
1
1
O-17  
1
O-16  
1
O-15  
1
O-14  
1
O-13  
1
O-12  
1
O-11  
1
O-10  
1
DEFAULT  
The Polarity Inversion registers (register 4 and 5) allow polarity inversion of pins defined as inputs by the  
Configuration register. If a bit in these registers is set (written with 1), the corresponding port pin polarity is  
inverted. If a bit in these registers is cleared (written with a 0), the corresponding port pin's original polarity is  
retained.  
8-6. Registers 4 and 5 (Polarity Inversion Registers)  
BIT  
P-07  
P-06  
P-05  
P-04  
P-03  
P-02  
P-01  
P-00  
0
DEFAULT  
BIT  
0
0
0
0
0
0
0
P-17  
0
P-16  
0
P-15  
0
P-14  
0
P-13  
0
P-12  
0
P-11  
0
P-10  
0
DEFAULT  
The Configuration registers (registers 6 and 7) configure the direction of the I/O pins. If a bit in these registers is  
set to 1, the corresponding port pin is enabled as an input with a high-impedance output driver. If a bit in these  
registers is cleared to 0, the corresponding port pin is enabled as an output. Changing a port from an input to an  
output configuration will cause any interrupt associated with that port to be cleared.  
8-7. Registers 6 and 7 (Configuration Registers)  
BIT  
C-07  
C-06  
C-05  
C-04  
C-03  
C-02  
C-01  
C-00  
DEFAULT  
1
1
1
1
1
1
1
1
BIT  
C-17  
1
C-16  
1
C-15  
1
C-14  
1
C-13  
1
C-12  
1
C-11  
1
C-10  
1
DEFAULT  
The output drive strength registers control the output drive level of the P port GPIO buffers. Each GPIO can be  
configured independently to the desired output current level by two register control bits. For example, Port P07 is  
controlled by register 41 (bits 7 and 6), port P06 is controlled by register 41 (bits 5 and 4), etc. The output drive  
level of the GPIO is programmed 00b = 0.25x drive strength, 01b = 0.5x drive strength, 10b = 0.75x drive  
strength, or 11b = 1x for full drive strength capability. See Section 9.2 for more details.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TCAL9539  
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
8-8. Registers 40, 41, 42, and 43 (Output Drive Strength Registers)  
BIT  
CC-03  
CC-03  
CC-02  
CC-02  
CC-01  
CC-01  
CC-00  
CC-00  
DEFAULT  
BIT  
1
CC-07  
1
1
CC-07  
1
1
CC-06  
1
1
CC-06  
1
1
CC-05  
1
1
CC-05  
1
1
CC-04  
1
1
CC-04  
1
DEFAULT  
BIT  
CC-13  
CC-13  
CC-12  
CC-12  
CC-11  
CC-11  
CC-10  
CC-10  
DEFAULT  
BIT  
1
CC-17  
1
1
CC-17  
1
1
CC-16  
1
1
CC-16  
1
1
CC-15  
1
1
CC-14  
1
1
CC-14  
1
1
CC-14  
1
DEFAULT  
The input latch registers enable and disable the input latch feature of the P port GPIO pins. These registers are  
effective only when the pin is configured as an input port. When an input latch register bit is 0, the corresponding  
input pin state is not latched. A state change in the corresponding input pin generates an input. A read of the  
input register clears the interrupt. If the input goes back to its initial logic state before the input port register is  
read, then the interrupt is cleared.  
When an input latch register bit is set to 1, the corresponding input pin state is latched. A change of state of the  
input generates an interrupt and the input logic value is loaded into the corresponding bit of the input port  
register (registers 0 and 1). A read of the input port register clears the interrupt. However, if the input pin returns  
to its initial logic state before the input port register is read, then the interrupt is not cleared and the  
corresponding bit of the input port register keeps the logic value that initiated the interrupt. See Figure 16.  
For example, if the P04 input was at a logic 0 state and then transitions to a logic 1 state followed by going back  
to the logic 0 state, the input port 0 register will capture this change and an interrupt will be generated (if  
unmasked). When the read is performed on the input port 0 register, the interrupt is cleared, assuming there  
were no additional inputs that have changed, and bit 4 of the input port 0 register will read '1'. The next read of  
the input port register bit 4 should now read '0'.  
An interrupt remains active when a non-latched input simultaneously switches state with a latched input and then  
returns to its original state. A read of the input register reflects only the change of state of the latched input and  
also clears the interrupt. If the input latch register changes from a latched to a non-latched configuration, the  
interrupt will be cleared if the input logic value returns to its original state.  
If the input pin is changed from a latched to a non-latched input, a read from the input port register reflects the  
current port logic level. If the input pin is changed from a non-latched to a latched input, the read from the input  
register reflects the latched logic level.  
8-9. Registers 44 and 45 (Input Latch Registers)  
BIT  
DEFAULT  
BIT  
L-07  
L-06  
L-05  
L-04  
L-03  
L-02  
L-01  
0
L-00  
0
0
0
0
0
0
0
L-17  
L-16  
0
L-15  
0
L-14  
L-13  
L-12  
L-11  
L-10  
DEFAULT  
0
0
0
0
0
0
The pull-up/pull-down enable registers allow the user to enable or disable pull-up/pull-down resistors on the  
GPIO pins. Setting the bit to logic 1 enables the selection of pull-up/pull-down resistors. Setting the bit to logic 0  
disconnects the pull-up/pull-down resistors from the GPIO pins. The resistors will be disabled when the GPIO  
pins are configured as outputs See section 7.4.11. Use the pull-up/pull-down selection registers to select either a  
pull-up or pull-down resistor.  
8-10. Registers 46 and 47 (Pull-Up/Pull-Down Enable Registers)  
BIT  
DEFAULT  
BIT  
PE-07  
PE-06  
PE-05  
PE-04  
PE-03  
PE-02  
PE-01  
PE-00  
0
0
0
0
0
0
0
0
PE-17  
PE-16  
PE-15  
PE-14  
PE-13  
PE-12  
PE-11  
PE-10  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TCAL9539  
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
8-10. Registers 46 and 47 (Pull-Up/Pull-Down Enable Registers) (continued)  
BIT  
PE-07  
PE-06  
PE-05  
PE-04  
PE-03  
PE-02  
PE-01  
PE-00  
DEFAULT  
0
0
0
0
0
0
0
0
The pull-up/pull-down selection registers allow the user to configure each GPIO to have a pull-up or pull-down  
resistor by programming the respective register bit. Setting a bit to a logic 1 selects a 100 kΩpull-up resistor for  
that GPIO pin. Setting a bit to logic 0 selects a 100 kΩ pull-down resistor for that GPIO pin. If the pull-up/pull-  
down feature is disabled via registers 46 and 47, writing to these registers will have no effect on the GPIO pin.  
8-11. Registers 48 and 49 (Pull-Up/Pull-Down Selection Registers)  
BIT  
DEFAULT  
BIT  
PUD-07 PUD-06 PUD-05 PUD-04 PUD-03 PUD-02 PUD-01 PUD-00  
1
1
1
1
1
1
1
1
PUD-17 PUD-16 PUD-15 PUD-14 PUD-13 PUD-12 PUD-11 PUD-10  
DEFAULT  
1
1
1
1
1
1
1
1
The Interrupt mask registers are defaulted to logic 1 upon power-on, disabling interrupts during system start-up.  
Interrupts may be enabled by setting corresponding mask bits to logic 0.  
If an input changes state and the corresponding bit in the interrupt mask register is set to 1, the interrupt is  
masked and the interrupt pin is not asserted. If the corresponding bit in the interrupt mask register is set to 0, the  
interrupt pin will be asserted.  
When an input changes state and the resulting interrupt is masked, setting the interrupt mask register bit to 0  
causes the interrupt pin to be asserted. If the interrupt mask bit of an input that is already currently the source of  
an interrupt is set to 1, the interrupt pin will be de-asserted.  
8-12. Registers 4A and 4B (Interrupt Mask Registers)  
BIT  
M-07  
M-06  
M-05  
M-04  
M-03  
M-02  
M-01  
M-00  
1
DEFAULT  
BIT  
1
1
1
1
1
1
1
M-17  
1
M-16  
1
M-15  
1
M-14  
1
M-13  
1
M-12  
1
M-11  
1
M-10  
1
DEFAULT  
The Interrupt status registers are read only registers used to identify the source of an interrupt. When read, a  
logic 1 indicates that the corresponding input pin was the source of the interrupt. A logic 0 indicates that the input  
pin is not the source of an interrupt. When a corresponding bit in the interrupt mask register is set to 1 (masked),  
the interrupt status bit will return to logic 0.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TCAL9539  
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
8-13. Registers 4C and 4D (Interrupt Status Registers)  
BIT  
DEFAULT  
BIT  
S-07  
S-06  
S-05  
S-04  
S-03  
S-02  
S-01  
S-00  
0
0
0
0
0
0
0
0
S-17  
S-16  
S-15  
S-14  
S-13  
S-12  
S-11  
S-10  
DEFAULT  
0
0
0
0
0
0
0
0
The output port configuration register selects port-wise push-pull or open-drain I/O stage. A logic 0 configures  
the I/O as push-pull (Q1 and Q2 are active, see Figure 8-2). A logic 1 configures the I/O as open-drain (Q1 is  
disabled, Q2 is active) and the recommended command sequence is to program this register (4F) before the  
Configuration register (06 and 07) sets the port pins as outputs.  
ODEN0 configures Port 0X and ODEN1 configures Port 1X.  
8-14. Register 4F (Output Port Configuration Register)  
BIT  
Reserved  
ODEN-1 ODEN-0  
DEFAULT  
0
0
0
0
0
0
0
0
8.6.4 Bus Transactions  
Data is exchanged between the controller and TCAL9539 through write and read commands.  
8.6.4.1 Writes  
Data is transmitted to the TCAL9539 by sending the device address and setting the least-significant bit (LSB) to  
a logic 0 (see 8-6 for device address). The command byte is sent after the address and determines which  
register receives the data that follows the command byte. There is no limitation on the number of data bytes sent  
in one write transmission.  
Twenty-two registers within the TCAL9539 are configured to operate as eleven register pairs. The eleven pairs  
are input port, output port, polarity inversion, configuration, output drive strength (two 16-bit registers), input  
latch, pull-up/pull-down enable, pull-up/pulldown selection, interrupt mask, and interrupt status registers. After  
sending data to one register, the next data byte is sent to the other register in the pair (see 8-8 and 8-9).  
For example, if the first byte is sent to Output Port 1 (register 3), the next byte is stored in Output Port 0 (register  
2).  
There is no limitation on the number of data bytes sent in one write transmission. In this way, each 8-bit register  
pair may be updated independently of the other registers.  
SCL  
SDA  
1
2
3
4
5
6
7
8
9
Command Byte  
Target Address  
Data to Port 0  
Data 0  
Data to Port 1  
Data 1  
S
1
1
1
0
1
0
A
0
0
0
0
0
0
1
0
A 0.7  
0.0  
A
1.7  
1.0 A  
P
A1  
A0  
Start Condition  
Acknowledge  
From Target  
Acknowledge  
From Target  
Acknowledge  
From Target  
Stop  
Condition  
R/W  
Write to Port  
Data Out from Port 0  
tpv  
Data Valid  
tpv  
Data Out from Port 1  
8-8. Write to Output Port Register  
<br/>  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TCAL9539  
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
SCL  
1
2
3
4
5
6
7
8
0
9
1
0
2
0
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9
1
2
3
4
5
Data to Register  
Data to Register  
Target Address  
Command Byte  
SDA  
S
1
1
1
0
1
A1 A0  
A
0
0
0
1
1
0
A MSB  
Data 0  
LSB A MSB  
Data1  
LSB  
A
P
Start Condition  
Acknowledge  
From Target  
Acknowledge  
From Target  
Acknowledge  
From Target  
Stop  
Condition  
R/W  
8-9. Write to Configuration or Polarity Inversion Registers  
8.6.4.2 Reads  
The bus controller first must send the TCAL9539 address with the LSB set to a logic 0 (see 8-6 for device  
address). The command byte is sent after the address and determines which register is accessed.  
After a restart, the device address is sent again, but this time the least significant bit is set to a logic 1. Data from  
the register defined by the command byte is sent by the TCAL9539 (see 8-10 and 8-11). Data is clocked  
into the register on the rising edge of the ACK clock pulse. After the first byte is read, additional bytes may be  
read, but the data now reflects the information in the other register in the pair. For example, if Input Port 1 is  
read, the next byte read is Input Port 0.There is no limit on the number of data bytes received in one read  
transmission, but on the final byte received the bus master must not acknowledge the data. After a subsequent  
restart, the command byte contains the value of the next register to be read in the pair. For example, if Input Port  
1 was read last before the restart, the register that is read after the restart is the Input Port 0.  
Data From Lower  
or Upper Byte  
of Register  
Acknowledge  
From Target  
Acknowledge  
From Target  
Acknowledge  
From Target  
Acknowledge  
From Controller  
Target Address  
Target Address  
Command Byte  
A1 A0  
S
1
1
1
0
1
A1  
A0  
0
A
A
S
1
1
1
0
1
1
A
MSB  
Data  
LSB A  
First Byte  
R/W  
R/W  
At this moment, controller transmitter  
becomes controller receiver, and  
target receiver becomes target transmitter.  
Data From Upper  
or Lower Byte  
of Register  
No Acknowledge  
From Controller  
MSB  
LSB NA  
P
Data  
Last Byte  
Stop  
Condition  
8-10. Read From Register  
<br/>  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TCAL9539  
 
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
1
2
3
4
5
6
7
R
1
9
SCL  
Data From Port  
Data 1  
Target Address  
Data From Port  
Data 4  
SDA  
S
1
1
1
0
1
A1  
A
A
NA P  
A0  
Start  
Condition  
NACK From  
Controller  
ACK From  
Target  
ACK From  
Controller  
Stop  
Condition  
R/W  
Read From  
Port  
Data Into  
Port  
Data 2  
Data 3  
Data 4  
Data 5  
t
t
ps  
ph  
INT is cleared  
by Read from Port  
INT  
t
Stop not needed  
to clear INT  
t
iv  
ir  
A. Transfer of data can be stopped at any time by a Stop condition. When this occurs, data present at the latest acknowledge phase is  
valid (output mode). It is assumed that the command byte previously has been set to 00 (read Input Port register).  
B. This figure eliminates the command byte transfer, a restart, and responder address call between the initial responder address call and  
actual data transfer from P port (see 8-10).  
8-11. Read Input Port Register  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TCAL9539  
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
Information in the following applications sections is not part of the TI component specification, and TI  
does not warrant its accuracy or completeness. TIs customers are responsible for determining  
suitability of components for their purposes. Customers should validate and test their design  
implementation to confirm system functionality.  
9.1 Application Information  
Applications of the TCAL9539 use this device connected as a responder to an I2C controller (processor), and  
the I2C bus may contain any number of other responder devices. The TCAL9539 is in a remote location from the  
controller, placed close to the GPIOs to which the controller needs to monitor or control.  
9.2 Typical Application  
9-1 shows an application in which the TCAL9539 can be used.  
Subsystem 1  
(Temperature  
Sensor)  
INT  
V
CC  
(5 V)  
Subsystem 2  
(Counter)  
100 k  
100 k  
24  
2 k  
10 k  
10 k  
10 k  
10 k  
V
CC  
V
CC  
100 k  
22  
23  
RESET  
A
4
5
P00  
SCL  
SDA  
SCL  
P01  
Controller  
GND  
SDA  
6
7
P02  
P03  
1
3
INT  
INT  
ENABLE  
8
9
RESET  
P04  
P05  
B
TCAL9539  
V
CC  
10  
Controlled Switch  
(CBT Device)  
P06  
P07  
P10  
P11  
P12  
P13  
P14  
P15  
11  
13  
14  
15  
2
ALARM  
A1  
A0  
Keypad  
16  
17  
18  
Subsystem 3  
(Alarm)  
21  
19  
20  
P16  
P17  
GND  
12  
A. Device address configured as 1110000 for this example.  
B. P00, P02, and P03 are configured as outputs.  
C. P01 and P04 to P017 are configured as inputs.  
D. Resistors are required for inputs (on P port) that may float. If a driver to an input will never let the input float, a resistor is not needed.  
Outputs (in the P port) do not need pullup resistors.  
9-1. Typical Application Schematic  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TCAL9539  
 
 
 
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
9.2.1 Design Requirements  
9-1. Design Parameters  
DESIGN PARAMETER  
Supply Voltage (VCC  
Output current rating, P-port sinking (IOL  
EXAMPLE VALUE  
)
1.8 V  
25 mA  
10 mA  
)
Output current rating, P-port sourcing (IOH  
)
I2C bus clock (SCL) speed  
1 MHz  
9.2.2 Detailed Design Procedure  
The pull-up resistors, RP, for the SCL and SDA lines need to be selected appropriately and take into  
consideration the total capacitance of all responders on the I2C bus. The minimum pull-up resistance is a  
function of VCC, VOL,(max), and IOL  
:
VCC - VOL(max)  
Rp(min)  
=
IOL  
(1)  
The maximum pull-up resistance is a function of the maximum rise time, tr (120 ns for fast-mode-plus operation,  
fSCL = 1 MHz) and bus capacitance, Cb:  
tr  
Rp(max)  
=
0.8473´Cb  
(2)  
The maximum bus capacitance for an I2C bus must not exceed 400 pF for standard-mode or fast-mode  
operation, or 550pF for fast-mode-plus. The bus capacitance can be approximated by adding the capacitance of  
the TCAL9539, Ci for SCL or Cio for SDA, the capacitance of wires/connections/traces, and the capacitance of  
additional responders on the bus.  
9.2.2.1 Minimizing ICC When I/Os Control LEDs  
When the I/Os are used to control LEDs, normally they are connected to V through a resistor as shown in 9-2.  
For a P-port configured as an input, current consumption increases as VI becomes lower than V. The LED is a  
diode, with threshold voltage VT, and when a P-port is configured as an input the LED are off, but VI is a VT drop  
below VCC  
.
For battery-powered applications, it is essential that the voltage of P-ports controlling LEDs is greater than or  
equal to V when the P-ports are configured as input to minimize current consumption. 9-2 shows a high-value  
resistor in parallel with the LED. 9-3 shows V less than the LED supply voltage by at least VT. Both of these  
methods maintain the I/O VI at or above V and prevent additional supply current consumption when the P-port is  
configured as an input and the LED is off.  
V
CC  
LED  
100 k  
V
CC  
LEDx  
9-2. High-Value Resistor in Parallel with LED  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TCAL9539  
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
3.3 V  
1.8 V  
LED  
V
CC  
LEDx  
9-3. Device Supplied by a Lower Voltage  
9.2.3 Application Curves  
1.8  
1.6  
1.4  
1.2  
1
0.8  
0.6  
0.4  
0.2  
0
VCC > 2V  
VCC <= 2  
0
0.5  
1
1.5  
2
2.5 3  
VCC (V)  
3.5  
4
4.5  
5
5.5  
D009  
VOL = 0.2 × VCC, IOL = 2 mA when VCC 2 V  
Standard-mode: fSCL= 100 kHz, tr = 1 µs  
Fast-mode: fSCL= 400 kHz, tr= 300 ns  
VOL = 0.4 V, IOL = 3 mA when VCC > 2 V  
9-5. Minimum Pullup Resistance (Rp(min)) vs  
Pullup Reference Voltage (VCC  
9-4. Maximum Pullup Resistance (Rp(max)) vs  
)
Bus Capacitance (Cb)  
9.3 Power Supply Recommendations  
9.3.1 Power-On Reset Requirements  
In the event of a glitch or data corruption, TCAL9539 can be reset to its default conditions by using the power-on  
reset feature. Power-on reset requires that the device go through a power cycle to be completely reset. This  
reset also happens when the device is powered on for the first time in an application.  
The two types of power-on reset are shown in 9-6 and 9-7.  
V
CC  
Ramp-Up  
Ramp-Down  
Re-Ramp-Up  
V
CC_TRR_GND  
Time  
Time to Re-Ramp  
V
V
V
CC_RT  
CC_FT  
CC_RT  
9-6. V is lowered below 0.2 V or 0 V and then ramped up  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TCAL9539  
 
 
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
V
CC  
Ramp-Down  
Ramp-Up  
V
CC_TRR_VPOR50  
V
drops below POR levels  
IN  
Time  
Time to Re-Ramp  
V
V
CC_FT  
CC_RT  
9-7. V is lowered below the POR threshold, then ramped back up  
9-2 specifies the performance of the power-on reset feature for TCAL9539 for both types of power-on reset.  
9-2. Recommended Supply Sequencing and Ramp Rates  
PARAMETER(1) (2)  
MIN TYP  
MAX UNIT  
tFT  
Fall rate  
0.1  
0.1  
1
2000  
2000  
ms  
ms  
μs  
μs  
See 9-6  
See 9-6  
See 9-6  
See 9-7  
tRT  
Rise rate  
tTRR_GND  
tTRR_POR50  
Time to re-ramp (when VCC drops to GND)  
1
Time to re-ramp (when VCC drops to VPOR_MIN 50 mV)  
Level that V can glitch down to, but not cause a functional  
disruption when V = 1 μs  
VCC_GH  
tGW  
1.0  
10  
V
See 9-8  
See 9-8  
Glitch width that will not cause a functional disruption when V =  
0.5 × VCCx  
μs  
VPORF  
VPORR  
Voltage trip point of POR on falling VCC  
Voltage trip point of POR on rising VCC  
0.6  
V
V
1.0  
(1) TA = 25°C (unless otherwise noted).  
(2) Not tested. Specified by design.  
Glitches in the power supply can also affect the power-on reset performance of this device. The glitch width  
(VCC_GW) and height (VCC_GH) are dependent on each other. The bypass capacitance, source impedance, and  
device impedance are factors that affect power-on reset performance. 9-8 and 9-2 provide more  
information on how to measure these specifications.  
V
CC  
V
CC_GH  
Time  
V
CC_GW  
9-8. Glitch Width and Glitch Height  
VPOR is critical to the power-on reset. VPOR is the voltage level at which the reset condition is released and all  
the registers and the I2C/SMBus state machine are initialized to their default states. The value of VPOR differs  
based on the V being lowered to or from 0. 9-9 and 9-2 provide more details on this specification.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TCAL9539  
 
 
 
 
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
V
CC  
V
POR  
V
PORF  
Time  
POR  
Time  
9-9. VPOR  
9.4 Layout  
9.4.1 Layout Guidelines  
For printed circuit board (PCB) layout of the TCAL9539, common PCB layout practices should be followed but  
additional concerns related to high-speed data transfer such as matched impedance and differential pairs are not  
a concern for I2C signal speeds.  
In all PCB layouts, it is a best practice to avoid right angles in signal traces, to fan out signal traces away from  
each other upon leaving the vicinity of an integrated circuit (IC), and to use thicker trace widths to carry higher  
amounts of current that commonly pass through power and ground traces. By-pass and decoupling capacitors  
are commonly used to control the voltage on the supply pins, using a larger capacitor to provide additional power  
in the event of a short power supply glitch and a smaller capacitor to filter out high-frequency ripple. These  
capacitors should be placed as close to the TCAL9539 as possible. These best practices are shown in 9-10.  
For the layout example provided in 9-10, it is possible to fabricate a PCB with only 2 layers by using the top  
layer for signal routing and the bottom layer as a split plane for power and ground (GND). However, a 4 layer  
board is preferable for boards with higher density signal routing. On a 4 layer PCB, it is common to route signals  
on the top and bottom layer, dedicate one internal layer to a ground plane, and dedicate the other internal layer  
to a power plane. In a board layout using planes or split planes for power and ground, vias are placed directly  
next to the surface mount component pad which needs to attach to power or GND and the via is connected  
electrically to the internal layer or the other side of the board. Vias are also used when a signal trace needs to be  
routed to the opposite side of the board, but this technique is not demonstrated in 9-10.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TCAL9539  
 
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
9.4.2 Layout Example  
LEGEND  
Partial view of plane  
(inner layer )  
Via to power plane  
Via to GND plane  
By-pass/de-coupling  
capacitors  
PW package  
1
2
INT  
16  
15  
14  
13  
16  
15  
14  
13  
16  
15  
14  
13  
VCC  
SDA  
SCL  
A0  
A1  
3
RESET  
P00  
P01  
P02  
P03  
P04  
P05  
P06  
P07  
GND  
4
5
P17  
P16  
P15  
P14  
P13  
P12  
P11  
P10  
6
7
8
9
10  
11  
12  
9-10. TCAL9539 Layout  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TCAL9539  
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
10 Device and Documentation Support  
10.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
10.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TCAL9539  
 
 
 
 
 
 
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
11.1 Tape and Reel Information  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
Reel  
Diameter  
(mm)  
Reel  
Width W1  
(mm)  
Package  
Type  
Package  
Drawing  
A0  
(mm)  
B0  
(mm)  
K0  
(mm)  
P1  
(mm)  
W
(mm)  
Pin1  
Quadrant  
Device  
Pins  
SPQ  
PTCAL9539PWR  
PTCAL9538RTWR  
TSSOP  
WQFN  
PW  
16  
24  
2000  
3000  
330.0  
330.0  
12.4  
12.4  
6.9  
5.6  
1.6  
8.0  
8.0  
12.0  
12.0  
Q1  
Q2  
RTW  
4.25  
4.25  
1.15  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TCAL9539  
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
Device  
Package Type  
TSSOP  
Package Drawing Pins  
SPQ  
2000  
3000  
Length (mm) Width (mm)  
Height (mm)  
35.0  
PTCAL9539PWR  
PTCAL9538RTWR  
PW  
16  
24  
367.0  
356.0  
367.0  
35.0  
WQFN  
RTW  
35.0  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TCAL9539  
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
11.2 Mechanical Data  
PACKAGE OUTLINE  
PW0024A  
TSSOP - 1.2 mm max height  
S
C
A
L
E
2
.
0
0
0
SMALL OUTLINE PACKAGE  
SEATING  
PLANE  
C
6.6  
6.2  
TYP  
A
0.1 C  
PIN 1 INDEX AREA  
22X 0.65  
24  
1
2X  
7.15  
7.9  
7.7  
NOTE 3  
12  
13  
0.30  
24X  
4.5  
4.3  
NOTE 4  
0.19  
1.2 MAX  
B
0.1  
C A B  
0.25  
GAGE PLANE  
0.15  
0.05  
(0.15) TYP  
SEE DETAIL A  
0.75  
0.50  
0 -8  
A
20  
DETAIL A  
TYPICAL  
4220208/A 02/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not  
exceed 0.15 mm per side.  
4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.  
5. Reference JEDEC registration MO-153.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TCAL9539  
 
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
PW0024A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
SYMM  
24X (1.5)  
(R0.05) TYP  
24  
1
24X (0.45)  
22X (0.65)  
SYMM  
12  
13  
(5.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE: 10X  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
NON-SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
15.000  
SOLDER MASK DETAILS  
4220208/A 02/2017  
NOTES: (continued)  
6. Publication IPC-7351 may have alternate designs.  
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TCAL9539  
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
PW0024A  
TSSOP - 1.2 mm max height  
SMALL OUTLINE PACKAGE  
24X (1.5)  
SYMM  
(R0.05) TYP  
24  
1
24X (0.45)  
22X (0.65)  
SYMM  
12  
13  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
SCALE: 10X  
4220208/A 02/2017  
NOTES: (continued)  
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
9. Board assembly site may have different recommendations for stencil design.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TCAL9539  
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
PACKAGE OUTLINE  
RTW0024J  
WQFN - 0.8 mm max height  
S
C
A
L
E
3
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
4.1  
3.9  
A
B
PIN 1 INDEX AREA  
0.5  
0.3  
0.2  
0.3  
4.1  
3.9  
DETAIL  
OPTIONAL TERMINAL  
TYPICAL  
C
0.8 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
(0.1)  
TYP  
2.2 0.1  
7
12  
SEE TERMINAL  
DETAIL  
20X 0.5  
13  
6
4X  
2.5  
1
18  
0.3  
0.2  
24X  
PIN 1 ID  
(OPTIONAL)  
24  
19  
0.1  
C A  
C
B
0.5  
0.3  
0.05  
24X  
4221566/A 08/2014  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TCAL9539  
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
EXAMPLE BOARD LAYOUT  
RTW0024J  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(
2.2)  
SYMM  
19  
24  
24X (0.6)  
1
18  
24X (0.25)  
SYMM  
(3.8)  
4X  
(0.85)  
20X (0.5)  
13  
6
5X ( 0.2)  
VIA  
7
12  
(3.8)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL  
UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK  
DEFINED  
SOLDER MASK DETAILS  
4221566/A 08/2014  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TCAL9539  
TCAL9539  
ZHCSP01 JULY 2022  
www.ti.com.cn  
EXAMPLE STENCIL DESIGN  
RTW0024J  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
METAL  
TYP  
(0.59) TYP  
19  
24  
24X (0.6)  
1
18  
24X (0.25)  
(0.59)  
TYP  
(3.8)  
20X (0.5)  
13  
6
7
12  
4X ( 0.98)  
(3.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD  
79% PRINTED SOLDER COVERAGE BY AREA  
SCALE:18X  
4221566/A 08/2014  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TCAL9539  
PACKAGE OPTION ADDENDUM  
www.ti.com  
13-Aug-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
PTCAL9539RTWR  
ACTIVE  
WQFN  
RTW  
24  
5000  
TBD  
Call TI  
Call TI  
-40 to 125  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
RTW 24  
4 x 4, 0.5 mm pitch  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4224801/A  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TCAL9539-Q1

具有中断、复位和灵活 I/O 配置的汽车类 16 位低压 I²C/SMBus I/O 扩展器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCALFP0204100J

TCAL Through Hole Fixed Inductors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOKEN

TCALFP0204100K

TCAL Through Hole Fixed Inductors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOKEN

TCALFP0204100M

TCAL Through Hole Fixed Inductors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOKEN

TCALFP0204101J

TCAL Through Hole Fixed Inductors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOKEN

TCALFP0204101K

TCAL Through Hole Fixed Inductors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOKEN

TCALFP0204101M

TCAL Through Hole Fixed Inductors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOKEN

TCALFP0204102J

TCAL Through Hole Fixed Inductors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOKEN

TCALFP0204102K

TCAL Through Hole Fixed Inductors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOKEN

TCALFP0204102M

TCAL Through Hole Fixed Inductors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOKEN

TCALFP02041R0J

TCAL Through Hole Fixed Inductors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOKEN

TCALFP02041R0K

TCAL Through Hole Fixed Inductors

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TOKEN