TCAN1042HGD [TI]

具有灵活数据速率的故障保护 CAN 收发器 | D | 8 | -55 to 125;
TCAN1042HGD
型号: TCAN1042HGD
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有灵活数据速率的故障保护 CAN 收发器 | D | 8 | -55 to 125

文件: 总38页 (文件大小:1398K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
TCAN1042 CAN FD 和故障保护功能CAN 收发器  
电信基站状态和控制  
1 特性  
• 诸CANopenDeviceNetNMEA2000、  
ARNIC825ISO11783CANaerospace CAN  
总线标准  
• 符ISO 11898-2:2016 和  
ISO 11898-5:2007 物理层标准  
• “TurboCAN  
3 说明  
– 所有器件均支持经CAN 2Mbps CAN FD  
灵活数据速率),而“G”选项支5Mbps  
– 具有较短的对称传播延迟时间和快速循环次数,  
可增加时序裕量  
这款 CAN 收发器系列符合 ISO1189-2 (2016) 高速  
CAN控制器局域网络物理层标准。所有器件均设  
计用于数据速率高达 2Mbps兆位每秒CAN FD  
网络。器件型号包含“G”后缀的器件旨在实现高达  
5Mbps 的数据速率器件型号包含“V”后缀的器件配  
有提供 I/O 电平的辅助电源输入用于设置输入引脚阈  
值和 RXD 输出电平。该系列具备低功耗待机模式及远  
程唤醒请求特性。此外所有器件都提供多种保护特性  
来提高器件和网络的耐用性。  
– 在有负CAN 网络中实现更快的数据速率  
I/O 电压范围支3.3V 5V MCU  
• 未供电时具有理想无源行为  
– 总线和逻辑引脚处于高阻态  
无负载)  
– 在总线RXD 输出上实现上电/断电无干扰运行  
• 保护特性  
器件信息  
封装(1)  
HBM ESD 保护±16kV  
器件型号  
封装尺寸  
IEC ESD 保护高±15kV  
– 总线故障保护±58VH 型号±70VH  
型号)  
SOIC (8)  
VSON (8)  
4.90mm × 3.91mm  
3.00mm x 3.00mm  
TCAN1042x  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
VCC VIO  
V 型号电源终端具有欠压保护  
– 驱动器显性超(TXD DTO) - 数据速率低至  
10kbps  
VCC  
3
NC or VIO  
5
VCC or VIO  
– 热关断保(TSD)  
• 接收器共模输入电压±30V  
• 典型循环延迟110ns  
7
6
CANH  
CANL  
TSD  
Dominant  
time-out  
TXD  
1
VCC or VIO  
• 结温范围55°C 150°C  
• 采SOIC (8) 封装和无引线VSON (8) 封装  
(3.0mm x 3.0mm)提高了自动光学检(AOI) 能  
STB  
8
Mode Select  
UVP  
VCC or VIO  
Logic Output  
2 应用  
MUX  
4
RXD  
WUP Monitor  
所有器件均支持高负CAN 网络  
• 重型机ISOBUS –  
ISO 11783  
Low Power Receiver  
2
GND  
A. 5 的功能取决于器件在不V 后缀的器件上为无连接  
(NC) 引脚在包V 后缀的器件上为用I/O 电平转换VIO  
引脚  
工业自动化、控制、传感器和驱动系统  
楼宇、安全和温度控制自动化  
B. RXD 逻辑输出在不含“V”后缀的器件上驱动VCC而在包  
含“V”后缀的器件上驱动VIO。  
功能方框图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSES7  
 
 
 
 
 
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
www.ti.com.cn  
Table of Contents  
9 Detailed Description......................................................18  
9.1 Overview...................................................................18  
9.2 Functional Block Diagram.........................................18  
9.3 Feature Description...................................................19  
9.4 Device Functional Modes..........................................22  
10 Application and Implementation................................26  
10.1 Application Information........................................... 26  
10.2 Typical Applications................................................ 26  
11 Power Supply Recommendations..............................29  
12 Device and Documentation Support..........................32  
12.1 接收文档更新通知................................................... 32  
12.2 支持资源..................................................................32  
12.3 Trademarks.............................................................32  
12.4 Electrostatic Discharge Caution..............................32  
12.5 术语表..................................................................... 32  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Device Comparison Table...............................................4  
6 Pin Configurations and Functions.................................5  
7 Specifications.................................................................. 6  
7.1 Absolute Maximum Ratings ....................................... 6  
7.2 ESD Ratings............................................................... 6  
7.3 ESD Ratings, Specifications....................................... 7  
7.4 Recommended Operating Conditions.........................8  
7.5 Thermal Information....................................................8  
7.6 Power Rating.............................................................. 8  
7.7 Electrical Characteristics.............................................9  
7.8 Switching Characteristics..........................................12  
7.9 Typical Characteristics..............................................13  
8 Parameter Measurement Information..........................14  
Information.................................................................... 32  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision C (April 2017) to Revision D (October 2021)  
Page  
• 删除的器件TCAN1042TCAN1042GTCAN1042GV TCAN1042V........................................................1  
Added footnote to the GND pin in the Pin Functions table ................................................................................ 5  
Changed the DRB (VSON) values in the Thermal Information table .................................................................8  
Changed the title in 9.3.7.1 ......................................................................................................................... 21  
Changed the title in 9.3.7.2 ......................................................................................................................... 21  
Changes from Revision B (August 2016) to Revision C (April 2017)  
Page  
• 删除了“符2015 12 17 日发布ISO 11898-2 物理层更新草案”................................................1  
• 将从“符合发布ISO 11898-2:2007 ISO 11898-2:2003 物理层标准”更改为“符ISO  
11898-2:2016 ISO 11898-5:2007 物理层标准”.............................................................................................1  
• 将“特性”从“所有器件均支2Mbps CAN FD..”更改为“所有器件均支持经CAN 2Mbps CAN FD..”  
............................................................................................................................................................................1  
Changed Charged Device Model (CDM) From: ±750 To: ±1500 in the ESD Ratings table................................6  
Changed TBD to values for the DRB (VSON) Package in the ESD Ratings table.............................................6  
Added the Power Rating table ...........................................................................................................................8  
Changed VSYM in the Driver Electrical Characteristics table.............................................................................. 9  
Changed VSYM_DC in the Driver Electrical Characteristics table.........................................................................9  
Deleted "VI = 0.4 sin (4E6 πt) + 2.5 V" from the Test Condition of CI in the Receiver Electrical  
Characteristics table........................................................................................................................................... 9  
Deleted "VI = 0.4 sin (4E6 πt)" in the Test Condition of CID in the Receiver Electrical Characteristics table....9  
Added "-30 V VCM +30" to the Test Condition of RID and RIN in the Receiver Electrical Characteristics  
table....................................................................................................................................................................9  
Added Note 2 and Changed 9-2, BUS OUTPUT column.............................................................................20  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
www.ti.com.cn  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
Changes from Revision A (May 2016) to Revision B (August 2016)  
Page  
• 添加了器件TCAN1042TCAN1042GTCAN1042GV TCAN1042V........................................................1  
• 将从添加了总线故障保护±70V 更改为总线故障保护±58VH 型号±70VH 型号............. 1  
• 添加了“可采SOIC(8) 封装和无引线VSON(8) 封装.......................................................................... 1  
Added new devices to the Device Comparison Table ........................................................................................4  
Added the DRB package to the Thermal Information table ............................................................................... 8  
Changed the tMODE TYP value From: 1 µs To: 9 µS in the Switching Characteristics table............................. 12  
Changed Standby Mode section ......................................................................................................................23  
Changes from Revision * (March 2016) to Revision A (May 2016)  
Page  
• 向器件信表中添加VSON (8) 引脚封装.......................................................................................................1  
Added the VSON (8) pin package to the Pin Configuration and Functions ....................................................... 5  
Changed OTP to TSD in the Functional Block Diagram ..................................................................................18  
Added Note 2 to 9-1 ....................................................................................................................................20  
Added Note 1 to 9-2 ....................................................................................................................................20  
Added pin number to the Layout Example image ............................................................................................31  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
www.ti.com.cn  
5 Device Comparison Table  
DEVICE  
5-Mbps FLEXIBLE DATA  
RATE  
3-V LEVEL SHIFTER  
INTEGRATED  
BUS FAULT PROTECTION  
NUMBER  
PIN 8 MODE SELECTION  
TCAN1042 (Base)  
TCAN1042G  
±58 V  
±58 V  
±58 V  
±58 V  
±70 V  
±70 V  
±70 V  
±70 V  
X
X
TCAN1042GV  
TCAN1042V  
X
X
Low Power Standby Mode  
with Remote Wake  
TCAN1042H  
TCAN1042HG  
TCAN1042HGV  
TCAN1042HV  
X
X
X
X
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
www.ti.com.cn  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
6 Pin Configurations and Functions  
STB  
TXD  
1
2
3
4
8
7
6
5
STB  
TXD  
GND  
VCC  
1
2
3
4
8
7
6
5
GND  
VCC  
CANH  
CANL  
NC  
CANH  
CANL  
NC  
RXD  
RXD  
6-2. DRB Package for Base, (H), (G) and (HG)  
Devices 8 PIN (VSON) Top View  
6-1. D Package for Base, (H), (G) and (HG)  
Devices8 PIN (SOIC) Top View  
STB  
TXD  
GND  
VCC  
1
2
3
4
8
7
6
5
STB  
TXD  
1
2
3
4
8
7
6
5
GND  
VCC  
CANH  
CANL  
VIO  
CANH  
CANL  
VIO  
RXD  
RXD  
6-4. DRB Package for (V), (HV), (GV), and (HGV)  
Devices 8 PIN (VSON) Top View  
6-3. D Package for (V), (HV), (GV), and (HGV)  
Devices 8 PIN (SOIC) Top View  
6-1. Pin Functions  
PINS  
TYPE  
DESCRIPTION  
(V), (GV), (HV),  
(HGV)  
NAME  
(H), (G), (HG)  
TXD  
GND(1)  
VCC  
RXD  
NC  
1
2
3
4
5
1
2
3
4
DIGITAL INPUT  
GND  
CAN transmit data input (LOW for dominant and HIGH for recessive bus states)  
Ground connection  
POWER  
Transceiver 5-V supply voltage  
DIGITAL OUTPUT CAN receive data output (LOW for dominant and HIGH for recessive bus states)  
No Connect  
5
POWER  
VIO  
Transceiver I/O level shifting supply voltage (Devices with "V" suffix only)  
Low level CAN bus input/output line  
6
CANL  
CANH  
STB  
6
BUS I/O  
7
7
BUS I/O  
High level CAN bus input/output line  
Standby Mode control input (active high)  
8
8
DIGITAL INPUT  
(1) For DRB (VSON) package options, the thermal pad may be connected to GND in order to optimize the thermal characteristics of the  
package.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
 
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
www.ti.com.cn  
7 Specifications  
over operating free-air temperature range (unless otherwise noted) (1) (2)  
7.1 Absolute Maximum Ratings  
MIN  
0.3  
0.3  
MAX  
UNIT  
V
VCC  
VIO  
5-V Bus Supply Voltage Range  
I/O Level-Shifting Voltage Range  
All Devices  
7
7
Devices with the "V" Suffix  
V
CAN Bus I/O voltage range (CANH,  
CANL)  
VBUS  
Devices with the "H" Suffix  
All Devices  
-70  
70  
V
Logic input terminal voltage range (TXD,  
S)  
V(Logic_Input)  
V
0.3  
+7 and VI VIO + 0.3  
V(Logic_Output)  
IO(RXD)  
TJ  
Logic output terminal voltage range (RXD)  
RXD (Receiver) output current  
V
0.3  
8  
+7 and VI VIO + 0.3  
8
mA  
°C  
°C  
Virtual junction temperature range (see Thermal Information table)  
Storage temperature range (see Thermal Information table)  
150  
150  
55  
65  
TSTG  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If  
used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
(2) All voltage values, except differential I/O bus voltages, are with respect to ground terminal.  
7.2 ESD Ratings  
TEST CONDITIONS  
VALUE  
UNIT  
D (SOIC) Package  
All terminals(1)  
±6000  
±16000  
±1500  
±200  
Human Body Model (HBM) ESD stress voltage  
V
V
CAN bus terminals (CANH, CANL) to GND(2)  
All terminals(3)  
Charged Device Model (CDM) ESD stress voltage  
Machine Model (MM)  
All terminals(4)  
DRB (VSON) Package  
All terminals(1)  
±6000  
±16000  
±1500  
±200  
Human Body Model (HBM) ESD stress voltage  
V
V
CAN bus terminals (CANH, CANL) to GND(2)  
All terminals(3)  
Charged Device Model (CDM) ESD stress voltage  
Machine Model (MM)  
All terminals(4)  
(1) Tested in accordance to JEDEC Standard 22, Test Method A114.  
(2) Test method based upon JEDEC Standard 22 Test Method A114, CAN bus is stressed with respect to GND.  
(3) Tested in accordance to JEDEC Standard 22, Test Method C101.  
(4) Tested in accordance to JEDEC Standard 22, Test Method A115.  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
 
 
 
 
 
 
 
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
www.ti.com.cn  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
7.3 ESD Ratings, Specifications  
TEST CONDITIONS  
VALUE  
UNIT  
D (SOIC) Package  
IEC 61000-4-2: Unpowered  
Contact Discharge  
±15000  
±8000  
±4000  
CAN bus terminals (CANH,  
CANL) to GND  
System Level Electro-Static Discharge (ESD)  
V
V
IEC 61000-4-2: Powered on  
Contact Discharge  
CAN bus terminals (CANH,  
CANL) to GND  
System Level Electrical fast transient (EFT)  
IEC 61000-4-4: Criteria A  
DRB (VSON) Package  
IEC 61000-4-2: Unpowered  
Contact Discharge  
±14000  
±8000  
±4000  
CAN bus terminals (CANH,  
CANL) to GND  
System Level Electro-Static Discharge (ESD)  
System Level Electrical fast transient (EFT)  
V
V
IEC 61000-4-2: Powered on  
Contact Discharge  
CAN bus terminals (CANH,  
CANL) to GND  
IEC 61000-4-4: Criteria A  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
www.ti.com.cn  
MAX UNIT  
7.4 Recommended Operating Conditions  
MIN  
4.5  
3
VCC  
5-V Bus Supply Voltage Range  
5.5  
V
5.5  
VIO  
I/O Level-Shifting Voltage Range  
RXD terminal HIGH level output current  
RXD terminal LOW level output current  
IOH(RXD)  
IOL(RXD)  
2  
mA  
2
7.5 Thermal Information  
TCAN1042  
Thermal Metric(1)  
TEST CONDITIONS  
D (SOIC)  
8 Pins  
105.8  
DRB (VSON)  
8 Pins  
48.3  
UNIT  
RθJA  
RθJB  
Junction-to-air thermal resistance  
High-K thermal resistance(2)  
°C/W  
°C/W  
Junction-to-board thermal resistance(3)  
46.8  
17.2  
Junction-to-case (top) thermal  
resistance(4)  
RθJC(TOP)  
ΨJT  
48.3  
8.7  
37.6  
1.8  
°C/W  
°C/W  
°C/W  
Junction-to-top characterization  
parameter(5)  
Junction-to-board characterization  
parameter(6)  
46.2  
17.1  
ΨJB  
TTSD  
Thermal shutdown temperature  
Thermal shutdown hysteresis  
170  
5
170  
5
°C  
°C  
TTSD_HYS  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
(2) The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board,  
as specified in JESD51-7, in an environment described in JESD51-2a.  
(3) The junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB  
temperature, as described in JESD51-8.  
(4) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-  
standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.  
(5) The junction-to-top characterization parameter, ΨJT, estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).  
(6) The junction-to-board characterization parameter, ΨJB estimates the junction temperature of a device in a real system and is extracted  
from the simulation data for obtaining θJA, using a procedure described in JESD51-2a (sections 6 and 7).  
7.6 Power Rating  
PARAMETER  
TEST CONDITIONS  
POWER DISSIPATION  
UNIT  
VCC = 5 V, VIO = 5 V (if applicable), TJ = 27°C, RL = 60 , S at 0  
V, Input to TXD at 250 kHz, CL_RXD = 15 pF. Typical CAN  
operating conditions at 500 kbps with 25% transmission  
(dominant) rate.  
52  
mW  
PD  
Average power dissipation  
VCC = 5.5 V, VIO = 5.5 V (if applicable), TJ = 150°C, RL = 50 , S  
at 0 V, Input to TXD at 500 kHz, CL_RXD = 15 pF. Typical high  
load CAN operating conditions at 1 Mbps with 50% transmission  
(dominant) rate and loaded network.  
124  
mW  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
 
 
 
 
 
 
 
 
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
www.ti.com.cn  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
7.7 Electrical Characteristics  
Over recommended operating conditions with TA = 55°C to 125°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX UNIT  
Supply Characteristics  
See 8-1, TXD = 0 V, RL = 60 ,  
CL = open, RCM = open, STB = 0 V, Typical  
Bus Load  
40  
45  
70  
Normal mode  
(dominant)  
See 8-1, TXD = 0 V, RL = 50 ,  
CL = open, RCM = open, STB = 0 V,  
High Bus Load  
80  
mA  
Normal mode (dominant  
with bus fault)  
See 8-1, TXD = 0 V, STB = 0 V, CANH =  
-12 V, RL = open, CL = open, RCM = open  
180  
2.5  
See 8-1, TXD = VCC or VIO, RL = 50 , CL  
= open, RCM = open,  
STB = 0 V  
Normal mode  
(recessive)  
ICC  
5-V supply current  
1.5  
0.5  
Devices with the "V" suffix (I/O level-  
shifting), VCC not needed in Standby mode,  
See 8-1,  
5
TXD = VIO, RL = 50 , CL = open,  
RCM = open, STB = VIO  
Standby mode  
Devices without the "V" suffix (5-V only),  
µA  
22  
See 8-1, TXD = VCC, RL = 50 , CL  
=
open, RCM = open, STB = VCC  
Normal mode  
Standby mode  
RXD floating, TXD = STB = 0 or 5.5 V  
90  
12  
300  
17  
IIO  
I/O supply current  
RXD floating, TXD = STB = VIO  
VCC = 0 or 5.5 V  
,
Rising undervoltage detection on VCC for  
protected mode  
4.2  
4.4  
V
UVVCC  
Falling undervoltage detection on VCC for  
protected mode  
All devices  
3.8  
1.3  
4.0  
4.25  
VHYS(UVVCC)  
UVVIO  
Hysteresis voltage on UVVCC  
200  
mV  
Undervoltage detection on VIO for protected  
mode  
2.75  
V
Devices with the "V" suffix (I/O level-shifting)  
VHYS(UVVIO)  
Hysteresis voltage on UVVIO for protected mode  
80  
mV  
STB Terminal (Mode Select Input)  
Devices with the "V" suffix (I/O level-shifting)  
Devices without the "V" suffix (5-V only)  
Devices with the "V" suffix (I/O level-shifting)  
Devices without the "V" suffix (5-V only)  
STB = VCC = VIO = 5.5 V  
0.7 x VIO  
2
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
V
0.3 x VIO  
0.8  
2
IIH  
High-level input leakage current  
Low-level input leakage current  
Unpowered leakage current  
-2  
20  
-1  
IIL  
STB = 0V, VCC = VIO = 5.5 V  
0
0
-2  
1
µA  
Ilkg(OFF)  
STB = 5.5 V, VCC = VIO = 0 V  
TXD Terminal (CAN Transmit Data Input)  
Devices with the "V" suffix (I/O level-shifting)  
Devices without the "V" suffix (5-V only)  
Devices with the "V" suffix (I/O level-shifting)  
Devices without the "V" suffix (5-V only)  
TXD = VCC = VIO = 5.5 V  
0.7 x VIO  
2
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
V
0.3 x VIO  
0.8  
1
IIH  
High-level input leakage current  
Low-level input leakage current  
Unpowered leakage current  
Input capacitance  
0
-25  
0
2.5  
100  
1  
IIL  
TXD = 0 V, VCC = VIO = 5.5 V  
µA  
pF  
7  
Ilkg(OFF)  
CI  
TXD = 5.5 V, VCC = VIO = 0 V  
1
VIN = 0.4 x sin(2 x πx 2 x 106 x t) + 2.5 V  
5
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
www.ti.com.cn  
MAX UNIT  
7.7 Electrical Characteristics (continued)  
Over recommended operating conditions with TA = 55°C to 125°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
RXD Terminal (Can Receive Data Output)  
Devices with the "V" suffix (I/O level-  
shifting), See 8-2,  
0.8 × VIO  
IO = 2 mA.  
VOH  
High-level output voltage  
Devices without the "V" suffix  
(5V only), See 8-2,  
IO = 2 mA.  
4
4.6  
V
Devices with the "V" suffix (I/O level-  
shifting), See 8-2, IO = +2 mA.  
0.2 x VIO  
VOL  
Low-level output voltage  
Devices without the "V" suffix (5-V only),  
See 8-2,  
0.2  
0
0.4  
IO = +2 mA.  
Ilkg(OFF)  
Unpowered leakage current  
RXD = 5.5 V, VCC = 0 V, VIO = 0 V  
1
µA  
1  
Driver Electrical Characteristics  
CANH  
CANL  
2.75  
0.5  
4.5  
See 8-1 and 9-3, TXD = 0 V, STB = 0  
V, 50 RL 65 ,  
CL = open, RCM = open  
Bus output voltage  
(dominant)  
VO(DOM)  
2.25  
See 8-1 and 9-3, TXD = VCC or VIO  
VIO = VCC, STB = 0 V ,  
RL = open (no load), RCM = open  
,
Bus output voltage  
(recessive)  
VO(REC)  
CANH and CANL  
2
0.5 × VCC  
3
CANH  
-0.1  
-0.1  
-0.2  
0
0
0
0.1  
0.1  
0.2  
Bus output voltage  
VO(STB)  
See 8-1 and 9-3, STB = VIO, RL  
open (no load), RCM = open  
=
CANL  
(Standby mode)  
V
CANH - CANL  
See 8-1 and 9-3, TXD = 0 V, STB = 0  
V, 45 RL < 50 ,  
1.4  
1.5  
3
3
CL = open, RCM = open  
Differential output  
VOD(DOM)  
See 8-1 and 9-3, TXD = 0 V, STB = 0  
V, 50 RL 65 ,  
CL = open, RCM = open  
CANH - CANL  
voltage (dominant)  
See 8-1 and 9-3, TXD = 0 V, STB = 0  
V, RL = 2240 , CL = open, RCM = open  
1.5  
5
See 8-1 and 9-3, TXD = VCC, STB = 0  
V, RL = 60 , CL = open, RCM = open  
12  
120  
Differential output  
VOD(REC)  
CANH - CANL  
mV  
See 8-1 and 9-3, TXD = VCC, STB = 0  
voltage (recessive)  
50  
V, RL = open (no load), CL = open, RCM  
open  
=
50  
See 8-1 and 10-2, STB at 0 V, Rterm  
60 , Csplit = 4.7 nF, CL = open,  
=
Output symmetry (dominant or recessive)  
( VO(CANH) + VO(CANL)) / VCC  
VSYM  
0.9  
0.4  
100  
1.1  
0.4  
V/V  
V
RCM = open, TXD = 250 kHz, 1 MHz  
DC Output symmetry (dominant or recessive)  
See 8-1 and 9-3, STB = 0 V,  
RL = 60 Ω, CL = open, RCM = open  
VSYM_DC  
(VCC VO(CANH) VO(CANL)  
)
See 9-3 and 8-7, STB at 0 V, VCANH  
-5 V to 40 V, CANL = open,  
TXD = 0 V  
=
=
Short-circuit steady-state output current,  
dominant, Normal mode  
IOS(SS_DOM)  
mA  
mA  
See 9-3 and 8-7, STB at 0 V, VCANL  
-5 V to 40 V, CANH = open,  
TXD = 0 V  
100  
5
See 9-3 and 8-7, STB at 0 V, 27 V  
VBUS 32 V,  
Where VBUS = CANH = CANL, TXD = VCC  
Short-circuit steady-state output current,  
recessive, Normal mode  
IOS(SS_REC)  
5  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
www.ti.com.cn  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
7.7 Electrical Characteristics (continued)  
Over recommended operating conditions with TA = 55°C to 125°C (unless otherwise noted).  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1)  
MAX UNIT  
Receiver Electrical Characteristics  
VCM  
VIT+  
Common mode range, Normal mode  
-30  
+30  
900  
V
See 8-2 and 8-1, STB = 0 V  
Positive-going input threshold voltage, Normal  
mode  
See 8-2, 9-5 and 8-1,  
STB = 0 V, -20 V VCM +20 V  
Negative-going input threshold voltage, Normal  
mode  
VIT–  
VIT+  
VIT–  
VHYS  
500  
400  
Positive-going input threshold voltage, Normal  
mode  
1000  
mV  
See 8-2, 9-5 and 8-1,  
STB = 0 V, -30 V VCM +30 V  
Negative-going input threshold voltage, Normal  
mode  
See 8-2, 9-5 and 8-1,  
STB = 0 V  
Hysteresis voltage (VIT+ - VIT), Normal mode  
120  
Devices with the "V" suffix (I/O level-  
shifting), See 8-2, 9-5 and 8-1, STB  
= VIO, 4.5 V VIO 5.5 V  
-12  
-2  
12  
Devices with the "V" suffix (I/O level-  
shifting), See 8-2, 9-5 and 8-1, STB  
= VIO, 3.0 V VIO 4.5 V  
VCM  
Common mode range, Standby mode  
Input threshold voltage, Standby mode  
V
+7  
12  
Devices without the "V" suffix (5V only), See  
8-2, 9-5 and 8-1, STB = VCC  
-12  
VIT(STANDBY)  
STB = VCC or VIO  
400  
1150  
4.8  
30  
mV  
µA  
ILKG(IOFF)  
CI  
Power-off (unpowered) bus input leakage current CANH = CANL = 5 V, VCC = VIO = 0 V  
Input capacitance to ground (CANH or CANL)  
Differential input capacitance (CANH to CANL)  
Differential input resistance  
TXD = VCC, VIO = VCC  
TXD = VCC, VIO = VCC  
24  
12  
pF  
CID  
15  
RID  
30  
15  
80  
TXD = VCC = VIO = 5 V, STB = 0 V,  
-30 V VCM +30 V  
kΩ  
RIN  
Input resistance (CANH or CANL)  
40  
Input resistance matching:  
[1 RIN(CANH) / RIN(CANL)] × 100%  
RIN(M)  
VCANH = VCANL = 5 V  
+2%  
2%  
(1) All typical values are at 25°C and supply voltages of VCC = 5 V and VIO = 5 V (if applicable), RL = 60 .  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
www.ti.com.cn  
7.8 Switching Characteristics  
Over recommended operating conditions with TA = -55°C to 125°C (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP(1) MAX UNIT  
Device Switching Characteristics  
Total loop delay, driver input (TXD) to receiver  
output (RXD), recessive to dominant  
tPROP(LOOP1)  
tPROP(LOOP2)  
100  
110  
9
160  
175  
See 8-4, STB = 0 V,  
RL = 60 ,  
ns  
Total loop delay, driver input (TXD) to receiver  
output (RXD), dominant to recessive  
CL = 100 pF, CL(RXD) = 15 pF  
Mode change time, from Normal to Standby or  
from Standby to Normal  
tMODE  
45 µs  
See 8-3  
tWK_FILTER  
Filter time for valid wake up pattern  
0.5  
1.85 µs  
Driver Switching Characteristics  
Propagation delay time, high TXD to driver  
tpHR  
75  
55  
recessive (dominant to recessive)  
Propagation delay time, low TXD to driver  
dominant (recessive to dominant)  
See 8-1, STB = 0 V,  
RL = 60 ,  
CL = 100 pF, RCM = open  
tpLD  
ns  
tsk(p)  
tR  
Pulse skew (|tpHR - tpLD|)  
20  
45  
45  
Differential output signal rise time  
Differential output signal fall time  
tF  
See 8-6, STB = 0 V,  
RL = 60 , CL = open  
tTXD_DTO  
Dominant timeout  
1.2  
3.8 ms  
Receiver Switching Characteristics  
Propagation delay time, bus recessive input to  
tpRH  
65  
50  
ns  
ns  
high output (Dominant to Recessive)  
Propagation delay time, bus dominant input to  
low output (Recessive to Dominant)  
See 8-2, STB = 0 V,  
CL(RXD) = 15 pF  
tpDL  
tR  
tF  
RXD Output signal rise time  
RXD Output signal fall time  
10  
10  
ns  
ns  
FD Timing Parameters  
Bit time on CAN bus output pins with tBIT(TXD)  
=
=
435  
155  
400  
120  
-65  
530  
210  
500 ns, all devices  
tBIT(BUS)  
tBIT(RXD)  
ΔtREC  
Bit time on CAN bus output pins with tBIT(TXD)  
200 ns, G device variants only  
Bit time on RXD output pins with tBIT(TXD)  
500 ns, all devices  
=
See 8-5 , STB = 0 V,  
RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF,  
550  
ns  
Bit time on RXD output pins with tBIT(TXD)  
200 ns, G device variants only  
=
220  
ΔtREC = tBIT(RXD) - tBIT(BUS)  
Receiver timing symmetry with tBIT(TXD) = 500  
ns, all devices  
40  
15  
Receiver timing symmetry with tBIT(TXD) = 200  
ns, G device variants only  
-45  
(1) All typical values are at 25°C and supply voltages of VCC = 5 V and VIO = 5 V (if applicable), RL = 60 Ω  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
 
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
www.ti.com.cn  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
7.9 Typical Characteristics  
3
2.5  
2
3
2.5  
2
1.5  
1
1.5  
1
0.5  
0.5  
0
0
4.5 4.6 4.7 4.8 4.9  
5
VCC (V)  
5.1 5.2 5.3 5.4 5.5  
-55  
-35  
-15  
5
25 45  
Temperature (°C)  
65  
85  
105 125  
D002  
D001  
VIO = 5 V  
STB = 0 V  
RCM = Open  
VCC = 5 V  
CL = Open  
VIO = 3.3 V  
RL = 60 Ω  
RL = 60 Ω  
CL = Open  
Temp = 25°C  
RCM = Open  
STB = 0 V  
7-2. VOD(D) over VCC  
7-1. VOD(D) over Temperature  
1.48  
150  
125  
100  
75  
1.47  
1.46  
1.45  
1.44  
1.43  
1.42  
1.41  
50  
25  
0
-55  
-55  
-35  
-15  
5
25 45  
Temperature (°C)  
65  
85  
105 125  
-35  
-15  
5
25 45  
Temperature (°C)  
65  
85  
105 125  
D003  
D004  
VCC = 5 V  
CL = Open  
VIO = 3.3 V  
RL = 60 Ω  
VCC = 5 V  
VIO = 3.3 V  
RL = 60 Ω  
RCM = Open  
STB = 0 V  
CL = 100 pF  
CL_RXD = 15 pF  
STB = 0 V  
7-3. ICC Recessive over Temperature  
7-4. Total Loop Delay over Temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
www.ti.com.cn  
8 Parameter Measurement Information  
RCM  
CANH  
VCC  
50%  
tpLD  
0.9V  
50%  
tpHR  
TXD  
TXD  
0V  
RL  
CL  
VOD  
VCM  
VO(CANH)  
90%  
10%  
CANL  
RCM  
VO(CANL)  
VOD  
0.5V  
tR  
tF  
Copyright © 2016, Texas Instruments Incorporated  
8-1. Driver Test Circuit and Measurement  
CANH  
1.5V  
0.9V  
VID  
IO  
RXD  
0.5V  
0V  
VID  
tpDL  
tpRH  
VOH  
VO  
CL_RXD  
CANL  
90%  
VO(RXD)  
50%  
10%  
VOL  
tF  
tR  
Copyright © 2016, Texas Instruments Incorporated  
8-2. Receiver Test Circuit and Measurement  
8-1. Receiver Differential Input Voltage Threshold Test  
INPUT (See Receiver Test Circuit and Measurement  
OUTPUT  
VCANH  
VCANL  
-30.5 V  
29.5 V  
|VID|  
1000 mV  
1000 mV  
900 mV  
900 mV  
500 mV  
500 mV  
400 mV  
400 mV  
X
RXD  
-29.5 V  
30.5 V  
L
L
VOL  
-19.55 V  
20.45 V  
-19.75 V  
20.25 V  
-29.8 V  
30.2 V  
-20.45 V  
19.55 V  
-20.25 V  
19.75 V  
-30.2 V  
29.8 V  
L
L
H
H
H
H
H
VOH  
Open  
Open  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
 
 
 
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
www.ti.com.cn  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
CANH  
CANL  
VIH  
TXD  
0V  
VI  
RL  
CL  
STB  
50%  
STB  
0V  
tMODE  
RXD  
VOH  
VO  
CL_RXD  
RXD  
50%  
VOL  
Copyright © 2016, Texas Instruments Incorporated  
8-3. tMODE Test Circuit and Measurement  
CANH  
VCC  
TXD  
STB  
VI  
CL  
RL  
50%  
TXD  
CANL  
0V  
0V  
tPROP(LOOP2)  
tPROP(LOOP1)  
RXD  
VOH  
VO  
CL_RXD  
50%  
RXD  
VOL  
Copyright © 2016, Texas Instruments Incorporated  
8-4. TPROP(LOOP) Test Circuit and Measurement  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
www.ti.com.cn  
VI  
70%  
TXD  
CANH  
30%  
30%  
0V  
900mV  
VOH  
TXD  
VI  
RL  
CL  
5 x tBIT  
tBIT(TXD)  
CANL  
tBIT(BUS)  
STB  
0V  
VDIFF  
RXD  
500mV  
VO  
CL_RXD  
70%  
RXD  
30%  
VOL  
tBIT(RXD)  
8-5. CAN FD Timing Parameter Measurement  
CANH  
RL  
VIH  
TXD  
TXD  
0V  
CL  
VOD  
VOD(D)  
CANL  
0.9V  
VOD  
0.5V  
0V  
tTXD_DTO  
Copyright © 2016, Texas Instruments Incorporated  
8-6. TXD Dominant Timeout Test Circuit and Measurement  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
www.ti.com.cn  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
200 s  
IOS  
CANH  
CANL  
TXD  
VBUS  
0V  
IOS  
VBUS  
VBUS  
or  
0V  
VBUS  
VBUS  
Copyright © 2016, Texas Instruments Incorporated  
8-7. Driver Short Circuit Current Test and Measurement  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
www.ti.com.cn  
9 Detailed Description  
9.1 Overview  
These CAN transceivers meet the ISO11898-2 (2016) High Speed CAN (Controller Area Network) physical layer  
standard. They are designed for data rates in excess of 1 Mbps for CAN FD and enhanced timing margin /  
higher data rates in long and highly-loaded networks. These devices provide many protection features to  
enhance device and CAN robustness.  
9.2 Functional Block Diagram  
VCC  
3
NC or VIO  
5
VCC or VIO  
7
6
CANH  
CANL  
TSD  
Dominant  
time-out  
TXD  
1
VCC or VIO  
STB  
8
Mode Select  
UVP  
VCC or VIO  
Logic Output  
MUX  
4
RXD  
WUP Monitor  
Low Power Receiver  
2
GND  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
 
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
www.ti.com.cn  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
9.3 Feature Description  
9.3.1 TXD Dominant Timeout (DTO)  
During normal mode (the only mode where the CAN driver is active), the TXD DTO circuit prevents the  
transceiver from blocking network communication in the event of a hardware or software failure where TXD is  
held dominant longer than the timeout period tTXD_DTO. The DTO circuit timer starts on a falling edge on TXD.  
The DTO circuit disables the CAN bus driver if no rising edge is seen before the timeout period expires. This  
frees the bus for communication between other nodes on the network. The CAN driver is re-activated when a  
recessive signal is seen on the TXD terminal, thus clearing the TXD DTO condition. The receiver and RXD  
terminal still reflect activity on the CAN bus, and the bus terminals are biased to the recessive level during a TXD  
dominant timeout.  
TXD fault stuck dominant: example PCB  
failure or bad software  
Fault is repaired & transmission  
capability restored  
TXD  
(driver)  
tTXD_DTO  
Driver disabled freeing bus for other nodes  
Bus would be —stuck dominant“ blocking communication for the  
whole network but TXD DTO prevents this and frees the bus for  
Normal CAN  
communication  
communication after the time tTXD_DTO  
.
CAN  
Bus  
Signal  
tTXD_DTO  
Communication from  
other bus node(s)  
Communication from  
repaired node  
RXD  
(receiver)  
Communication from  
other bus node(s)  
Communication from  
repaired local node  
Communication from  
local node  
9-1. Example Timing Diagram for TXD DTO  
备注  
The minimum dominant TXD time allowed by the TXD DTO circuit limits the minimum possible  
transmitted data rate of the device. The CAN protocol allows a maximum of eleven successive  
dominant bits (on TXD) for the worst case, where five successive dominant bits are followed  
immediately by an error frame. This, along with the tTXD_DTO minimum, limits the minimum data rate.  
Calculate the minimum transmitted data rate by: Minimum Data Rate = 11 / tTXD_DTO  
.
9.3.2 Thermal Shutdown (TSD)  
If the junction temperature of the device exceeds the thermal shutdown threshold (TTSD), the device turns off the  
CAN driver circuits thus blocking the TXD-to-bus transmission path. The CAN bus terminals are biased to the  
recessive level during a thermal shutdown, and the receiver-to-RXD path remains operational. The shutdown  
condition is cleared when the junction temperature drops at least the thermal shutdown hysteresis temperature  
(TTSD_HYS) below the thermal shutdown temperature (TTSD) of the device.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
www.ti.com.cn  
9.3.3 Undervoltage Lockout  
The supply terminals have undervoltage detection that places the device in protected mode. This protects the  
bus during an undervoltage event on either the VCC or VIO supply terminals.  
9-1. Undervoltage Lockout 5 V Only Devices (Devices without the "V" Suffix)  
VCC  
DEVICE STATE(1)  
BUS OUTPUT  
RXD  
> UVVCC  
< UVVCC  
Normal  
Per TXD  
Mirrors Bus(2)  
Protected  
High Impedance  
High Impedance  
(1) See the VIT section of the Electrical Characteristics.  
(2) Mirrors bus state: low if CAN bus is dominant, high if CAN bus is recessive.  
9-2. Undervoltage Lockout I/O Level Shifting Devices (Devices with the "V" Suffix)  
VCC  
VIO  
DEVICE STATE  
BUS OUTPUT  
RXD  
> UVVCC  
> UVVIO  
Normal  
Per TXD  
Mirrors Bus(1)  
STB = High: Standby Mode  
Recessive  
Bus Wake RXD Request(2)  
< UVVCC  
> UVVIO  
STB =Low: Protected  
Mode  
High Impedance  
High (Recessive)  
> UVVCC  
< UVVCC  
< UVVIO  
< UVVIO  
Protected  
Protected  
High Impedance  
High Impedance  
High Impedance  
High Impedance  
(1) Mirrors bus state: low if CAN bus is dominant, high if CAN bus is recessive.  
(2) Refer to 9.4.3.1  
备注  
After an undervoltage condition is cleared and the supplies have returned to valid levels, the device  
typically resumes normal operation within 50 µs.  
9.3.4 Unpowered Device  
The device is designed to be 'ideal passive' or 'no load' to the CAN bus if it is unpowered. The bus terminals  
(CANH, CANL) have extremely low leakage currents when the device is unpowered to avoid loading down the  
bus. This is critical if some nodes of the network are unpowered while the rest of the of network remains in  
operation. The logic terminals also have extremely low leakage currents when the device is unpowered to avoid  
loading down other circuits that may remain powered.  
9.3.5 Floating Terminals  
These devices have internal pull ups on critical terminals to place the device into known states if the terminals  
float. The TXD terminal is pulled up to VCC or VIO to force a recessive input level if the terminal floats. The STB  
terminal is also pulled up to force the device into low power Standby mode if the terminal floats.  
9.3.6 CAN Bus Short Circuit Current Limiting  
The device has two protection features that limit the short circuit current when a CAN bus line is short-circuit fault  
condition: driver current limiting (both dominant and recessive states) and TXD dominant state time out to  
prevent permanent higher short circuit current of the dominant state during a system fault. During CAN  
communication the bus switches between dominant and recessive states, thus the short circuit current may be  
viewed either as the instantaneous current during each bus state or as an average current of the two states. For  
system current (power supply) and power considerations in the termination resistors and common-mode choke  
ratings, use the average short circuit current. Determine the ratio of dominant and recessive bits by the data in  
the CAN frame plus the following factors of the protocol and PHY that force either recessive or dominant at  
certain times:  
Control fields with set bits  
Bit stuffing  
Interframe space  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
 
 
 
 
 
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
www.ti.com.cn  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
TXD dominant time out (fault case limiting)  
These ensure a minimum recessive amount of time on the bus even if the data field contains a high percentage  
of dominant bits. The short circuit current of the bus depends on the ratio of recessive to dominant bits and their  
respective short circuit currents. The average short circuit current may be calculated with the following formula:  
IOS(AVG) = %Transmit × [(%REC_Bits × IOS(SS)_REC) + (%DOM_Bits × IOS(SS)_DOM)] + [%Receive × IOS(SS)_REC  
]
(1)  
Where:  
IOS(AVG) is the average short circuit current  
%Transmit is the percentage the node is transmitting CAN messages  
%Receive is the percentage the node is receiving CAN messages  
%REC_Bits is the percentage of recessive bits in the transmitted CAN messages  
%DOM_Bits is the percentage of dominant bits in the transmitted CAN messages  
IOS(SS)_REC is the recessive steady state short circuit current  
IOS(SS)_DOM is the dominant steady state short circuit current  
备注  
Consider the short circuit current and possible fault cases of the network when sizing the power  
ratings of the termination resistance and other network components.  
9.3.7 Digital Inputs and Outputs  
9.3.7.1 Devices with VCC Only (Devices without the "V" Suffix):  
The 5-V VCC only devices are supplied by a single 5-V rail. The digital inputs have TTL input thresholds and are  
therefore 5 V and 3.3 V compatible. The RXD outputs on these devices are driven to the VCC rail for logic high  
output. Additionally, the TXD and STB pins are internally pulled up to VCC. The internal bias of the mode pins  
may only place the device into a known state if the terminals float, they may not be adequate for system-level  
biasing during transients or noisy environments.  
备注  
TXD pull up strength and CAN bit timing require special consideration when these devices are used  
with CAN controllers with an open-drain TXD output. An adequate external pull up resistor must be  
used to ensure that the CAN controller output of the microcontroller maintains adequate bit timing to  
the TXD input.  
9.3.7.2 Devices with VIO I/O Level Shifting (Devices with "V" Suffix):  
These devices use a 5 V VCC power supply for the CAN driver and high speed receiver blocks. These  
transceivers have a second power supply for I/O level-shifting (VIO). This supply is used to set the CMOS input  
thresholds of the TXD and pins and the RXD high level output voltage. Additionally, the internal pull ups on TXD  
and STB are pulled up to VIO.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
www.ti.com.cn  
9.4 Device Functional Modes  
The device has two main operating modes: Normal mode and Standby mode. Operating mode selection is made  
via the STB input terminal.  
9-3. Operating Modes  
STB Terminal  
LOW  
MODE  
DRIVER  
RECEIVER  
RXD Terminal  
Normal Mode  
Standby Mode  
Enabled (ON)  
Disabled (OFF)  
Enabled (ON)  
Mirrors Bus State(1)  
HIGH  
Disabled (OFF) (Low  
Power Bus Monitor is  
Active)  
High (Unless valid WUP  
has been received)  
(1) Mirrors bus state: low if CAN bus is dominant, high if CAN bus is recessive.  
9.4.1 CAN Bus States  
The CAN bus has two states during powered operation of the device: dominant and recessive. A dominant bus  
state is when the bus is driven differentially, corresponding to a logic low on the TXD and RXD terminal. A  
recessive bus state is when the bus is biased to VCC / 2 via the high-resistance internal input resistors RIN of the  
receiver, corresponding to a logic high on the TXD and RXD terminals.  
9-2. Bus States (Physical Bit Representation)  
9-3. Bias Unit (Recessive Common Mode Bias) and Receiver  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
 
 
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
www.ti.com.cn  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
9.4.2 Normal Mode  
Select the Normal mode of device operation by setting STB terminal low. The CAN driver and receiver are fully  
operational and CAN communication is bi-directional. The driver translates a digital input on TXD to a differential  
output on CANH and CANL. The receiver translates the differential signal from CANH and CANL to a digital  
output on RXD.  
9.4.3 Standby Mode  
Activate low power Standby mode by setting STB terminal high. In this mode the bus transmitter will not send  
data nor will the normal mode receiver accept data as the bus lines are biased to ground minimizing the system  
supply current. Only the low power receiver will be actively monitoring the bus for activity. RXD indicates a valid  
wake up event after a wake-up pattern (WUP) has been detected on the Bus. The low power receiver is powered  
using only the VIO pin. This allows VCC to be removed reducing power consumption further.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
www.ti.com.cn  
9.4.3.1 Remote Wake Request via Wake Up Pattern (WUP) in Standby Mode  
The TCAN1042 family offers a remote wake request feature that is used to indicate to the host microcontroller  
that the bus is active and the node should return to normal operation.  
These devices use the multiple filtered dominant wake up pattern (WUP) from the ISO11898-2 (2016) to qualify  
bus activity. Once a valid WUP has been received the wake request will be indicated to the microcontroller by a  
falling edge and low corresponding to a "filtered" dominant on the RXD output terminal.  
The WUP consists of a filtered dominant pulse, followed by a filtered recessive pulse, and finally by a second  
filtered dominant pulse. These filtered dominant, recessive, dominant pulses do not need to occur in immediate  
succession. There is no timeout that will occur between filtered bits of the WUP. Once a full WUP has been  
detected the device will continue to drive the RXD output low every time an additional filtered dominant signal is  
received from the bus.  
For a dominant or recessive signal to be considered "filtered", the bus must continually remain in that state for  
more than tWK_FILTER. Due to variability in the tWK_FILTER, the following three scenarios can exist:  
1. Bus signals that last less than tWK_FILTER(MIN) will never be detected as part of a valid WUP  
2. Bus signals that last more than tWK_FILTER(MIN) but less than tWK_FILTER(MAX) may be detected as part of a  
valid WUP  
3. Bus signals that last more than tWK_FILTER(MAX) will always be detected as part of a valid WUP  
Once the first filtered dominant signal is received, the device is now waiting on a filtered recessive signal, other  
bus traffic will not reset the bus monitor. Once the filtered recessive signal is received, the monitor is now waiting  
on a second filtered dominant signal, and again other bus traffic will not reset the monitor. After reception of the  
full WUP, the device will transition to driving the RXD output pin low for the remainder of any dominant signal that  
remains on the bus for longer than tWK_FILTER  
.
Bus Wake via  
RXD Request  
Wake Up Pattern (WUP)  
Filtered  
Dominant  
Filtered  
Dominant  
Filtered  
Recessive  
Waiting for  
Filtered  
Dominant  
Waiting for  
Filtered  
Recessive  
Bus  
Bus VDiff  
RXD  
tWK_FILTER  
tWK_FILTER  
tWK_FILTER  
tWK_FILTER  
Filtered Dominant RXD Output  
Bus Wake Via  
RXD Requests  
9-4. Wake Up Pattern (WUP)  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
www.ti.com.cn  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
9.4.4 Driver and Receiver Function Tables  
9-4. Driver Function Table  
INPUTS  
OUTPUTS  
DEVICE  
DRIVEN BUS STATE  
CANL(1)  
STB (1)  
L
TXD(1) (2)  
CANH(1)  
L
H or Open  
X
H
Z
Z
L
Z
Z
Dominant  
Recessive  
Recessive  
All Devices  
H or Open  
(1) H = high level, L = low level, X = irrelevant, Z = common mode (recessive) bias to VCC / 2. See CAN Bus States for bus state and  
common mode bias information.  
(2) Devices have an internal pull up to VCC or VIO on TXD terminal. If the TXD terminal is open, the terminal is pulled high and the  
transmitter remain in recessive (non-driven) state.  
9-5. Receiver Function Table  
CAN DIFFERENTIAL INPUTS  
DEVICE MODE  
BUS STATE  
RXD TERMINAL(1)  
VID = VCANH VCANL  
Dominant  
?
L(2)  
VID VIT+(MAX)  
(2)  
VIT-(MIN) < VID < VIT+(MAX)  
VID VIT-(MIN)  
?
Normal  
Recessive  
Open  
H(2)  
H
Open (VID 0 V)  
(1) H = high level, L = low level, ? = indeterminate.  
(2) See Receiver Electrical Characteristics section for input thresholds.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
 
 
 
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
www.ti.com.cn  
10 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
10.1 Application Information  
These CAN transceivers are typically used in applications with a host microprocessor or FPGA that includes the  
data link layer portion of the CAN protocol. Below are typical application configurations for both 5 V and 3.3 V  
microprocessor applications. The bus termination is shown for illustrative purposes.  
10.2 Typical Applications  
Node n  
(with termination)  
Node 1  
Node 2  
Node 3  
MCU or DSP  
MCU or DSP  
MCU or DSP  
MCU or DSP  
CAN  
Controller  
CAN  
Controller  
CAN  
Controller  
CAN  
Controller  
CAN  
Transceiver  
CAN  
Transceiver  
CAN  
Transceiver  
CAN  
Transceiver  
RTERM  
RTERM  
10-1. Typical CAN Bus Application  
10.2.1 Design Requirements  
10.2.1.1 Bus Loading, Length and Number of Nodes  
The ISO 11898-2 Standard specifies a maximum bus length of 40 m and maximum stub length of 0.3 m.  
However, with careful design, users can have longer cables, longer stub lengths, and many more nodes to a  
bus. A large number of nodes requires transceivers with high input impedance such as the TCAN1042 family of  
transceivers.  
Many CAN organizations and standards have scaled the use of CAN for applications outside the original ISO  
11898-2. They have made system-level trade-offs for data rate, cable length, and parasitic loading of the bus.  
Examples of some of these specifications are ARINC825, CANopen, DeviceNet and NMEA2000.  
The TCAN1042 family is specified to meet the 1.5 V requirement with a 50load, incorporating the worst case  
including parallel transceivers. The differential input resistance of the TCAN1042 family is a minimum of 30 k. If  
100 TCAN1042 family transceivers are in parallel on a bus, this is equivalent to a 300differential load worst  
case. That transceiver load of 300 in parallel with the 60gives an equivalent loading of 50 . Therefore, the  
TCAN1042 family theoretically supports up to 100 transceivers on a single bus segment. However, for CAN  
network design margin must be given for signal loss across the system and cabling, parasitic loadings, network  
imbalances, ground offsets and signal integrity thus a practical maximum number of nodes is typically much  
lower. Bus length may also be extended beyond the original ISO 11898 standard of 40 m by careful system  
design and data rate tradeoffs. For example, CANopen network design guidelines allow the network to be up to  
1 km with changes in the termination resistance, cabling, less than 64 nodes and significantly lowered data rate.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
 
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
www.ti.com.cn  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
This flexibility in CAN network design is one of the key strengths of the various extensions and additional  
standards that have been built on the original ISO 11898-2 CAN standard. In using this flexibility comes the  
responsibility of good network design and balancing these tradeoffs.  
10.2.2 Detailed Design Procedures  
10.2.2.1 CAN Termination  
The ISO 11898 standard specifies the interconnect to be a twisted pair cable (shielded or unshielded) with 120-  
Ω characteristic impedance (ZO). Resistors equal to the characteristic impedance of the line should be used to  
terminate both ends of the cable to prevent signal reflections. Unterminated drop lines (stubs) connecting nodes  
to the bus should be kept as short as possible to minimize signal reflections. The termination may be on the  
cable or in a node, but if nodes may be removed from the bus, the termination must be carefully placed so that  
two terminations always exist on the network.  
Termination may be a single 120-Ω resistor at the end of the bus, either on the cable or in a terminating node. If  
filtering and stabilization of the common mode voltage of the bus is desired, then split termination may be used.  
(See 10-2). Split termination improves the electromagnetic emissions behavior of the network by eliminating  
fluctuations in the bus common-mode voltages at the start and end of message transmissions.  
Standard Termination  
Split Termination  
CANH  
CANH  
RTERM/2  
CAN  
Transceiver  
CAN  
Transceiver  
RTERM  
CSPLIT  
RTERM/2  
CANL  
CANL  
Copyright © 2016, Texas Instruments Incorporated  
10-2. CAN Bus Termination Concepts  
The family of transceivers have variants for both 5-V only applications and applications where level shifting is  
needed for a 3.3-V microcontroller.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
www.ti.com.cn  
10-3. Typical CAN Bus Application Using 5V CAN Controller  
10-4. Typical CAN Bus Application Using 3.3 V CAN Controller  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
www.ti.com.cn  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
10.2.3 Application Curves  
50  
40  
30  
20  
10  
0
4.5 4.6 4.7 4.8 4.9  
5
VCC (V)  
5.1 5.2 5.3 5.4 5.5  
D005  
VCC = 4.5 V to 5.5 V  
CL = Open  
VIO = 3.3 V  
Temp = 25°C  
RL = 60 Ω  
STB = 0 V  
10-5. ICC Dominant Current over VCC Supply Voltage  
11 Power Supply Recommendations  
These devices are designed to operate from a VCC input supply voltage range between 4.5 V and 5.5 V. Some  
devices have an output level shifting supply input, VIO, designed for a range between 3 V and 5.5 V. Both supply  
inputs must be well regulated. A bulk capacitance, typically 4.7 μF, should be placed near the CAN transceiver's  
main VCC supply output, and in addition a bypass capacitor, typically 0.1 μF, should be placed as close to the  
device VCC and VIO supply terminals. This helps to reduce supply voltage ripple present on the outputs of the  
switched-mode power supplies and also helps to compensate for the resistance and inductance of the PCB  
power planes and traces.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
www.ti.com.cn  
Layout  
Robust and reliable bus node design often requires the use of external transient protection device in order to  
protect against EFT and surge transients that may occur in industrial environments. Because ESD and transients  
have a wide frequency bandwidth from approximately 3 MHz to 3 GHz, high-frequency layout techniques must  
be applied during PCB design. The family comes with high on-chip IEC ESD protection, but if higher levels of  
system level immunity are desired external TVS diodes can be used. TVS diodes and bus filtering capacitors  
should be placed as close to the on-board connectors as possible to prevent noisy transient events from  
propagating further into the PCB and system.  
12.1 Layout Guidelines  
Place the protection and filtering circuitry as close to the bus connector, J1, to prevent transients, ESD and  
noise from propagating onto the board. In this layout example a transient voltage suppression (TVS) device,  
D1, has been used for added protection. The production solution can be either bi-directional TVS diode or  
varistor with ratings matching the application requirements. This example also shows optional bus filter  
capacitors C4 and C5. Additionally (not shown) a series common mode choke (CMC) can be placed on the  
CANH and CANL lines between the transceiver U1 and connector J1.  
Design the bus protection components in the direction of the signal path. Do not force the transient current to  
divert from the signal path to reach the protection device.  
Use supply (VCC) and ground planes to provide low inductance.  
备注  
High-frequency currents follows the path of least impedance and not the path of least resistance.  
Use at least two vias for supply (VCC) and ground connections of bypass capacitors and protection devices to  
minimize trace and via inductance.  
Bypass and bulk capacitors should be placed as close as possible to the supply terminals of transceiver,  
examples are C1, C2 on the VCC supply and C6 and C7 on the VIO supply.  
Bus termination: this layout example shows split termination. This is where the termination is split into two  
resistors, R6 and R7, with the center or split tap of the termination connected to ground via capacitor C3. Split  
termination provides common mode filtering for the bus. When bus termination is placed on the board instead  
of directly on the bus, additional care must be taken to ensure the terminating node is not removed from the  
bus thus also removing the termination. See the application section for information on power ratings needed  
for the termination resistor(s).  
To limit current of digital lines, serial resistors may be used. Examples are R2, R3, and R4. These are not  
required.  
Terminal 1: R1 is shown optionally for the TXD input of the device. If an open drain host processor is used,  
this is mandatory to ensure the bit timing into the device is met.  
Terminal 5: For "V" variants of the family, bypass capacitors should be placed as close to the pin as possible  
(example C6 and C7). For device options without VIO I/O level shifting, this pin is not internally connected and  
can be left floating or tied to any existing net, for example a split pin connection.  
Terminal 8: is shown assuming the mode terminal, STB, will be used. If the device will only be used in normal  
mode, R4 is not needed and R5 could be used for the pull down resistor to GND.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
www.ti.com.cn  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
12.2 Layout Example  
STB  
VCC or VIO  
TXD  
GND  
R1  
R2  
1
2
3
4
8
7
6
5
GND  
R6  
R7  
GND  
C3  
U1  
VCC  
GND  
VIO  
RXD  
R3  
GND  
12-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
TCAN1042H, TCAN1042HG  
TCAN1042HGV, TCAN1042HV  
ZHCSEK9D MARCH 2016 REVISED OCTOBER 2021  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TCAN1042H TCAN1042HG TCAN1042HGV TCAN1042HV  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TCAN1042HD  
LIFEBUY  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
75  
RoHS & Green  
NIPDAU  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-55 to 125  
-55 to 125  
1042  
1042  
TCAN1042HDR  
2500 RoHS & Green  
Samples  
TCAN1042HGD  
LIFEBUY  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
75  
RoHS & Green  
NIPDAU  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-55 to 125  
-55 to 125  
1042  
1042  
TCAN1042HGDR  
2500 RoHS & Green  
Samples  
Samples  
Samples  
TCAN1042HGVD  
TCAN1042HGVDR  
ACTIVE  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
75  
RoHS & Green  
NIPDAU  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-55 to 125  
-55 to 125  
1042V  
1042V  
2500 RoHS & Green  
TCAN1042HVD  
LIFEBUY  
ACTIVE  
SOIC  
SOIC  
D
D
8
8
75  
RoHS & Green  
NIPDAU  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-55 to 125  
-55 to 125  
1042V  
1042V  
TCAN1042HVDR  
2500 RoHS & Green  
Samples  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
17-Jun-2023  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
OTHER QUALIFIED VERSIONS OF TCAN1042H, TCAN1042HG, TCAN1042HGV, TCAN1042HV :  
Automotive : TCAN1042H-Q1, TCAN1042HG-Q1, TCAN1042HGV-Q1, TCAN1042HV-Q1  
NOTE: Qualified Version Definitions:  
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Jul-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TCAN1042HDR  
TCAN1042HGDR  
TCAN1042HGVDR  
TCAN1042HGVDR  
TCAN1042HVDR  
TCAN1042HVDR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
D
8
8
8
8
8
8
2500  
2500  
2500  
2500  
2500  
2500  
330.0  
330.0  
330.0  
330.0  
330.0  
330.0  
12.4  
12.4  
12.4  
12.5  
12.5  
12.4  
6.4  
6.4  
6.4  
6.4  
6.4  
6.4  
5.2  
5.2  
5.2  
5.2  
5.2  
5.2  
2.1  
2.1  
2.1  
2.1  
2.1  
2.1  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
12.0  
12.0  
Q1  
Q1  
Q1  
Q1  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Jul-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TCAN1042HDR  
TCAN1042HGDR  
TCAN1042HGVDR  
TCAN1042HGVDR  
TCAN1042HVDR  
TCAN1042HVDR  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
SOIC  
D
D
D
D
D
D
8
8
8
8
8
8
2500  
2500  
2500  
2500  
2500  
2500  
356.0  
356.0  
356.0  
340.5  
340.5  
356.0  
356.0  
356.0  
356.0  
336.1  
336.1  
356.0  
35.0  
35.0  
35.0  
25.0  
25.0  
35.0  
Pack Materials-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
22-Jul-2023  
TUBE  
T - Tube  
height  
L - Tube length  
W - Tube  
width  
B - Alignment groove width  
*All dimensions are nominal  
Device  
Package Name Package Type  
Pins  
SPQ  
L (mm)  
W (mm)  
T (µm)  
B (mm)  
TCAN1042HD  
TCAN1042HGD  
TCAN1042HGVD  
TCAN1042HVD  
D
D
D
D
SOIC  
SOIC  
SOIC  
SOIC  
8
8
8
8
75  
75  
75  
75  
507  
507  
507  
507  
8
8
8
8
3940  
3940  
3940  
3940  
4.32  
4.32  
4.32  
4.32  
Pack Materials-Page 3  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TCAN1042HGDQ1

具有灵活数据速率的汽车类故障保护 CAN 收发器 | D | 8 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1042HGDR

具有灵活数据速率的故障保护 CAN 收发器 | D | 8 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1042HGDRBRQ1

具有灵活数据速率的汽车类故障保护 CAN 收发器 | DRB | 8 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1042HGDRBTQ1

具有灵活数据速率的汽车类故障保护 CAN 收发器 | DRB | 8 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1042HGDRQ1

具有灵活数据速率的汽车类故障保护 CAN 收发器 | D | 8 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1042HGV

具有灵活数据速率的故障保护 CAN 收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1042HGV-Q1

具有灵活数据速率的汽车类故障保护 CAN 收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1042HGVD

具有灵活数据速率的故障保护 CAN 收发器 | D | 8 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1042HGVDQ1

具有灵活数据速率的汽车类故障保护 CAN 收发器 | D | 8 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1042HGVDR

具有灵活数据速率的故障保护 CAN 收发器 | D | 8 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1042HGVDRBRQ1

具有灵活数据速率的汽车类故障保护 CAN 收发器 | DRB | 8 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1042HGVDRBTQ1

具有灵活数据速率的汽车类故障保护 CAN 收发器 | DRB | 8 | -55 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI