TCAN1046DMTRQ1 [TI]

汽车类高速双路 CAN 收发器 | DMT | 14 | -40 to 125;
TCAN1046DMTRQ1
型号: TCAN1046DMTRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

汽车类高速双路 CAN 收发器 | DMT | 14 | -40 to 125

文件: 总35页 (文件大小:2311K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
具有待机模式和  
故障保护功能TCAN1046-Q1 汽车类双CAN FD 收发器  
1 特性  
3 说明  
TCAN1046-Q1 (TCAN1046) 是一款双路高速控制器局  
域网 (CAN) 收发器满足 ISO 11898-2:2016 高速  
CAN 规范对物理层的要求。  
AEC-Q100 标准符合汽车应用要求  
– 温度等140°C 125°C TA  
• 两个具有模式控制功能的独立高CAN FD 收发器  
• 符ISO 11898-2:2016 ISO 11898-5:2007 物理  
层标准中的要求  
• 支持传CAN 和经优化CAN FD 性能数据速  
25 8Mbps)  
– 具有较短的对称传播延迟时间可增加时序裕量  
– 在负载CAN 网络中实现更快的数据速率  
I/O 电压范围支1.7V 5.5V  
TCAN1046 支持传统 CAN CAN FD 网络数据速  
率高达 8 兆位/(Mbps)。该器件具有两个带独立电  
VCC1 VCC2 模式控制引脚STB1 和  
STB2CAN FD 通道使每个 CAN 通道能够真正  
独立地运行。在需要冗余或额外 CAN FD 通道作为系  
统发生故障时的备份的应用中能够独立操作每个通道  
的能力非常重要。  
– 支1.8V2.5V3.3V 5V 应用  
• 保护特性:  
TCAN1046 包括许多保护和诊断功能其中包括热关  
(TSD)TXD 驱动器显性超时 (DTO) 和高达 ±58V  
的总线故障保护。  
– 总线故障保护±58V  
– 欠压保护  
TXD 显性超(DTO)  
器件信息  
封装(1)  
VSON (DMT) (14)  
SOIC (D) (14)  
封装尺寸标称值)  
4.50mm x 3.00mm  
8.95mm x 3.91mm  
器件型号  
• 数据速率低9.2kbps  
– 热关断保(TSD)  
• 工作模式:  
TCAN1046-Q1  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
– 正常模式  
– 支持远程唤醒请求功能的低功耗待机模式  
• 优化了未上电时的性能  
– 总线和逻辑引脚为高阻抗运行总线或应用上无  
负载)  
– 支持热插拔在总线RXD 输出上可实现上电/  
断电无干扰运行  
• 结温范围40°C 150°C  
• 接收器共模输入电压±12V  
• 采SOIC (14) 封装和无引线VSON (14) 封装  
(4.5mm x 3.0mm)具有改进的自动光学检(AOI)  
功能  
2 应用  
• 汽车和运输  
车身控制模块  
汽车网关  
高级驾驶辅助系(ADAS)  
信息娱乐系统  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSF18  
 
 
 
 
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
Table of Contents  
8.2 Functional Block Diagram.........................................14  
8.3 Feature Description...................................................15  
8.4 Device Functional Modes..........................................18  
9 Application and Implementation..................................22  
9.1 Application Information............................................. 22  
9.2 Typical Application.................................................... 22  
10 Power Supply Recommendations..............................24  
11 Layout...........................................................................25  
11.1 Layout Guidelines................................................... 25  
11.2 Layout Example...................................................... 25  
12 Device and Documentation Support..........................26  
12.1 接收文档更新通知................................................... 26  
12.2 支持资源..................................................................26  
12.3 Trademarks.............................................................26  
12.4 Electrostatic Discharge Caution..............................26  
12.5 术语表..................................................................... 26  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
Pin Functions.................................................................... 3  
6 Specifications.................................................................. 4  
6.1 Absolute Maximum Ratings........................................ 4  
6.2 ESD Ratings............................................................... 4  
6.3 Recommended Operating Conditions.........................4  
6.4 Thermal Characteristics..............................................4  
6.5 Supply Characteristics................................................ 5  
6.6 Dissipation Ratings..................................................... 5  
6.7 Electrical Characteristics.............................................5  
6.8 Switching Characteristics............................................7  
6.9 Typical Characteristics................................................9  
7 Parameter Measurement Information..........................10  
8 Detailed Description......................................................13  
8.1 Overview...................................................................13  
Information.................................................................... 26  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (March 2020) to Revision A (September 2020)  
Page  
• 首次公开发布数据表........................................................................................................................................... 1  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TCAN1046-Q1  
 
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
5 Pin Configuration and Functions  
TXD1  
GND1  
VCC1  
RXD1  
TXD2  
GND2  
VCC2  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
STB1  
TXD1  
GND1  
VCC1  
RXD1  
TXD2  
GND2  
VCC2  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
STB1  
CANH1  
CANL1  
STB2  
CANH1  
CANL1  
STB2  
Thermal  
Pad  
CANH2  
CANL2  
RXD2  
CANH2  
CANL2  
RXD2  
8
8
Not to scale  
Not to scale  
5-1. D Package TCAN1046-Q1, 14 Pin SOIC, Top  
View  
5-2. DMT Package TCAN1046-Q1, 14 Pin VSON,  
Top View  
Pin Functions  
Pins  
Type  
Description  
Name  
TXD1  
GND1  
VCC1  
No.  
1
Digital Input CAN transmit data input 1, integrated pull-up  
2
GND1  
Ground connection, transceiver 1  
5-V supply voltage, transceiver 1  
3
Supply  
RXD1  
TXD2  
GND2  
VCC2  
4
Digital Output CAN receive data output 1, tri-state when VCC < UVVCC  
Digital Input CAN transmit data input 2, integrated pull-up  
5
6
GND2  
Ground connection, transceiver 2  
5-V supply voltage, transceiver 2  
7
Supply  
RXD2  
CANL2  
CANH2  
STB2  
8
Digital Output CAN receive data output 2, tri-state when VCC < UVVCC  
9
Bus IO  
Bus IO  
Low-level CAN bus 2 input/output line  
High-level CAN bus 2 input/output line  
10  
11  
12  
13  
14  
Digital Input Standby input 2 for mode control, integrated pull-up  
CANL1  
CANH1  
STB1  
Bus IO  
Bus IO  
Low-level CAN bus 1 input/output line  
High-level CAN bus 1 input/output line  
Digital Input Standby input 1 for mode control, integrated pull-up  
Electrically connected to GND, connect the thermal pad to the printed circuit board (PCB)  
ground plane for thermal relief  
Thermal Pad (VSON only)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TCAN1046-Q1  
 
 
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1) (2)  
MIN  
-0.3  
MAX  
6
UNIT  
V
VCC1, VCC2  
VBUS  
Supply voltage  
CAN Bus IO voltage CANH1, CANL1 & CANH2, CANL2  
Max differential voltage between CANH1, CANL1 & CANH2, CANL2  
Logic input terminal voltage  
58  
45  
6
V
58  
45  
0.3  
0.3  
8  
VDIFF  
V
VLogic_Input  
VRXD  
IO(RXD)  
TJ  
V
RXD output terminal voltage range (VRXD1, VRXD2  
)
6
V
RXD output current (IORXD1, IORXD2  
)
8
mA  
°C  
°C  
Operating virtual junction temperature range  
Storage temperature  
150  
150  
40  
65  
TSTG  
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under  
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
(2) All voltage values, except differential IO bus voltages, are with respect to ground terminal.  
6.2 ESD Ratings  
VALUE  
UNIT  
HBM classification level 3A for  
all pins  
±3000  
V
Human-body model (HBM), per AEC Q100-002(1)  
HBM classification level 3B for  
global pins CANH & CANL  
VESD  
Electrostatic discharge  
±10000  
±750  
V
V
Charged-device model (CDM), per AEC Q100-011  
CDM classification level C5 for all pins  
(1) AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
6.3 Recommended Operating Conditions  
MIN  
4.5  
NOM  
MAX  
UNIT  
V
VCC1, VCC2  
IOH(RXD)  
IOL(RXD)  
TA  
Supply voltage  
5
5.5  
mA  
mA  
RXD terminal high level output current IOH(RXD1) & IOH(RXD2)  
RXD terminal low level output current IOL(RXD1) & IOL(RXD2)  
Operating ambient temperature  
2  
2
125  
40  
6.4 Thermal Characteristics  
TCAN1046-Q1  
THERMAL METRIC(1)  
UNIT  
D (SOIC)  
DMT (VSON)  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
70.6  
33.4  
34.0  
5.0  
35.5  
38.1  
13.4  
1.9  
/W  
/W  
/W  
/W  
/W  
/W  
RθJC(top)  
RθJB  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJT  
32.6  
13.4  
3.5  
ΨJB  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TCAN1046-Q1  
 
 
 
 
 
 
 
 
 
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
6.5 Supply Characteristics  
Over recommended operating conditions with TA = -40to 125(unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TXD = 0 V, STB = 0 V, RL = 60 , CL  
=
=
open  
45  
70  
mA  
See 7-1  
Dominant  
TXD = 0 V, STB = 0 V, RL = 50 , CL  
open  
49  
80  
mA  
Supply current  
Normal mode  
Per transceiver  
See 7-1  
ICC  
TXD = VCC, STB = 0 V, RL = 50 , CL  
open  
See 7-1  
=
Recessive  
4.5  
7.5  
130  
mA  
mA  
µA  
TXD = 0 V, STB = 0 V, CANH = CANL =  
±25 V, RL = open, CL = open  
See 7-1  
Dominant with  
bus fault  
Supply current  
Standby mode  
Per transceiver  
TXD = STB = VCC, RL = 50 , CL = open  
See 7-1  
ICC  
14.5  
UVVCC  
UVVCC  
Rising under voltage detection on VCC for protected mode  
Falling under voltage detection on VCC for protected mode  
4.2  
4
4.4  
V
V
3.5  
4.25  
6.6 Dissipation Ratings  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VCC = 5 V, TJ= 27°C, RL = 60Ω, TXD input =  
250 kHz 50% duty cycle squarewave, CL_RXD  
15 pF  
110  
mW  
=
=
=
VCC = 5 V, TJ= 27°C, RL = 60Ω, TXD input =  
250 kHz 50% duty cycle squarewave, CL_RXD  
15 pF  
110  
110  
120  
120  
120  
mW  
mW  
mW  
mW  
VCC = 5 V, TJ= 27°C, RL = 60Ω, TXD input =  
250 kHz 50% duty cycle squarewave, CL_RXD  
15 pF  
Average power dissipation  
PD  
Normal mode  
VCC = 5.5 V, TA= 125°C, RL = 60Ω, TXD input =  
2.5 MHz 50% duty cycle squarewave, CL_RXD  
15 pF  
Per transceiver  
=
VCC = 5.5 V, TA= 125°C, RL = 60Ω, TXD input =  
2.5 MHz 50% duty cycle squarewave, CL_RXD  
15 pF  
=
VCC = 5.5 V, TA= 125°C, RL = 60Ω, TXD input =  
2.5 MHz 50% duty cycle squarewave, CL_RXD  
15 pF  
mW  
°C  
=
TTSD  
Thermal shutdown temperature(1)  
170  
192  
10  
205  
TTSD_HYS Thermal shutdown hysteresis  
(1) Specified by design  
6.7 Electrical Characteristics  
Over recommended operating conditions with TA = -40to 125(unless otherwise noted); CAN electrical parameters apply  
to both channels  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Driver Electrical Characteristics  
CANH  
CANL  
2.75  
0.5  
4.5  
V
V
TXD = 0 V, STB = 0 V , 50 RL 65  
, CL = open, RCM = open  
See 7-2 and 8-3,  
Dominant output voltage  
Normal mode  
VO(DOM)  
2.25  
TXD = VCC, STB = 0 V , RL = open (no  
load), RCM = open  
See 7-2 and 8-3  
Recessive output voltage  
Normal mode  
VO(REC)  
CANH and CANL  
2
0.5 VCC  
3
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TCAN1046-Q1  
 
 
 
 
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
6.7 Electrical Characteristics (continued)  
Over recommended operating conditions with TA = -40to 125(unless otherwise noted); CAN electrical parameters apply  
to both channels  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
STB = 0 V , RL = 60 , CSPLIT = 4.7 nF, CL  
= open, RCM = open, TXD = 250 kHz, 1  
MHz, 2.5 MHz  
Driver symmetry  
(VO(CANH) + VO(CANL))/VCC  
VSYM  
0.9  
1.1 V/V  
See 7-2 and 9-2  
DC output symmetry  
(VCC - VO(CANH) - VO(CANL)  
STB = 0 V , RL = 60 , CL = open  
See 7-2 and 8-3  
VSYM_DC  
400 mV  
400  
)
TXD = 0 V, STB = 0 V , 50 RL 65  
, CL = open  
See 7-2 and 8-3  
1.5  
3
3.3  
5
V
V
V
Differential output voltage  
Normal mode  
TXD = 0 V, STB = 0 V , 45 RL 70  
, CL = open  
See 7-2 and 8-3  
VOD(DOM)  
CANH - CANL  
1.4  
1.5  
Dominant  
TXD = 0 V, STB = 0 V , RL = 2240 , CL  
open  
=
See 7-2 and 8-3  
TXD = VCC, STB = 0 V , RL = 60 , CL  
open  
See 7-2 and 8-3  
=
=
12 mV  
50 mV  
120  
50  
Differential output voltage  
Normal mode  
Recessive  
VOD(REC)  
CANH - CANL  
TXD = VCC, STB = 0 V , RL = open, CL  
open  
See 7-2 and 8-3  
CANH  
-0.1  
-0.1  
-0.2  
0.1  
0.1  
0.2  
V
V
V
STB = VCC , RL = open (no load)  
See 7-2 and 8-3  
Bus output voltage  
Standby mode  
VO(STB)  
CANL  
CANH - CANL  
STB = 0 V , V(CANH) = -15 V to 40 V, CANL  
= open, TXD = 0 V  
See 7-7 and 8-3  
mA  
115  
Short-circuit steady-state output current,  
dominant  
Normal mode  
IOS(SS_DOM)  
STB = 0 V , V(CAN_L) = -15 V to 40 V,  
CANH = open, TXD = 0 V  
See 7-7 and 8-3  
115 mA  
Short-circuit steady-state output current,  
recessive  
Normal mode  
STB = 0 V , 27 V VBUS 32 V,  
where VBUS = CANH = CANL, TXD = VCC  
See 7-7 and 8-3  
IOS(SS_REC)  
5
mA  
5  
Receiver Electrical Characteristics  
Input threshold voltage  
Normal mode  
STB = 0 V , -12 V VCM 12 V  
See 7-3, 7-3, and 8-5  
VIT  
500  
400  
0.9  
-4  
900 mV  
STB = VCC  
See 8-5  
Input threshold  
VIT(STB)  
1150 mV  
Standby mode  
Dominant state differential input voltage range  
Normal mode  
STB = 0 V , -12 V VCM 12 V  
See 7-3, and 8-5  
VDOM  
9
0.5  
9
V
V
Recessive state differential input voltage range  
Normal mode  
STB = 0 V , -12 V VCM 12 V  
See 7-3, and 8-5  
VREC  
Dominant state differential input voltage range  
Standby mode  
STB = VCC , -12 V VCM 12 V  
See 8-5  
VDOM(STB)  
VREC(STB)  
VHYS  
1.15  
-4  
V
Recessive state differential input voltage range  
Standby mode  
STB = VCC , -12 V VCM 12 V  
See 8-5  
0.4  
V
Hysteresis voltage for input threshold  
Normal mode  
STB = 0 V , -12 V VCM 12 V  
See 7-3, and 8-5  
100  
mV  
Common mode range  
Normal and standby modes  
VCM  
12  
5
V
See 7-3 and 8-5  
12  
ILKG(OFF)  
CI  
Unpowered bus input leakage current  
Input capacitance to ground (CANH or CANL)  
Differential input capacitance  
CANH = CANL = 5 V, VCC = GND  
µA  
20 pF  
10 pF  
TXD = VCC  
CID  
RID  
Differential input resistance  
40  
20  
90  
45  
kΩ  
kΩ  
TXD = VCC, STB = 0 V , -12 V VCM  
12 V  
Single ended input resistance  
(CANH or CANL)  
RIN  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TCAN1046-Q1  
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
6.7 Electrical Characteristics (continued)  
Over recommended operating conditions with TA = -40to 125(unless otherwise noted); CAN electrical parameters apply  
to both channels  
PARAMETER  
TEST CONDITIONS  
V(CAN_H) = V(CAN_L) = 5 V  
MIN  
TYP  
MAX UNIT  
Input resistance matching  
[1 (RIN(CANH) / RIN(CANL))] × 100 %  
RIN(M)  
1
%
1  
TXD Terminal (CAN Transmit Data Input)  
VIH  
VIL  
High-level input voltage  
0.7 VCC  
V
Low-level input voltage  
0.3 VCC  
V
IIH  
High-level input leakage current  
Low-level input leakage current  
Unpowered leakage current  
Input Capacitance  
TXD = VCC = 5.5 V  
0
-100  
0
1
20  
1
µA  
µA  
µA  
pF  
2.5  
200  
1  
IIL  
TXD = 0 V, VCC = 5.5 V  
TXD = 5.5 V, VCC = 0 V  
VIN = 0.4×sin(2×π×2×106×t)+2.5 V  
ILKG(OFF)  
CI  
5
RXD Terminal (CAN Receive Data Output)  
IO = 2 mA,  
See 7-3  
VOH  
High-level output voltage  
0.8 VCC  
V
IO = +2 mA,  
See 7-3  
VOL  
Low-level output voltage  
0.2 VCC  
1
V
ILKG(OFF)  
Unpowered leakage current  
RXD = 5.5 V, VCC = 0 V  
0
µA  
1  
STB Terminal (Standby Mode Input)  
VIH  
High-level input voltage  
0.7 VCC  
V
VIL  
Low-level input voltage  
0.3 VCC  
V
IIH  
High-level input leakage current  
Low-level input leakage current  
Unpowered leakage current  
VCC = STB = 5.5 V  
2
2  
1
µA  
µA  
µA  
2  
20  
1  
IIL  
VCC = 5.5 V, STB = 0 V  
STB = 5.5V, VCC = 0 V  
ILKG(OFF)  
0
6.8 Switching Characteristics  
Over recommended operating conditions with TA = -40to 125(unless otherwise noted); Timing parameters apply to both  
CAN channels  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Device Switching Characteristics  
Normal mode, RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF  
See 7-4  
Total loop delay, driver input (TXD) to receiver  
output (RXD), recessive to dominant  
tPROP(LOOP1)  
125  
150  
210  
ns  
Normal mode, RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF  
See 7-4  
Total loop delay, driver input (TXD) to receiver  
output (RXD), dominant to recessive  
tPROP(LOOP2)  
210  
20  
ns  
µs  
Mode change time, from normal to standby or from  
standby to normal  
tMODE  
See 7-5  
tWK_FILTER  
Filter time for a valid wake-up pattern  
Bus wake-up timeout  
0.5  
0.8  
1.8  
6
µs  
See 8-5  
See 8-5  
tWK_TIMEOUT  
ms  
Driver Switching Characteristics  
Propagation delay time, high TXD to driver  
tpHR  
tpLD  
35  
20  
80  
70  
115  
120  
ns  
ns  
recessive (dominant to recessive)(1)  
Propagation delay time, low TXD to driver dominant  
(recessive to dominant)(1)  
STB = 0 V , RL = 60 , CL = 100 pF  
See 7-2 and 7-6  
tsk(p)  
Pulse skew (|tpHR - tpLD|)  
Differential output signal rise time  
Differential output signal fall time  
Dominant timeout  
20  
30  
50  
ns  
ns  
ns  
ms  
tR  
tF  
tTXD_DTO  
1.2  
4.0  
Receiver Switching Characteristics  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TCAN1046-Q1  
 
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
6.8 Switching Characteristics (continued)  
Over recommended operating conditions with TA = -40to 125(unless otherwise noted); Timing parameters apply to both  
CAN channels  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Propagation delay time, bus recessive input to high  
output (dominant to recessive)(1)  
tpRH  
tpDL  
40  
90  
150  
ns  
Propagation delay time, bus dominant input to low  
output (recessive to dominant)(1)  
STB = 0 V , CL(RXD) = 15 pF  
See 7-3  
35  
65  
140  
ns  
tR  
tF  
RXD output signal rise time  
RXD output signal fall time  
10  
10  
ns  
ns  
(1)FD Timing Characteristics  
Bit time on CAN bus output pins  
tBIT(TXD) = 500 ns  
tBIT(BUS)  
tBIT(BUS)  
tBIT(RXD)  
tBIT(RXD)  
ΔtREC  
460  
160  
445  
145  
-35  
510  
210  
515  
215  
15  
ns  
ns  
ns  
ns  
ns  
ns  
Bit time on CAN bus output pins  
tBIT(TXD) = 200 ns  
Bit time on RXD output pins  
tBIT(TXD) = 500 ns  
STB = 0 V, RL = 60 , CL = 100 pF,  
CL(RXD) = 15 pF  
ΔtREC = tBIT(RXD) - tBIT(BUS)  
See 7-4  
Bit time on RXD output pins  
tBIT(TXD) = 200 ns  
Receiver timing symmetry  
tBIT(TXD) = 500 ns  
Receiver timing symmetry  
tBIT(TXD) = 200 ns  
-35  
15  
ΔtREC  
(1) Specified by design and characterization  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TCAN1046-Q1  
 
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
6.9 Typical Characteristics  
4
3.5  
3
3
2.5  
2
2.5  
2
1.5  
1
1.5  
1
0.5  
0
0.5  
TRX1  
TRX2  
TRX1  
TRX2  
0
4.5  
4.6  
4.7  
4.8  
4.9  
5
5.1  
5.2  
5.3  
5.4  
5.5  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
125  
VCC (V)  
Temperature (èC)  
TCAN  
TCAN  
备注  
备注  
Temp = 25°C  
VCC = 5 V  
RL = 60 Ω  
RL = 60 Ω  
6-2. VOD(DOM) vs VCC Transceiver 1 and  
6-1. VOD(DOM) vs Temperature Transceiver 1 and  
Transceiver 2  
Transceiver 2  
4
3.5  
3
16  
14  
12  
10  
8
2.5  
2
1.5  
1
6
4
0.5  
2
TRX1  
TRX2  
0
TRX1  
TRX2  
0
45  
52  
59  
66  
73  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110  
125  
RL (W)  
Temperature (èC)  
TCAN  
TCAN  
备注  
备注  
VCC = 5 V  
Temp = 25°C  
VCC = 5 V  
RL = 60 Ω  
6-3. VOD(DOM) vs Load Transceiver 1 and  
6-4. ICC Standby vs Temperature Transceiver 1  
Transceiver 2  
and Transceiver 2  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TCAN1046-Q1  
 
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
7 Parameter Measurement Information  
CANH  
TXD  
RL  
CL  
CANL  
7-1. ICC Test Circuit  
RCM  
CANH  
50%  
50%  
TXD  
TXD  
RL  
CL  
VOD  
VCM  
VCC  
VO(CANH)  
tpLD  
tpHR  
90%  
10%  
0V  
CANL  
RCM  
0.9V  
VO(CANL)  
VOD  
0.5V  
tR  
tF  
7-2. Driver Test Circuit and Measurement  
CANH  
1.5V  
0.9V  
VID  
IO  
RXD  
0.5V  
0V  
VID  
tpDL  
tpRH  
VOH  
VO  
CL_RXD  
CANL  
90%  
VO(RXD)  
50%  
10%  
VOL  
tF  
tR  
7-3. Receiver Test Circuit and Measurement  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TCAN1046-Q1  
 
 
 
 
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
7-1. Receiver Differential Input Voltage Threshold Test  
Output  
Input (See 7-3)  
VCANH  
-11.5 V  
12.5 V  
-8.55 V  
9.45 V  
-8.75 V  
9.25 V  
-11.8 V  
12.2 V  
Open  
VCANL  
|VID|  
1000 mV  
1000 mV  
900 mV  
900 mV  
500 mV  
500 mV  
400 mV  
400 mV  
X
RXD  
-12.5 V  
11.5 V  
Low  
VOL  
-9.45 V  
8.55 V  
-9.25 V  
8.75 V  
-12.2 V  
11.8 V  
High  
VOH  
Open  
TXD  
VI  
70%  
tLOOP2  
30%  
30%  
CANH  
0V  
TXD  
VI  
5 x tBIT(TXD)  
tBIT(TXD)  
RL  
CL  
CANL  
STB  
0V  
tBIT(BUS)  
900mV  
500mV  
RXD  
VDIFF  
VO  
CL_RXD  
RXD  
VOH  
70%  
30%  
tBIT(RXD)  
VOL  
tLOOP1  
7-4. Transmitter and Receiver Timing Test Circuit and Measurement  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TCAN1046-Q1  
 
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
CANH  
VIH  
TXD  
0V  
CL  
RL  
STB  
50%  
CANL  
STB  
VI  
0V  
tMODE  
RXD  
VOH  
VO  
CL_RXD  
RXD  
50%  
VOL  
7-5. tMODE Test Circuit and Measurement  
VIH  
CANH  
TXD  
TXD  
0V  
RL  
CL  
VOD  
VOD(D)  
CANL  
0.9V  
VOD  
0.5V  
0V  
tTXD_DTO  
7-6. TXD Dominant Timeout Test Circuit and Measurement  
200 s  
IOS  
CANH  
TXD  
VBUS  
IOS  
CANL  
VBUS  
VBUS  
0V  
or  
0V  
VBUS  
VBUS  
7-7. Driver Short-Circuit Current Test and Measurement  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TCAN1046-Q1  
 
 
 
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TCAN1046 meets or exceeds the specifications of the ISO 11898-2:2016 high speed CAN (Controller Area  
Network) physical layer standard. The device has been certified to the requirements of ISO 11898-2:2016 and  
ISO 11898-5:2007 physical layer requirements according to the GIFT/ICT high speed CAN test specification.  
The transceiver provides a number of different protection features making it ideal for the stringent automotive  
system requirements while also supporting CAN FD data rates up to 8 Mbps.  
The TCAN1046 conforms to the following CAN standards:  
CAN transceiver physical layer standards:  
ISO 11898-2:2016 High speed medium access unit  
ISO 11898-5:2007 High speed medium access unit with low-power mode  
SAE J2284-1: High Speed CAN (HSC) for Vehicle Applications at 125 kbps  
SAE J2284-2: High Speed CAN (HSC) for Vehicle Applications at 250 kbps  
SAE J2284-3: High Speed CAN (HSC) for Vehicle Applications at 500 kbps  
SAE J2284-4: High-Speed CAN (HSC) for Vehicle Applications at 500 kbps with CAN FD Data at 2 Mbps  
SAE J2284-5: High-Speed CAN (HSC) for Vehicle Applications at 500 kbps with CAN FD Data at 5 Mbps  
ARINC 825-4 General Standardization of CAN (Controller Area Network) Bus Protocol For Airborne Use  
Conformance test requirements:  
ISO 16845-2 Road vehicles Controller area network (CAN) conformance test plan Part 2: High-speed  
medium access unit conformance test plan  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TCAN1046-Q1  
 
 
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
8.2 Functional Block Diagram  
8-1. Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TCAN1046-Q1  
 
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 Pin Description  
8.3.1.1 TXD1 and TXD2  
TXD1 and TXD2 are the logic-level input signals, referenced to VCC, from a CAN controller to the TCAN1046.  
8.3.1.2 GND1 and GND2  
GND1 and GND2 are ground pins of the transceiver, both must be connected to the PCB ground.  
8.3.1.3 VCC1 and VCC2  
VCC1 and VCC2 provide the 5-V nominal power supply input to their respective CAN transceiver.  
8.3.1.4 RXD1 and RXD2  
RXD1 and RXD2 are the logic-level output signals from the TCAN1046 to a CAN controller.  
8.3.1.5 CANH1, CANL1, CANH2, and CANL1  
These are the CAN high and CAN low differential bus pins. These pins are connected to the CAN transceiver  
and the low-voltage WUP CAN receiver.  
8.3.1.6 STB1 and STB2 (Standby)  
The STB1 and STB2 are input pins used for mode control of the TCAN1046. STB1 and STB2 can be supplied  
from either the system processor or from a static system voltage source. If normal mode is the only intended  
mode of operation than the STB pins can be tied directly to GND.  
8.3.2 CAN Bus States  
The CAN bus has two logical states during operation: recessive and dominant. See 8-2 and 8-3.  
A dominant bus state occurs when the bus is driven differentially and corresponds to a logic low on the TXD1,  
TXD2, RXD1 and RXD2 pins. A recessive bus state occurs when the bus is biased to VCC/2 via the high-  
resistance internal input resistors RIN) of the receiver and corresponds to a logic high on the TXD1, TXD2, RXD1  
and RXD2 pins.  
A dominant state overwrites the recessive state during arbitration. Multiple CAN nodes may be transmitting a  
dominant bit at the same time during arbitration, and in this case the differential voltage of the bus is greater than  
the differential voltage of a single driver.  
The TCAN1046 transceiver implements a low-power standby (STB) mode which enables a third bus state where  
the bus pins are weakly biased to ground via the high resistance internal resistors of the receiver. See 8-2 and  
8-3.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TCAN1046-Q1  
 
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
Normal Mode  
Standby Mode  
CANH  
VDIFF  
VDIFF  
CANL  
Recessive  
Dominant  
Recessive  
Time, t  
8-2. Bus States  
CANH  
2.5V  
GND  
A
B
RXD  
Bias  
Unit  
CANL  
A. Normal Mode  
B. Standby Mode  
8-3. Simplified Recessive Common Mode Bias Unit and Receiver  
8.3.3 TXD Dominant Timeout (DTO)  
During normal mode, the only mode where the CAN driver is active, the TXD DTO circuit prevents the local node  
from blocking network communication in the event of a hardware or software failure where TXD is held dominant  
longer than the timeout period tTXD_DTO. The TXD DTO circuit is triggered by a falling edge on TXD. If no rising  
edge is seen before the timeout period of the circuit, tTXD_DTO, the CAN driver is disabled. This frees the bus for  
communication between other nodes on the network. The CAN driver is reactivated when a recessive signal is  
seen on the TXD pin, thus clearing the dominant timeout. The receiver remains active and biased to VCC/2 and  
the RXD output reflects the activity on the CAN bus during the TXD DTO fault.  
The minimum dominant TXD time allowed by the TXD DTO circuit limits the minimum possible transmitted data  
rate of the device. The CAN protocol allows a maximum of eleven successive dominant bits (on TXD) for the  
worst case, where five successive dominant bits are followed immediately by an error frame. The minimum  
transmitted data rate may be calculated using 方程1.  
Minimum Data Rate = 11 bits / tTXD_DTO = 11 bits / 1.2 ms = 9.2 kbps  
(1)  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TCAN1046-Q1  
 
 
 
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
Fault is repaired & transmission capability  
restored  
TXD fault stuck dominant: example PCB failure or bad software  
tTXD_DTO  
TXD (driver)  
Driver disabled freeing bus for other nodes  
Normal CAN communication  
Bus would be —stuck dominant“ blocking communication for the whole network but TXD DTO  
prevents this and frees the bus for communication after the time tTXD_DTO  
.
CAN Bus Signal  
tTXD_DTO  
Communication from other bus node(s)  
Communication from repaired node  
RXD (receiver)  
Communication from local node  
Communication from other bus node(s)  
Communication from repaired local node  
8-4. Example Timing Diagram for TXD Dominant Timeout  
8.3.4 CAN Bus Short Circuit Current Limiting  
The TCAN1046 has several protection features that limit the short circuit current when a CAN bus line is shorted.  
These include CAN driver current limiting in the dominant and recessive states and TXD dominant state timeout  
which prevents permanently having the higher short circuit current of a dominant state in case of a system fault.  
During CAN communication the bus switches between the dominant and recessive states, thus the short circuit  
current may be viewed as either the current during each bus state or as a DC average current. When selecting  
termination resistors or a common mode choke for the CAN design the average power rating, IOS(AVG), should be  
used. The percentage dominant is limited by the TXD DTO and the CAN protocol which has forced state  
changes and recessive bits due to bit stuffing, control fields, and interframe space. These ensure there is a  
minimum amount of recessive time on the bus even if the data field contains a high percentage of dominant bits.  
The average short circuit current of the bus depends on the ratio of recessive to dominant bits and their  
respective short circuit currents. The average short circuit current may be calculated using 方程2.  
IOS(AVG) = % Transmit x [(% REC_Bits x IOS(SS)_REC) + (% DOM_Bits x IOS(SS)_DOM)] + [% Receive x IOS(SS)_REC  
]
(2)  
Where:  
IOS(AVG) is the average short circuit current  
% Transmit is the percentage the node is transmitting CAN messages  
% Receive is the percentage the node is receiving CAN messages  
% REC_Bits is the percentage of recessive bits in the transmitted CAN messages  
% DOM_Bits is the percentage of dominant bits in the transmitted CAN messages  
IOS(SS)_REC is the recessive steady state short circuit current  
IOS(SS)_DOM is the dominant steady state short circuit current  
This short circuit current and the possible fault cases of the network should be taken into consideration when  
sizing the power supply used to generate the transceivers VCC supply.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TCAN1046-Q1  
 
 
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
8.3.5 Thermal Shutdown (TSD)  
If the junction temperature of the TCAN1046 exceeds the thermal shutdown threshold, TTSD, the device turns off  
the CAN driver circuitry and blocks the TXD to bus transmission path. The shutdown condition is cleared when  
the junction temperature of the device drops below TTSD. The CAN bus pins are biased to VCC/2 during a TSD  
fault and the receiver to RXD path remains operational. The TCAN1046 TSD circuit includes hysteresis which  
prevents the CAN driver output from oscillating during a TSD fault.  
8.3.6 Undervoltage Lockout  
The supply pin, VCC, has undervoltage detection that places the TCAN1046 into a protected state. This protects  
the bus during an undervoltage event on either supply pin.  
8-1. Undervoltage Lockout  
VCC  
DEVICE STATE  
BUS  
RXD PIN  
> UVVCC  
Normal  
Per TXD  
Mirrors bus  
High impedance  
< UVVCC  
Protected  
High impedance  
Weak pull-down to ground(1)  
(1) VCC = GND, see ILKG(OFF) in Electrical Characteristics  
Once the undervoltage condition is cleared and tMODE has expired the TCAN1046 transitions to normal mode  
and the host controller can send and receive CAN traffic again.  
8.3.7 Unpowered Device  
The TCAN1046 is designed to be an ideal passive or no load to the CAN bus if the device is unpowered. The  
bus pins were designed to have low leakage currents when the device is unpowered, so they do not load the  
bus. This is critical if some nodes of the network are unpowered while the rest of the of network remains  
operational.  
The logic pins also have low leakage currents when the device is unpowered, so they do not load other circuits  
which may remain powered.  
8.3.8 Floating pins  
The TCAN1046 has internal pull-ups on critical pins which place the device into known states if the pin floats.  
This internal bias should not be relied upon by design though, especially in noisy environments, but instead  
should be considered a failsafe protection feature.  
When a CAN controller supporting open-drain outputs is used an adequate external pull-up resistor must be  
chosen. This ensures that the TXD output of the CAN controller maintains acceptable bit time to the input of the  
CAN transceiver. See 8-2 for details on pin bias conditions.  
8-2. Pin Bias  
Pin  
Pull-up or Pull-down  
Comment  
Weakly biases TXD1 and TXD2 towards recessive to prevent bus  
blockage or TXD DTO triggering  
TXD1 and TXD2  
Pull-up  
Weakly biases STB1 and STB2 towards low-power standby mode to  
prevent excessive system power  
STB1 and STB2  
Pull-up  
8.4 Device Functional Modes  
8.4.1 Operating Modes  
The TCAN1046 has two main operating modes; normal mode and standby mode. Operating mode selection is  
made by applying a high or low level to the STB1 and STB2 pins on the TCAN1046-Q1 device.  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TCAN1046-Q1  
 
 
 
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
8-3. Operating Modes  
STB  
High  
Low  
Device Mode  
Driver  
Receiver  
RXD Pin  
High (recessive) until valid WUP  
is received  
Low current standby mode with  
bus wake-up  
Low-power receiver and bus  
Disabled  
Enabled  
monitor enable  
Enabled  
See section 8.3.3.1  
Normal Mode  
Mirrors bus state  
8.4.2 Normal Mode  
This is the normal operating mode of the TCAN1046. The CAN driver and receiver are fully operational and CAN  
communication is bi-directional. The driver is translating a digital input on the TXD1 and TXD2 inputs to a  
differential output on the CANH1, CANL1 and CANH2, CANL2 bus pins. The receiver is translating the  
differential signal from CANH1, CANL1 and CANH2, CANL2 to a digital output on the RXD1 and RXD2 outputs.  
8.4.3 Standby Mode  
This is the low-power mode of the TCAN1046. The CAN driver and main receiver are switched off and bi-  
directional CAN communication is not possible. The low-power receiver and bus monitor circuits are enabled to  
allow for RXD wake-up requests via the CAN bus. A wake-up request is output to RXD1 or RXD2 depending on  
the channel which received the WUP as shown in 8-5. The local CAN protocol controller should monitor RXD  
for transitions (high-to-low) and reactivate the device to normal mode by pulling the STB1 and STB2 pin low. The  
CAN bus pins are weakly pulled to GND in this mode; see 8-2 and 8-3.  
8.4.3.1 Remote Wake Request via Wake-Up Pattern (WUP) in Standby Mode  
The TCAN1046 supports a remote wake-up request on both CAN channels that is used to indicate to the host  
controller that the bus is active and the node should return to normal operation.  
The device uses the multiple filtered dominant wake-up pattern (WUP) from the ISO 11898-2:2016 standard to  
qualify bus activity. Once a valid WUP has been received, the wake request is indicated to the controller by a  
falling edge and low period corresponding to a filtered dominant on the RXD1 or RXD2 output of the TCAN1046.  
The WUP consists of a filtered dominant pulse, followed by a filtered recessive pulse, and finally by a second  
filtered dominant pulse. The first filtered dominant initiates the WUP, and the bus monitor then waits on a filtered  
recessive; other bus traffic does not reset the bus monitor. Once a filtered recessive is received the bus monitor  
is waiting for a filtered dominant and again, other bus traffic does not reset the bus monitor. Immediately upon  
reception of the second filtered dominant the bus monitor recognizes the WUP and drives the RXD1 or RXD2  
output low every time an additional filtered dominant signal is received from the bus.  
For a dominant or recessive to be considered filtered, the bus must be in that state for more than the tWK_FILTER  
time. Due to variability in tWK_FILTER the following scenarios are applicable. Bus state times less than  
tWK_FILTER(MIN) are never detected as part of a WUP and thus no wake request is generated. Bus state times  
between tWK_FILTER(MIN) and tWK_FILTER(MAX) may be detected as part of a WUP and a wake-up request may be  
generated. Bus state times greater than tWK_FILTER(MAX) are always detected as part of a WUP, and thus a wake  
request is always generated. See 8-5 for the timing diagram of the wake-up pattern.  
The pattern and tWK_FILTER time used for the WUP prevents noise and bus stuck dominant faults from causing  
false wake-up requests while allowing any valid message to initiate a wake-up request.  
The ISO 11898-2:2016 standard has defined times for a short and long wake-up filter time. The tWK_FILTER timing  
for the device has been picked to be within the minimum and maximum values of both filter ranges. This timing  
has been chosen such that a single bit time at 500 kbps, or two back-to-back bit times at 1 Mbps triggers the  
filter in either bus state. Any CAN frame at 500 kbps or less would contain a valid WUP.  
For an additional layer of robustness and to prevent false wake-ups, the device implements a wake-up timeout  
feature. For a remote wake-up event to successfully occur, the entire WUP must be received within the timeout  
value t tWK_TIMEOUT. If not, the internal logic is reset and the transceiver remains in its current state without  
waking up. The full pattern must then be transmitted again, conforming to the constraints mentioned in this  
section. See 8-5 for the timing diagram of the wake-up pattern with wake timeout feature.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TCAN1046-Q1  
 
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
Bus Wake via RXD  
Request  
Wake-Up Pattern (WUP) received in t < tWK_Timeout  
Filtered  
Dominant  
Filtered  
Dominant  
Filtered  
Recessive  
Waiting for  
Filtered  
Waiting for  
Filtered  
Dominant  
Recessive  
Bus  
Bus VDiff  
RXD  
tWK_FILTER  
tWK_FILTER  
tWK_FILTER  
tWK_FILTER  
Filtered Dominant RXD Output  
Bus Wake Via RXD Requests  
8-5. Wake-Up Pattern (WUP) with tWK_TIMEOUT  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TCAN1046-Q1  
 
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
8.4.4 Driver and Receiver Function  
The digital logic input and output levels for the TCAN1046 are CMOS levels with respect to VCC and are  
compatibility with protocol controllers having 5 V I/O levels.  
8-4. Driver Function Table  
Bus Outputs  
Device Mode  
TXD Input  
Driven Bus State(2)  
CANH  
High  
CANL  
Low  
Low  
High or open  
X(1)  
Dominant  
Normal  
High impedance  
High impedance  
High impedance  
High impedance  
Biased recessive(3)  
Standby  
Weak pull-down to ground(3)  
(1) X = irrelevant  
(2) For bus state and bias see 8-2 and 8-3  
(3) See RIN in Electrical Characteristics  
8-5. Receiver Function Table Normal and Standby Mode  
CAN Differential Inputs  
VID = VCANH VCANL  
Device Mode  
Bus State  
RXD Pin  
Dominant  
Undefined  
Recessive  
Dominant  
Undefined  
Recessive  
Open  
Low  
Undefined  
High  
VID 0.9 V  
0.5 V < VID < 0.9 V  
VID 0.5 V  
Normal  
High  
Low if a remote wake event  
occurred  
VID 1.15 V  
Standby  
Any  
0.4 V < VID < 1.15 V  
VID 0.4 V  
See 8-5  
High  
Open (VID 0 V)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TCAN1046-Q1  
 
 
 
 
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
9.1 Application Information  
9.2 Typical Application  
The TCAN1046 transceiver can be used in applications with a host controller or FPGA that includes the link layer  
portion of the CAN protocol. 9-1 shows a typical configuration for 5 V controller applications. The bus  
termination is shown for illustrative purposes.  
9-1. Transceiver Application Using 5 V I/O Connections  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TCAN1046-Q1  
 
 
 
 
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
9.2.1 Design Requirements  
9.2.1.1 CAN Termination  
Termination may be a single 120-Ω resistor at each end of the bus, either on the cable or in a terminating node.  
If filtering and stabilization of the common-mode voltage of the bus is desired then split termination may be used,  
see 9-2. Split termination improves the electromagnetic emissions behavior of the network by filtering higher-  
frequency common-mode noise that may be present on the differential signal lines.  
Standard Termination  
Split Termination  
CANH  
CANH  
RTERM/2  
RTERM  
TCAN Transceiver  
TCAN Transceiver  
CSPLIT  
RTERM/2  
CANL  
CANL  
9-2. CAN Bus Termination Concepts  
9.2.2 Detailed Design Procedures  
9.2.2.1 Bus Loading, Length and Number of Nodes  
A typical CAN application may have a maximum bus length of 40 meters and maximum stub length of 0.3 m.  
However, with careful design, users can have longer cables, longer stub lengths, and many more nodes to a  
bus. A high number of nodes requires a transceiver with high input impedance such as the TCAN1046.  
Many CAN organizations and standards have scaled the use of CAN for applications outside the original ISO  
11898-2 standard. They made system level trade off decisions for data rate, cable length, and parasitic loading  
of the bus. Examples of these CAN systems level specifications are ARINC 825, CANopen, DeviceNet, SAE  
J2284, SAE J1939, and NMEA 2000.  
A CAN network system design is a series of tradeoffs. In the ISO 11898-2:2016 specification the driver  
differential output is specified with a bus load that can range from 50 Ω to 65 Ω where the differential output  
must be greater than 1.5 V. The TCAN1046 is specified to meet the 1.5 V requirement down to 50 Ω and is  
specified to meet 1.4 V differential output at 45Ω bus load. The differential input resistance of the TCAN1046 is  
a minimum of 40 kΩ. If 100 TCAN1046 transceivers are in parallel on a bus, this is equivalent to a 400-Ω  
differential load in parallel with the nominal 60 Ω bus termination which gives a total bus load of approximately  
52 Ω. Therefore, the TCAN1046 theoretically supports over 100 transceivers on a single bus segment. However,  
for a CAN network design margin must be given for signal loss across the system and cabling, parasitic  
loadings, timing, network imbalances, ground offsets and signal integrity thus a practical maximum number of  
nodes is often lower. Bus length may also be extended beyond 40 meters by careful system design and data  
rate tradeoffs. For example, CANopen network design guidelines allow the network to be up to 1 km with  
changes in the termination resistance, cabling, less than 64 nodes and significantly lowered data rate.  
This flexibility in CAN network design is one of the key strengths of the various extensions and additional  
standards that have been built on the original ISO 11898-2 CAN standard. However, when using this flexibility,  
the CAN network system designer must take the responsibility of good network design to ensure robust network  
operation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TCAN1046-Q1  
 
 
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
Node 1  
Node 2  
Node 3  
Node n  
(with termination)  
System Controller  
System Controller  
System Controller  
System Controller  
CAN FD  
Controller  
CAN FD  
Controller  
CAN FD  
Controller  
CAN FD  
Controller  
TCAN1046-Q1  
TCAN1046-Q1  
TCAN1044-Q1  
TCAN1046V-Q1  
RTERM  
RTERM  
9-3. Typical CAN Bus  
9.2.3 Application Curves  
VCC = 5 V  
VCC = 5 V  
RL = 60 Ω  
RL = 60 Ω  
9-4. tPROP(LOOP1) Transceiver 1 & Transceiver 2  
9-5. tPROP(LOOP2) Transceiver 1 & Transceiver 2  
10 Power Supply Recommendations  
The TCAN1046 dual transceiver is designed to operate with a main VCC1 and VCC2 input voltage supply range  
between 4.5 V and 5.5 V. The VCC supply inputs must be well regulated. A decoupling capacitor, typically 100 nF,  
should be placed near the CAN transceiver's main VCC1 and VCC2 supply pins.  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TCAN1046-Q1  
 
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
11 Layout  
Robust and reliable CAN node design may require special layout techniques depending on the application and  
automotive design requirements. Since transient disturbances have high frequency content and a wide  
bandwidth, high-frequency layout techniques should be applied during PCB design.  
11.1 Layout Guidelines  
Place the protection and filtering circuitry close to the bus connector, J1, to prevent transients, ESD, and  
noise from propagating onto the board. This layout example shows optional transient voltage suppression  
(TVS) diodes, D1 and D2, which may be implemented if the system-level requirements exceed the specified  
rating of the transceiver. This example also shows optional bus filter capacitors C4, C5, C6, and C8.  
Design the bus protection components in the direction of the signal path. Do not force the transient current to  
divert from the signal path to reach the protection device.  
Decoupling capacitors should be placed as close as possible to the supply pins VCC1 and VCC2 of the  
transceiver.  
Use at least two vias for supply and ground connections of bypass capacitors and protection devices to  
minimize trace and via inductance.  
备注  
High frequency current follows the path of least impedance and not the path of least resistance.  
This layout example shows how split termination could be implemented on the CAN node. The termination is  
split into two pairs of resistors, R7, R8, R9, and R10, with the center or split tap of the termination connected  
to ground via capacitors C3 and C7. Split termination provides common mode filtering for the bus. See 节  
9.2.1.1, 8.3.4, and 方程2 for information on termination concepts and power ratings needed for the  
termination resistor(s).  
11.2 Layout Example  
C4  
L1(optional)  
R3  
R7  
R8  
STB1  
R1  
TXD1  
GND1  
VCC1  
C3  
GND  
D1  
CANH1  
R4  
GND  
VCC1  
C1  
CANL1  
R2  
C5  
C6  
RXD1  
TXD2  
GND2  
VCC2  
STB2  
J1  
CANH2  
CANL2  
L2(optional)  
R5  
R9  
GND  
VCC2  
C7  
GND  
C2  
D2  
RXD2  
R6  
R10  
C8  
Not to scale  
11-1. Layout Example  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TCAN1046-Q1  
 
 
 
TCAN1046-Q1  
ZHCSLW4A MARCH 2020 REVISED SEPTEMBER 2020  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.2 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.3 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.4 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.5 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TCAN1046-Q1  
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Sep-2021  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TCAN1046DMTRQ1  
ACTIVE  
VSON  
DMT  
14  
3000 RoHS & Green  
NIPDAU | SN  
Level-2-260C-1 YEAR  
-40 to 125  
1046  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
GENERIC PACKAGE VIEW  
DMT 14  
3 x 4.5, 0.65 mm pitch  
VSON - 0.9 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225088/A  
www.ti.com  
PACKAGE OUTLINE  
DMT0014A  
VSON - 0.9 mm max height  
SCALE 3.200  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
A
B
PIN 1 INDEX AREA  
4.6  
4.4  
0.1 MIN  
(0.05)  
SECTION A-A  
SCALE 30.000  
SECTION A-A  
TYPICAL  
C
0.9 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.6 0.1  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
7
8
A
A
2X  
3.9  
15  
SYMM  
4.2 0.1  
14  
1
12X 0.65  
0.35  
0.25  
14X  
0.45  
0.35  
14X  
PIN 1 ID  
0.1  
C A B  
C
(OPTIONAL)  
0.05  
4223033/B 10/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DMT0014A  
VSON - 0.9 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.6)  
14X (0.6)  
14X (0.3)  
SYMM  
1
14  
2X  
(1.85)  
12X (0.65)  
SYMM  
15  
(4.2)  
(0.69)  
TYP  
(
0.2) VIA  
TYP  
8
7
(R0.05) TYP  
(0.55) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223033/B 10/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DMT0014A  
VSON - 0.9 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.47)  
15  
14X (0.6)  
1
14  
14X (0.3)  
(1.18)  
12X (0.65)  
SYMM  
(1.38)  
(R0.05) TYP  
METAL  
TYP  
8
7
SYMM  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 15  
77.4% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4223033/B 10/2016  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
PACKAGE OUTLINE  
DMT0014B  
VSON - 1 mm max height  
SCALE 3.200  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
A
B
PIN 1 INDEX AREA  
4.6  
4.4  
0.1 MIN  
(0.13)  
1.0  
0.8  
SECTION A-A  
SCALE 30.000  
SECTION A-A  
TYPICAL  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.6 0.1  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
7
8
(0.19) TYP  
A
A
2X  
3.9  
15  
SYMM  
4.2 0.1  
14  
1
12X 0.65  
0.35  
0.25  
14X  
0.45  
0.35  
PIN 1 ID  
14X  
0.1  
C A B  
(OPTIONAL)  
0.05  
C
4225087/B 01/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DMT0014B  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.6)  
14X (0.6)  
14X (0.3)  
SYMM  
1
14  
2X  
(1.85)  
12X (0.65)  
SYMM  
15  
(4.2)  
(0.69)  
TYP  
(
0.2) VIA  
TYP  
8
7
(R0.05) TYP  
(0.55) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225087/B 01/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DMT0014B  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.47)  
15  
14X (0.6)  
1
14  
14X (0.3)  
(1.18)  
12X (0.65)  
SYMM  
(1.38)  
(R0.05) TYP  
METAL  
TYP  
8
7
SYMM  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 15  
77.4% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4225087/B 01/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TCAN1046V-Q1

具有待机和 1.8V IO 支持的汽车类高速双 CAN 收发器
TI

TCAN1046VDMTRQ1

具有待机和 1.8V IO 支持的汽车类高速双 CAN 收发器 | DMT | 14 | -40 to 125
TI

TCAN1048AV-Q1

TCAN104xAV-Q1 Automotive Dual CAN FD Transceiver with 1.8-V I/O Support and Standby Mode
TI

TCAN1048AVDMTRQ1

具有低功耗待机模式和 1.8V I/O 支持的增强型汽车类双路 CAN 收发器 | DMT | 14 | -40 to 150
TI

TCAN1048AVDRQ1

具有低功耗待机模式和 1.8V I/O 支持的增强型汽车类双路 CAN 收发器 | D | 14 | -40 to 150
TI

TCAN104XAV-Q1

TCAN104xAV-Q1 Automotive Dual CAN FD Transceiver with 1.8-V I/O Support and Standby Mode
TI

TCAN1051H

具有灵活数据速率的故障保护 CAN 收发器
TI

TCAN1051H-Q1

具有灵活数据速率的汽车类故障保护 CAN 收发器
TI

TCAN1051HD

具有灵活数据速率的故障保护 CAN 收发器 | D | 8 | -55 to 125
TI

TCAN1051HDQ1

具有灵活数据速率的汽车类故障保护 CAN 收发器 | D | 8 | -55 to 125
TI

TCAN1051HDR

具有灵活数据速率的故障保护 CAN 收发器 | D | 8 | -55 to 125
TI

TCAN1051HDRBRQ1

具有灵活数据速率的汽车类故障保护 CAN 收发器 | DRB | 8 | -55 to 125
TI