TCAN1164DMTRQ1 [TI]

具有 LDO 输出和看门狗的汽车类 CAN FD 系统基础芯片 | DMT | 14 | -40 to 125;
TCAN1164DMTRQ1
型号: TCAN1164DMTRQ1
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有 LDO 输出和看门狗的汽车类 CAN FD 系统基础芯片 | DMT | 14 | -40 to 125

文件: 总70页 (文件大小:2902K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
TCAN1164-Q1 具有 LDO 出和看狗的汽CAN FD 芯片  
1 特性  
3 说明  
符合面向汽车应用的 AEC Q1001 级)标准  
TCAN1164-Q1 一款高速控制器局域网 (CAN) 系  
统基础芯片 (SBC)符合 ISO 11898-2:2016 速  
CAN 规范的物理层要求。该收发器支持传统 CAN 和  
CAN FD 络,数据速率高达 8 /(Mbps)  
(TCAN1164-Q1) 5Mbps (TCAN1164T-Q1)。  
符合 ISO 11898-2:2016 的要求  
功能安全质量管理型  
可帮助进行功能安全系统设计的文档  
宽工作输入电压范围  
CAN 收发器供电的集成 LDO  
具有 100mA 输出电流能力的 5V LDO  
支持高达 8Mbps (TCAN1164-Q1) 的传统 CAN 和  
CAN FD  
TCAN1164-Q1 支持宽输入电源电压范围,并且集成了  
5V LDO 输出。5V LDO 输出 (VCCOUT) 可在内部为  
CAN 收发器提供电压,并在外部提供额外电流。  
器件信息  
支持多种模式的看门狗计时器  
器件型号  
TCAN1164-Q1  
TCAN1164T-Q1  
封装(1)  
封装尺寸(标称值)  
4.5mm x 3.00mm  
4.5mm x 3.00mm  
超时  
VSON (14)  
VSON (14)  
窗口  
问答看门狗 (Q&A)  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
速度高达 5Mbps (TCAN1164T-Q1)  
可通过 SPI 编程的工作模式  
正常模式  
录。  
VSUP  
10  
VLDO 5V  
VCCOUT  
3
静音模式  
VCCOUT  
待机模式  
1
DOMINANT  
TIME OUT  
TXD  
支持高级 CAN 总线故障检测  
定义了未上电时的行为  
总线和 IO 终端为高阻抗(运行总线或应用上无  
负载)  
13  
12  
CANH  
CANL  
Driver  
8
6
SCLK  
SDI  
保护特性:  
OVER  
TEMP  
SPI  
11  
14  
SYSTEM CONTROLLER  
SDO  
nCS  
– ±58V CAN 总线容错  
– VSUP 上支持负载突降  
– IEC ESD 保护  
欠压和过压保护  
热关断保护  
– TXD 显性状态超时 (TXD DTO)  
支持超宽结温范围  
采用无引线 VSON (14) 封装,具有可湿性侧面,提  
高了自动光学检测 (AOI) 能力  
VCCOUT  
UNDER  
VOLTAGE  
5
4
nRST  
RXD  
High Speed Receiver  
Low Power Receiver  
VCCOUT  
Logic Output  
MUX  
WUP  
Detect  
2
GND  
功能方框图  
2 应用  
高级驾驶辅助系统 (ADAS)  
车身电子装置和照明  
汽车信息娱乐系统和仪表组  
混合动力、电动和动力总成系统  
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问  
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSFE3  
 
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
Table of Contents  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 说明(续).........................................................................3  
6 Device Comparison Table...............................................4  
7 Pin Configurations and Functions.................................5  
8 Specifications.................................................................. 6  
8.1 Absolute Maximum Ratings........................................ 6  
8.2 ESD Ratings............................................................... 6  
8.3 ESD Ratings IEC Specification...................................6  
8.4 Recomended Operating Conditions............................6  
8.5 Thermal Information....................................................7  
8.6 Power Supply Characteristics.....................................7  
8.7 Electrical Characteristics.............................................8  
8.8 Switching Characteristics..........................................10  
8.9 Typical Characteristics..............................................13  
9 Parameter Measurement Information..........................14  
10 Detailed Description....................................................18  
10.1 Overview.................................................................18  
10.2 Functional Block Diagram.......................................18  
10.3 Feature Description.................................................19  
10.4 Device Functional Modes........................................37  
10.5 Programming.......................................................... 42  
11 Application Information Disclaimer........................... 58  
11.1 Application Information............................................58  
11.2 Typical Application.................................................. 58  
11.3 Application Curves.................................................. 60  
12 Power Supply Requirements......................................61  
13 Layout...........................................................................62  
13.1 Layout Guidelines................................................... 62  
13.2 Layout Example...................................................... 62  
14 Device and Documentation Support..........................63  
14.1 Documentation Support.......................................... 63  
14.2 接收文档更新通知................................................... 63  
14.3 支持资源..................................................................63  
14.4 Trademarks.............................................................63  
14.5 Electrostatic Discharge Caution..............................63  
14.6 术语表..................................................................... 63  
15 Mechanical, Packaging, and Orderable  
Information.................................................................... 63  
4 Revision History  
DATE  
REVISION  
NOTES  
December 2021  
*
Initial Revision  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
5 说明(续)  
TCAN1164-Q1 包括许多保护和诊断功能,如 CAN 总线短路检测、热关断 (TSD)、驱动器显性超时 (TXD DTO)  
和高达 ±58V 的总线故障保护。  
TCAN1164-Q1 支持看门狗功能,通过要求处理器在一个时间窗口内重置看门狗计时器来确保系统正常运行。  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TCAN1164-Q1  
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
6 Device Comparison Table  
DEVICE NUMBER  
Description  
MAXIMUM DATA RATE  
VeLIO(1)  
CAN FD SBC with SPI Mode Control,  
Reset, Watchdog and 5 V LDO  
TCAN1164-Q1  
TCAN1164T-Q1  
8 Mbps  
No  
CAN FD SBC with SPI Mode Control,  
Reset, Watchdog and 5 V LDO  
5 Mbps  
Yes  
1. Certified according to latest VeLIO (Vehicle LAN Interopability and Optimization) test requirements  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
7 Pin Configurations and Functions  
TXD  
GND  
VCCOUT  
RXD  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
nCS  
CANH  
CANL  
SDI  
Thermal  
Pad  
nRST  
SDO  
NC  
VSUP  
NC  
8
SCLK  
Not to scale  
7-1. DMT package, 14 Pin (VSON), Top View  
7-1. Pin Functions  
PIN  
TYPE  
Description  
NAME  
TXD  
NO.  
1
Digital  
GND  
CAN transmit data input, integrated pull-up  
Ground connection  
GND  
VCCOUT  
RXD  
nRST  
SDO  
NC  
2
3
Supply  
Digital  
Digital  
Digital  
5-V LDO regulated output voltage  
CAN receive data output  
4
5
Reset input/output  
6
SPI data output  
7
No connect (not internally connected)  
SPI clock input  
SCLK  
NC  
8
Digital  
9
No connect (not internally connected)  
Reverse-blocked battery supply input  
SPI data input  
VSUP  
SDI  
10  
11  
12  
13  
14  
Supply  
Digital  
Bus IO  
Bus IO  
Digital  
CANL  
CANH  
nCS  
Low-level CAN bus input/output line  
High-level CAN bus input/output line  
SPI chip select (active low)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TCAN1164-Q1  
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
8 Specifications  
8.1 Absolute Maximum Ratings  
over operating virtual junction temperature range (unless otherwise noted)(1)  
MIN  
–0.3  
-0.3  
–58  
MAX  
42  
6
UNIT  
V
VSUP  
Supply voltage range  
VCCOUT  
VBUS  
5 V regulated output  
V
CAN bus IO voltage range (CANH, CANL)  
Logic input terminal voltage range  
Logic output terminal voltage range  
Logic output current  
58  
6
V
V(Logic_Input)  
V(Logic_Output)  
IO(LOGIC)  
TJ  
–0.3  
–0.3  
V
6
V
8
mA  
°C  
°C  
Operating virtual junction temperature range  
Storage temperature  
–40  
-65  
150  
165  
TSTG  
(1) Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.  
If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully  
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.  
8.2 ESD Ratings  
VALUE  
UNIT  
HBM classification level 3A for all  
pin  
±4000  
Human body model (HBM), per AEC  
Q100-002(1)  
HBM classification level 3A for  
±8000  
±10000  
±750  
VSUP  
,
V(ESD)  
Electrostatic discharge  
V
HBM classification level 3B for  
global pins CANH & CANL  
Charged-device model (CDM), per AEC Q100-011  
CDM classification level C5 for all pins  
(1) AEC-Q100-002 indicates that HBM stresses shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.  
8.3 ESD Ratings IEC Specification  
VALUE  
UNIT  
CAN bus terminals (CANH & CANL) to  
±8000  
System level electro-static  
discharge (ESD)(1)  
IEC 61000-4-2 (150pF, 330Ω)  
unpowered contact discharge  
GND  
VSUP  
VESD  
±8000  
–100  
75  
Pulse 1  
V
Pulse 2  
ISO 7637 ISO pulse transients(2)  
ISO 7637-3 transient(3)  
CAN bus terminals (CANH & CANL) to  
GND, VSUP  
VTRAN  
Pulse 3a  
–150  
100  
Pulse 3b  
DCC slow transient pulse  
±30  
(1) Tested according to IEC 62228-3 CAN Transceiver, Section 6.4; DIN EN 61000-4-2  
(2) Tested according to IEC 62228-3 CAN Transceiver, Section 6.3; standard pulse parameters defined in ISO 7637-2  
(3) Tested according to ISO 7637-3; electrical transient transmission by capacitive and inductive coupling via lines other than supply line  
8.4 Recomended Operating Conditions  
MIN  
5.5  
–2  
NOM  
MAX UNIT  
VSUP  
Supply voltage range  
28  
V
IOH(DO)  
IOL(DO)  
CVSUP  
CVCCOUT  
TSDR  
Digital output terminal high level output current  
Digital output terminal low level output current  
VSUP pin capacitance  
mA  
mA  
µF  
µF  
°C  
2
0.1  
VCCOUT pin capacitance  
10  
Thermal shutdown rising  
175  
180  
165  
TSDF  
Thermal shutdown falling  
170  
°C  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
 
 
 
 
 
 
 
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
MIN  
NOM  
MAX UNIT  
TSDW  
THYS  
Thermal shutdown warning  
Thermal shutdown hysterisis  
150  
°C  
°C  
15  
8.5 Thermal Information  
DMT (VSON)  
THERMAL METRIC(1)  
UNIT  
14 PINS  
37.7  
37.9  
14.2  
0.7  
RΘJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RΘJC(top)  
RΘJB  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJB  
14.2  
4.9  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
8.6 Power Supply Characteristics  
Over recomended operating conditions with TJ = -40°C to 150°C, unless otherwise noted. All typical values are taken at  
25°C, VSUP = 12 V, and RL = 60 Ω  
PARAMETER  
Supply Voltage and Current  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TXD = 0 V, RL = 60 Ω, CL = open  
See 9-2  
60  
70  
mA  
mA  
Supply current  
Bus biasing active: dominant  
TXD = 0 V, RL = 50 Ω, CL = open  
See 9-2  
ISUP  
Supply current  
Bus biasing active: recessive  
TXD = VCCOUT, RL = 50 Ω, CL = open  
See 9-2  
3
mA  
Supply current  
Standby mode  
Bus bias autonomous: inactive  
5.5 V < VSUP ≤ 19 V  
See 9-2  
ISUP(STB)  
230  
60  
µA  
µA  
Supply current  
5.5 V < VSUP ≤ 28 V  
See 9-2  
ISUP(BIAS)  
Bus bias autonomous: active(1)  
UVSUPR  
UVSUPF  
Under voltage VSUP threshold rising  
Under voltage VSUP threshold falling  
Ramp Up  
4.05  
3.9  
4.42  
4.25  
V
V
Ramp Down  
VCCOUT Characteristics  
VSUP = 5.5 to 18 V  
IL = 0 to 100 mA  
TXD = VCCOUT  
VCCOUT 5 V regulated output  
4.9  
4.9  
5
5.1  
5.1  
V
V
VSUP = 5.65 to 18 V  
IL = 0 to 100 mA  
VCCOUT  
5 V regulated output  
5
TXD = 0 V; VCANH = 0 V  
VCCOUT_DROP  
∆VCCOUT(∆VSUP)  
∆VCCOUT(∆VSUPL)  
UVVCCOUTR  
UVVCCOUTF  
OVCCOUTR  
Dropout voltage  
5 V LDO, VSUP – VCCOUT, IL = 125 mA  
VSUP = 5.5 to 28 V, IL = 10 mA, ΔVCCOUT  
IL = 1 to 125 mA, VSUP = 14 V, ΔVCCOUT  
Ramp Up  
300  
650  
50  
mV  
mV  
mV  
V
Line regulation  
Load regulation  
50  
Under voltage VCCOUT threshold rising  
Under voltage VCCOUT threshold falling  
Over voltage VCCOUT threshold rising  
Over voltage VCCOUT threshold falling  
Output current limit  
4.25  
4.2  
4.6  
4.45  
5.7  
4.75  
4.7  
Ramp Down  
V
Ramp Up  
6.15  
V
OVCCOUTF  
Ramp Down  
5.47  
175  
5.65  
V
IL_VCCOUT  
VCCOUT short to ground  
275  
mA  
VRIP = 0.5 VPP, Load = 10 mA, ƒ = 100 Hz,  
CO = 10 μF  
PSRRVCCOUT  
Power supply rejection ripple rejection  
60  
dB  
(1) After a valid wake-up the total ISUP current is the sum of ISUP(STB) and ISUP(BIAS) (ISUP = ISUP(STB) + ISUP(BIAS)  
)
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TCAN1164-Q1  
 
 
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
8.7 Electrical Characteristics  
Over recommended operating conditions with TJ = –40°C to 150°C, unless otherwise noted. All typical values are taken at  
25°C, VSUP = 12 V, and RL = 60 Ω  
PARAMETER  
CAN Driver Electrical Characteristics  
Dominant output voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CANH  
CANL  
2.75  
0.5  
4.5  
V
V
TXD = 0 V, 50 ≤ RL ≤ 65 Ω, CL = open, RCM  
=
Bus biasing active  
VO(D)  
open  
See 9-2  
Dominant output voltage  
2.25  
Bus biasing active  
TXD = VCCOUT, RL = open (no load), RCM  
open  
See 9-2  
=
Recessive output voltage  
Bus biasing active  
VO(R)  
2
0.9  
3
1.1  
400  
3
V
V/V  
mV  
V
Driver symmetry  
Bus biasing active  
(VO(CANH) + VO(CANL) ) / VCCOUT  
RL = 60 Ω, CSPLIT = 4.7 nF, CL = Open, RCM  
Open, TXD = 250 kHz, 1 Mhz, 2.5 MHz  
See 9-2  
=
VSYM  
DC Driver symmetry  
Bus biasing active  
VCCOUT – VO(CANH) – VO(CANL)  
RL = 60 Ω, CL = open  
See 9-2  
VSYM_DC  
–400  
1.5  
Differential output voltage  
Bus biasing active  
Dominant  
TXD = 0 V, 50 Ω ≤ RL ≤ 65 Ω, CL = open  
See 9-2  
CANH - CANL  
Differential output voltage  
Bus biasing active  
Dominant  
TXD = 0 V, 45 Ω ≤ RL ≤ 70 Ω, CL = open  
See 9-2  
VOD(DOM)  
CANH - CANL  
CANH - CANL  
1.4  
3.3  
5
V
Differential output voltage  
Bus biasing active  
Dominant  
TXD = 0 V, RL = 2240 Ω, CL = open  
See 9-2  
1.5  
V
Differential output voltage  
Bus biasing active  
Bus biasing inactive  
Recessive  
TXD = VCCOUT, RL = open Ω, CL = open  
See 9-2  
VOD(REC)  
CANH - CANL  
–50  
50  
mV  
TXD = VCCOUT  
CANH  
RL = open (no load), CL = open  
See 9-2  
-0.1  
-0.1  
-0.2  
–75  
0.1  
0.1  
0.2  
V
V
Pin output voltage  
Bus biasing inactive  
VO(INACT)  
VOD(STB)  
IOS(DOM)  
IOS(REC)  
TXD = VCCOUT  
RL = open (no load), CL = open  
See 9-2  
CANL  
TXD = VCCOUT  
RL = open (no load), CL = open  
See 9-2  
Differential output voltage  
Bus biasing inactive  
CANH - CANL  
V
Short-circuit steady-state output current  
Bus biasing active  
TXD = 0 V  
-15 V ≤ V(CANH) ≤ 40 V  
See 9-2 and 9-8  
mA  
mA  
mA  
Dominant  
Short-circuit steady-state output current  
Bus biasing active  
TXD = 0 V  
-15 V ≤ V(CANL) ≤ 40 V  
See 9-2 and 9-8  
75  
3
Dominant  
Short-circuit steady-state output current  
Bus biasing active  
VBUS = CANH = CANL  
-27 V ≤ VBUS ≤ 42 V  
See 9-2 and 9-8  
–3  
Recessive  
CAN Receiver Electrical Characteristics  
Receiver dominant state input voltage range  
Bus biasing active  
VIT(DOM)  
VIT(REC)  
0.9  
-3  
8
V
V
-12 V ≤ VCM ≤ 12 V  
See 9-3 and 10-14  
Receiver recessive state input voltage range  
Bus biasing active  
0.5  
Hysteresis voltage for input threshold  
Bus biasing active  
VHYS  
See 9-3 and 10-14  
80  
-5  
140  
mV  
V
VDIFF(MAX)  
VDIFF(DOM)  
VDIFF(REC)  
VCM  
Maximum rating of VDIFF  
10  
8
Receiver dominant state input voltage range  
Bus biasing inactive  
1.150  
V
-12 V ≤ VCM ≤ 12 V  
See 9-3 and 10-14  
Receiver recessive state input voltage range  
Bus biasing inactive  
-3  
0.4  
12  
V
V
Common mode range  
See 9-3 and 10-14  
–12  
Power-off (unpowered) bus input leakage  
current  
IOFF(LKG)  
VSUP = 0 V, CANH = CANL = 5 V  
2.5  
µA  
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
Over recommended operating conditions with TJ = –40°C to 150°C, unless otherwise noted. All typical values are taken at  
25°C, VSUP = 12 V, and RL = 60 Ω  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Input capacitance to ground (CANH or CANL)  
CI  
TXD = VCCOUT  
20  
pF  
(1)  
CID  
RID  
RIN  
Differential input capacitance(1)  
Differential input resistance  
TXD = VCCOUT  
10  
100  
50  
pF  
kΩ  
kΩ  
50  
25  
TXD = VCCOUT  
-12 V ≤ VCM ≤ 12 V  
Input resistance (CANH or CANL)  
Input resistance matching:  
[1 – RIN(CANH) / RIN(CANL)] × 100%  
RIN(M)  
V(CANH) = V(CANL) = 5 V  
–1  
1
%
TXD Input Characteristics  
VIH  
High level input voltage  
0.7  
VCCOUT  
VIL  
Low level input voltage  
High level input leakage current  
Low level input leakage current  
Pull-up resistance  
0.3 VCCOUT  
IIH  
TXD = VCCOUT  
TXD = 0 V  
–1  
–130  
40  
0
1
–15  
80  
µA  
µA  
kΩ  
µA  
pF  
IIL  
RPU  
ILKG(OFF)  
CI  
60  
0
Unpowered leakage current  
Input Capacitance  
TXD = 5.5 V, VSUP = 0 V  
–1  
1
VIN = 0.4 x sin(2 × π × 2 × 106 × t) + 2.5 V  
5
RXD Output Characteristics  
VOH  
High level output voltage  
IO = –2 mA.  
IO = 2 mA.  
0.8  
VCCOUT  
VOL  
Low level output voltage  
Pull-up resistance  
0.2 VCCOUT  
RPU  
40  
-5  
60  
80  
5
kΩ  
µA  
ILKG(OFF)  
Unpowered leakage curret  
RXD = 5.5 V, VSUP = 0 V  
nRST Bidirectional Characteristics  
VIH  
VIL  
High level input voltage  
0.8  
VCCOUT  
Low level input voltage  
0.2 VCCOUT  
0.2 VCCOUT  
VOL  
IIH  
Low level output voltage  
High level input leakage current  
Pull-up resistance to VCCOUT  
IO = 2 mA.  
nRST = VCCOUT  
-1  
1
µA  
kΩ  
RPU  
160  
240  
320  
SDI Input Characteristics  
VIH  
High level input voltage  
0.8  
VCCOUT  
VIL  
Low level input voltage  
High level input leakage current  
Low level input leakage current  
Pull-up resistance  
0.2 VCCOUT  
(2)  
IIH  
SDI = VCCOUT  
-1  
-130  
40  
1
-50  
80  
1
µA  
µA  
kΩ  
µA  
pF  
IIL  
SDI = 0 V  
RPU  
ILKG(OFF)  
CIN  
60  
Unpowered leakage current  
Input capacitance  
SDI = 5.5 V, VSUP = 0 V  
20 MHz  
-1  
4
10  
SCLK Input Characteristics  
VIH  
High level input voltage  
0.7  
VCCOUT  
VIL  
Low level input voltage  
0.3 VCCOUT  
(2)  
IIH  
High level input leakage current  
Low level input leakage current  
Pull-down resistance  
SCLK = VCCOUT  
50  
-1  
40  
-1  
4
130  
1
µA  
µA  
kΩ  
µA  
pF  
IIL  
SCLK = 0 V  
RPD  
ILKG(OFF)  
CIN  
60  
80  
1
Unpowered leakage current  
Input capacitance  
SCLK = 5.5 V, VSUP = 0 V  
20 MHz  
10  
nCS Input Characteristics  
High level input  
voltage  
VIH  
VIL  
High level input voltage  
Low level input voltage  
High level input voltage  
Low level input voltage  
0.7  
VCCOUT  
Low level input  
voltage  
0.3 VCCOUT  
IIH  
High level input leakage current  
Low level input leakage current  
Pull-up resistor  
nCS = VCCOUT  
nCS = 0 V  
-1  
-130  
40  
1
-50  
80  
µA  
µA  
kΩ  
IIL  
RPU  
60  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TCAN1164-Q1  
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
Over recommended operating conditions with TJ = –40°C to 150°C, unless otherwise noted. All typical values are taken at  
25°C, VSUP = 12 V, and RL = 60 Ω  
PARAMETER  
Unpowered leakage current  
Input capacitance  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
ILKG(OFF)  
CIN  
nCS = 5.5 V, VSUP = 0 V  
-1  
1
µA  
pF  
20 MHz  
4
10  
SDO Output Characteristics  
VOH  
High-level output voltage  
IOH = -2 mA  
IOL = 2 mA  
VnCS = 5.5 V  
0.8  
-1  
VCCOUT  
VOL  
Low-level output voltage  
0.2 VCCOUT  
µA  
ILKG(OFF)  
Unpowered leakage current  
1
(1) Test according to ISO 11898-2:2003  
(2) Note that there is an internal pull-up resistor to VCCOUT. If externally driven to a higher or lower voltage, the pin leakage measurement  
will be increased.  
8.8 Switching Characteristics  
Over recomended operating conditions with TJ = -40°C to 150°C, unless otherwise noted. All typical values are taken at  
25°C, VSUP = 12 V and RL = 60 Ω  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
Supply Switching Characteristics  
tPOWER_UP CAN supply power up time  
tUV(SUP)  
CVCCOUT = 10 µF  
See 9-9  
1.8  
4
ms  
µs  
VSUP filter time (rising and falling)  
VCCOUT filter time (rising and falling)  
4
25  
Time for device to enter sleep  
state reset state once UVCCOUT is  
reached  
tUV(VCCOUT)  
30  
10  
µs  
Device Switching Characteristics  
tUV(nRST)  
Undervoltage detection delay time nRST low  
50  
1.8  
2
µs  
µs  
ms  
s
tWK_FILTER  
tWK_TIMEOUT  
tSILENCE  
Bus time to meet filtered bus requirments for wakeup request  
Bus wakeup timeout value  
0.5  
0.8  
See 10-15  
Time out for bus inactivity  
0.9  
4
1.2  
5
tINACTIVE  
Hardware timer for failsafe and power up inactivity(1)  
3
min  
Time from the start of a dominant-recessive-dominant sequence  
until Vsym ≥ 0.1  
Each phase: 6 μs  
See 9-10  
tBIAS  
250  
25  
µs  
us  
Time from switching to CAN active mode to transceiver ready to  
transmit  
tCAN(ACTIVE)  
VCCOUT > UVVCCOUT(R)  
RL = 60 Ω, CL = 100 pF, CL(RXD)  
15 pF  
See 9-6  
=
=
=
Total loop delay, driver input (TXD) to receiver output (RXD)  
Recessive to dominant  
tPROP(LOOP1)  
100 160  
120 175  
ns  
ns  
RL = 60 Ω, CL = 100 pF, CL(RXD)  
15 pF  
See 9-6  
Total loop delay, driver input (TXD) to receiver output (RXD)  
Dominant to recessive - TCAN1164-Q1  
tPROP(LOOP2)  
RL = 60 Ω, CL = 100 pF, CL(RXD)  
15 pF  
See 9-6  
Total loop delay, driver input (TXD) to receiver output (RXD)  
Dominant to recessive - TCAN1164T-Q1  
tPROP(LOOP2)  
tmode_slp_reset  
130 195  
50  
ns  
µs  
WUP or LWU event to INH asserted high, see  
Driver Switching Characteristics  
Propagation delay time, high TXD to driver  
tpHR  
65  
25  
82 130  
ns  
ns  
recessive  
Propagation delay time, low TXD to driver  
dominant  
tpLD  
RL = 60 Ω, CL = 100 pF, RCM  
open  
See 9-2  
=
50  
110  
50  
TCAN1164T-Q1  
tsk(p)  
tR  
Pulse skew (|tpHR - tpLD|)  
25  
40  
95  
ns  
ns  
ns  
Differential output signal rise time  
Differential output signal fall time  
tF  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
Over recomended operating conditions with TJ = -40°C to 150°C, unless otherwise noted. All typical values are taken at  
25°C, VSUP = 12 V and RL = 60 Ω  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
Propagation delay time, high TXD to driver  
recessive  
tpHR  
tpLD  
20  
35  
40  
70  
ns  
ns  
Propagation delay time, low TXD to driver  
dominant  
RL = 60 Ω, CL = 100 pF, RCM  
open  
See 9-2  
=
15  
70  
20  
TCAN1164-Q1  
tsk(p)  
tR  
Pulse skew (|tpHR - tpLD|)  
10  
40  
45  
ns  
ns  
ns  
Differential output signal rise time  
Differential output signal fall time  
tF  
RL = 60 Ω, CL = open  
See 9-7, TXD = 0 V  
tTXD_DTO  
Dominant timeout  
1.2  
3.8  
ms  
Receiver Switching Characteristics  
Propagation delay time, bus recessive input to  
high RXD  
CL(RXD) = 15 pF  
See 9-3  
tpRH  
tpRH  
tpDL  
tR  
TCAN1164T-Q1  
TCAN1164-Q1  
25  
25  
20  
65 140  
80 140  
ns  
ns  
ns  
ns  
ns  
Propagation delay time, bus recessive input to  
high RXD  
CL(RXD) = 15 pF  
See 9-3  
CL(RXD) = 15 pF  
See 9-3  
Propagation delay time, bus dominant input to RXD low output  
Output signal rise time (RXD)  
50  
8
110  
CL(RXD) = 15 pF  
See 9-3  
CL(RXD) = 15 pF  
See 9-3  
tF  
Output signal fall time (RXD)  
5
nRST Characteristics  
tnRST  
Minimum low time for reset  
Input pulse width  
Cold crank  
15  
20  
1
µs  
ms  
ms  
tnRST(cold)  
tnRST(warm)  
Output pulse width  
Output pulse width  
27  
Warm crank  
1.5  
SPI Switching Characteristics  
fSCK SCK, SPI clock frequency  
tSCK  
Normal, standby, and silent  
modes  
4
MHz  
ns  
Normal, standby, and silent  
modes; See 9-12  
SCK, SPI clock period  
250  
tRSCK  
tFSCK  
SCK rise time  
SCK fall time  
See 9-11  
See 9-11  
40  
40  
ns  
ns  
Normal, standby, and silent  
modes; See 9-12  
tSCKH  
tSCKL  
SCK, SPI clock high  
SCK, SPI clock low  
125  
125  
ns  
ns  
Normal, standby, and silent  
modes; See 9-12  
tACC  
tCSS  
tCSH  
tCSD  
First read access time from chip select  
Chip select setup time  
50  
100  
100  
50  
ns  
ns  
ns  
ns  
See 9-11  
See 9-11  
See 9-11  
Chip select hold time  
Chip select disable time  
Normal, standby, and silent  
modes; See 9-11  
tSISU  
tSIH  
Data in setup time  
Data in hold time  
Data out valid  
50  
50  
ns  
ns  
ns  
Normal, standby, and silent  
modes; See 9-11  
Normal, standby, and silent  
modes; See 9-12  
tSOV  
80  
tRSO  
tFSO  
SO rise time  
SO fall time  
See 9-12  
See 9-12  
40  
40  
ns  
ns  
CAN FD Timing Characteristics  
Bit time on CAN bus output pins with tBIT(TXD)  
=
=
=
435  
155  
80  
530  
210  
140  
ns  
ns  
ns  
500 ns  
RL = 60 Ω, CL = 100 pF  
CL(RXD) = 15 pF  
ΔtREC = tBIT(RXD) - tBIT(BUS)  
See 9-6  
Bit time on CAN bus output pins with tBIT(TXD)  
200 ns  
tBIT(BUS)  
TCAN1164-Q1  
Bit time on CAN bus output pins with tBIT(TXD)  
125 ns  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TCAN1164-Q1  
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
Over recomended operating conditions with TJ = -40°C to 150°C, unless otherwise noted. All typical values are taken at  
25°C, VSUP = 12 V and RL = 60 Ω  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
Bit time on CAN bus output pins with tBIT(TXD)  
500 ns  
=
=
RL = 60 Ω, CL = 100 pF  
CL(RXD) = 15 pF  
ΔtREC = tBIT(RXD) - tBIT(BUS)  
See 9-6  
450  
530  
210  
ns  
ns  
tBIT(BUS)  
TCAN1164T-Q1  
Bit time on CAN bus output pins with tBIT(TXD)  
200 ns  
155  
Bit time on RXD output pins with tBIT(TXD) = 500 ns  
Bit time on RXD output pins with tBIT(TXD) = 200 ns  
400  
120  
550  
220  
ns  
ns  
RL = 60 Ω, CL = 100 pF  
CL(RXD) = 15 pF  
ΔtREC = tBIT(RXD) - tBIT(BUS)  
See 9-6  
tBIT(RXD)  
Bit time on RXD output pins with tBIT(TXD) = 125  
ns  
TCAN1164-Q1  
80  
135  
ns  
Receiver timing symmetry with tBIT(TXD) = 500 ns  
Receiver timing symmetry with tBIT(TXD) = 200 ns  
Receiver timing symetry with tBIT(TXD) = 125 ns  
-50  
-45  
-40  
20  
15  
10  
ns  
ns  
ns  
RL = 60 Ω, CL = 100 pF  
CL(RXD) = 15 pF  
ΔtREC = tBIT(RXD) - tBIT(BUS)  
See 9-6  
ΔtREC  
TCAN1164-Q1  
(1) Timer is reset when the CAN bus changes states.  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
8.9 Typical Characteristics  
112  
108  
104  
100  
96  
3
2.75  
2.5  
-40 C  
30 C  
150 C  
-40 C  
50 C  
150 C  
2.25  
2
92  
88  
1.75  
1.5  
84  
80  
4
8
12  
16  
VSUP (V)  
20  
24  
CLRXD = 15 pF  
28  
4
6
8
10 12 14 16 18 20 22 24 26 28  
VSUP (V)  
RL = 60 Ω  
CL = 100 pF  
RL = 60 Ω  
8-1. tPROP(LOOP1) over VSUP  
8-2. VOD(DOM) over VSUP  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TCAN1164-Q1  
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
9 Parameter Measurement Information  
CANH  
TXD  
RL  
CL  
CANL  
9-1. ISUP Test Circuit  
RCM  
CANH  
50%  
50%  
TXD  
TXD  
RL  
CL  
VOD  
VCM  
VCC  
VO(CANH)  
tpLD  
tpHR  
90%  
10%  
0V  
CANL  
RCM  
0.9V  
VO(CANL)  
VOD  
0.5V  
tR  
tF  
9-2. Driver Test Circuit and Measurement  
CANH  
1.5V  
0.9V  
VID  
IO  
RXD  
0.5V  
0V  
VID  
tpDL  
tpRH  
VOH  
VO  
CL_RXD  
CANL  
90%  
VO(RXD)  
50%  
10%  
VOL  
tF  
tR  
9-3. Receiver Test Circuit and Measurement  
UVLDO5  
nRST  
VLDO5  
tnRST(warm)  
9-5. tnRST Warm Start  
nRST  
tnRST(cold)  
9-4. tnRST Cold Start  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
TXD  
VI  
70%  
tLOOP2  
30%  
30%  
CANH  
0V  
TXD  
VI  
5 x tBIT(TXD)  
tBIT(TXD)  
RL  
CL  
CANL  
tBIT(Bus)  
nSLP  
0V  
900mV  
500mV  
RXD  
VDIFF  
VO  
CL_RXD  
RXD  
VOH  
70%  
30%  
VOL  
tBIT(RXD)  
9-6. Transmitter and Receiver Timing Behavior Test Circuit and Measurement  
VIH  
0V  
CANH  
TXD  
TXD  
RL  
CL  
VOD  
VOD(D)  
CANL  
0.9V  
VOD  
0.5V  
0V  
tTXD_DTO  
9-7. TXD Dominant Timeout Test Circuit and Measurement  
200 s  
IOS  
CANH  
TXD  
VBUS  
IOS  
CANL  
VBUS  
VBUS  
0V  
or  
0V  
VBUS  
VBUS  
9-8. Driver Short-Circuit Current Test and Measurement  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TCAN1164-Q1  
 
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
VSUP  
4.5V  
VCCOUT  
CVCCOUT = 10  
F
VSUP  
0 V  
TCAN1164  
VSUP  
tPOWER_UP  
CVSUP  
VCCOUT  
VO  
90%  
0 V  
9-9. tPOWER_UP Timing Measurement  
VDIFF  
2.0 V  
1.15 V  
0.4 V  
t > tWK_FILTER(MAX)  
t > tWK_FILTER(MAX)  
t > tWK_FILTER(MAX)  
VSYM  
0.1  
tBias  
9-10. Test Signal Definition for Bias Reaction Time Measurement  
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
tCSD  
nCS  
tCSH  
tRSCK  
tFSCK  
tCSS  
CLK  
tSISU  
tSIH  
SDI  
MSB In  
LSB  
In  
SDO  
9-11. SPI AC Characteristic Write  
nCS  
tSCK  
tSCKL  
tSCKH  
SCLK  
tSOV  
tRSO  
tFSO  
SDO  
LSB  
Out  
MSB Out  
SDI  
9-12. SPI AC Characteristic Read  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TCAN1164-Q1  
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
10 Detailed Description  
10.1 Overview  
The TCAN1164-Q1 is a high speed Controller Area Network (CAN) system basis chip (SBC) that meets the  
physical layer requirements of the ISO 11898-2:2016 high speed CAN specification. The transceiver supports  
both classical CAN and CAN FD networks up to 8 megabits per second (Mbps) (TCAN1164-Q1) or 5-Mbps  
(TCAN1164T-Q1).  
The TCAN1164-Q1 supports a wide input supply range and integrates a 5-V LDO output. The 5-V LDO output  
(VCCOUT) supplies the CAN transceiver voltage internally as well as additional current externally.  
10.2 Functional Block Diagram  
VSUP  
10  
VLDO 5V  
VCCOUT  
3
VCCOUT  
1
DOMINANT  
TIME OUT  
TXD  
13  
12  
CANH  
CANL  
Driver  
8
6
SCLK  
SDI  
OVER  
TEMP  
SPI  
11  
14  
SYSTEM CONTROLLER  
SDO  
nCS  
VCCOUT  
UNDER  
VOLTAGE  
5
4
nRST  
RXD  
High Speed Receiver  
Low Power Receiver  
VCCOUT  
Logic Output  
MUX  
WUP  
Detect  
2
GND  
10-1. TCAN1164-Q1  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
10.3 Feature Description  
10.3.1 VSUP Pin  
This pin is connected to the battery supply. It provides the supply to the internal regulators that support the digital  
core, the CAN transceiver, and the low power CAN receiver.  
10.3.2 VCCOUT Pin  
An internal LDO provides power for the integrated CAN transceiver and the VCCOUT output pin. The amount  
of current that can be delivered externally is dependent upon the CAN transceiver requirements during normal  
operation as well as the ambient operating temperature. When a CAN bus fault takes place that requires  
additional current from the LDO, the total available current to external load components may be degraded. This  
pin requires a 10 μF external capacitor as close to the pin as possible.  
10.3.3 Digital Inputs and Outputs  
The TCAN1164-Q1 has a VCCOUT supply that is used to set the digital input thresholds. The input thresholds are  
ratio metric to the VCCOUT supply using CMOS input levels. The TXD input is biased to the VCCOUT level to force  
a recessive input in case the pin floats. The high level output voltage for the RXD and output pins is driven to the  
VCCOUT level as logic-high outputs.  
10.3.3.1 TXD Pin  
TXD is a digital signal, referenced to VCCOUT, from a CAN controller to the TCAN1164-Q1.  
10.3.3.2 RXD Pin  
RXD is a digital signal, referenced to VCCOUT, from the TCAN1164-Q1 to a CAN controller.  
When a wake event occurs, this pin is pulled low to signal that a wake event has taken place.  
10.3.4 GND  
GND is the ground pin and it must be connected to the PCB ground.  
10.3.5 nRST Pin  
The nRST is an bidirectional open drain low side driver with an integrated pull-up resistor to VCCOUT. It can be  
pulled low by the device when placed in fail-safe mode.  
During initial power-up of the device, a fail-safe mode to reset transition, or an undervoltage event will be  
recognized as a cold crank reset condition. The nRST pin will be held low for tnRST(cold) allowing the MCU and  
peripheral devices to power-up correctly before data transmission begins.  
To enter reset mode from normal mode, or standby mode the nRST must be pulled low for a minimum of time of  
tnRST. The TCAN1164-Q1 recognizes this and a watchdog error as a warm crank reset condition and holds the  
nRST pin low for tnRST(warm)  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TCAN1164-Q1  
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
nRST  
CONTROL and MODE  
LOGIC  
10-2. nRST Circuit  
10.3.6 SDO  
When nCS is low this pin is the SPI serial data output pin. When nCS is high, the pin will be tri-stated.  
10.3.7 nCS Pin  
The nCS pin is the SPI chip select pin. When pulled low and a clock is present the device can be written to or  
read from.  
10.3.8 SCLK  
The SCLK pin is the SPI clock. The clock rate should not exceed the max fSCK value.  
10.3.9 SDI  
When nCS is low this pin is the SPI serial data input pin used for programming the device or requesting data.  
10.3.10 CAN Bus Pins  
These are the CAN high and CAN low, CANH and CANL, differential bus pins. These pins are connected to the  
CAN transceiver.  
10.3.11 Local Faults  
10.3.11.1 TXD Dominant Timeout (TXD DTO)  
While the CAN driver is in active mode a TXD DTO circuit prevents the local node from blocking network  
communication in event of a hardware or software failure where TXD is held dominant longer than the time out  
period tTXD_DTO. The TXD DTO circuit is triggered by a falling edge on TXD. If no rising edge is seen before  
the time out constant of the circuit, tTXD_DTO, expires the CAN driver is disabled releasing the bus lines to the  
recessive level. This keeps the bus free for communication between other nodes on the network. The CAN driver  
is re-activated on the next dominant to recessive transition on the TXD terminal, thus clearing the dominant time  
out. The high-speed receiver and RXD terminal will reflect what is on the CAN bus during a TXD DTO fault. The  
TS terminal in driven low during a TXD DTO fault.  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
Fault is repaired & transmission capability  
restored  
TXD fault stuck dominant: example PCB failure or bad software  
tTXD_DTO  
TXD (driver)  
Driver disabled freeing bus for other nodes  
Normal CAN communication  
Bus would be —stuck dominant“ blocking communication for the whole network but TXD DTO  
prevents this and frees the bus for communication after the time tTXD_DTO  
.
CAN Bus Signal  
tTXD_DTO  
Communication from other bus node(s)  
Communication from repaired node  
RXD (receiver)  
Communication from local node  
Communication from other bus node(s)  
Communication from repaired local node  
10-3. Timing Diagram for TXD DTO  
The minimum dominant TXD time allowed by the TXD DTO circuit limits the minimum possible transmitted  
data rate of the device. The CAN protocol allows a maximum of eleven successive dominant bits (on TXD)  
for the worst case, where five successive dominant bits are followed immediately by an error frame. The  
minimum transmitted data rate may be calculated using the minimum tTXD_DTO time and the maximum number of  
successive dominant bits (11 bits).  
Minimum Data Rate = 11 bits / tTXD_DTO = 11 bits / 1.2 ms = 9.2 kbps  
(1)  
10.3.11.2 Thermal Shutdown (TSD)  
If the junction temperature of the TCAN1164-Q1 exceeds the thermal shutdown threshold, TJ > TSDR, the device  
transitions into fail-safe mode and disables the transceiver's transmitter and receiver blocking transmission to  
and from the CAN bus. The TSD fault condition is cleared when the device junction temperature falls below  
the thermal shutdown temperature threshold, TJ < TSDF. If the fault condition that caused the TSD fault is still  
present, the temperature may rise again and the device will enter thermal shutdown again. Prolonged operation  
with a TSD fault conditions may affect device reliability.  
10.3.11.3 Under/Over Voltage Lockout  
The supply terminals implement undervoltage and over voltage detection circuitry. If an undervoltage is detected  
the TCAN1164-Q1 transitions into reset mode. The SBC will remain in reset mode until the undervoltage event  
clears.  
If the over voltage fault is detected the TCAN1164-Q1 transitions into fail-safe mode. These mode changes place  
the device in a known state which protect the system from unintended behavior. See 10-1  
10-1. Undervoltage / Over Voltage Lockout  
Fault  
Mode  
Reset  
UVCCOUT  
OVCCOUT  
Fail-safe  
10.3.11.4 Unpowered Devices  
The device is designed to be an ideal passive or no load to the CAN bus if it is unpowered. The CANH and  
CANL pins have low leakage currents when the device is un-powered so they present no load to the bus. This is  
critical if some nodes of the network are unpowered while the rest of the of network remains in operation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TCAN1164-Q1  
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
The logic terminals also have low leakage currents when the device is un-powered so they do not load down  
other circuits which may remain powered.  
10.3.11.5 Floating Terminals  
The TCAN1164-Q1 has internal pull-ups and pull-downs on critical pins to ensure a known operating behavior if  
the pins are left floating.  
The TXD pin is pulled up to VCCOUT which forces a recessive level if the pin floats. This internal bias should not  
be relied upon by design but rather a fall-safe option. Special care needs to be taken when the devive is used  
with a CAN controller that has open drain outputs. The device implements a weak internal pull-up resistor on the  
TXD pin. The CAN bit timing for CAN FD data rates will require special consideration and the pull-up strength  
should be considered carfully when using open drain outputs. An adequate external pull-up resistor must be  
used to ensure that the TXD output of the CAN controller maintains adequate bit timing input to the CAN device.  
10-2. Terminal Fail-Safe Biasing  
PULL-UP or PULL-DOWN  
TERMINAL  
COMMENT  
Weakly biases TXD toward recessive to prevent bus blockage or TXD  
DTO triggering  
TXD  
Pull-up  
nCS  
Pull-up  
Weakly biases nCS high to prevent un-intended SPI communication  
Weakly biased to ground  
SCLK  
Pull-down  
10.3.11.6 CAN Bus Short Circuit Current Limiting  
The TCAN1164-Q1 has several protection features that limit the short circuit current during dominant and  
recessive when a CAN bus line is shorted. The device has TXD dominant state timeout which prevents  
permanently having a higher short circuit current during a dominant state fault.  
During CAN communication the bus switches between the dominant and recessive states, thus the short circuit  
current may be viewed either as the current during each bus state or as a DC average current. The average  
short circuit current should be used when considering system power for the termination resistors and common  
mode choke. The percentage dominant is limited by the TXD dominant state timeout and CAN protocol which  
has forced state changes and recessive bits such as bit stuffing, control fields, and interframe space. These  
ensure that there is a minimum recessive time on the bus even if the data field contains a high percentage of  
dominant bits.  
The short circuit current of the bus depends on the ratio of recessive to dominant bits and their respective short  
circuit currents. The average short circuit current may be calculated using 方程式 2.  
IOS(AVG) = %Transmit × [(%REC_Bits × IOS(SS)_REC) + (%DOM_Bits × IOS(SS)_DOM)] + [%Receive × IOS(SS)_REC  
]
(2)  
Where:  
IOS(AVG) is the average short circuit current  
%Transmit is the percentage the node is transmitting CAN messages  
%Receive is the percentage the node is receiving CAN messages  
%REC_Bits is the percentage of recessive bits in the transmitted CAN messages  
%DOM_Bits is the percentage of dominant bits in the transmitted CAN messages  
IOS(SS)_REC is the recessive steady state short circuit current  
IOS(SS)_DOM is the dominant steady state short circuit current  
The short circuit current and possible fault cases of the network should be taken into consideration when sizing  
the power ratings of the termination resistance and other network components.  
10.3.11.7 Sleep Wake Error Timer  
The sleep wake error (SWE) timer, tINACTIVE, is a timer used to determine if specific external and internal  
functions are working. The SWE timer starts when the device enters standby mode and only runs in standby  
mode. A mode transistion stops the timer. If the timer times out while the device is in standby mode the WKERR  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
interrupt bit in the INT_1 register will be set, register 8'h51[4], and the RXD pin will be pulled low to indicate an  
interrupt. The TCAN1164-Q1 will stay in standby mode.  
10.3.12 Watchdog  
The TCAN1164-Q1 has an integrated watchdog function. The TCAN1164-Q1 provides a window based  
watchdog as well as selectable autonomous, time-out or question and answer (Q&A) watchdog using SPI  
programming. This function is default disabled. When enabled, the watchdog timer treats a mode transition as  
the first watchdog trigger event.  
All four versions of the watchdog, autonomous, time-out, window and Q&A are avilable in normal and silent  
modes. When in standby mode the device will automactically transistion to a time-out watchdog. If autonomous  
has been selected the transistion to standby will keep the autonomous configuration.  
10.3.12.1 Watchdog Error Counter  
The TCAN1164-Q1 has a watchdog error counter. This counter is an up down counter that increments for every  
missed window or incorrect input watchdog trigger event. For every correct input trigger, the counter decrements  
but does not drop below zero. The default trigger for this counter is set to trigger a watchdog error event. This  
counter can be changed to the fifth or ninth error. The error counter can be read at register 8'h13[3:2].  
10.3.12.2 Watchdog SPI Control Programming  
The watchdog is configured and controlled using registers 8’h13 through 8’h15. These registers are provided  
in table 10-3. The TCAN1164-Q1 watchdog can be set as autonomous, time-out, window or question and  
answer (Q&A) watchdog by setting 8’h13[7:6] to the method of choice. The time-out and window watchdog timer  
is based upon registers 8’h13[5:4] WD prescaler and 8’h14[7:5] WD timer and is in ms. See 10-3 for the  
achievable times. If using smaller time windows it is suggested to use the time-out version of the watchdog. This  
is for times between 4 ms and 64 ms.  
10-3. Watchdog Window and Time-out Timer Configuration (ms)  
WD_TIMER  
8'h13[5:4] WD_PRE  
(ms)  
8'h14[7:5]  
000  
00  
4
01  
8
10  
12  
11  
16  
001  
32  
64  
96  
128  
010  
128  
256  
512  
2048  
10240  
RSVD  
256  
384  
512  
011  
384  
512  
768  
100  
1024  
4096  
20240  
RSVD  
1536  
6144  
RSVD  
RSVD  
2048  
8192  
RSVD  
RSVD  
101  
110  
1111  
备注  
If timing parameters are changed while the watchdog is running, the WD stops until after the first input  
trigger event after the new parameters have been programmed at which time it runs based upon the  
new timing parameters.  
10.3.12.3 Watchdog Timing  
The device provides four methods for setting up the watchdog. If more frequent, < 64 ms, input trigger events  
are desired it is suggested to use the Time-out timer as this is an event within the time event and not specific to  
an open window.  
Autonomous watchdog is a type of time-out watchdog. The difference from time-out is when it is enabled. In  
Standby (RXD=High, so no wake event), a wake event impacts the autonomous behavior. The wake event in  
standby mode is treated as a watchdog trigger event. Clearing the wake event in Standby will both disable the  
Watchdog and set RXD=H. If another wake event takes place while the device is still in standby mode, it will be  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TCAN1164-Q1  
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
treated as a WD trigger event. Regular time-out watchdog (or any other watchdog) requires a mode transistion to  
start the timer. Only Autonomous can do a trigger based on a Wake event. In Normal mode, Autonomous works  
like a time-out (always enabled).  
When using the window watchdog it is important to understand the closed and open window aspects. The device  
is set up with a 50%/50% open and closed window and is based on an internal oscillator with a ± 10% accuracy  
range. To determine when to provide the input trigger, this variance needs to be taken into account. Using the  
60 ms nominal total window provides a closed and open window that are each 30 ms. Taking the ± 10% internal  
oscillator into account means the total window could be 54 ms, tWINDOW, MIN or 66 ms, tWINDOW MAX. The  
closed and open window would then be 27 ms, TWDOUT MIN, or 33 ms, TWDOUT MIN. From the 54 ms total  
window and 33 ms closed window the total open window is 21 ms. The trigger event needs to happen at the  
43.5 ms ± 10.5 ms, safe trigger area. The same method is used for the other window values. 10-4 provides  
the above information graphically. Once the WD trigger is written, the current Window is terminated and a new  
Closed Window is started.  
Watchdog Window  
Closed Window  
Open Window  
tWDOUT min  
Watchdog Window  
Closed Window  
Open Window  
tWDOUT max  
tWINDOW min  
tWINDOW max  
Safe Trigger area  
Watchdog Safe  
Trigger Area  
Writing FF to 8'h15  
10-4. Window Watchdog Timing Diagram  
10.3.12.4 Question and Answer Watchdog  
The TCAN1164-Q1 has a watchdog timer that supports the window watchdog as well as the Q&A watchdog.  
10.3.12.5 explains the WD initialization events.  
10.3.12.4.1 WD Question and Answer Basic information  
A Question and Answer (Q&A) watchdog is a type of watchdog where instead of simply resetting the watchdog  
via a SPI write or a pin toggle, the MCU reads a ‘question’ from the TCAN1164-Q1 do math based on the  
question and then write the computed answers back to the TCAN1164-Q1. The correct answer is a four byte  
response. Each byte must be written in order and with the correct timing to have a correct answer.  
There are two watchdog windows; referred to as WD Response window #1 and WD Response window #2 (图  
10-5 WD QA Windows as example). The size of each window will be 50% of the total watchdog time, which is  
selected from the WD_TIMER and WD_PRE register bits.  
Each watchdog question and answer is a full watchdog cycle. The general process is the MCU reads the  
question, when the question is read, the timer starts. The CPU must perform a mathematical function on the  
question, resulting in four bytes of answers. Three of the four answer bytes must be written to the answer  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
register within the first window, in correct order. The last answer must be written to the answer register after  
the first response window, inside of WD Response Window #2. If all four answer bytes were correct and in the  
correct order, then the response is considered good and a new question is generated, starting the cycle over  
again. Once the fourth answer is written into WD Response Window #2, that window is terminated and a new  
WD Response Window #1 is started.  
If anything is incorrect or missed, the response is considered bad and the watchdog question will NOT change.  
In addition, an error counter will be incremented. Once this error counter hits a threshold (defined in the  
WD_ERR_CNT register field), the watchdog failure action will be performed. Examples of actions are an  
interrupt, or reset toggle, etc.  
WD RESPONSE WINDOW #1  
WD RESPONSE WINDOW #2  
Three correct SPI WD question responses have to be scheduled in this  
interval, in the correct order:  
The final correct SPI WD question Response (WD_ANSWER_RESP_0) has  
to be scheduled in this time interval.  
WD_ANSWER_RESP_3 followed by  
WD_ANSWER_RESP_2 followed by  
WD_ANSWER_RESP_1  
After the last correct SPI-WD answer response, the next WD question is  
generated within 1 sys. clock cycle (typ. 125ns), after which next WD  
response WINDOW 1 (Q&A+1) starts  
After tWD_RESP_WIN1 time elapsed, WD response WINDOW 2 begins.  
Responses (”answers‘) are written to WD_QA_ANSWER register.  
The SPI WD question-response sequence order is important.  
WD Question  
Request  
WD Question Response Sequence  
SPI WD Question Sequence Responses(2)  
SPI Question  
Required(1)  
RD_WD_  
QUESTION  
WD_ANSWER  
_RESP_0  
WD_ANSWER  
_RESP_3  
WD_ANSWER  
_RESP_2  
WD_ANSWER  
_RESP_1  
SPI  
Commands  
nCS pin  
1 internal system clock cycle (1µs)  
to generate new WD Question for Q&A+1  
Q&A [n]  
tWD_RESP_WIN1 + tWD_RESP_WIN2  
Q&A [n+1]  
A. The MCU is not required to request the WD question. The MCU can start with correct answers, WD_ANSWER_RESP_x bytes  
anywhere within RESPONSE WINDOW 1. The new WD question is always generated within one system clock cycle after the final  
WD_ANSWER_RESP_0 answer during the previous WD Q&A sequence run.  
B. The MCU can schedule other SPI commands between the WD_ANSWER_RESPx responses (even a command requesting the WD  
question) without any impact to the WD function as long as the WD_ANSWER_RESP_[3:1] bytes are provided within the RESPONSE  
WINDOW 1 and WD_ANSWER_RESP_0 is provided within the RESPONSE WINDOW 2.  
10-5. WD Q&A Sequence Run for WD Q&A Multi-Answer Mode  
10.3.12.4.2 Question and Answer Register and Settings  
There are several registers used to configure the watchdog registers, 10-4.  
10-4. List of Watchdog Related Registers  
Register  
Address  
Register Name  
Description  
0x13  
WD_CONFIG_1  
Watchdog configuration and action in event of a failure  
Sets the time of the window, and shows current error counter value  
Register to reset or start the watchdog  
0x14  
0x15  
0x16  
0x2D  
0x2E  
WD_CONFIG_2  
WD_INPUT_TRIG  
WD_RST_PULSE  
WD_QA_CONFIG  
WD_QA_ANSWER  
Reset pulse width in event of watchdog failure  
Configuration related to the QA configuration  
Register for writing the calculated answers  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TCAN1164-Q1  
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
10-4. List of Watchdog Related Registers (continued)  
Register  
Address  
Register Name  
Description  
0x2F  
WD_QA_QUESTION  
Reading the current QA question  
The WD_CONFIG_1 and WD_CONFIG_2 registers mainly deal with setting up the watchdog window time  
length. Refer to 10-3 to see the options for window sizes, and the required values for the WD_TIMER values  
and WD_PRE values. Take note that each of the 2 response windows are half of the selected value. Due to the  
need for several bytes of SPI to be used for each watchdog QA event, it is recommended that windows greater  
than 64 ms be used when using the QA watchdog functionality.  
There are also different actions that can be performed when the watchdog error counter hits the error counter  
threshold.  
10.3.12.4.3 WD Question and Answer Value Generation  
The 4-bit WD question, WD_QA_QUESTION[3:0], is generated by 4-bit Markov chain process. A Markov chain  
is a stochastic process with Markov property, which means that state changes are probabilistic, and the future  
state depends only on the current state. The valid and complete WD answer sequence for each WD Q&A mode  
is as follows:  
For WD Q&A multi-answer:  
1. Three correct SPI WD answers are received during RESPONSE WINDOW 1.  
2. One correct SPI WD answer is received during RESPONSE WINDOW 2.  
3. In addition to the previously listed timing, the sequence of four responses shall be correct.  
The WD question value is latched in the WD_QUESTION[3:0] bits of the WD_QA_QUESTION register and can  
be read out at any time.  
The Markov chain process is clocked by the 4-bit Question counter at the transition from b1111 to b0000.  
This includes the condition of a correct answer (correct answer value and correct timing response). The logic  
combination of the 4-bit questions WD_QUESTION [3:0] generation is given in 10-6.  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
4-bit LFSR Polynomial Equation  
WD_Q&A_POLY_CFG [5:4] = 0x00: y = x4 + x3 + 1 (default value)  
WD_Q&A_POLY_CFG [5:4] = 0x01: y = x4 + x2 + 1  
WD_Q&A_POLY_CFG [5:4] = 0x10: y = x3 + x2 + 1  
WD_Q&A_POLY_CFG [5:4] = 0x11: y = x4 + x3 + x2 + 1  
Note: if current y value is 0000, next y value will be 0001 and further WD Question generation  
process starts from there  
X2  
X3  
X4  
X1  
Bit 0  
Bit 2  
Bit 1  
Bit 3  
Clocked on CNT  
0xF -> 0x0  
transition  
( choice of SEED value determines the order of states )  
( programmable through WD_Q&A_POLY_SEED [3:0] register )  
X1  
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
1
X2  
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
0
X3  
1
0
1
1
1
1
0
0
0
1
0
0
1
1
0
1
X4  
0
1
0
1
1
1
1
0
0
0
1
0
0
1
1
0
SEED  
1
2
x2  
00  
01  
10  
11  
x1  
WD_QUESTION [0]  
3
x4  
x3  
4
5
CNT[1]  
00  
01  
10  
11  
6
CNT[0]  
CNT[3]  
CNT[2]  
7
8
9
x4  
00  
01  
10  
11  
10  
11  
12  
13  
14  
15  
x3  
x2  
WD_QUESTION [1]  
x1  
CNT[3]  
CNT[2]  
CNT[1]  
CNT[0]  
00  
01  
10  
11  
Default QUESTION sequence order with default  
QUESTION_SEED and FDBK bit values  
00  
01  
10  
11  
x1  
x4  
x3  
x2  
WD_QUESTION [2]  
WDT QUESTION  
Counter  
CNT[0]  
CNT[3]  
CNT[2]  
CNT[1]  
00  
01  
10  
11  
CNT [0]  
CNT[0]  
CNT[1]  
CNT[2]  
CNT[3]  
CNT [1]  
CNT [2]  
CNT [3]  
INCR + 1  
trigger  
VALID WD ANSWER  
(i.e. —good“ event)  
x3  
x2  
x1  
x4  
00  
01  
10  
11  
4 valid responses returned by MCU in  
correct sequence and timing  
WD_QUESTION [3]  
CNT[2]  
CNT[1]  
CNT[0]  
CNT[3]  
00  
01  
10  
11  
Feedback Settings through  
WD_ANSW_GEN_CFG [7:6] register bit settings  
(default value 0x00 - i.e. signal marked in red)  
A. If the current y value is 0000, the next y value is 0001. The next watchdog question generation process starts from that value.  
10-6. Watchdog Question Generation  
10-5 contains the answers for each question, as long as the question polynomial and answer generation  
configuration are both at their default values.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TCAN1164-Q1  
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
10-5. Example answers to questions with default settings  
QUESTION IN  
WD_QUESTION_VALUE  
REGISTER  
WD ANSWER BYTES (EACH BYTE TO BE WRITTEN INTO WD_QA_ANSWER REGISTER)  
WD_ANSWER_RESP_3 WD_ANSWER_RESP_2 WD_ANSWER_RESP_1 WD_ANSWER_RESP_0  
WD_QUESTION  
WD_ANSW_CNT 2'b11  
WD_ANSW_CNT 2'b10  
WD_ANSW_CNT 2'b01  
WD_ANSW_CNT 2'b00  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
FF  
B0  
E9  
A6  
75  
3A  
63  
2C  
D2  
9D  
C4  
8B  
58  
17  
4E  
01  
0F  
40  
19  
56  
85  
CA  
93  
DC  
22  
6D  
34  
7B  
A8  
E7  
BE  
F1  
F0  
BF  
E6  
A9  
7A  
35  
6C  
23  
DD  
92  
CB  
84  
57  
18  
41  
0E  
00  
4F  
16  
59  
8A  
C5  
9C  
D3  
2D  
62  
3B  
74  
A7  
E8  
B1  
FE  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
00  
01  
10  
11  
WD_QUESTION [0]  
WD_QUESTION [1]  
WD_QUESTION [2]  
WD_QUESTION [3]  
WD_QA_ANSWER [0]  
WD_ANSW_CNT [1]  
( from WD_QA_QUESTION register )  
00  
01  
10  
11  
WD_QUESTION [3]  
WD_QUESTION [2]  
WD_QUESTION [1]  
WD_QUESTION [0]  
00  
01  
10  
11  
WD_QUESTION [0]  
WD_QUESTION [1]  
WD_QUESTION [2]  
WD_QUESTION [3]  
WD_QA_ANSWER [1]  
00  
01  
10  
11  
WD_QUESTION [2]  
WD_QUESTION [1]  
WD_QUESTION [0]  
WD_QUESTION [3]  
WD_QUESTION [1]  
WD_ANSW_CNT [1]  
( from WD_QA_QUESTION register )  
WD_QUESTION [0]  
WD_QUESTION [3]  
WD_QUESTION [1]  
WD_QUESTION [1]  
00  
01  
10  
11  
WD_QA_ANSWER [2]  
WD_QUESTION [3]  
WD_QUESTION [2]  
WD_QUESTION [1]  
WD_QUESTION [0]  
00  
01  
10  
11  
WD_QUESTION [1]  
WD_ANSW_CNT [1]  
( from WD_QA_QUESTION register )  
00  
01  
10  
11  
WD_QUESTION [2]  
WD_QUESTION [1]  
WD_QUESTION [0]  
WD_QUESTION [3]  
WD_QA_ANSWER [3]  
WD_QUESTION [0]  
WD_QUESTION [3]  
WD_QUESTION [2]  
WD_QUESTION [1]  
00  
01  
10  
11  
WD_QUESTION [3]  
WD_ANSW_CNT [1]  
( from WD_QA_QUESTION register )  
TOKEN [1]  
TOKEN [0]  
TOKEN [2]  
TOKEN [3]  
00  
01  
10  
11  
WD_QA_ANSWER [4]  
WD_ANSW_CNT [0]  
( from WD_QA_QUESTION register )  
00  
01  
10  
11  
WD_QUESTION [3]  
WD_QUESTION [2]  
WD_QUESTION [1]  
WD_QUESTION [0]  
WD_QA_ANSWER [5]  
WD_ANSW_CNT [0]  
( from WD_QA_QUESTION register )  
WD_QUESTION [0]  
WD_QUESTION [3]  
WD_QUESTION [2]  
WD_QUESTION [1]  
00  
01  
10  
11  
WD_QA_ANSWER [6]  
WD_ANSW_CNT [0]  
( from WD_QA_QUESTION register )  
00  
01  
10  
11  
WD_QUESTION [2]  
WD_QUESTION [1]  
WD_QUESTION [0]  
WD_QUESTION [3]  
WD_QA_ANSWER [7]  
WD_ANSW_CNT [0]  
( from WD_QA_QUESTION register )  
Feedback Settings Controllable through  
WD_ANSW_GEN_CFG [7:6] register bit settings  
( default value 0x00, signals marked in red )  
Expected Answers to be written into  
WD_QA_ANSWER register  
10-7. WD Expected Answer Generation  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TCAN1164-Q1  
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
10-6. Correct and Incorrect WD Q&A Sequence Run Scenarios for WD Q&A Multi-Answer Mode  
(WD_CFG = 0b)  
WD STATUS BITS IN  
NUMBER OF WD ANSWERS  
WD_QA_QUESTION REGISTER  
ACTION  
COMMENTS  
RESPONSE  
WINDOW 1  
RESPONSE  
WINDOW 2  
QA_ANSW_ERR  
WD_ERR(1)  
-New WD cycle starts after the end of  
RESPONSE WINDOW 2  
0 answer  
0 answer  
0 answer  
0 answer  
-Increment WD failure counter  
-New WD cycle starts with the same WD  
question  
0b  
1b  
No answers  
-New WD cycle starts after the 4th WD  
answer  
-Increment WD failure counter  
-New WD cycle starts with the same WD  
question  
4 INCORRECT answer  
4 CORRECT answer  
1b  
0b  
0b  
1b  
0b  
1b  
0b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
1b  
Total WD_ANSW_CNT[1:0] = 4  
Total WD_ANSW_CNT[1:0] = 4  
-New WD cycle starts after the 4th WD  
answer  
-Increment WD failure counter  
-New WD cycle starts with the same WD  
question  
0 answer  
1 CORRECT answer  
1 CORRECT answer  
-New WD cycle starts after the end of  
RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the same WD  
question  
Less than 3 CORRECT ANSWER  
in RESPONSE WINDOW 1 and 1  
CORRECT ANSWER in RESPONSE  
WINDOW 2 (Total WD_ANSW_CNT[1:0]  
< 4)  
1 CORRECT answer  
2 CORRECT answer  
1 CORRECT answer  
0 answer  
1 INCORRECT answer  
1 INCORRECT answer  
-New WD cycle starts after the end of  
RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the same WD  
question  
Less than 3 CORRECT ANSWER  
in RESPONSE WINDOW 1 and 1  
INCORRECT ANSWER in RESPONSE  
WINDOW 2 (Total WD_ANSW_CNT[1:0]  
< 4)  
1 CORRECT answer  
2 CORRECT answer  
1 INCORRECT answer  
0 answer  
4 CORRECT answer  
3 CORRECT answer  
-New WD cycle starts after the 4th WD  
answer  
-Increment WD failure counter  
-New WD cycle starts with the same WD  
question  
Less than 3 CORRECT ANSWER in  
WIN1 and more than 1 CORRECT  
ANSWER in RESPONSE WINDOW 2  
(Total WD_ANSW_CNT[1:0] = 4)  
1 CORRECT answer  
2 CORRECT answer  
2 CORRECT answer  
0 answer  
4 INCORRECT answer  
3 INCORRECT answer  
-New WD cycle starts after the 4th WD  
answer  
-Increment WD failure counter  
-New WD cycle starts with the same WD  
question  
Less than 3 CORRECT ANSWER in  
RESPONSE WINDOW 1 and more than  
1 INCORRECT ANSWER in RESPONSE  
WINDOW 2 (Total WD_ANSW_CNT[1:0]  
= 4)  
1 CORRECT answer  
2 CORRECT answer  
0 answer  
2 INCORRECT answer  
-New WD cycle starts after the end of  
RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the same WD  
question  
3 CORRECT answer  
Less than 3 INCORRECT ANSWER in  
RESPONSE WINDOW 1 and more than  
1 CORRECT ANSWER in RESPONSE  
WINDOW 2 (Total WD_ANSW_CNT[1:0]  
< 4)  
1 INCORRECT answer  
2 INCORRECT answer  
2 CORRECT answer  
1 CORRECT answer  
-New WD cycle starts after the end of  
RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the same WD  
question  
0 answer  
3 INCORRECT answer  
2 INCORRECT answer  
-New WD cycle starts after the end of  
RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the same WD  
question  
Less than 3 INCORRECT ANSWER in  
RESPONSE WINDOW 1 and more than  
1 INCORRECT ANSWER in RESPONSE  
WINDOW 2 (Total WD_ANSW_CNT[1:0]  
< 4)  
1 INCORRECT answer  
2 INCORRECT answer  
1 INCORRECT answer  
0 answer  
4 CORRECT answer  
3 CORRECT answer  
-New WD cycle starts after the 4th WD  
answer  
-Increment WD failure counter  
-New WD cycle starts with the same WD  
question  
0b  
1b  
1b  
1b  
Less than 3 INCORRECT ANSWER in  
RESPONSE WINDOW 1 and more than  
1 CORRECT ANSWER in RESPONSE  
WINDOW 2 (Total WD_ANSW_CNT[1:0]  
= 4)  
1 INCORRECT answer  
2 INCORRECT answer  
2 CORRECT answer  
0 answer  
4 INCORRECT answer  
3 INCORRECT answer  
-New WD cycle starts after the 4th WD  
answer  
-Increment WD failure counter  
-New WD cycle starts with the same WD  
question  
Less than 3 INCORRECT ANSWER in  
RESPONSE WINDOW 1 and more than  
1 INCORRECT ANSWER in RESPONSE  
WINDOW 2 (Total WD_ANSW_CNT[1:0]  
= 4)  
1 INCORRECT answer  
1b  
1b  
2 INCORRECT answer  
2 INCORRECT answer  
3 CORRECT answer  
2 CORRECT answer  
0 answer  
0 answer  
-New WD cycle starts after the end of  
RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the same WD  
Question  
0b  
0b  
1b  
1b  
Less than 4 CORRECT ANSW in  
RESPONSE WINDOW 1 and more than  
0 ANSWER in RESPONSE WINDOW 2  
(Total WD_ANSW_CNT[1:0] < 4)  
1 CORRECT answer  
0 answer  
-New WD cycle starts after the 4th WD  
answer  
3 CORRECT answer  
1 CORRECT answer  
-Decrement WD failure counter  
-New WD cycle starts with a new WD  
question  
0b  
0b  
CORRECT SEQUENCE  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
10-6. Correct and Incorrect WD Q&A Sequence Run Scenarios for WD Q&A Multi-Answer Mode  
(WD_CFG = 0b) (continued)  
WD STATUS BITS IN  
WD_QA_QUESTION REGISTER  
NUMBER OF WD ANSWERS  
ACTION  
COMMENTS  
RESPONSE  
WINDOW 1  
RESPONSE  
WINDOW 2  
QA_ANSW_ERR  
WD_ERR(1)  
-New WD cycle starts after the 4th WD  
answer  
3 CORRECT answer  
3 INCORRECT answer  
3 INCORRECT answer  
3 INCORRECT answer  
4 CORRECT answer  
1 INCORRECT answer  
-Increment WD failure counter  
-New WD cycle starts with the same WD  
question  
1b  
1b  
Total WD_ANSW_CNT[1:0] = 4  
-New WD cycle starts after the end of  
RESPONSE WINDOW 2  
-Increment WD failure counter  
-New WD cycle starts with the same WD  
question  
0 answer  
1b  
1b  
1b  
0b  
1b  
1b  
1b  
1b  
Total WD_ANSW_CNT[1:0] < 4  
Total WD_ANSW_CNT[1:0] = 4  
Total WD_ANSW_CNT[1:0] = 4  
-New WD cycle starts after the 4th WD  
answer  
-Increment WD failure counter  
-New WD cycle starts with the same WD  
question  
1 CORRECT answer  
1 INCORRECT answer  
Not applicable  
-New WD cycle starts after the 4th WD  
answer  
-Increment WD failure counter  
-New WD cycle starts with the same WD  
question  
-New WD cycle starts after the 4th WD  
answer  
-Increment WD failure counter  
-New WD cycle starts with the same WD  
question  
3 CORRECT answer + 1  
INCORRECT answer  
Not applicable  
Not applicable  
Not applicable  
-New WD cycle starts after the 4th WD  
answer  
-Increment WD failure counter  
-New WD cycle starts with the same WD  
question  
2 CORRECT answer + 2  
INCORRECT answer  
4 CORRECT or INCORRECT ANSWER  
in RESPONSE WINDOW 1  
1b  
1b  
1 CORRECT answer + 3  
INCORRECT answer  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TCAN1164-Q1  
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
10.3.12.5 Question and Answer WD Example  
For this example, we’ll walk through a single sequence with the following configuration settings, 10-7.  
10-7. Example Configuration Settings  
Item  
Value  
Description  
Watchdog window size  
1024 ms  
Window size of 1024 ms  
Answer Generation Option  
Question Polynomial  
0 (default)  
0 (default)  
9 (default)  
15  
Answer generation configuration  
Polynomial used to generate the question  
Polynomial seed used to generate questions  
On the 15th fail event, do the watchdog action  
Question polynomial seed  
WD Error Counter Limit  
10.3.12.5.1 Example configuration for desired behavior  
10-8 register writes will configure the part for the example behavior specified above. Most of the settings are  
power on defaults.  
10-8. Example Register Configuration Writes  
Register  
Step  
Data  
1
2
3
WD_CONFIG_1 (0x13)  
[W] 0b11011101 / 0xDD  
[W] 0b10000000 / 0x80  
[W] 0b00001010 / 0x0A  
WD_CONFIG_2 (0x14)  
WD_QA_CONFIG (0x2D)  
10.3.12.5.2 Example of performing a question and answer sequence  
The normal sequence summary is as follows:  
1. Read the question  
2. Calculate the four answer bytes  
3. Send three of them within the first response window  
4. Wait and send the last byte in the second response window  
See 10-9 for an example of the first loop sequence.  
10-9. Example First Loop  
Step  
Register  
Data  
Description  
WD_INPUT_TRIG  
(0x15)  
Start the watchdog (since it isn’t started yet), also keep a timer internally to flag  
when response window 1 ends and window 2 starts.  
1
2
3
4
5
6
[W] 0xFF  
WD_QA_QUESTION  
(0x2F)  
[R] 0x3C  
[W] 0x58  
[W] 0xA8  
[W] 0x57  
[W] 0xA7  
Read the question. Question is 0x3C  
WD_QA_ANSWER  
(0x2E)  
Write answer 3 (See 10-5 example answers to questions with default settings  
to see answers)  
WD_QA_ANSWER  
(0x2E)  
Write answer 2  
WD_QA_ANSWER  
(0x2E)  
Write answer 1  
WD_QA_ANSWER  
(0x2E)  
Write answer 0 once window 2 has started  
At this point, you can read the WD_QA_QUESTION (0x2F) register to see if the error counter has increased or if  
QA ERROR is set.  
10.3.13 Bus Fault Detection and Communication  
The TCAN1164-Q1 provides advanced bus fault detection. TCAN1164-Q1 is used for illustration purposes. The  
device can determine certain fault conditions and set a status/interrupt flag so that the MCU can understand  
what the fault is. Detection takes place and is recorded if the fault is present during four dominant to recessive  
transitions with each dominant bit being ≥ 2 µs. As with any bus architecture where termination resistors are at  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
 
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
each end not every fault can be specified to the lowest level, meaning exact location. The fault detection circuitry  
is monitoring the CANH and CANL pins (currents) to determine if there is a short to battery, short to ground,  
short to each other or opens. From a system perspective, the location of the device can impact what fault can  
be detected. See 10-8 as an example of node locations and how they can impact the ability to determine  
the actual fault location. 10-9 through 10-13 show the various bus faults based upon the three node  
configuration. 10-10 shows what can be detected and by which device. Fault 1 is detected as ½ termination  
and Fault 2 is detected as no termination.  
Bus fault detection is a system-level situation. If the fault is occurring at the ECU then the general  
communication of the bus is compromised. For complete coverage of a node a system level diagnostic step  
for each node and the ability to communicate this back to a central point is needed.  
Device 2  
TCAN1164  
120  
Device 1  
CANH  
TCAN1164  
CANL  
120  
TCAN1164  
Device 3  
10-8. Three Node Example  
Device 2  
Device 2  
Device 2  
Device 2  
TCAN1164  
Fault 1  
TCAN1164  
Fault 1  
TCAN1164  
TCAN1164  
Fault 2  
Fault 2  
120  
120  
120  
120  
Device 1  
Device 1  
Device 1  
Device 1  
CANH  
CANL  
CANH  
CANL  
CANH  
CANL  
CANH  
CANL  
TCAN1164  
TCAN1164  
TCAN1164  
TCAN1164  
120  
120  
120  
120  
TCAN1164  
Device 3  
TCAN1164  
Device 3  
TCAN1164  
Device 3  
TCAN1164  
Device 3  
ꢀꢁFault 1 is any case where ½ termination is seen  
ꢀꢁFault 2 is any case where no termination is seen  
10-9. Fault 1 and 2 Examples  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TCAN1164-Q1  
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
Device 2  
Device 2  
TCAN1164  
TCAN1164  
Fault 3  
Fault 4  
120  
120  
Device 1  
Device 1  
CANH  
CANL  
CANH  
CANL  
TCAN1164  
TCAN1164  
120  
120  
TCAN1164  
Device 3  
TCAN1164  
Device 3  
10-10. Fault 3 and 4 Examples  
Device 2  
Device 2  
TCAN1164  
Fault 6  
TCAN1164  
Fault 5  
120  
120  
VBAT  
Device 1  
Device 1  
TCAN1164  
CANH  
CANH  
CANL  
TCAN1164  
CANL  
120  
120  
TCAN1164  
TCAN1164  
Device 3  
Device 3  
10-11. Fault 5 and 6 Examples  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
Device 2  
Device 2  
Device 2  
TCAN1164  
TCAN1164  
Fault 8  
Fault 7  
TCAN1164  
Fault 9  
120  
120  
120  
VBAT  
CANH  
Device 1  
Device 1  
Device 1  
CANH  
CANL  
CANH  
TCAN1164  
TCAN1164  
TCAN1164  
CANL  
CANL  
120  
120  
120  
TCAN1164  
Device 3  
TCAN1164  
Device 3  
TCAN1164  
Device 3  
10-12. Fault 7, 8 and 9 Examples  
Device 2  
Device 2  
TCAN1164  
120  
Fault 11  
TCAN1164  
120  
Fault 10  
VBAT  
Device 1  
Device 1  
CANH  
CANL  
CANH  
CANL  
TCAN1164  
TCAN1164  
120  
120  
TCAN1164  
Device 3  
TCAN1164  
Device 3  
10-13. Fault 10 and 11 Examples  
10-10. Bus Fault Pin State and Detection Table  
Fault #  
CANH  
Open  
Open  
CANL  
Open  
Open  
Fault Detected  
1
2
All positions see this fault as half termination and detect them  
Depending upon open location the device detects this as no termination.  
Yes but cannot tell the difference between it and Fault 2 and 4; Device 2 and  
Device 3 does not see this fault  
3
4
Open  
Normal  
Open  
Yes but cannot tell the difference between it and Fault 2 and 3; Device 2 and  
Device 3 does not see this fault  
Normal  
5
6
Shorted to CANL  
Shorted to Vbat  
Shorted to GND  
Normal  
Shorted to CANH Yes but not location  
Normal  
Normal  
Yes but not location  
7
Yes but cannot tell the difference between this and Fault 10  
Yes but cannot tell the difference between this and Fault 11  
8
Shorted to Vbat  
9
Normal  
Shorted to GND Yes but not location  
10  
11  
Shorted to GND  
Shorted to Vbat  
Shorted to GND Yes but cannot tell the difference between this and Fault 7  
Shorted to Vbat  
Yes but cannot tell the difference between this and Fault 8  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TCAN1164-Q1  
 
 
TCAN1164-Q1  
www.ti.com.cn  
ACCESS  
ZHCSPG1 – DECEMBER 2021  
10-11. Bus Fault Interrupt Flags Mapping to Fault Detection Number  
DEFAUL  
Address BIT(S)  
FLAG  
DESCRIPTION  
FAULT DETECTED  
T
7
6
1'b0  
RSVD  
Reserved  
CANBUSTERMOP  
EN  
1'b0  
CAN Bus has one termination point open  
Fault 1  
R/WC  
5
4
1'b0  
1'b0  
1'b0  
1'b0  
CANHCANL  
CANHBAT  
CANLGND  
CANH and CANL Shorted Together  
CANH Shorted to Vbat  
Fault 5  
Fault 6  
R/WC  
R/WC  
R/WC  
R/WC  
8'h54  
3
2
CANL Shorted to GND  
Fault 9  
CANBUSOPEN CAN Bus Open (One of three possible places)  
Faults 2, 3 and 4  
CANH Shorted to GND or Both CANH &  
CANBUSGND  
1
0
1'b0  
1'b0  
Faults 7 and 10  
Faults 8 and 11  
R/WC  
R/WC  
CANL Shorted to GND  
CANL Shorted to Vbat or Both CANH & CANL  
CANBUSBAT  
Shorted to Vbat  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
10.4 Device Functional Modes  
1
1
TJ > TTSD  
Fail-safe Mode2  
TJ < TTSD  
VCCOUT > OVVCCOUT  
&
VSUP < UVVSUP(F)  
VCCOUT < OVVCCOUT  
Reset event  
MODE_SEL = 101  
Silent Mode  
Power Off  
VSUP > UVVSUP(R)  
Reset  
nRST = H  
MODE_SEL = 111  
VCCOUT < UVVCCOUT  
MODE_SEL = 101  
Normal Mode  
MODE_SEL = 111  
MODE_SEL = 100  
Standby Mode  
1 From any mode except power off  
2 To exit fail-safe mode all faults must be cleared  
10-14. TCAN1164 State Machine  
10-12. TCAN1164 Mode Overview  
Block  
Power Off  
Reset  
Fail-safe  
Normal  
Standby  
Silent  
VCCOUT  
Off  
On  
Off  
On  
On  
On  
Low Power CAN  
RX  
Off  
Off  
Fault determines  
Off  
Active  
Off  
CAN Transmitter  
CAN Receiver  
Off  
Off  
CAN Autonomous  
CAN Autonomous  
Off  
Off  
CAN Active  
CAN Active  
CAN Autonomous  
CAN Autonomous  
Off  
Active  
Entrance  
Dependent  
RXD  
High impedance  
VCCOUT  
VCCOUT  
Mirrors Bus State  
Mirrors Bus State  
Watchdog  
SPI  
Off  
Off  
Off  
Active  
Active  
Active  
Active  
Active  
Active  
Disabled  
Disabled  
Fault determines  
10.4.1 Operating Mode Description  
10.4.1.1 Normal Mode  
This is the normal operating mode of the device. The CAN driver and receiver are fully operational and CAN  
communication is bi-directional. The driver is translating a digital input on TXD to a differential output on CANH  
and CANL. The receiver is translating the differential signal from CANH and CANL to a digital output on RXD.  
The tINACTIVE timer in not active in normal mode.  
10.4.1.2 Silent Mode  
Silent mode is commonly referred to as listen only and receive only mode. In this mode, the CAN driver is  
disabled but the receiver is fully operational and CAN communication is unidirectional into the device. The  
receiver is translating the differential signal from CANH and CANL to a digital output on the RXD terminal.  
Silent mode is similar to normal mode, excep that TXD is ignored. RXD works just the same as normal mode.  
10.4.1.3 Standby Mode  
The RXD output pin is asserted low while in standby mode if the a wake event or a fault is detected. Note that a  
POR counts as a wake event and will also cause RXD to latch low.  
In standby mode a fail-safe timer, tINACTIVE, is enabled. The tINACTIVE timer add an additional layer of protection  
by requiring the system controller to configure the TCAN1164-Q1 to normal mode before it expires. This feature  
forces the TCAN1164-Q1 to transition to its lowest power mode, standby mode with a SWE interrupt flag set, if  
the processor does not come up properly.  
10.4.1.3.1 Wake-Up Pattern (WUP) Detection in Standby Mode  
The TCAN1164-Q1 is capable of detecting a wake-up pattern (WUP), even while in standby mode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TCAN1164-Q1  
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
The wake-up pattern (WUP) consists of a filtered dominant bus, then a filtered recessive bus time followed by  
a second filtered bus time. The first filtered dominant initiates the WUP and the bus monitor is now waiting on  
a filtered recessive, other bus traffic do not reset the bus monitor. Once a filtered recessive is received, the bus  
monitor is now waiting on a filtered dominant. The other bus traffic do not reset the bus monitor. Immediately  
upon receiving of the second filtered dominant, the bus monitor recognizes the WUP and drives the RXD  
terminal low.  
The WUP consists of:  
A filtered dominant bus of at least tWK_FILTER followed by  
A filtered recessive bus time of at least tWK_FILTER followed by  
A second filtered dominant bus time of at least tWK_FILTER  
For a dominant or recessive to be considered “filtered”, the bus must be in that state for more than tWK_FILTER  
time. Due to variability in the tWK_FILTER the following scenarios are applicable. Bus state times less than  
tWK_FILTER(MIN) are never detected as part of a WUP, and thus no wake request is generated. Bus state times  
between tWK_FILTER(MIN) and tWK_FILTER(MAX) may be detected as part of a WUP, and a wake request may be  
generated. Bus state times more than tWK_FILTER(MAX) are always detected as part of a WUP, and thus a wake  
request is generated. See 10-15for the timing diagram of the WUP.  
The pattern and tWK_FILTER time used for the WUP and wake request prevents noise and bus stuck dominant  
faults from causing false wake requests while allowing any CAN or CAN FD message to initiate a wake request.  
ISO11898-2:2016 has two sets of times for a short and long wake-up filter times. The tWK_FILTER timing for the  
TCAN1164-Q1 has been picked to be within the min and max values of both filter ranges. This timing has been  
chosen such that a single bit time at 500 kbps, or two back to back bit times at 1 Mbps triggers the filter in either  
bus state.  
For an additional layer of robustness and to prevent false wake-ups, the device implements the tWK_TIMEOUT  
timer. For a remote wake-up event to successfully occur, the entire wake-up pattern must be received within the  
timeout value. If a the full wake-up pattern is not received before the tWK_TIMEOUT expires, then the internal logic  
is reset. The full pattern must then be transmitted again within the tWK_TIMEOUT window.  
Wake-Up Pattern (WUP) received in t < tWK_TIMEOUT  
Wake Request  
Filtered  
Dominant  
Filtered  
Dominant  
Filtered  
Recessive  
Waiting for  
Filtered  
Waiting for  
Filtered  
Dominant  
Recessive  
Bus  
Bus VDiff  
tWK_FILTER  
tWK_FILTER  
tWK_FILTER  
WUP Detect  
10-15. Wake-Up Pattern (WUP)  
10.4.1.4 Reset Mode  
Reset mode is a low power mode of the TCAN1164-Q1 where the nRST pin is asserted low allowing the  
controller to power up correctly. In this state the CAN transmitter and receiver are off, the bus pins are biased to  
ground, and the transceiver cannot send or receive data.  
While in reset mode the receiver actively monitors the CAN bus for a valid wake-up pattern. If a valid wake-up  
pattern is received the CAN bus pins transition to the CAN autonomous active state where CANH and CANL  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
are internally biased to 2.5 V from the VSUP power rail. The reception of a valid wake-up pattern generates a  
wake-up request by the CAN transceiver that is output to the RXD pin.  
The TCAN1164-Q1 will enter reset mode due to following conditions:  
Power-on  
nRST pulled low externally  
The TCAN1164-Q1 will enter reset mode upon clearing any of the following fault conditions and leaving fail-safe  
mode:  
TJ < TSDF  
Over voltage event  
10.4.1.5 Fail-safe Mode  
Fail-safe mode is a low power mode in which the TCAN1164-Q1 is in a protected state. While in fail-safe mode  
the internal regulator (VCCOUT) is off, the reset pin is low, and the CAN transmitter and receiver are off.  
Fail-safe mode is entered if:  
TJ > TSDR  
VVCCOUT > OVCCOUTR  
Fail-safe mode is exited if all of the following criteria are met:  
TJ < TSDF  
VVCCOUT < OVCCOUTF  
A valid wake-up event exists  
If the fault condition is not cleared within tINACTIVE then the device will set the SWE interrupt, but will remain in  
standby mode.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TCAN1164-Q1  
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
10.4.2 CAN Transceiver  
10.4.2.1 CAN Transceiver Operation  
The TCAN1164-Q1 CAN transverse has three modes of operation; CAN active, CAN autonomous active, and  
CAN autonomous inactive.  
10.4.2.2 CAN Transceiver Modes  
The TCAN1164-Q1 supports the ISO 11898-2:2016 CAN physical layer standard autonomous bus biasing  
scheme. Autonomous bus biasing enables the transceiver to switch between CAN active, CAN autonomous  
active, and CAN autonomous inactive which helps to reduce RF emissions.  
CAN Active  
CAN Transmitter: on2  
CAN Receiver: on  
RXD: Mirrors CAN bus  
CANH & CANL: VCCOUT/2 (~2.5 V)  
From any mode  
VSUP < UVSUPF  
TJ > TSDR  
CAN Off  
CAN Transmitter: off  
CAN Receiver: off  
RXD: high  
CANH & CANL: floating  
CAN Autonomous: Inactive  
CAN Transmitter: off  
CAN Receiver: off  
RXD: wake-up/high  
CANH & CANL: bias to GND  
CAN Autonomous: Active  
CAN Transmitter: off  
WUP or (normal & (VCCOUT < UVCCOUTR))  
t > tSILENCE & (fail-safe or standby)  
VSUP > UVSUPR  
TJ < TSDF  
CAN Receiver: off  
RXD: low signals wake-up1  
CANH & CANL: bias to 2.5 V from VSUP  
1 Wake-up inactive in normal mode  
2 CAN transmitter is on in normal mode. It is off in silent mode.  
10-16. TCAN1164 CAN Transceiver State Machine  
10.4.2.2.1 CAN Off Mode  
In CAN off mode the CAN transceiver is switched off and the CAN bus lines are truly floating. In this mode the  
device presents no load to the CAN bus while preventing reverse currents from flowing into the device if the  
battery or ground connection is lost.  
The CAN off state is entered if:  
TJ > TSDR  
VSUP < UVSUPF  
The CAN transceiver switches between the CAN off state and CAN autonomous inactive mode if:  
VSUP > UVSUPR  
TJ < TSDF  
10.4.2.2.2 CAN Autonomous: Inactive and Active  
When the CAN transceiver is in standby mode the CAN bias circuit is switched off and the transceiver moves to  
the autonomous inactive state. In the autonomous inactive state the CAN pins are biased to GND. When a valid  
wake-up event occurs the CAN bus is biased to 2.5 V. If the controller does not transition the TCAN1164-Q1 into  
normal mode before the tSILENCE timer expires, then the CAN biasing circuit is again switched off and the CAN  
pins are biased to ground.  
The CAN transceiver switches to the CAN autonomous mode if any of the following conditions are met:  
The TCAN1164-Q1 transitions from CAN off mode to CAN autonomous inactive  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
The CAN transceiver switches between the CAN autonomous inactive mode and CAN autonomous active mode  
if:  
A valid wake-up event  
The TCAN1164-Q1 transitions to normal mode and no undervoltage faults exist.  
The CAN transceiver switches between the CAN autonomous active mode and CAN autonomous inactive mode  
if:  
t > tSILENCE and the TCAN1164-Q1 transitions to standby mode, or fail-safe mode.  
10.4.2.2.3 CAN Active  
When the TCAN1164-Q1 is in normal mode the CAN transceiver is in active mode. The CAN driver and receiver  
are fully operational and CAN communication is bi-directional. The CAN bias voltage in CAN active mode is  
derived from:  
VCCOUT  
The CAN transceiver switches between the CAN autonomous inactive or active mode and CAN active mode if:  
The TCAN1164-Q1 transitions to normal mode and no undervoltage faults exist.  
The CAN transceiver blocks its transmitter and receiver after entering CAN active mode if the TXD pin is  
asserted low before leaving standby mode. This prevents disruptions to CAN bus in the event that the TXD pin  
has a TXD DTO fault.  
When the TCAN1164-Q1 is in silent mode the CAN driver is disabled, but the receiver is fully operational. The  
CAN bias voltage is derived from the same CAN active mode.  
10.4.2.3 Driver and Receiver Function Tables  
10-13. Driver Function Table  
BUS OUTPUTS  
DEVICE MODE  
TXD INPUTS(1)  
DRIVEN BUS STATE(2)  
CANH  
CANL  
Low  
High  
Low  
Dominant  
Normal  
High or Open  
High impedance  
High impedance  
High impedance  
High impedance  
High impedance  
High impedance  
Biased to VCCOUT/2  
Biased to VCCOUT/2  
Biased to GND  
Silent  
x
x
Standby  
(1) x = irrelevant  
(2) For bus states and typical bus voltages see 10-17  
10-14. Receiver Function Table  
CAN DIFFERENTIAL INPUTS  
DEVICE MODE  
BUS STATE  
RXD TERMINAL  
VID = VCANH – VCANL  
VID ≥ 0.9 V  
Dominant  
Indeterminate  
Recessive  
Open  
Low  
Indeterminate  
High  
0.5 V < VID < 0.9 V  
VID ≤ 0.5 V  
Normal/Silent  
Open (VID ≈ 0 V)  
VID ≥ 1.15 V  
High  
Dominant  
Indeterminate  
Recessive  
Open  
0.5 V < VID < 1.15 V  
VID ≤ 0.4 V  
High  
Standby  
Low if wake-up event persists  
Open (VID ≈ 0 V)  
10.4.2.4 CAN Bus States  
The CAN bus has two logical states during operation: recessive and dominant. See 10-17.  
A dominant bus state occurs when the bus is driven differentially and corresponds to a logic low on the TXD  
and RXD pins. A recessive bus state occurs when the bus is biased to one half of the CAN transceiver supply  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TCAN1164-Q1  
 
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
voltage via the high resistance internal input resistors (RIN) of the receiver and corresponds to a logic high on the  
TXD and RXD pins.  
A dominant state overwrites the recessive state during arbitration. Multiple CAN nodes may be transmitting a  
dominant bit at the same time during arbitration, and in this case the differential voltage of the CAN bus will  
be greater than the differential voltage of a single CAN driver. The TCAN1164-Q1 CAN transceiver implements  
low-power standby modes which enables a third bus state where the bus pins are biased to ground via the high  
resistance internal resistors of the receiver.  
Standby Mode  
Normal Mode  
CANH  
VDIFF  
VDIFF  
CANL  
Recessive  
Dominant  
Recessive  
Time, t  
10-17. Bus States  
10.5 Programming  
10.5.1 Serial Peripheral Interface (SPI) Communication  
The SPI communication uses a standard SPI interface. Physically the digital interface pins are nCS (Chip Select  
Not), SDI (Serial Data In), SDO (Serial Data Out) and SCLK (Serial Clock). Each SPI transaction is a 16, 24  
or 32 bits containing an address and read/write command byte followed by one to three data bytes. The data  
shifted out on the SDO pin for the transaction always starts with the Global Status Register (byte). This register  
provides the high level status information about the device status. The two data bytes which are the ‘response’ to  
the command byte are shifted out next. Data bytes shifted out during a write command is content of the registers  
prior to the new data being written and updating the registers. Data bytes shifted out during a read command are  
the content of the registers and the registers is not updated.  
The SPI data input data on SDI is sampled on the low to high edge of the clock (SCLK). The SPI output data on  
SDO is changed on the high to low edge of the clock (SCLK).  
10.5.2 Serial Clock Input (SCLK)  
This input pin is used to input the clock for the SPI to synchronize the input and output serial data bit streams.  
The SPI data input, SDI, is sampled on the falling edge of SPI clock and the SPI data output, SDO, is changed  
on the falling edge of the SPI clock. See 10-18  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
SPI CLOCKING  
ACTIONs: C = data capture, S = data shift,  
L = load data out, P = process captured data  
MODE 0 (CPOL = 0, CPHA = 0)  
SCLK  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SDI. SDO  
ACTION  
L
C
S
C
S
C
S
C
S
C
S
C
S
C
S
C
L
C
S
C
S
C
S
C
S
C
S
C
S
C
S
C
P
P
INTERNAL  
CLK  
INTERNAL_CLK = !CS xor CLK  
10-18. SPI Clocking  
10.5.3 Serial Data Input (SDI)  
The SDI pin is used to let the device know which register address is being read from or written to. During a  
write, the number of clock cycles determines how many data bytes up to three will be loaded into sequential  
addresses. The minimum number of clock cycles for a write is 16 supporting the initial address and write  
command followed by one byte of data as seen in 10-19. The TCAN1164-Q1 supports burst read and write.  
10-20 shows an example of a 32-bit write which includes the initial 7-bit address, write bit and three data  
bytes. This all requires 32 clock cycles. Once the SPI is enabled by a low on nCS, the SDI samples the input  
data on each rising edge of the SPI clock (SCLK). The data is shifted into an appropriate sized shift register and  
after the correct number of clock cycles the shift register is full and the SPI transaction is complete. For a write  
command code, the new data is written into the addressed register only after the exact number of clock cycles  
have been shifted in by SCLK and the nCS has a rising edge to deselect the device. For a burst write if there are  
31 clock cycles of SCLK (1 clock cycle less than the full 3 byte write), the third byte write won’t happen while the  
first two bytes write will be executed. If the correct number of clock cycles and data are not shifted in during one  
SPI transaction (nCS low), the SPIERR flag is set.  
nCS  
SCLK  
SDI  
R/W  
= 1  
ADDRESS [6:0]  
DATA [7:0]  
SDO  
h’50[7:0]  
Interrupt  
Register  
10-19. SPI Write  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TCAN1164-Q1  
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
Address 00h  
Address 55h  
Address 56h  
Address 57h  
Address 58h  
Address 5Ah  
nCS  
SCLK  
SDI  
R/W  
= 1  
ADDRESS [6:0] = 56h  
DATA [7:0]  
DATA [7:0]  
DATA [7:0]  
SDO  
50h[7:0]  
Interrupt  
Register  
10-20. 32-bit SPI Burst Write  
10.5.4 Serial Data Output (SDO)  
This pin is high impedance until the SPI output is enabled via nCS. Once the SPI is enabled by a low on nCS,  
the SDO is immediately driven high or low showing the global interrupt register 8'h50, bit 7. The Global Interrupt  
register, INT_GLOBAL, is the first byte to be shifted out. The SDO pin provides data out from the device to the  
processor. For a write command this is the only data that will be provided on the SDO pin. For a read command  
he one to three bytes of data from successive address will be provided on the SDO line. 10-21 and 10-22  
shows examples of a single address read and of a three sequential address read utilizing the 32-bit burst read.  
The 32-bit burst read shows the global interrupt register followed by the three requested data bytes.  
备注  
If a read happens faster than 2 µs after a write the global fault flag status may not reflect any status  
change that the write may have initiated.  
nCS  
SCLK  
SDI  
R/W  
ADDRESS [6:0]  
= 0  
SDO  
h’50[7:0]  
Interrupt  
Register  
DATA [7:0]  
10-21. SPI Read  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
Address 00h  
Address 03h  
Address 04h  
Address 05h  
Address 06h  
Address 5Ah  
nCS  
SCLK  
SDI  
R/W  
= 0  
ADDRESS [6:0] = 04h  
SDO  
50h[7:0]  
Interrupt  
Register  
DATA [7:0]  
DATA [7:0]  
DATA [7:0]  
10-22. 32-bit SPI Burst Read  
10.5.5 Chip Select Not (nCS)  
This input pin is used to select the device for a SPI transaction. The pin is active low, so while nCS is high  
the Serial Data Output (SDO) pin of the device is high impedance allowing an SPI bus to be designed. When  
nCS is low the SDO driver is activated and communication may be started. The nCS pin is held low for a SPI  
transaction. A special feature on this device allows the SDO pin to immediately show the Global Fault Flag on a  
falling edge of nCS.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TCAN1164-Q1  
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
10.5.6 Registers  
Device Registers lists the memory-mapped registers for the Device registers. All register offset addresses not  
listed in Device Registers should be considered as reserved locations and the register contents should not be  
modified.  
10-15. Device Registers  
Address  
Acronym  
Register Name  
Section  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
0h + formula DEVICE_ID_y  
Device Part Number  
Major Revision  
8h  
9h  
REV_ID_MAJOR  
REV_ID_MINOR  
Minor Revision  
Ah + formula SPI_RSVD_x  
SPI reserved registers  
Read and Write Test Register SPI  
Mode configurations  
Watchdog configuration 1  
Watchdog configuration 2  
Watchdog input trigger  
Q and A Watchdog configuration  
Q and A Watchdog answer  
Q and A Watchdog question  
CAN Transceiver Status  
Global Interrupts  
Fh  
Scratch_Pad_SPI  
MODE_CNTRL  
WD_CONFIG_1  
WD_CONFIG_2  
WD_INPUT_TRIG  
WD_QA_CONFIG  
WD_QA_ANSWER  
WD_QA_QUESTION  
STATUS  
10h  
13h  
14h  
15h  
2Dh  
2Eh  
2Fh  
40h  
50h  
51h  
52h  
53h  
54h  
56h  
57h  
58h  
59h  
INT_GLOBAL  
INT_1  
Interrupts  
INT_2  
Interrupts  
INT_3  
Interrupts  
INT_CANBUS  
INT_ENABLE_1  
INT_ENABLE_2  
INT_ENABLE_3  
INT_ENABLE_CANBUS  
INT_RSVD_y  
CAN Bus fault interrupts  
Interrupt enable for INT_1  
Interrupt enable for INT_2  
Interrupt enable for INT_3  
Interrupt enable for INT_CANBUS  
5Ah +  
formula  
Interrupt Reserved Register INT_RSVD0 through  
INT_RSVD5  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
Complex bit access types are encoded to fit into small table cells. Device Access Type Codes shows the codes  
that are used for access types in this section.  
10-16. Device Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
RH  
H
R
Set or cleared by hardware  
Read  
Write Type  
H
H
Set or cleared by hardware  
Write  
W
W
W1C  
1C  
W
1 to clear  
Write  
Reset or Default Value  
-n  
Value after reset or the default value  
Register Array Variables  
i,j,k,l,m,n  
When these variables are used in a register name,  
an offset, or an address, they refer to the value of a  
register array where the register is part of a group  
of repeating registers. The register groups form a  
hierarchical structure and the array is represented  
with a formula.  
y
When this variable is used in a register name, an  
offset, or an address it refers to the value of a  
register array.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TCAN1164-Q1  
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
10.5.6.1 DEVICE_ID_y Register (Address = 0h + formula) [reset = xxh]  
DEVICE_ID_y is shown in 10-23 and described in 10-17.  
Return to Summary Table.  
Device Part Number  
Offset = 0h + y; where y = 0h to 7h  
10-23. DEVICE_ID_y Register  
7
6
5
4
3
2
1
0
DEVICE_ID  
R-xxh  
10-17. DEVICE_ID_y Register Field Descriptions  
Bit  
7-0  
Field  
DEVICE_ID  
Type  
Reset  
Description  
R
0b  
The DEVICE_ID[1:8] registers determine the part number of the  
device.  
The reset values and value of each DEVICE_ID register are listed for  
the corresponding register address  
Address 00h = 54h = T  
Address 01h = 43h = C  
Address 02h = 41h = A  
Address 03h = 4Eh = N  
Address 04h = 31h = 1  
Address 05h = 31h = 1  
Address 06h = 36h = 6  
Address 07h = 34h = 4  
10.5.6.2 REV_ID_MAJOR Register (Address = 8h) [reset = 00h]  
REV_ID_MAJOR is shown in 10-24 and described in 10-18.  
Return to Summary Table.  
Major Revision  
10-24. REV_ID_MAJOR Register  
7
6
5
4
3
2
1
0
Major_Revision  
R-00h  
10-18. REV_ID_MAJOR Register Field Descriptions  
Bit  
7-0  
Field  
Major_Revision  
Type  
Reset  
Description  
R
00h  
Major die revision  
10.5.6.3 REV_ID_MINOR Register (Address = 9h) [reset = 00h]  
REV_ID_MINOR is shown in 10-25 and described in 10-19.  
Return to Summary Table.  
Minor Revision  
10-25. REV_ID_MINOR Register  
7
6
5
4
3
2
1
0
Minor_Revision  
R-00h  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
 
 
 
 
 
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
10-19. REV_ID_MINOR Register Field Descriptions  
Bit  
Field  
Minor_Revision  
Type  
Reset  
Description  
7-0  
R
00h  
Minor die revision  
10.5.6.4 SPI_RSVD_x Register (Address = Ah + formula) [reset = 00h]  
SPI_RSVD_x is shown in 10-26 and described in 10-20.  
Return to Summary Table.  
Configuration Reserved Bits Ah to Eh  
Offset = Ah + x; where x = 0h to 4h  
10-26. SPI_RSVD_x Register  
7
6
5
4
3
2
1
0
0
0
SPI_RSVD_x  
R-00h  
10-20. SPI_RSVD_x Register Field Descriptions  
Bit  
7-0  
Field  
SPI_RSVD_x  
Type  
Reset  
Description  
R
00h  
SPI reserved registers 0 - 4  
10.5.6.5 Scratch_Pad_SPI Register (Address = Fh) [reset = 00h]  
Scratch_Pad_SPI is shown in 10-27 and described in 10-21.  
Return to Summary Table.  
Read and Write Test Register SPI  
10-27. Scratch_Pad_SPI Register  
7
6
5
4
3
2
1
Scratch_Pad  
R/W-00h  
10-21. Scratch_Pad_SPI Register Field Descriptions  
Bit  
7-0  
Field  
Scratch_Pad  
Type  
Reset  
Description  
R/W  
00h  
Read and Write Test Register SPI  
10.5.6.6 MODE_CNTRL Register (Address = 10h) [reset = 04h]  
MODE_CNTRL is shown in 10-28 and described in 10-22.  
Return to Summary Table.  
Mode select and feature enable and disable register  
10-28. MODE_CNTRL Register  
7
6
5
4
3
2
1
RSVD  
R-000b  
FD_EN  
R/W-0b  
RSVD  
R-0b  
MODE_SEL  
R/W-100b  
10-22. MODE_CNTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
000b  
0b  
Description  
7-5  
4
RSVD  
FD_EN  
R
Reserved  
R/W  
Fault detection enable  
0b = Disabled  
1b = Enabled  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TCAN1164-Q1  
 
 
 
 
 
 
 
 
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
10-22. MODE_CNTRL Register Field Descriptions (continued)  
Bit  
3
Field  
Type  
Reset  
Description  
RSVD  
R
0b  
Reserved  
2-0  
MODE_SEL  
R/W  
100b  
Mode of operation select  
001b = Reserved  
100b = Standby  
101b = Silent  
111b = Normal  
备注  
NOTE: The current mode will be read back and all other  
values are reserved  
10.5.6.7 WD_CONFIG_1 Register (Address = 13h) [reset = 54h]  
WD_CONFIG_1 is shown in 10-29 and described in 10-23.  
Return to Summary Table.  
Watchdog configuration setup 1  
10-29. WD_CONFIG_1 Register  
7
6
5
4
3
2
1
0
WD_CONFIG  
R/W-01b  
WD_PRE  
R/W-01b  
WD_ERR_CNT_SET  
R/W-01b  
RSVD  
R-0b  
WD_EN  
R/W-0b  
10-23. WD_CONFIG_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5-4  
3-2  
WD_CONFIG  
WD_PRE  
R/W  
01b  
Watchdog configuration  
00b = Autonomous  
01b = Timeout  
10b = Window  
11b = Q&A  
R/W  
R/W  
01b  
01b  
Watchdog prescalar  
0b = Factor 1  
1b = Factor 2  
10b = Factor 3  
11b = Factor 4  
WD_ERR_CNT_SET  
Sets the watchdog event error counter that upon overflow the  
watchdog output will trigger  
0b = Immediate trigger on each WD event  
1b = Triggers on the fifth error event  
10b = Triggers on the ninth error event  
11b = Triggers on the 15th error event  
1
0
RSVD  
R
0b  
0b  
Reserved  
WD_EN  
R/W  
Watchdog enable  
0b = Disabled  
1b = Enabled  
10.5.6.8 WD_CONFIG_2 Register (Address = 14h) [reset = 02h]  
WD_CONFIG_2 is shown in 10-30 and described in 10-24.  
Return to Summary Table.  
Watchdog configuration setup 2  
10-30. WD_CONFIG_2 Register  
7
6
5
4
3
2
1
0
WD_TIMER  
WD_ERR_CNT  
RSVD  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
 
 
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
10-30. WD_CONFIG_2 Register (continued)  
R/W-000b  
R/H-0001b  
R-0b  
10-24. WD_CONFIG_2 Register Field Descriptions  
Bit  
Field  
WD_TIMER  
Type  
Reset  
Description  
7-5  
R/W  
000b  
Sets window or timeout times based upon the WD_PRE setting  
See WD_TIMER table  
4-1  
0
WD_ERR_CNT  
RSVD  
R/H  
R
0001b  
0b  
Watchdog error counter  
Running count of errors up to 15 errors  
Reserved  
10.5.6.9 WD_INPUT_TRIG Register (Address = 15h) [reset = 00h]  
WD_INPUT_TRIG is shown in 10-31 and described in 10-25.  
Return to Summary Table.  
Writing FFh resets WD timer if accomplished at appropriate time  
10-31. WD_INPUT_TRIG Register  
7
6
5
4
3
2
1
0
WD_INPUT  
W1C-00h  
10-25. WD_INPUT_TRIG Register Field Descriptions  
Bit  
7-0  
Field  
WD_INPUT  
Type  
Reset  
Description  
R/W1C  
00h  
Write FFh to trigger WD  
10.5.6.10 WD_QA_CONFIG Register (Address = 2Dh) [reset = 0h]  
WD_QA_CONFIG is shown in 10-32 and described in 10-26.  
Return to Summary Table.  
Q&A watchdog configuration bits  
10-32. WD_QA_CONFIG Register  
7
6
5
4
3
2
1
0
WD_ANSW_GEN_CFG  
R/W-00b  
WD_Q&A_POLY_CFG  
R/W-00b  
WD_Q&A_POLY_SEED  
R/W-0000b  
备注  
Upon power up, WD_Q&A_POLY_SEED will read back 0000b, but the actual seed value is 101b.  
Once written to, the read back value and actual value will be the same.  
10-26. WD_QA_CONFIG Register Field Descriptions  
Bit  
7-6  
5-4  
3-0  
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
WD_ANSW_GEN_CFG  
WD_Q&A_POLY_CFG  
WD_Q&A_POLY_SEED  
00b  
WD answer generation configuration  
WD q&a polynomial configuration  
00b  
0000b  
WD q&a polynomial seed value loaded when device is in the RESET  
state  
10.5.6.11 WD_QA_ANSWER Register (Address = 2Eh) [reset = 0h]  
WD_QA_ANSWER is shown in 10-33 and described in 10-27.  
Return to Summary Table.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TCAN1164-Q1  
 
 
 
 
 
 
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
Q&A watchdog answer bits  
10-33. WD_QA_ANSWER Register  
7
6
5
4
3
2
1
0
WD_QA_ANSWER  
R-00h  
10-27. WD_QA_ANSWER Register Field Descriptions  
Bit  
7-0  
Field  
Type  
Reset  
Description  
WD_QA_ANSWER  
R/W  
00h  
MCU watchdog q&a answer response byte  
10.5.6.12 WD_QA_QUESTION Register (Address = 2Fh) [reset = 0h]  
WD_QA_QUESTION is shown in 10-34 and described in 10-28.  
Return to Summary Table.  
Q&A watchdog question bits  
10-34. WD_QA_QUESTION Register  
7
6
5
4
3
2
1
0
RSVD  
QA_ANSW_ER  
R
WD_ANSW_CNT  
WD_QUESTION  
R-0b  
W1C-0b  
R-00b  
R-0000b  
10-28. WD_QA_QUESTION Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RSVD  
R
0b  
Reserved  
6
QA_ANSW_ERR  
WD_ANSW_CNT  
W1C  
R
0b  
Watchdog q&a answer error flag  
5-4  
00b  
Current state of received watchdog q&a error counter  
When WD enabled value will show up as 2'h3  
3-0  
WD_QUESTION  
R
0000b  
Current watchdog question value  
When WD is enabled value will show up as 4'hC  
10.5.6.13 STATUS (address = 40h) [reset = 00h]  
STATUS is shown in 10-29 and described in 10-30.  
Return to Summary Table.  
CAN transceiver status  
10-29. STATUS Register  
7
6
5
4
3
2
1
0
STATUS_RSVD  
R-0000b  
CAN_ACTIVE  
R/U-0b  
TSILENCE  
R/U-0b  
RSVD  
R-0b  
TXDDOM  
R/U-0b  
10-30. STATUS Register Field Description  
Bit  
7-4  
3
Field  
Type  
Reset  
0000b  
0b  
Description  
STATUS_RSVD  
CAN_ACTIVE  
R
Reserved  
R/U  
CAN active mode  
0b = No  
1b = Yes  
2
1
TSILENCE  
RSVD  
R/U  
R
0b  
0b  
CAN bus in tSILINCE  
0b = No  
1b = Yes  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
 
 
 
 
 
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
10-30. STATUS Register Field Description (continued)  
Bit  
Field  
TXDDOM  
Type  
Reset  
Description  
0
R/U  
0b  
TXD Low is preventing entering CAN Active mode  
0b = No  
1b = Yes  
10.5.6.14 INT_GLOBAL Register (Address = 50h) [reset = 0h]  
INT_GLOBAL is shown in 10-35 and described in 10-31.  
Return to Summary Table.  
Logical OR of all to certain interrupts  
10-35. INT_GLOBAL Register  
7
6
5
4
3
2
1
0
GLOBALERR  
RH-0b  
INT_1  
RH-0b  
INT_2  
RH-0b  
INT_3  
RH-0b  
INT_CANBUS  
RH-0b  
RSVD  
R-0b  
10-31. INT_GLOBAL Register Field Descriptions  
Bit  
7
Field  
Type  
RH  
RH  
RH  
RH  
RH  
R
Reset  
Description  
GLOBALERR  
INT_1  
0b  
Logical OR of all interrupts  
Logical OR of INT_1 register  
Logical OR of INT_2 register  
Logical OR of INT_3 register  
Logical OR of INT_CANBUS register  
Reserved  
6
0b  
5
INT_2  
0b  
4
INT_3  
0b  
3
INT_CANBUS  
RSVD  
0b  
2-0  
0b  
10.5.6.15 INT_1 Register (Address = 51h) [reset = 0h]  
INT_1 is shown in 10-36 and described in 10-32.  
Return to Summary Table.  
Interrupts  
10-36. INT_1 Register  
7
6
5
4
3
2
1
0
WD  
CANINT  
R/W1C-0b  
LWU  
WKERR  
R/W1C-0b  
RSVD  
R-0b  
CANSLNT  
R/W1C-0b  
RSVD  
R-0b  
CANDOM  
R/W1C-0b  
R/W1C-0b  
R/W1C-0b  
10-32. INT_1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
WD  
R/W1C  
0b  
Watchdog event interrupt.  
NOTE: This interrupt bit will be set for every watchdog error event  
and does not reliy upon the Watchdog error counter  
6
5
4
3
2
1
0
CANINT  
LWU  
R/W1C  
R/W1C  
R/W1C  
R
0b  
0b  
0b  
0b  
0b  
0b  
0b  
CAN bus wake up interrupt  
Local wake up  
WKERR  
RSVD  
Wake error bit is set when the SWE timer has expired  
Reserved  
CANSLNT  
RSVD  
R/W1C  
R
CAN silent  
Reserved  
CANDOM  
R/W1C  
CAN bus stuck dominant  
10.5.6.16 INT_2 Register (Address = 52h) [reset = 40h]  
INT_2 is shown in 10-37 and described in 10-33.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TCAN1164-Q1  
 
 
 
 
 
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
Return to Summary Table.  
Interrupts  
10-37. INT_2 Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
PWRON  
R/W1C-1b  
OVCCOUT  
R/W1C-0b  
UVSUP  
R/W1C-0b  
RSVD  
R-0b  
UVCCOUT  
R/W1C-0b  
TSD  
TSDW  
R/W1C-0b  
R/W1C-0b  
10-33. INT_2 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RSVD  
R
0b  
Reserved  
6
PWRON  
OVCCOUT  
UVSUP  
RSVD  
R/W1C  
R/W1C  
R/W1C  
R
1b  
Power on  
5
0b  
VCCOUT overvoltage  
VSUP undervoltage  
Reserved  
4
0b  
3
0b  
2
UVCCOUT  
TSD  
R/W1C  
R/W1C  
R/W1C  
0b  
VCCOUT undervoltage  
Thermal Shutdown  
Thermal Shutdown Warning  
1
0b  
0
TSDW  
0b  
10.5.6.17 INT_3 Register (Address 53h) [reset = 0h]  
INT_3 is shown in 10-38 and described in 10-34.  
Return to Summary Table.  
10-38. INT_3 Register  
7
6
5
4
3
2
1
0
SPIERR  
R/W1C-0b  
RSVD  
R-00h  
10-34. INT_3 Register Field Descriptions  
Bit  
7
Field  
Type  
R/W1C  
R
Reset  
Description  
SPIERR  
RSVD  
0b  
Sets when SPI status bit sets  
Reserved  
6-0  
00h  
10.5.6.18 INT_CANBUS Register (Address = 54h) [reset = 0h]  
INT_CANBUS is shown in 10-39 and described in 10-35.  
Return to Summary Table.  
CAN bus faults that include shorts and opens  
10-39. INT_CANBUS Register  
7
6
5
4
3
2
1
CANBUSOPEN CANBUSGND  
R/W1C-0b R/W1C-0b  
0
RESERVED  
R-0b  
CANHCANL  
R/W1C-0b  
CANHBAT  
R/W1C-0b  
CANLGND  
R/W1C-0b  
CANBUSBAT  
R/W1C-0b  
10-35. INT_CANBUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
5
RESERVED  
CANHCANL  
CANHBAT  
R
0b  
Reserved. Reads return 0.  
CANH and CANL shorted together  
CANH shorted to Vbat  
CANL shorted to GND  
CAN bus open  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0b  
4
0b  
3
CANLGND  
0b  
2
CANBUSOPEN  
0b  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
 
 
 
 
 
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
10-35. INT_CANBUS Register Field Descriptions (continued)  
Bit  
1
Field  
Type  
Reset  
Description  
CANBUSGND  
CANBUSBAT  
R/W1C  
R/W1C  
0b  
CAN bus shorted to GND or CANH shorted to GND  
CAN bus shorted to Vbat or CANL shorted to Vbat  
0
0b  
10.5.6.19 INT_ENABLE_1 Register (Address = 56h) [reset = F3h]  
INT_ENABLE_1 is shown in 10-40 and described in 10-36.  
Return to Summary Table.  
Interrupt mask for INT_1  
10-40. INT_ENABLE_1 Register  
7
6
5
4
3
2
1
0
WD_ENABLE CANINT_ENAB LWU_ENABLE WKERR_ENAB  
RSVD  
CANSLNT_EN  
ABLE  
RSVD  
CANDOM_ENA  
BLE  
LE  
LE  
R/W-1b  
R/W-1b  
R/W-1b  
R/W-1b  
R-0b  
R/W-1b  
R-0b  
R/W-1b  
10-36. INT_ENABLE_1 Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R/W  
R/W  
R/W  
R
Reset  
Description  
WD_ENABLE  
CANINT_ENABLE  
LWU_ENABLE  
WKERR_ENABLE  
RSVD  
1b  
Watchdog event interrupt enable  
CAN bus wake up interrupt enable  
Local wake up enable  
Wake error enable  
6
1b  
5
1b  
4
1b  
3
0b  
Reserved  
2
CANSLNT_ENABLE  
RSVD  
R/W  
R
1b  
CAN silent enable  
1
0b  
Reserved  
0
CANDOM_ENABLE  
R/W  
1b  
CAN bus stuck dominant enable  
10.5.6.20 INT_ENABLE_2 Register (Address = 57h) [reset = 3Fh]  
INT_ENABLE_2 is shown in 10-41 and described in 10-37.  
Return to Summary Table.  
Interrupt mask for INT_2  
10-41. INT_ENABLE_2 Register  
7
6
5
4
3
2
1
0
RSVD  
R-0b  
OVCC_ENABL UVSUP_ENAB  
RSVD  
UVCC_ENABL TSD_ENABLE TSDW_ENABL  
E
LE  
E
E
R/W-1b  
R/W-1b  
R-0b  
R/W-1b  
R/W-1b  
R/W-1b  
10-37. INT_ENABLE_2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
5
RSVD  
R
0b  
Reserved  
OVCC_ENABLE  
UVSUP_ENABLE  
RSVD  
R/W  
R/W  
R
1b  
VCC over voltage enable  
VSUP undervoltage enable  
Reserved  
4
1b  
3
0b  
2
UVCC_ENABLE  
TSD_ENABLE  
TSDW_ENABLE  
R/W  
R/W  
R/W  
1b  
VCC undervoltage enable  
Thermal shutdown enable  
Thermal shutdown warning enable  
1
1b  
0
1b  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TCAN1164-Q1  
 
 
 
 
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
10.5.6.21 INT_ENABLE_3 Register (Address =58h) [reset = 80h]  
INT_ENABLE_3 is shown in 10-42 and described in 10-38.  
Return to Summary Table.  
Interrupt mask for INT_3  
10-42. INT_ENABLE_3 Register  
7
6
5
4
3
2
1
0
SPIERR_ENAB  
LE  
RSVD  
R/W-1b  
R-00h  
10-38. INT_ENABLE_3 Register Field Descriptions  
Bit  
7
Field  
Type  
R/W  
R
Reset  
Description  
SPIERR_ENABLE  
RSVD  
1b  
SPI error interrupt enable  
Reserved  
6-0  
00h  
10.5.6.22 INT_ENABLE_CANBUS Register (Address = 59h) [reset = 7Fh]  
INT_ENABLE_CANBUS is shown in 10-43 and described in 10-39.  
Return to Summary Table.  
Interrupt mask for INT_CANBUS  
10-43. INT_ENABLE_CANBUS Register  
7
6
5
4
3
2
1
0
RESERVED  
R-0b  
CANHCANL_E CANHBAT_EN CANLGND_EN CANBUSOPEN CANBUSGND_ CANBUSBAT_  
NABLE  
ABLE  
ABLE  
_ENABLE  
ENABLE  
ENABLE  
R/W-1b  
R/W-1b  
R/W-1b  
R/W-1b  
R/W-1b  
R/W-1b  
10-39. INT_ENABLE_CANBUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7:6  
5
RESERVED  
R
0b  
Reserved  
CANHCANL_ENABLE  
CANHBAT_ENABLE  
CANLGND_ENABLE  
R/W  
R/W  
R/W  
1b  
CANH and CANL shorted together enable  
CANH shorted to Vbat enable  
CANL shorted to GND enable  
CAN bus open enable  
4
1b  
3
1b  
2
CANBUSOPEN_ENABLE R/W  
1b  
1
CANBUSGND_ENABLE  
CANBUSBAT_ENABLE  
R/W  
R/W  
1b  
CAN bus shorted to GND enable  
CAN bus shorted to Vbat enable  
0
1b  
10.5.6.23 INT_RSVD_y Register (Address = 5Ah + formula) [reset = 00h]  
INT_RSVD_y is shown in 10-44 and described in 10-40.  
Return to Summary Table.  
Register address 5Ah through 5Fh  
Offset = 5Ah + (y * 1h); where y = 0h to 7h  
10-44. INT_RSVD_y Register  
7
6
5
4
3
2
1
0
RESERVED  
R-00h  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
 
 
 
 
 
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
10-40. INT_RSVD_y Register Field Descriptions  
Bit  
Field  
RESERVED  
Type  
Reset  
Description  
7-0  
R
00h  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TCAN1164-Q1  
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
11 Application Information Disclaimer  
备注  
以下应用部分中的信息不属于 TI 器件规格的范围,TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计,以确保系统功能。  
11.1 Application Information  
11.2 Typical Application  
Sensor or other  
component  
VBAT  
10  
F
0.1  
F
VCCOUT  
VSUP  
10  
3
CANH  
13  
nCS  
14  
SCLK  
8
TCAN1164  
SDI  
11  
6
SDO  
CAN FD  
Controller  
nRST  
TXD  
5
1
4
CANL  
12  
Optional:  
Terminating  
Node  
RXD  
Optional:  
Filtering,  
Transient and  
ESD  
2
GND  
11-1. Typical Application  
11.2.1 Design Requirements  
11.2.1.1 Bus Loading, Length and Number of Nodes  
A typical CAN application may have a maximum bus length of 40 meters and maximum stub length of 0.3 m.  
However, with careful design, users can have longer cables, longer stub lengths, and many more nodes to a  
bus. A high number of nodes requires a transceiver with high input impedance such as the TCAN1164-Q1  
Many CAN organizations and standards have scaled the use of CAN for applications outside the original ISO  
11898-2 standard. They made system level trade off decisions for data rate, cable length, and parasitic loading  
of the bus. Examples of these CAN systems level specifications are ARINC 825, CANopen, DeviceNet, SAE  
J2284, SAE J1939, and NMEA 2000.  
A CAN network system design is a series of tradeoffs. In the ISO 11898-2:2016 specification the driver  
differential output is specified with a bus load that can range from 50 Ω to 65 Ω where the differential output  
must be greater than 1.5 V. The TCAN1164-Q1 is specified to meet the 1.5-V requirement down to 50 Ω and is  
specified to meet 1.4-V differential output at 45Ω bus load. The differential input resistance of the TCAN1164-Q1  
is a minimum of 40 kΩ. If 100 TCAN1164-Q1 devices are in parallel on a bus, this is equivalent to a 400-Ω  
differential load in parallel with the nominal 60 Ω bus termination which gives a total bus load of approximately  
52 Ω. Therefore, the TCAN1164-Q1 theoretically supports over 100 devices on a single bus segment. However,  
for CAN network design margin must be given for signal loss across the system and cabling, parasitic loadings,  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
timing, network imbalances, ground offsets and signal integrity thus a practical maximum number of nodes  
is often lower. Bus length may also be extended beyond 40 meters by careful system design and data rate  
tradeoffs. For example, CANopen network design guidelines allow the network to be up to 1 km with changes in  
the termination resistance, cabling, less than 64 nodes and significantly lowered data rate.  
This flexibility in CAN network design is one of the key strengths of the various extensions and additional  
standards that have been built on the original ISO 11898-2 CAN standard. However, when using this flexibility  
the CAN network system designer must take the responsibility of good network design to ensure robust network  
operation.  
11.2.2 Detailed Design Procedures  
11.2.2.1 CAN Termination  
Termination may be a single 120-Ω resistor at the end of the bus on either the cable or in a terminating  
node. If filtering and stabilization of the common mode voltage of the bus is desired then split termination may  
used, see 11-2. Split termination improves the electromagnetic emissions behavior of the network by filtering  
higher-frequency common-mode noise that may be present on the differential signal lines..  
Standard Termination  
Split Termination  
CANH  
CANH  
RTERM/2  
RTERM  
TCAN Transceiver  
TCAN Transceiver  
CSPLIT  
RTERM/2  
CANL  
CANL  
11-2. CAN Bus Termination Concepts  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TCAN1164-Q1  
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
11.3 Application Curves  
3
2.75  
2.5  
-40 C  
50 C  
150 C  
2.25  
2
1.75  
1.5  
4
6
8
10 12 14 16 18 20 22 24 26 28  
VSUP (V)  
RL = 60 Ω  
11-3. VOD(D) over VSUP  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
12 Power Supply Requirements  
The TCAN1164-Q1 is designed to operate from a VSUP input supply voltage range between 5.5 V and 28 V. Input  
supplies must be well regulated. A bypass capacitance, typically 100 nF, should be placed close to the device  
VSUP supply pin. This helps to reduce supply voltage ripple present on the outputs of the switched-mode power  
supplies and also helps to compensate for the resistance and inductance of the PCB power planes and traces.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TCAN1164-Q1  
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
13 Layout  
13.1 Layout Guidelines  
Place the protection and filtering circuitry as close to the bus connector to prevent transients, ESD and noise  
from propagating onto the board. The layout example provides information on components around the device  
itself. Transient voltage suppression (TVS) device can be added for extra protection. The production solution can  
be either bi-directional TVS diode or varistor with ratings matching the application requirements. This example  
also shows optional bus filter capacitors.  
Design the bus protection components in the direction of the signal path. Do not force the transient current  
to divert from the signal path to reach the protection device. Use supply and ground planes to provide low  
inductance.  
备注  
A high-frequency current follows the path of least impedance and not the path of least resistance.  
Use at least two vias for supply and ground connections of bypass capacitors and protection devices to minimize  
trace and via inductance.  
Bypass and bulk capacitors should be placed as close as possible to the supply terminals of transceiver.  
Bus termination: this layout example shows split termination. This is where the termination is split into two  
resistors with the center or split tap of the termination connected to ground via capacitor. Split termination  
provides common mode filtering for the bus. When bus termination is placed on the board instead of directly  
on the bus, additional care must be taken to ensure the terminating node is not removed from the bus thus  
also removing the termination.  
13.2 Layout Example  
CAN Controller  
To VIO  
RES  
RES  
CAN Controller  
TXD  
nCS  
CANH  
CANL  
SDI  
GND  
VCCOUT  
RXD  
nRST  
SDO  
NC  
RES  
RES  
CAP  
ESD  
Connector  
CAN Controller  
CAN Controller  
CAN Controller  
CAN Controller  
CAN Controller  
RES  
VSUP  
VBAT  
NC  
SCLK  
CAN Controller  
13-1. TCAN1164 Example Layout  
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TCAN1164-Q1  
 
 
 
TCAN1164-Q1  
ZHCSPG1 – DECEMBER 2021  
www.ti.com.cn  
14 Device and Documentation Support  
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,  
generate code, and develop solutions are listed below.  
14.1 Documentation Support  
14.1.1 Related Documentation  
14.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更  
改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
14.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者按原样提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI  
《使用条款》。  
14.4 Trademarks  
TI E2Eis a trademark of Texas Instruments.  
所有商标均为其各自所有者的财产。  
14.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
14.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
15 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical packaging and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TCAN1164-Q1  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Jul-2022  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TCAN1164DMTRQ1  
TCAN1164TDMTRQ1  
ACTIVE  
ACTIVE  
VSON  
VSON  
DMT  
DMT  
14  
14  
3000 RoHS & Green  
3000 RoHS & Green  
NIPDAU  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
1164  
1164T  
Samples  
Samples  
NIPDAU  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
28-Jul-2022  
Addendum-Page 2  
GENERIC PACKAGE VIEW  
DMT 14  
3 x 4.5, 0.65 mm pitch  
VSON - 0.9 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225088/A  
www.ti.com  
PACKAGE OUTLINE  
DMT0014B  
VSON - 1 mm max height  
SCALE 3.200  
PLASTIC SMALL OUTLINE - NO LEAD  
3.1  
2.9  
A
B
PIN 1 INDEX AREA  
4.6  
4.4  
0.1 MIN  
(0.13)  
1.0  
0.8  
SECTION A-A  
SCALE 30.000  
SECTION A-A  
TYPICAL  
C
SEATING PLANE  
0.08 C  
0.05  
0.00  
1.6 0.1  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
7
8
(0.19) TYP  
A
A
2X  
3.9  
15  
SYMM  
4.2 0.1  
14  
1
12X 0.65  
0.35  
0.25  
14X  
0.45  
0.35  
PIN 1 ID  
14X  
0.1  
C A B  
(OPTIONAL)  
0.05  
C
4225087/B 01/2021  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
DMT0014B  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.6)  
14X (0.6)  
14X (0.3)  
SYMM  
1
14  
2X  
(1.85)  
12X (0.65)  
SYMM  
15  
(4.2)  
(0.69)  
TYP  
(
0.2) VIA  
TYP  
8
7
(R0.05) TYP  
(0.55) TYP  
(2.8)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:15X  
0.07 MAX  
ALL AROUND  
0.07 MIN  
ALL AROUND  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
SOLDER MASK  
OPENING  
METAL  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4225087/B 01/2021  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
DMT0014B  
VSON - 1 mm max height  
PLASTIC SMALL OUTLINE - NO LEAD  
(1.47)  
15  
14X (0.6)  
1
14  
14X (0.3)  
(1.18)  
12X (0.65)  
SYMM  
(1.38)  
(R0.05) TYP  
METAL  
TYP  
8
7
SYMM  
(2.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 15  
77.4% PRINTED SOLDER COVERAGE BY AREA  
SCALE:20X  
4225087/B 01/2021  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TCAN1164TDMTRQ1

具有 LDO 输出和看门狗的汽车类 CAN FD 系统基础芯片 | DMT | 14 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1167-Q1

具有 LDO 输出和看门狗的汽车类 CAN FD 系统基础芯片

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1167DMTRQ1

具有 LDO 输出和看门狗的汽车类 CAN FD 系统基础芯片 | DMT | 14 | -45 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1462-Q1

具有待机功能的汽车类信号改善 CAN FD 收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1462DRBRQ1

具有待机功能的汽车类信号改善 CAN FD 收发器 | DRB | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1462DRQ1

具有待机功能的汽车类信号改善 CAN FD 收发器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1462V-Q1

具有 VIO 和待机功能的汽车类信号改善 CAN FD 收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1462VDRBRQ1

具有 VIO 和待机功能的汽车类信号改善 CAN FD 收发器 | DRB | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1462VDRQ1

具有 VIO 和待机功能的汽车类信号改善 CAN FD 收发器 | D | 8 | -40 to 125

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1463-Q1

具有 INH 和 WAKE 引脚的低功耗信号改进 CAN FD 收发器

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1463DMTRQ1

具有 INH 和 WAKE 引脚的低功耗信号改进 CAN FD 收发器 | DMT | 14 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TCAN1463DRQ1

具有 INH 和 WAKE 引脚的低功耗信号改进 CAN FD 收发器 | D | 14 | -40 to 150

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI