TCAN4550RGYT [TI]

具有集成收发器的 CAN FD 控制器 | RGY | 20 | -40 to 125;
TCAN4550RGYT
型号: TCAN4550RGYT
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

具有集成收发器的 CAN FD 控制器 | RGY | 20 | -40 to 125

控制器
文件: 总147页 (文件大小:2794K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Support &  
Community  
Product  
Folder  
Order  
Now  
Tools &  
Software  
Technical  
Documents  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
带有集成收发器的 TCAN4550 汽车控制区域网灵活数据速率 (CAN FD) 控  
制器  
1 特性  
3 说明  
1
带有集成 CAN FD 收发器和串行外设接口 (SPI) 的  
CAN FD 控制器  
TCAN4550 是带有集成 CAN FD 收发器的 CAN FD 控  
制器,支持高达 8Mbps 的数据速率。此 CAN FD 控制  
器符合 ISO11898-1:2015 高速控制器局域网 (CAN) 数  
据链路层的规范,并满足 ISO11898–2:2016 高速  
CAN 规范的物理层要求。TCAN4550 通过串行外设接  
(SPI) CAN 总线和系统处理器之间提供了一个接  
口,同时支持经典 CAN CAN FD,并为不支持  
CAN FD 的处理器实现 端口扩展或 CAN 支持。  
TCAN4550 提供 CAN FD 收发器功能:传输到总线的  
差分传输能力和从总线接收的差分接收能力。 该器件  
支持通过本地唤醒 (LWU) 进行唤醒以及使用实现  
ISO11898-2:2016 唤醒模式 (WUP) CAN 总线进行  
总线唤醒。  
CAN FD 控制器支持 ISO 11898-1:2015 Bosch  
M_CAN 修订版 3.2.1.1  
符合 ISO 11898-2:2016 的要求  
CAN FD 数据速率高达 5Mbps,且 SPI 时钟速率  
高达 18MHz  
向后兼容经典 CAN  
工作模式:正常、待机、睡眠和失效防护  
为微处理器提供 3.3V 5V 输入/输出逻辑支持  
CAN 总线上具有宽工作范围  
±42V 总线故障保护  
±12V 共模电压  
优化了未上电时的性能  
该器件包含众多可 实现 器件和 CAN 总线可靠性的保  
护特性。这些 特性 包括失效防护、内部显性状态超  
时、宽总线工作范围以及超时看门狗等等。  
总线和逻辑终端处于高阻态  
(运行总线或应用上无负载)  
加电和断电无干扰运行  
器件信息(1)  
2 应用  
器件型号  
TCAN4550  
封装  
VQFN (20)  
封装尺寸(标称值)  
楼宇自动化  
4.50mm x 3.50mm  
工厂自动化和控制  
工业运输  
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附  
录。  
简化原理图,CLKIN 来自 MCU  
简化原理图,晶振  
3
k  
3 k  
10 µF  
10 µF  
10 nF  
10 nF  
33 kꢀ  
33 kꢀ  
VBAT  
VBAT  
330 nF  
10 µF  
330 nF  
10 µF  
100 nF  
100 nF  
EN  
EN  
VIN  
VIN  
VSUP  
VCCOUT  
WAKE  
VSUP  
WAKE  
FLTR  
FLTR  
VCCOUT  
Voltage  
Regulator  
(e.g.  
Voltage  
Regulator  
(e.g.  
INH  
INH  
VINT  
VLVRX  
VIO  
VINT  
VLVRX  
VIO  
TPSxxxx)  
TPSxxxx)  
LDO(s)  
LDO(s)  
Filter  
VOUT  
VOUT  
Filter  
Under  
Voltage  
Under  
Voltage  
CNTL  
POR  
CNTL  
POR  
VIO  
VIO  
TCAN4550  
TCAN4550  
100 nF  
100 nF  
10 µF  
10 µF  
CANH  
CANH  
TXD_INT  
TXD_INT  
VINT  
VINT  
VCC  
nWKRQ  
nWKRQ  
TX/RX Data  
Buffer  
TX/RX Data  
Buffer  
GPIO3  
GPIO3  
VCC  
TX/RX CAN-FD  
Controller with  
Filters  
TX/RX CAN-FD  
Controller with  
Filters  
VIO  
2-wire  
CAN  
bus  
VIO  
2-wire  
CAN  
bus  
RST  
SCLK  
SDI  
RST  
SCLK  
SDI  
Reset  
SCLK  
RXD_INT  
CAN-FD  
Transceiver  
Reset  
SCLK  
RXD_INT  
CAN-FD  
Transceiver  
SPI slave,  
System  
Controller  
SPI slave,  
System  
Controller  
MOSI  
MISO  
MOSI  
MISO  
SDO  
MCU  
SDO  
MCU  
CANL  
nCS  
CANL  
nCS  
nCS  
GPIO2  
GPIO1  
GPIO  
nCS  
GPIO2  
GPIO1  
GPIO  
GPO2  
nINT  
GPIO1  
GPO2  
nINT  
GPIO1  
Optional:  
Terminating  
Node  
Optional:  
Terminating  
Node  
Optional:  
Filtering,  
Optional:  
Filtering,  
Transient and  
ESD  
GND  
GND  
OSC1  
OSC2  
20 MHz  
Transient and  
ESD  
OSC1  
OSC2  
OSC1  
OSC2  
40 MHz  
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确  
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。  
English Data Sheet: SLLSF91  
 
 
 
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
目录  
8.2 Functional Block Diagram ....................................... 21  
8.3 Feature Description................................................. 24  
8.4 Device Functional Modes........................................ 27  
8.5 Programming .......................................................... 41  
8.6 Register Maps......................................................... 44  
Application and Implementation ...................... 127  
9.1 Application Design Consideration ......................... 127  
9.2 Typical Application ............................................... 131  
1
2
3
4
5
6
特性.......................................................................... 1  
应用.......................................................................... 1  
说明.......................................................................... 1  
修订历史记录 ........................................................... 2  
Pin Configuration and Functions......................... 3  
Specifications......................................................... 4  
6.1 Absolute Maximum Ratings ...................................... 4  
6.2 ESD Ratings.............................................................. 4  
9
10 Power Supply Recommendations ................... 134  
11 Layout................................................................. 135  
11.1 Layout Guidelines ............................................... 135  
11.2 Layout Example .................................................. 136  
12 器件和文档支持 ................................................... 137  
12.1 文档支持 ............................................................. 137  
12.2 接收文档更新通知 ............................................... 137  
12.3 支持资源.............................................................. 137  
12.4 ..................................................................... 137  
12.5 静电放电警告....................................................... 137  
12.6 Glossary.............................................................. 138  
13 机械、封装和可订购信息..................................... 138  
6.3 ESD Ratings, IEC ESD and ISO Transient  
Specification............................................................... 4  
6.4 Recommended Operating Conditions....................... 5  
6.5 Thermal Information.................................................. 5  
6.6 Supply Characteristics .............................................. 5  
6.7 Electrical Characteristics........................................... 6  
6.8 Timing Requirements................................................ 9  
6.9 Switching Characteristics.......................................... 9  
6.10 Typical Characteristics.......................................... 11  
Parameter Measurement Information ................ 11  
Detailed Description ............................................ 20  
8.1 Overview ................................................................. 20  
7
8
4 修订历史记录  
注:之前版本的页码可能与当前版本有所不同。  
Changes from Original (December 2018) to Revision A  
Page  
Changed description of the GPO1 pin From: Configurable input/output function... To: Configurable output function........... 3  
Deleted VCCOUT Supply Current from the Absolute Maximum Ratings................................................................................... 4  
Changed footnote Gauranteed to Specied throughout the electric table. .............................................................................. 6  
Changed VIO value IIL for SDI, SCK and nCS inputs in test conditions cell from 0 V to 5.25 V............................................. 8  
Changed MIN value of VOH for nWKRQ from 3 V to 2.8 V..................................................................................................... 8  
Added VIO values for tSOV...................................................................................................................................................... 10  
已更改 Power Up Timing diagram VSUP ramp voltage level for INH turn on and timing. .................................................. 16  
已删除 CLKOUT from the GPIO1 circuit in 20................................................................................................................. 23  
已删除 CLKOUT information from the GPO1 Pin section .................................................................................................... 26  
已删除 CLKOUT from the GPIO1 pin in 28 ..................................................................................................................... 33  
已删除 CLKOUT from the GPIO1 pin in 29 ..................................................................................................................... 33  
已删除 CLKOUT: Off from Sleep Mode section in 32...................................................................................................... 34  
已删除 CLKOUT: Off From Sleep Mode section in 33..................................................................................................... 35  
Deleted GPO1_CONFIG from bits 15 and 14 in Figure 41.................................................................................................. 50  
Deleted bits 15 and 14 from GPO1_CONFIG from in Table 15........................................................................................... 51  
Changed CLKOUT_GPIO1_CONFIG To: GPIO1_CONFIG for GPO1_CONFIG in Table 15............................................. 51  
Changed the name of offset 1048 From: TDCE To: TDCR ................................................................................................ 63  
已添加 INH Brownout Behavior section in Application section. ......................................................................................... 130  
2
Copyright © 2018–2020, Texas Instruments Incorporated  
 
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
5 Pin Configuration and Functions  
RGY Package  
20 Pin (VQFN)  
Top View  
nWKRQ  
GPIO1  
SCLK  
SDI  
2
3
4
5
6
7
8
9
19  
18  
17  
16  
15  
14  
13  
12  
RST  
FLTR  
V
IO  
Thermal  
Pad  
V
CCOUT  
SDO  
INH  
nCS  
V
SUP  
nINT  
GND  
GPO2  
WAKE  
Not to scale  
Pin Functions  
PIN  
TYPE(1)  
DESCRIPTION  
NO.  
1
NAME  
OSC1  
nWKRQ  
GPO1  
SCLK  
SDI  
I
External crystal oscillator or clock input  
Wake request (active low)  
2
DO  
DO  
DI  
3
Configurable output function pin through SPI  
SPI clock input  
4
5
DI  
SPI slave data input from master output  
SPI slave data output to master input  
SPI chip select  
6
SDO  
DO  
DI  
7
nCS  
8
nINT  
DO  
DO  
Interrupt pin to MCU (active low)  
Configurable output function pin through SPI  
9
GPO2  
CANL  
CANH  
WAKE  
GND  
10  
11  
12  
13  
HV Bus I/O Low level CAN bus line  
HV Bus I/O High level CAN bus line  
HVI  
Wake input, high voltage input  
Ground connection  
GND  
HV Supply  
In  
14  
VSUP  
Supply from battery  
15  
16  
17  
18  
19  
20  
INH  
HVO  
Inhibit to control system voltage regulators and supplies (open drain)  
VCCOUT  
VIO  
Supply Out 5 V regulated output  
Supply In  
Digital I/O voltage supply  
FLTR  
RST  
DI  
O
Internal regulator filter, requires external capacitor to ground  
Device reset  
OSC2  
External crystal oscillator output; when using single input clock to OSC1 this pin should be connected to ground  
(1) Note: DI = Digital Input; DO = Digital Output; HV = High Voltage; Thermal PAD and GND Pins must be soldered to GND  
Copyright © 2018–2020, Texas Instruments Incorporated  
3
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range for – 40 TA 125 (unless otherwise noted)(1)  
MIN  
MAX  
42  
6
UNIT  
V
VSUP  
Supply voltage  
–0.3  
–0.3  
–0.3  
–42  
VIO  
Supply voltage I/O level shifter  
5 V output supply  
V
VCCOUT  
VBUS  
VWAKE  
VINH  
VLogic_Input  
VSO  
6
V
CAN bus I/O voltage (CANH, CANL)  
WAKE pin input voltage  
42  
42  
42  
6
V
–0.3  
–0.3  
–0.3  
–0.5  
V
Inhibit pin output voltage  
Logic input terminal voltage  
Digital output terminal voltage  
Digital output current  
V
V
6
V
IO(SO)  
IO(INH)  
IO(WAKE)  
TJ  
8
mA  
mA  
mA  
°C  
°C  
Inhibit output current  
4
Wake current if due to ground shift V(WAKE) V(GND) – 0.3 V  
Junction temperature  
3
–40  
–65  
150  
150  
Tstg  
Storage temperature  
(1) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings  
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended  
Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.  
6.2 ESD Ratings  
VALUE UNIT  
Human body model (HBM) classification level 3A per AEC Q100-002 All  
V(ESD)  
V(ESD)  
V(ESD)  
Electrostatic discharge  
Electrostatic discharge  
Electrostatic discharge  
terminal except for CANH and CANL. WAKE terminals which are with  
respect to ground only  
±4000  
±12000  
±750  
V
V
V
(1)  
Human body model (HBM) classification level H2 for CANH and  
(1)  
CANL  
Charged device model (CDM)  
classification level C5, per AEC  
Q100-011  
All terminals  
(1) Terminals stressed with respect to GND  
6.3 ESD Ratings, IEC ESD and ISO Transient Specification  
VALUE  
UNIT  
V
Contact discharge  
Air discharge  
Contact discharge  
Air discharge  
Pulse 1  
±8000  
±15 000  
±8000  
±15 000  
-100  
Electrostatic discharge according to IBEE CAN  
EMC  
V(ESD)  
(1)  
V
Electrostatic discharge according to SAEJ2962-  
V(ESD)  
(2)  
2
V
Pulse 2  
75  
ISO7637 Transients according to IBEE CAN EMC test spec  
CAN bus terminals (CANH and CANL), VSUP and WAKE  
(3)  
Pulse 3a  
-150  
Pulse 3b  
100  
(1) IEC 61000-4-2 is a system-level ESD test. Results given here are specific to the IBEE LIN EMC Test specification conditions per IEC TS  
62228. Different system-level configurations may lead to different results  
(2) SAEJ2962-2 Testing performed at 3rd party US3 approved EMC test facility, test report available upon request.  
(3) ISO7637 is a system-level transient test. Results given here are specific to the IBEE CAN EMC Test specification conditions. Different  
system-level configurations may lead to different results.  
4
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
6.4 Recommended Operating Conditions  
over operating free-air temperature range for – 40 TA 125 (unless otherwise noted)  
MIN  
TYP  
MAX  
24  
UNIT  
V
VSUP  
Supply voltage  
6
3.135  
–2  
VIO  
Logic pin supply voltage  
5.25  
V
IOH(DO)  
IOL(DO)  
IO (INH)  
C(FLTR)  
C(VCCOUT)  
CWAKE  
TSDR  
Digital terminal high-level output current  
Digital terminal low-level output current  
INH output current  
mA  
mA  
mA  
nF  
µF  
nF  
2
1
Filter pin capacitance See Power Supply Recommendations  
VCCOUT supply capacitance See Power Supply Recommendations  
External WAKE pin capacitance  
Thermal shutdown rising  
300  
10  
10  
160  
TSDF  
Thermal shutdown falling  
150  
TSD(HYS)  
Thermal shutdown hysteresis  
10  
6.5 Thermal Information  
TCAN4550  
THERMAL METRIC(1)  
PKG DES (RGY)  
UNIT  
20 PINS  
35.2  
28.1  
12.8  
0.3  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
ΨJT  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
ΨJB  
12.7  
1.1  
RθJC(bot)  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.6 Supply Characteristics  
over operating free-air temperature range for – 40 TA 125 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP MAX UNIT  
See 5 RL = 60 Ω, CL  
=
open. typical bus load. VCCOUT  
= no load  
80 mA  
Dominant  
See 5 RL = 50 Ω, CL  
=
open, high bus load. VCCOUT  
no load  
=
=
90 mA  
180 mA  
15 mA  
Supply current, normal mode  
See 5 CANH = - 25 V, RL  
open, CL = open VCCOUT = no  
load  
Dominant with bus fault  
Recessive  
See 5 RL = 60 Ω, CL  
=
ISUP  
open, RCM = open, VCCOUT  
no load  
=
See 5 RL = 60 Ω, CL  
=
open, -40°C < TA < 85°C,  
VCCOUT = no load, CANH/L  
terminated to 2.5 V  
3.5 mA  
3.4 mA  
Supply current, standby mode  
Supply current, sleep mode  
See 5 RL = 60 Ω, CL  
=
open, -40°C < TA < 85°C,  
VCCOUT = no load CANH/L  
terminated to GND ± 100 mV  
SPI bus, OSC/CLKIN disabled:  
-40°C < TA < 85°C, VIO = 0  
ISUP  
25  
42  
µA  
Copyright © 2018–2020, Texas Instruments Incorporated  
5
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Supply Characteristics (continued)  
over operating free-air temperature range for – 40 TA 125 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
CLKIN = 40 MHz, VIO = 5 V  
Crystal = 40 MHz, VIO = 5 V  
Sleep Mode VIO = 5 V; OSC1 =  
MIN  
TYP MAX UNIT  
800  
3
µA  
I/O supply current normal  
IVIO  
I/O supply current  
mode dominant  
mA  
IVIO  
I/O supply current, sleep mode I/O supply current  
VCCOUT supply current  
CLKIN = 0 V and OSC2 = GND  
9
µA  
(1)  
Normal Mode: VCCOUT = 5 V;  
-40°C < TA < 85°C See  
Section VCCOUT Pin  
IVCCOUT  
70 mA  
Under voltage detection on VSUP rising ramp for protected  
mode  
5.5  
4.7  
5.9  
2.6  
V
V
V
V
See Section Under Voltage  
Lockout (UVLO) and  
Unpowered Device  
UVSUP  
Under voltage detection on VSUP falling ramp for protected  
mode  
4.5  
Under voltage detection on VIO rising ramp for protected  
mode  
2.45  
2.25  
See Section Under Voltage  
Lockout (UVLO) and  
Unpowered Device  
UVIO  
Under voltage detection on VIO falling ramp for protected  
mode  
2.1  
Upon a UVIO event this timer  
starts and provides time for VIO  
input to return. See section  
Thermal Shutdown for  
description of thermal shut  
down.  
(2)  
tUV/TSD  
Under voltage filter time and thermal shutdown timer  
200  
500  
ms  
(1) When a crystal is used this current will be higher until the crystal's capacitors bleed off their energy. How much current and length of  
time to bleed of the energy is system dependent and will not be specified.  
(2) Specified by design  
6.7 Electrical Characteristics  
over operating free-air temperature range for – 40 TA 125 (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
CAN DRIVER ELECTRICAL CHARACTERISTICS  
Bus output voltage (dominant) CANH  
See 5 and 6, TXD_INT = 0 V, EN  
= 0 V, 50 Ω ≤ RL 65 Ω, CL = open,  
RCM = open  
2.75  
0.5  
4.5  
V
V
VO(D)  
Bus output voltage (dominant) CANL  
2.25  
See 3 and 6, TXD_INT = VIO, RL  
open (no load), RCM = open  
=
VO(R)  
Bus output voltage (recessive)  
2
–5.0  
–0.1  
2.5  
3
10  
V
V
V
V(DIFF)  
Maximum differential voltage rating  
See 3 and 6  
Bus output voltage (Standby Mode)  
CANH  
0.1  
Bus output voltage (Standby Mode)  
CANL  
See 3 and 6, TXD_INT = VIO, RL  
open (no load), RCM = open  
=
VO(STB)  
–0.1  
–0.2  
1.5  
0.1  
0.2  
3
V
V
Bus output voltage (Standby Mode)  
CANH - CANL  
See 3 and 6, TXD_INT = 0 V, 50 Ω  
RL 65 Ω, CL = open, RCM = open  
V
See 3 and 6, TXD_INT = 0 V, 45 Ω  
RL 70 Ω, CL = open, RCM = open  
VOD(D)  
Differential output voltage (dominant)  
Differential output voltage (recessive)  
1.4  
3
V
See 3 and 6, TXD_INT = 0 V, RL  
2.24 kΩ, CL = open, RCM = open  
=
=
=
1.5  
5
V
See 3 and 6, TXD_INT = VIO, RL  
60 Ω, CL = open, RCM = open  
–120  
–50  
12  
50  
mV  
mV  
VOD(R)  
See 3 and 6, TXD_INT = VIO, RL  
open (no load), CL = open, RCM = open  
(1) All TXD_INT, RXD_INT and EN_INT references are for internal nodes that represent the same functions for a physical layer transceiver.  
6
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
Electrical Characteristics (continued)  
over operating free-air temperature range for – 40 TA 125 (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
Output symmetry (dominant or  
recessive)  
( VO(CANH) + VO(CANL)) / VCC  
See 3 and 6, RL = 60 Ω, CL  
open, RCM = open, C1 = 4.7 nF,  
TXD_INT - 250 kHZ, 1 MHz  
=
VSYM  
0.9  
1.1  
V/V  
Output symmetry (dominant or  
recessive) (VCC – VO(CANH) –  
VO(CANL)) with a frequency that  
corresponds to the highest bit rate for  
which the HS-PMA implementation is  
intended, however, at most 1 MHz (2  
Mbit/s)  
See 3 and 6, RL = 60 Ω, CL  
open, RCM = open, C1 = 4.7 nF  
=
VSYM_DC  
–300  
–100  
–5  
300  
mV  
See 3 and 10, -3.0 V VCANH  
18.0 V, CANL = open, TXD_INT = 0 V  
mA  
mA  
mA  
Short-circuit steady-state output current,  
dominant  
IOS_DOM  
IOS_REC  
See 3 and 10, -3.0 V VCANL  
+18.0 V, CANH = open, TXD_INT = 0 V  
100  
5
Short-circuit steady-state output current, See 3 and 10, – 27 V VBUS 32  
recessive  
V, VBUS = CANH = CANL  
CAN RECEIVER ELECTRICAL CHARACTERISTICS  
Receiver dominant state differential input  
VITdom  
0.9  
8
V
V
-12.0 V VCANL +12.0 V  
-12.0 V VCANH +12.0 V See 7, 表  
3
voltage range, bus biasing active  
Receiver recessive state differential input  
VITrec  
–3.0  
0.5  
voltage range bus biasing active  
Hysteresis voltage for input-threshold,  
normal modes  
VHYS  
See 7, 3  
120  
mV  
-12.0 V VCANL +12.0 V  
Receiver dominant state differential input  
VIT(ENdom)  
voltage range, bus biasing inactive  
(VDiff)  
1.15  
–3  
8
V
V
-12.0 V VCANH +12.0 V See 7, 表  
3
-12.0 V VCANL +12.0 V  
-12.0 V VCANH +12.0 V See 7, 表  
3
Receiver recessive state differential input  
voltage range, bus biasing inactive  
(VDiff)  
VIT(ENrec)  
0.4  
VCM  
Common mode range: normal  
See 7, 3  
See 7, 3  
–12  
–12  
12  
12  
V
V
VCM(EN)  
Common mode range: standby mode  
Power-off (unpowered) bus input  
leakage current  
VCANH = VCANL = 5 V, Vsup to GND via 0  
and 47 kΩ resistor  
IIOFF(LKG)  
5
µA  
Input capacitance to ground (CANH or  
CANL)  
CI  
25  
14  
pF  
pF  
CID  
Differential input capacitance  
TXD_INT = VCCINT, normal mode: -2.0 V  
RID  
Differential input resistance  
VCANH +7.0 V; -2.0 V VCANL + 7.0  
60  
100  
kΩ  
V
Single ended Input resistance (CANH or -2.0 V VCANH +7.0 V; -2.0 V VCANL  
RIN  
30  
–1  
50  
1
kΩ  
%
CANL)  
+ 7.0 V  
Input resistance matching: [1 –  
(RIN(CANH) / (RIN(CANL))] × 100%  
RIN(M)  
VCANH = VCANL = 5.0 V  
ICCOUT = -70 mA to 0 mA; VSUP = 6 V to  
18 V; -40°C < TA < 85°C  
VCCOUT  
VDROP  
5 V output supply  
Drop out voltage  
Line regulation  
4.75  
5
5.25  
500  
50  
V
VCCOUT = 5 V, VSUP = 12 V, ICCOUT = 70  
mA  
300  
mV  
mV  
VSUP = 6 V to 24 V, ΔVCCOUT, ICCOUT  
=
ΔVCC(ΔVSUP)  
10 mA  
VSUP = 14 V, ICCOUT = 1 mA to 70  
mA, ΔVCCOUT, –40TA 125℃  
ΔVCC(ΔVSUPL) Load regulation  
60  
mV  
V
UVCCOUT  
Under voltage threshold on VCCOUT  
4.2  
4.55  
FLTR TERMINAL  
VMEASURE  
C(FLTR)  
Voltage measured at FLTR pin  
Filter pin capacitor  
1.5  
V
External filter capacitor  
300  
330  
nF  
Copyright © 2018–2020, Texas Instruments Incorporated  
7
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
MAX UNIT  
Electrical Characteristics (continued)  
over operating free-air temperature range for – 40 TA 125 (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
INH OUTPUT TERMINAL (HIGH VOLTAGE OUTPUT)  
High-level voltage drop INH with respect  
to VSUP  
ΔVH  
IINH = - 0.5 mA  
0.5  
1
V
ILKG(INH)  
Leakage current  
INH = 0 V, Sleep Mode  
–0.5  
VSUP–2  
–25  
0.7  
µA  
WAKE INPUT TERMINAL (HIGH VOLTAGE INPUT)  
VIH  
VIL  
IIH  
High-level input voltage  
Low-level input voltage  
High-level input current  
Low-level input current  
Standby mode, WAKE pin enabled  
Standby mode, WAKE pin enabled  
WAKE = VSUP–1 V  
V
V
VSUP–3  
25  
–15  
15  
µA  
µA  
IIL  
WAKE = 1 V  
Wake up filter time from a wake edge on  
WAKE; standby, sleep mode  
tWAKE  
WAKE filter time  
50  
µs  
SDI, SCK, GPIO1 INPUT TERMINALS  
VIH  
VIL  
IIH  
High-level input voltage  
Low-level input voltage  
0.7  
VIO  
VIO  
µA  
µA  
pF  
0.3  
1
High-level input leakage current  
Low-level input leakage current  
Input capacitance  
Inputs = VIO = 5.25 V  
Inputs = 0 V, VIO = 5.25 V  
18 MHz  
–1  
IIL  
–100  
–5  
12  
CIN  
10  
Unpowered leakage current (SDI and  
SCK only)  
ILKG(OFF)  
Inputs = 5.25 V, VIO = VSUP = 0 V  
–1  
1
µA  
nCS INPUT TERMINAL  
VIH  
High-level input voltage  
0.7  
VIO  
VIO  
µA  
µA  
µA  
VIL  
Low-level input voltage  
0.3  
1
IIH  
High-level input leakage current  
Low-level input leakage current  
Unpowered leakage current  
nCS = VIO = 5.25 V  
–1  
–50  
–1  
IIL  
nCS = VIO = 5.25 V  
–5  
1
ILKG(OFF)  
nCS = 5.25 V, VIO = VSUP = 0 V  
RST INPUT TERMINAL  
VIH  
High-level input voltage  
0.7  
VIO  
VIO  
µA  
µA  
µA  
µs  
VIL  
Low-level input voltage  
0.3  
10  
1
IIH  
High-level input leakage current  
Low-level input leakage current  
Unpowered leakage current  
RST = VIO = 5.25 V  
RST = 0 V  
1
–1  
IIL  
ILKG(OFF)  
RST = VIO, VSUP = 0 V  
–7.5  
30  
7.5  
tPULSE_WIDTH Width of the input pulse  
SDO, GPIO1, GPO2 OUTPUT TERMINAL; nINT (OPEN DRAIIN) and nWKRQ (WHEN PROGRAMMED TO WORK OFF OF VIO AND IS  
OPEN DRAIN)  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
0.8  
VIO  
VIO  
0.2  
nWKRQ OUTPUT TERMINAL (DEFAULT INTERNAL VOLTAGE RAIL)  
Default value when based upon internal  
voltage rail  
VOH  
VOL  
High-level output voltage  
Low-level output voltage  
2.8  
3.6  
0.7  
V
V
Default value when based upon internal  
voltage rail  
OSC1 TERMINAL AND CRYSTAL SPECIFICATION  
VIH  
VIL  
High-level input voltage  
Low-level input voltage  
0.85  
–0.5  
1.10  
0.3  
VIO  
VIO  
Clock-In frequency tolerance , see  
section Crystal and Clock Input  
Requirements  
FOSC1  
20 MHz  
0.5  
%
8
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
Electrical Characteristics (continued)  
over operating free-air temperature range for – 40 TA 125 (unless otherwise noted)  
(1)  
PARAMETER  
TEST CONDITIONS  
MIN  
–0.5  
45  
TYP  
MAX UNIT  
Clock-In frequency tolerance, see  
section Crystal and Clock Input  
Requirements  
FOSC1  
40 MHz  
0.5  
%
tDC  
Input duty cycle  
55  
60  
%
(2)  
ESR  
Crystal ESR for load capacitance  
Ω
(2) Specified by design  
6.8 Timing Requirements  
over operating free-air temperature range for – 40 TA 125 (unless otherwise noted)  
MIN  
TYP  
MAX UNIT  
MODE CHANGE TIMES (FULL DEVICE)  
Standby to normal mode change time based upon SPI  
write  
tMODE_STBY_NOM  
70  
200  
200  
µs  
µs  
µs  
SPI write to go to Sleep from Normal: INH and nWKRQ  
turned off, See 17  
tMODE_NOM_SLP  
WUP or LWU event until INH and nWKRQ asserted, See  
16  
tMODE_SLP_STBY  
tMODE_SLP_STBY_VCCOUT_ON  
tMODE_NOM_STBY  
WUP or LWU event until VCCOUT on, See 16  
1.5  
ms  
µs  
SPI write to go to standby from normal mode, See 18  
200  
6.9 Switching Characteristics  
over operating free-air temperature range for – 40 TA 125 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX UNIT  
SWITCHING CHARACTERISTICS (CAN TRANSCEIVER ONLY)  
Propagation delay time, high TXD_INT to  
Driver Recessive  
tpHR  
50  
35  
85  
75  
110  
100  
ns  
ns  
(1)  
Propagation delay time, low TXD_INT to  
See 6, RST = 0 V. Typical conditions:  
RL = 60 Ω, CL = 100 pF, RCM = open  
tpLD  
(1)  
driver dominant  
tsk(p)  
tR/F  
Pulse skew (|tpHR – tpLD|)  
30  
55  
40  
75  
ns  
ns  
Differential output signal rise time:  
8
Propagation delay time, bus recessive  
input to high RXD_INT output  
tpRH  
tpDL  
35  
55  
55  
90  
90  
ns  
ns  
See 7, typical conditions: CANL = 1.5  
V, CANH = 3.5 V.  
Propagation delay time, bus dominant  
input to RXD_INT low output  
35  
DEVICE SWITCHING CHARACTERISTICS  
See 8, RST = 0 V. typical conditions:  
RL = 60 Ω, CL = 100 pF, CRXD = 15 pF  
tLOOP  
Loop delay(2)(CAN transceiver only)  
235  
1.8  
ns  
µs  
Bus time to meet filtered bus  
requirements for wake up request  
tWK_FILTER  
See 24, standby mode.  
0.5  
0.8  
Bus wake-up timeout: time that a WUP  
tWK_TIMEOUT  
must take place within to be considered See 24  
2.9  
1.2  
ms  
s
valid  
Timer is reset and restarted when bus  
changes from dominant to recessive or  
vice versa.  
(3)  
tSILENCE  
Timeout for bus inactivity  
0.6  
(1) All TXD_INT, RXD_INT, EN_INT and CAN transceiver only references are for internal nodes that represent the same functions for a  
stand-alone transceiver.  
(2) Time span from signal edge on TXD_INT input to next signal edge with same polarity on RXD output, the maximum of delay of both  
signal edges is to be considered.  
(3) Specified by design  
Copyright © 2018–2020, Texas Instruments Incorporated  
9
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
MAX UNIT  
Switching Characteristics (continued)  
over operating free-air temperature range for – 40 TA 125 (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
Time required for the processor to clear  
wake flag or put the device into normal  
mode upon power up, power on reset or  
after wake event otherwise the device  
tINACTIVE  
2
4
6
min  
(3)  
will enter sleep mode  
Time from the start of a dominant-  
recessive-dominant sequence  
Each phase 6 µs until Vsym 0.1. See  
12  
tBias  
250  
250  
5
µs  
µs  
(3)  
tPower_Up  
tTXD_INT_DTO  
Power up time on VSUP  
See 15  
Dominant time out(4) (CAN transceiver  
See 25, RL = 60 Ω, CL = open  
1
ms  
only)(1)  
TRANSMITTER AND RECEIVER SWITCHING CHARACTERISTICS  
Transmitted recessive bit width @ 2  
tBit(Bus)2M  
435  
155  
80  
530  
210  
135  
ns  
ns  
ns  
Mbps  
See 7, RST = 0 V typical conditions:  
RL = 60 Ω, CL = 100 pF, CRXD = 15 pF  
Transmitted recessive bit width @ 5  
Mbps  
tBit(Bus)5M  
Transmitted recessive bit width @ 8  
Mbps  
See 7, RST = 0 V typical conditions:  
RL = 60 Ω, CL = 100 pF, CRXD = 15 pF  
(5)  
tBit(Bus)8M  
tBit(RXD)2M  
tBit(RXD)5M  
Received recessive bit width @ 2 Mbps  
Received recessive bit width @ 5 Mbps  
400  
120  
550  
220  
ns  
ns  
See 7, RST = 0 V typical conditions:  
RL = 60 Ω, CL = 100 pF, CRXD = 15 pF,  
See 7, RST = 0 V typical conditions:  
RL = 60 Ω, CL = 100 pF, CRXD = 15 pF  
(5)  
tBit(RXD)8M  
Received recessive bit width @ 8 Mbps  
80  
135  
ns  
Receiver Timing symmetry @ 2 Mbps  
Receiver Timing symmetry @ 5 Mbps  
–65  
–45  
30  
5
40  
15  
ns  
ns  
See 7, RST = 0 V typical conditions:  
RL = 60 Ω, CL = 100 pF, CRXD = 15 pF  
(6)  
ΔtRec  
SPI SWITCHING CHARACTERISTICS  
(3)  
fSCK  
tSCK  
tRSCK  
tFSCK  
tSCKH  
tSCKL  
tCSS  
tCSH  
tCSD  
tSISU  
tSIH  
SCK, SPI clock frequency  
18  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(3)  
SCK, SPI clock period  
See 14  
56  
(3)  
SCK rise time  
See 13  
10  
10  
(3)  
SCK fall time  
See 13  
(3)  
SCK, SPI clock high  
See 14  
18  
18  
28  
28  
125  
5
(3)  
SCK, SPI clock low  
See 14  
(3)  
Chip select setup time  
See 13  
(3)  
Chip select hold time  
See 13  
(3)  
Chip select disable time  
See 13  
(3)  
Data in setup time  
See 13  
(3)  
Data in hold time  
See 13  
10  
(3)  
tSOV  
tRSO  
tFSO  
Data out valid  
VIO = 3.135 V to 5.25 V, See 14  
See 14  
20  
10  
10  
(3)  
SO rise time  
(3)  
SO fall time  
See 14  
(4) The TXD_INT dominant time out (tTXD_INT_DTO) disables the driver of the transceiver once the TXD_INT has been dominant longer than  
tTXD_INT_DTO, which releases the bus lines to recessive, preventing a local failure from locking the bus dominant. The driver may only  
transmit dominant again after TXD_INT has been returned HIGH (recessive). While this protects the bus from local faults, locking the  
bus dominant, it limits the minimum data rate possible. The CAN protocol allows a maximum of eleven successive dominant bits (on  
TXD_INT) for the worst case, where five successive dominant bits are followed immediately by an error frame. This, along with the  
tTXD_INT_DTO minimum, limits the minimum bit rate. The minimum bit rate may be calculated by: Minimum Bit Rate = 11/ tTXD_INT_DTO  
=
11 bits / 1.2 ms = 9.2 kbps.  
(5) Characterized but not 100% tested  
(6) ΔtRec = tBit(RXD) – tBit(Bus)  
10  
版权 © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
6.10 Typical Characteristics  
38  
36  
34  
32  
30  
28  
26  
24  
22  
20  
105  
100  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
40  
35  
-40 °C  
25 °C  
55 °C  
85 °C  
100 °C  
125 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
100 °C  
125 °C  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
D001  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
D003  
VSUP (V)  
VSUP (V)  
VCCOUT = 0 V  
ICCOUT = 0 mA  
CAN Bus Load = 60 Ω  
VCCOUT = 5 V  
ICCOUT = 70 mA  
CAN Transceiver Off  
1. ISUP vs VSUP Sleep Mode  
2. ISUP Current Across Temperature and VSUP LDO Output  
Only.  
7 Parameter Measurement Information  
All TXD_INT, RXD_INT and EN_INT references are for internal nodes that represent the  
same functions for a physical layer transceiver. In test mode these can be brought out to  
pins to test the transceiver or CAN FD controller.  
Standby Mode (Low  
Normal Mode  
Power)  
CANH  
Vdiff  
Vdiff  
CANL  
Recessive  
Dominant  
Recessive  
Time, t  
3. Bus States (Physical Bit Representation)  
版权 © 2018–2020, Texas Instruments Incorporated  
11  
 
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
CANH  
VCC/2  
A
B
RXD_INT  
Bias  
Unit  
CANL  
4. Simplified Recessive Common Mode Bias Unit and Receiver  
A: Classic CAN and CAN FD modes  
B: Standby and Sleep Modes (Low Power)  
CANH  
TXD_INT  
RL  
CL  
CANL  
5. Supply Test Circuit  
RCM  
CANH  
VCC  
50%  
50%  
TXD_INT  
TXD_INT  
0 V  
RL  
CL  
VOD  
VCM  
VO(CANH)  
tpLD  
tpHR  
90%  
10%  
CANL  
RCM  
0.9 V  
VO(CANL)  
VOD  
0.5 V  
tR  
tF  
6. Driver Test Circuit and Measurement  
12  
版权 © 2018–2020, Texas Instruments Incorporated  
 
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
Parameter Measurement Information (接下页)  
CANH  
1.5 V  
RXD_INT  
IO  
0.9 V  
VID  
0.5 V  
0 V  
VID  
tpDL  
tpRH  
VOH  
VO  
CL_RXD_INT  
CANL  
90%  
70%  
VO(RXD_INT)  
30%  
10%  
VOL  
tF  
tR  
7. Receiver Test Circuit and Measurement  
RCM  
CANH  
VI  
TXD_INT  
VI  
tLOOP  
Falling  
edge  
RL  
CL  
VCM  
70%  
TXD_INT  
30%  
30%  
CANL  
RCM  
EN_INT  
0 V  
0 V  
5 x tBIT(TXD_INT)  
tBIT(TXD_INT)  
RXD_INT  
tBIT(Bus)  
VO  
CL_RXD_INT  
900 mV  
VDiff  
500 mV  
VOH  
70%  
RXD_INT  
30%  
VOL  
tLOOP  
rising  
edge  
tBIT(RXD_INT)  
8. Transmitter and Receiver Timing Behavior Test Circuit and Measurement  
CANH  
VIH  
TXD_INT  
30%  
TXD_INT  
RL  
CL  
VOD  
0 V  
VOD(D)  
CANL  
0.9 V  
VOD  
0.5 V  
0 V  
tTXD_INT_DTO  
9. TXD_INT Dominant Timeout Test Circuit and Measurement  
版权 © 2018–2020, Texas Instruments Incorporated  
13  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
200 s  
IOS  
CANH  
TXD_INT  
VBUS  
IOS  
CANL  
VBUS  
VBUS  
0 V  
or  
0 V  
VBUS  
VBUS  
10. Driver Short-Circuit Current Test and Measurement  
VSUP  
VSUP  
VWAKE  
VSUP - 2  
VWAKE  
VSUP - 3  
VSUP  
INH  
0 V  
CVSUP  
tWAKE  
TCAN4550  
OR  
tWAKE  
VWAKE  
INH = H  
INH = H  
INH  
INH  
VSUP -1 V  
VSUP -1 V  
11. tWAKE While Monitoring INH Output  
VDIFF  
2.0 V  
1.15 V  
0.4 V  
t > tWAKE_FILTER(MAX)  
t > tWAKE_FILTER(MAX)  
t > tWAKE_FILTER(MAX)  
VSYM  
0.1  
tBias  
12. Test Signal Definition for Bias Reaction Time Measurement  
14  
版权 © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
Parameter Measurement Information (接下页)  
tCSD  
nCS  
tCSH  
tRSCK  
tFSCK  
tCSS  
SCLK  
tSISU  
tSIH  
SDI  
MSB In  
LSB  
In  
SDO  
13. SPI AC Characteristic Write  
nCS  
tSCK  
tSCKL  
tSCKH  
SCLK  
tSOV  
tRSO  
tFSO  
SDO  
LSB  
Out  
MSB Out  
SDI  
14. SPI AC Characteristic Read  
版权 © 2018–2020, Texas Instruments Incorporated  
15  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
14 V  
~ 5.5 V  
UVSUP  
VSUP  
1.67 V to  
4.14 V  
14 V  
VSUP œ 1V  
INH  
tPower_Up  
nWKRQ  
VIO  
VIO on and ramp time are system dependent and not specified  
FLTR  
VCCOUT  
tMODE_SLP_STBY_VCCOUT_ON  
UVCCOUT Cleared  
CLKIN is dependent on external source  
and timing will not be specified  
tCRYSTAL  
VIO required for Crystal/CLKIN to work.  
This is the stable internal clock.  
Crystal/CLKIN  
STANDBY MODE  
Transceiver Ready  
nINT  
15. Power Up Timing  
16  
版权 © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
Parameter Measurement Information (接下页)  
14V  
VSUP  
Wake Event  
WUP or LWU  
14V  
VSUP œ 1V  
INH  
tMODE_SLP_STBY  
nWKRQ  
VIO  
VIO on and ramp time are system dependent and not specified  
FLTR  
VCCOUT  
tMODE_SLP_STBY_VCCOUT_ON  
UVCCOUT Cleared  
VIO required for Crystal/CLKIN to work.  
This is the stable internal clock.  
CLKIN is dependent on external source  
and timing will not be specified  
tCRYSTAL  
Crystal/CLKIN  
nINT  
STANDBY MODE  
Transceiver Ready  
16. Sleep to Standby Timing  
版权 © 2018–2020, Texas Instruments Incorporated  
17  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Parameter Measurement Information (接下页)  
14V  
VSUP  
SPI Mode  
Change  
Normal to  
Sleep CMD  
14V  
VSUP œ 1V  
INH  
tMODE_NOM_SLP  
nWKRQ  
VIO  
VIO off and ramp time are system dependent and not specified  
FLTR  
EN_VCCOUT_S  
tSILENCE Expires  
VCCOUT off ramp time is system dependent and not specified  
VCCOUT  
Crystal/CLKIN  
VIO required for Crystal/CLKIN to work.  
Mode  
NOM:SLP  
Sleep Mode  
Normal Mode  
17. Normal to Sleep Timing  
18  
版权 © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
Parameter Measurement Information (接下页)  
14 V  
VSUP  
SPI Mode  
Change  
Normal to  
Standby CMD  
14 V  
INH  
nWKRQ  
Low  
High  
VIO  
FLTR  
5 V  
VCCOUT  
Crystal/CLKIN  
Mode  
NOM:SLP  
Standby Mode  
Normal Mode  
tMODE_NOM_STBY  
Transceiver  
18. Normal to Standby Timing  
版权 © 2018–2020, Texas Instruments Incorporated  
19  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8 Detailed Description  
8.1 Overview  
The TCAN4550 is a CAN FD controller with an integrated CAN FD transceiver supporting data rates up to 5  
Mbps. The CAN FD controller meets the specifications of the ISO 11898-1:2015 high speed Controller Area  
Network (CAN) data link layer and meets the physical layer requirements of the ISO 11898-2:2016 High Speed  
Controller Area Network (CAN) specification providing an interface between the CAN bus and the CAN protocol  
controller supporting both classical CAN and CAN FD up to 5 megabits per second (Mbps). The TCAN4550  
provides CAN FD transceiver functionality: differential transmit capability to the bus and differential receive  
capability from the bus. The device includes many protection features providing device and CAN bus robustness.  
The device can also wake up via remote wake up using CAN bus implementing the ISO 11898-2:2016 Wake Up  
Pattern (WUP). Input/Output support for 3.3 V and 5 V microprocessors using VIO pin for seamless interface. The  
TCAN4550 has a Serial Peripheral Interface (SPI) that connects to a local microprocessor for the device's  
configuration; transmission and reception of CAN frames. The SPI interface supports clock rates up to 18 MHz.  
The CAN bus has two logical states during operation: recessive and dominant. See 3 and 4.  
In the recessive bus state, the bus is biased to a common mode of 2.5 V via the high resistance internal input  
resistors of the receiver of each node. Recessive is equivalent to logic high. The recessive state is also the idle  
state.  
In the dominant bus state, the bus is driven differentially by one or more drivers. Current flows through the  
termination resistors and generates a differential voltage on the bus. Dominant is equivalent to logic low. A  
dominant state overwrites the recessive state.  
During arbitration, multiple CAN nodes may transmit a dominant bit at the same time. In this case, the differential  
voltage of the bus is greater than the differential voltage of a single driver.  
Transceivers with low power Standby Mode have a third bus state where the bus terminals are weakly biased to  
ground via the high resistance internal resistors of the receiver. See 3 and 4. The TCAN4550 supports auto  
biasing, see CAN Bus Biasing  
The TCAN4550 has the ability to provide a single-ended clock output (GPIO1) based upon the crystal or single-  
ended clock input on OSC1. Many of the pins can be configured for multiple purposes and are described in more  
detail in Feature Description section. Much of the parametric data is based on internal links like the  
TXD/RXD_INT which represent the TXD and RXD of a standalone CAN transceiver. The TCAN4550 has a test  
mode that maps these signals to an external pin in order to perform compliance testing on the transceiver  
(TXD/RXD_INT_PHY) and CAN core (TXD/RXD_INT_CAN) independently.  
20  
版权 © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.2 Functional Block Diagram  
VSUP  
VCCOUT  
FLTR  
WAKE  
INH  
VINT  
VLVRX  
LDO(s)  
Filter  
VIO  
Under  
Voltage  
CNTL  
POR  
TCAN4550  
VIO  
CANH  
TXD_INT  
RXD_INT  
VINT  
nWKRQ  
TX/RX Data  
Buffer  
TX/RX CAN-FD  
Controller with  
Filters  
VIO  
RST  
SCLK  
SDI  
CAN-FD  
Transceiver  
SPI slave,  
System  
Controller  
SDO  
CANL  
nCS  
GPO2  
nINT  
GPIO1  
GND  
OSC2  
OSC1  
40 MHz  
OSC1 pin is either a crystal or external clock input  
When OSC1 is used as an external clock input pin OSC2 must be connected directly  
to ground  
When using an external clock input on OSC1 the input voltage should be the same as  
the VIO voltage rail  
The recommended crystal or clock rate to meet CAN FD 5 Mbps rates is 40 MHz  
版权 © 2018–2020, Texas Instruments Incorporated  
21  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Functional Block Diagram (接下页)  
VCCINT1  
Transceiver Block Diagram  
VSUP  
TXD_INT_PHY  
TXD_INT  
CANH  
CANL  
DOMINANT  
TIME OUT  
DRIVER  
TXD_INT  
Communication Bus  
OVER  
TEMP  
EN_INT  
MODE AND CONTROL LOGIC  
VSUP  
WAKE  
WAKE  
WAKE  
INH_CNTL  
VSUP  
VLVRX  
UNDER  
VOLTAGE  
M
U
X
INH  
WAKE UP LOGIC /  
MONITOR  
RXD_INT_PHY  
RXD_INT  
LOGIC  
OUTPUT  
Low Power Standby Bus  
Receiver & Monitor  
RXD_INT  
19. CAN Transceiver Block Diagram  
22  
版权 © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
Functional Block Diagram (接下页)  
VIO  
VIO  
Chip  
Reset  
RST  
VIO  
SCLK  
SCLK  
SDI  
VIO  
SDI  
VIO  
SDO  
SDO  
nCS  
VIO  
GPI  
VIO  
RXD_INT_CAN  
Test Mode  
TXD_INT_PHY  
GPI01  
GPO  
SPI & I/O  
Controller  
VIO  
Test Mode  
TXD_INT_CAN  
GPO2  
RXD_INT_PHY  
GPO2 œ for all non test mode  
VIO  
Test Mode  
EN_INT  
nINT  
3P6_SLEEP  
WKRQ_3P6_SLEEP  
WKRQ_VIO  
nWKRQ  
20. SPI and Digital IO Block Diagram  
版权 © 2018–2020, Texas Instruments Incorporated  
23  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.3 Feature Description  
8.3.1 VSUP Pin  
This pin connects to the battery supply. It provides the supply to the internal regulators that support the digital  
core, CAN transceiver and VCCOUT. This Pin requires a 100 nF capacitor at the pin. See Power Supply  
Recommendations for more information. Upon power up; VSUP needs to rise above UVSUP rising threshold.  
8.3.2 VIO Pin  
The VIO pin provides the digital IO voltage to match the microprocessor IO voltage thus avoiding the  
requirements for a level shifter. VIO supports IO pins SPI IO, GPO1 and GPO2. It also provides power to the  
oscillator block supporting the crystal or CLKIN pins. It supports a range of 3.3 V to 5 V ± 5% nominal value  
providing the widest range of controller support. This pin requires a 100 nF capacitor at the pin. See Power  
Supply Recommendations for more information.  
8.3.3 VCCOUT Pin  
An internal LDO provides power for the integrated CAN transceiver and the VCCOUT pin for a total available  
current of 125 mA. The amount of current that can be sourced is dependent upon the CAN transceiver  
requirements during normal operation. When a bus fault takes place that requires all the current from the LDO,  
the device is not able to source current to external components. During sleep mode this regulator is disabled and  
no current is provided. Once in the other active modes the regulator is enabled for normal operation. This pin  
requires a 10 µF external capacitor as close to the pin as possible. See Power Supply Recommendations for  
more information.  
8.3.4 GND  
This pin is a ground pin as is the thermal pad. Both need to connect to a ground plane to support heat  
dissipation.  
8.3.5 INH Pin  
The INH pin is a high voltage output pin that provides voltage from the VSUP minus a diode drop to enable an  
external high voltage regulator. These regulators are usually used to support the microprocessor and VIO pin.  
The INH function is on in all modes but sleep mode. In sleep mode the INH pin is turned off, going into a high Z  
state. This allows the node to be placed into the lowest power state while in sleep mode. If this function is not  
required it can be disabled by setting register 16'h0800[9] = 1 using the SPI interface. If not required in the end  
application to initiate a system wake-up, INH can be left floating.  
This terminal should be considered a "high voltage logic" terminal. It is not a power output  
thus should be used to drive the EN terminal of the system’s power management device.  
It should be not used as a switch for power management supply itself. This terminal is not  
reverse battery protected and thus should not be connected outside of the system module.  
8.3.6 WAKE Pin  
The WAKE pin is used for a high voltage device local wake up (LWU). This function is explained further in Local  
Wake Up (LWU) via WAKE Input Terminal section. The pin is defaulted to bi-directional edge trigger, meaning it  
recognizes a LWU on either a rising or falling edge of WAKE pin transition. This default value can be changed  
via a SPI command that disables the function, make it a rising edge only or a falling edge only. This is done by  
using register 16'h0800[31:30]. Pin requires a 10 nF capacitor to ground for improved transient immunity in  
applications that route WAKE externally. If local wake-up functionality is not needed in the end application,  
WAKE can be tied directly to VSUP or GND.  
8.3.7 FLTR Pin  
This pin is used to provide filtering for the internal digital core regulator. Pin requires 300 nF of capacitance to  
ground. See Power Supply Recommendations for more information.  
24  
版权 © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
Feature Description (接下页)  
8.3.8 RST Pin  
The RST pin is a device reset pin. It has a weak internal pull down resistor for normal operation. If  
communication has stopped with the TCAN4550, the RST pin can be pulsed high and then back low for greater  
than tPULSE_WIDTH to perform a power on reset to the device. This resets the device to the default settings and  
puts the device into standby mode. If the device was in normal or standby mode the INH and nWKRQ pins  
remain active (on) and do not toggle; see 21. If the device is in sleep mode and reset is toggled the device  
enters standby mode and at that time INH and nWKRQ turns on; see 22.  
After a RST has taken place, a wait time of 700 µs should be used before reading or writing to the TCAN4550.  
14V  
VSUP  
tPULSE_WIDTH  
RST  
14V  
INH  
nWKRQ  
Low  
High  
VIO  
700 µs  
Device ready to be  
read and written to  
Device SPI  
Access  
Standby Mode  
Normal  
or  
Standby  
Mode  
21. Timing for RST Pin in Normal and Standby Modes  
14V  
VSUP  
tPULSE_WIDTH  
RST  
14V  
250 µs  
INH  
Low  
Float  
nWKRQ  
Low  
High  
VIO  
700 µs  
Device ready to be  
read and written to  
Device SPI  
Access  
Standby Mode  
Sleep Mode  
22. Timing for RST Pin in Sleep Mode  
版权 © 2018–2020, Texas Instruments Incorporated  
25  
 
 
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Feature Description (接下页)  
8.3.9 OSC1 and OSC2 Pins  
These pins are used for a crystal oscillator. The OSC1 pin can also be used as a single-ended clock input from  
the microprocessor or some other clock source. See Application Design Consideration section for further  
information on the functions of these pins. It is recommended to provide a 40 MHz crystal or CLKIN to support  
CAN FD data rates.  
8.3.10 nWKRQ Pin  
This pin is a dedicated wake up request pin from a bus wake (WUP) request, local wake (LWU) request and  
power on (PWRON). The nWKRQ pin is defaulted to a wake enable based upon a wake event. In this  
configuration the output is pulled low and latched to serve as an enable for a regulator that does not use the INH  
pin to control voltage level. The nWKRQ pin can be configured by setting 16'h0800[8] = 1 as an interrupt pin that  
pulls the output low, but once the wake interrupt flag is cleared it releases the output back to a high. This pin  
defaults to an internal 3.6 V rail that is active during sleep mode. In this configuration, if a wake event takes  
place, the nWKRQ pin switches from high to low. This output can be configured to be powered from the VIO rail  
through SPI programming, 16'h0800[19]. When powered off of the VIO pin, the device does not insert an interrupt  
until the VIO rail is stable. When configured for VIO, this pin is an open drain output and requires an external pull  
up resistor to VIO rail. This configuration bit is saved for all modes of operation and does not reset in sleep mode.  
As some external regulators or power management chips may need a digital logic pin for a wake up request, this  
pin can be used.  
This pin is active low and is logical OR of CANINT, LWU and WKERR register  
16'h0820 that are not masked  
If a pull-up resistor is placed on this pin it must be configured for power from the VIO  
rail  
8.3.11 nINT Interrupt Pin  
The nINT is a dedicated open drain global interrupt output pin. This pin needs an external pull-up resistor to VIO  
to function properly. All interrupt requests are reflected by this pin when pulled low.  
In test mode, this pin is used as an EN pin input for testing the CAN transceiver and is shown as EN_INT  
throughout the document. When this pin is high, the device is in normal mode and when low it is in standby  
mode. This is accomplished by writing 0 to register 16'h0800[0].  
This pin is an active low and is the logical OR of all faults in registers 16'h0820 and  
16'h0824 that are not masked.  
8.3.12 GPO1 Pin  
This pin defaults out as the M_CAN_INT 1 (active low) interrupt. The functionality of the pin can be changed to a  
configurable output function pin by setting register 16'h0800[15:14] = 00. The GPO function is further configured  
by using register 16'h0800[11:10]. To configure the pin to support a watchdog input timer reset pin use SPI  
register 16'h0800[15:14] = 10.  
When in test mode the GPIO1 pin is used to provide the input signal for the transceiver (TXD_INT_PHY) or the  
input to the M_CAN core (RXD_INT_CAN). This is accomplished by first putting the device into test mode using  
register 16'h0800[21] = 1 and then selecting which part of the device is to be tested by setting register  
16'h0800[0]  
26  
版权 © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
Feature Description (接下页)  
8.3.13 GPO2 Pin  
The GPO2 pin is an open drain configurable output function pin that provides selected interrupts. This pin needs  
an external pull-up resistor to VIO to function properly. The output function can be changed by using register  
16'h0800[23:22] and can be configured as a watchdog output reset pin.  
In test mode, this pin becomes the RXD_INT_PHY transceiver output or TXD_INT_CAN CAN Controller output  
pin.  
8.3.14 CANH and CANL Bus Pins  
These are the CAN high and CAN low differential bus pins. These pins are connected to the CAN transceiver  
and the low voltage WUP CAN receiver. The functionality of these is explained throughout the document. See  
section CAN Bus Biasing for can bus biasing.  
8.4 Device Functional Modes  
The TCAN4550 has several operating modes: normal, standby, and sleep modes and two protected modes. The  
first three mode selections are made by the SPI register. The two protected modes are modified standby modes  
used to protect the device or bus. The TCAN4550 automatically goes from sleep to standby mode when  
receiving a WUP or LWU event. See 1 for the various modes and what parts of the device are active during  
the each mode.  
The TCAN4550 state diagram figure, see 23, shows the biasing of the CAN bus in each of the modes of  
operation.  
1. Mode Overview  
Low  
Power  
CAN RX  
Memory &  
Configuratio  
n
WAKE  
Pin  
CAN TX/  
RX  
Mode  
RST Pin  
nINT  
nWKRQ  
INH  
GPO2  
WD  
SPI  
GPIO1  
OSC  
VCCOUT  
Normal  
L
L
On  
On  
On  
On  
On  
On  
On  
On  
Off  
On  
Off  
On  
On  
On  
On  
On  
On  
On  
On  
On  
On  
Off  
On  
Saved  
Saved  
Standby  
On/  
TSD  
Protected  
L
On  
On  
On  
On  
On  
On  
On  
On  
On  
On  
Off  
Off  
Saved  
Mode  
Dependen  
t
UVIO  
Protected  
L
L
Off  
Off  
On  
On  
Off  
Off  
Off  
Off  
On  
On  
On  
On  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
Off  
On  
Off  
Saved  
Sleep  
Off  
Partial Saved  
In test mode the watchdog (WD) function can be used for Mode 01 CAN FD. The pin  
function for WD is used by other pins in this mode but WD_ACTION  
reg16'h0800[17:16] = 00 and 01 are available and WD_BIT reg16'h0800[18] is how the  
timer would be reset.  
版权 © 2018–2020, Texas Instruments Incorporated  
27  
 
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
RST Pin: Set high to  
reset device. Once  
finished set back low  
UVLO VSUP  
Continued decrease below UVSUP  
low the device will reset and clear  
everything and come back on as if  
a power up sequence has taken  
place entering standby mode  
Resets Sleep  
Core  
Power On  
Start Up  
Normal Mode  
TSD = 1  
Power Off  
TSD Protected  
Standby Mode  
Normal Mode  
SPI Write  
MO = 01  
RST: L  
Wake Sources: WAKE  
INH: H  
Wake Pin: Active  
All GPIO: Active  
SPI: Active  
RST: L  
Wake Sources: CAN, WAKE  
INH: H  
RST: L  
INH: H  
SPI Write  
MO = 10  
Wake Pin: Active  
All GPIO: Active  
SPI: Active  
Wake Pin: Active  
All GPIO: Active  
SPI: Active  
SPI Write  
MO = 00  
Sleep Mode  
RST: L  
Wake Sources: CAN, WAKE  
INH: floating  
TSD = 1  
OSC: Active  
VCCOUT: Off  
Timer Start  
OSC: Active  
VCCOUT: Enabled  
OSC: Active  
VCCOUT: Enabled  
SWE timer  
times out  
Wake Pin: Active  
nINT Pin: Off  
nWKRQ Pin: Active  
Other GPIO: Off  
SPI: Off  
TSD = 1 &  
Timer Expires  
TSD = 0 &  
Timer Expires  
TSD State  
TSD Timer  
Wake-up Event:  
CAN bus  
or  
SPI Write  
MO = 00  
OSC: Off  
VCCOUT: Off  
WAKE Pin  
UVIO = 1  
NOTE: Upon a wake event the device will  
transition into Standby mode and must be  
reconfigured using SPI  
UVIO Protected  
UVIO = 0  
RST: L  
Wake Sources: CAN, WAKE  
INH: H  
Normal Mode  
UVIO = 1  
UVIO State  
UVIO Timer  
UVIO = 1 &  
Timer Expires  
Wake Pin: Active  
All GPIO: Off  
SPI: Off  
Note:  
ñ
OSC: Off  
VCCOUT: On  
Timer Start  
UVIO Protected status will lose the CLKIN/Crystal. During this time the digital core will reset and the M_CAN will have to be  
reprogrammed. If timer times out and UVIO = 1 the device goes to sleep at which time all are cleared.  
If a Thermal Shutdown and UVIO event take place at the same time the device will enter sleep mode until the faults are rectified  
ñ
23. Device State Diagram  
8.4.1 Normal Mode  
This is the normal operating mode of the device. The CAN driver and receiver are fully operational and CAN  
communication is bi-directional. The driver translate a digital input on the internal TXD_INT signal from the CAN  
FD controller to a differential output on CANH and CANL. The receiver translates the differential signal from  
CANH and CANL to a digital output on the internal RXD_INT signal to the CAN FD controller. Normal mode is  
enabled or disabled via the SPI interface.  
If an under voltage event has taken place and cleared, the interrupt flags have to be  
cleared before the device can enter normal mode.  
8.4.2 Standby Mode  
In standby mode, the bus transmitter does not send data nor will the normal mode receiver accept data. There  
are several blocks that are active in this mode. The low power CAN receiver is active, monitoring the bus for the  
wake up pattern (WUP). The wake pin monitor is active. The SPI interface is active so that the microprocessor  
can read and write registers in the memory for status and configuration. The INH pin is active in order to supply  
an enable to the VIO controller if this function is used. The nWKRQ pin is low in this mode in the default  
configuration and can also be used as a digital enable pin to an external regulator or power management  
integrated circuit (PMIC). All other blocks are put into the lowest power state possible. This is the only mode that  
28  
版权 © 2018–2020, Texas Instruments Incorporated  
 
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
the TCAN4550 automatically switches to without a SPI transaction. The device goes from sleep mode to standby  
mode automatically upon a bus WUP event or a local wake up from the wake pin. Upon entry to Standby Mode,  
only one wake interrupt is given (either LWU, CANINT). New wake interrupts is not given in standby mode unless  
the device changes to normal or sleep mode and then back to standby. This prevents CAN traffic from spamming  
the processor with interrupts while in standby, and it gives the processor the first wake interrupt that was issued.  
Upon power up, a power on reset or wake event from sleep mode the TCAN4550 enters standby mode. This  
starts a four minute timer, tINACTIVE, that requires the processor to either reset the interrupt flags or configure the  
device to normal mode. This feature makes sure the node is in the lowest power mode if the processor does not  
come up properly. This automatic mode change also takes place when the device has been put into sleep mode  
and receives a wake event, WUP or LWU. To disable this feature for sleep events register 16'h0800[1]  
(SWE_DIS) must be set to one. This will not disable the feature when powering up or when a power on reset  
takes place.  
8.4.3 Sleep Mode  
Sleep mode is similar to the standby mode except the SPI interface and INH is disabled. As the low power CAN  
receiver is powered off of VSUP the implementer can turn off VIO. The nWKRQ pin is powered off the VSUP supply  
internal logic level regulator. This allows the TCAN4550 to provide an interrupt to the MCU when a wake event  
takes place with out requiring VIO to be up. When the device goes into sleep mode the power to the registers and  
memory is removed to conserve power. This requires the device to be re-configured prior to being put into  
normal mode. As the SPI interface is turned off the only ways to exit sleep mode is by a wake up event, RST pin  
toggle or power cycle. A sleep mode status flag is provided to determine if the device entered sleep mode  
through normal operation or if a fault caused the mode change. Register 16'h0820[23] provides the status. If a  
fault causes the device to enter sleep mode, this flag is set to a one.  
Difference between sleep and standby mode  
Sleep mode reduces whole node power by shutting off INH/nWKRQ to MCU VREG  
and shuts off SPI.  
Standby mode reduces TCAN4550 power as INH and nWKRQ is enabled turning on  
node MCU VREG and SPI interface is active.  
When entering sleep mode it is possible for the TCAN4550 to assert an interrupt due to  
UVCCOUT event as the LDO is powering down. This interrupt should be ignored or can be  
masked out by using 16'h830[22] before initiating the go to sleep command.  
8.4.3.1 Bus Wake via RXD_INT Request (BWRR) in Sleep Mode  
As the TCAN4550 supports low power sleep mode and uses a wake up from the CAN bus mechanism called bus  
wake via RXD_INT Request (BWRR). Once this pattern is received, the TCAN4550 automatically switches to  
standby mode and inserts an interrupt onto the nINT and nWKRQ pins to indicate to a host microprocessor that  
the bus is active, and it should wake up and service the TCAN4550. The low power receiver and bus monitor are  
enabled in sleep mode to allow for RXD_INT Wake Requests via the CAN bus. A wake up request is output to  
the internal RXD_INT (driven low) as shown in 25. The wake logic monitors RXD_INT for transitions (high to  
low) and reactivate the device to standby mode based on the RXD_INT Wake Request. The CAN bus terminals  
are weakly pulled to GND during this mode, see 4.  
These devices use the wake up pattern (WUP) from ISO 11898-2:2016 to qualify bus traffic into a request to  
wake the host microprocessor. The bus wake request is signaled to the integrated CAN FD controller by a falling  
edge and low corresponding to a “filtered” bus dominant on the RXD_INT terminal (BWRR).  
The wake up pattern (WUP) consists of  
A filtered dominant bus of at least tWK_FILTER followed by  
A filtered recessive bus time of at least tWK_FILTER followed by  
A second filtered dominant bus time of at least tWK_FILTER  
版权 © 2018–2020, Texas Instruments Incorporated  
29  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Once the WUP is detected, the device starts issuing wake up requests (BWRR) on the RXD_INT signal every  
time a filtered dominant time is received from the bus. The first filtered dominant initiates the WUP and the bus  
monitor is now waiting on a filtered recessive, other bus traffic does not reset the bus monitor. Once a filtered  
recessive is received, the bus monitor is now waiting on a filtered dominant and again, other bus traffic does not  
reset the bus monitor. Immediately upon receiving of the second filtered dominant the bus monitor recognizes the  
WUP and transition to BWRR output. Immediately upon verification receiving a WUP the device transitions the  
bus monitor into BWRR mode, and indicates all filtered dominant bus times on the RXD_INT internal signal by  
driving it low for the dominant bus time that is in excess of tWK_FILTER, thus the RXD_INT output during BWRR  
matches the classical 8 pin CAN devices that used the single filtered dominant on the bus as the wake up  
request mechanism from ISO 11898-2:2016.  
For a dominant or recessive to be considered “filtered”, the bus must be in that state for more than tWK_FILTER  
time. Due to variability in the tWK_FILTER the following scenarios are applicable.  
Bus state times less than tWK_FILTER(MIN) are never detected as part of a WUP, and thus no BWRR is  
generated.  
Bus state times between tWK_FILTER(MIN) and tWK_FILTER(MAX) may be detected as part of a WUP and a BWRR  
may be generated.  
Bus state times more than tWK_FILTER(MAX) is always detected as part of a WUP, and thus, a BWRR is always  
be generated.  
See 24 for the timing diagram of the WUP.  
The pattern and tWK_FILTER time used for the WUP and BWRR prevents noise and bus stuck dominant faults from  
causing false wake requests while allowing any CAN or CAN FD message to initiate a BWRR. If the device is  
switched to normal mode or an under voltage event occurs on VCC the BWRR is lost. The WUP pattern must  
take place within the tWK_TIMEOUT time otherwise the device is in a state waiting for the next recessive and then a  
valid WUP pattern.  
Bus Wake via RXD  
Request  
Wake Up Pattern (WUP) where t ≤ tWK_TIMEOUT  
Filtered  
Dominant  
Filtered  
Dominant  
Filtered  
Recessive  
Waiting for  
Filtered  
Dominant  
Waiting for  
Filtered  
Recessive  
Bus  
Bus VDiff  
≥ tWK_FILTER  
≥ tWK_FILTER  
≥ tWK_FILTER  
≥ tWK_FILTER  
Filtered Dominant RXD Output  
Bus Wake Via RXD Requests  
RXD_INT  
tMODE_SLP_STBY  
INH  
nWKRQ  
24. Wake Up Pattern (WUP) and Bus Wake via RXD_INT Request (BWRR)  
30  
版权 © 2018–2020, Texas Instruments Incorporated  
 
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
Fault is repaired & transmission capability  
restored  
TXD fault stuck dominant: example PCB failure or bad software  
tTXD_DTO  
TXD_INT (driver)  
Driver disabled freeing bus for other nodes  
Normal CAN communication  
Bus would be —stuck dominant“ blocking communication for the whole network but TXD DTO  
prevents this and frees the bus for communication after the time tTXD_DTO  
.
CAN Bus  
Signal  
tTXD_DTO  
Communication from other  
bus node(s)  
Communication from repaired  
node  
RXD_INT  
(receiver)  
Communication from other  
bus node(s)  
Communication from repaired  
local node  
Communication from local  
node  
25. Example timing diagram with TXD_INT DTO  
8.4.3.2 Local Wake Up (LWU) via WAKE Input Terminal  
The WAKE terminal is a high voltage input terminal which can be used for local wake up (LWU) request via a  
voltage transition. The terminal triggers a LWU event on either a low to high or high to low transition as it has bi-  
directional input thresholds. This terminal may be used with a switch to VSUP or ground. If the terminal is not used  
it should be pulled to ground or VSUP to avoid unwanted wake up events.  
The LWU circuitry is active in sleep mode and standby mode. If a valid LWU event occurs, the device transitions  
to standby mode. The LWU circuitry is not active in normal mode. To minimize system level current consumption,  
the internal bias voltages of the terminal follows the state on the terminal. The wake filter time for a valid wake to  
avoid glitches on wake pin is provided by filter value of tWAKE(MIN). A constant high level on WAKE has an internal  
pull up to VSUP and a constant low level on WAKE has an internal pull down to GND. On power up, this may look  
like a LWU event and could be flagged as such.  
版权 © 2018–2020, Texas Instruments Incorporated  
31  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Wake  
Threshold  
Not Crossed  
t ≤ tWAKE  
No Wake  
UP  
t ≥ tWAKE  
Wake UP  
Wake  
Local Wake Request  
INH  
RXD_INT  
*
Mode  
Sleep Mode  
Standby Mode  
26. Local Wake Up – Rising Edge  
Wake  
Threshold  
Not Crossed  
t ≤ tWAKE  
No Wake  
UP  
t ≥ tWAKE  
Wake UP  
Wake  
Local Wake Request  
INH  
*
RXD_INT  
Mode  
Sleep Mode  
Standby Mode  
27. Local Wake Up – Falling Edge  
RXD_INT is an internal signal and can be seen in Transceiver test mode when VIO is  
present.  
32  
版权 © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.4.4 Test Mode  
The TCAN4550 includes a test mode that has four configurations. Two are enabled by the SPI interface using  
the configuration register by setting register bit 16'h0800[21] = 1. In this mode the transceiver TXD_INT_PHY or  
CAN core RXD_INT_CAN can be mapped to the GPIO1 pin and RXD_INT_PHY or TXD_INT_CAN can be  
mapped to the GPO2 pin. EN_INT pin is mapped to the nINT pin, see 28 and 29. This is accomplished by  
setting register 16'h0800[0] to 0 for transceiver testing or 1 for M_CAN core testing. This mapping is only valid  
when in test mode. There are two M_CAN core specific test modes entered using SPI but written to the M_CAN  
core registers directly, see 30 and 31.  
EN_INT  
nINT  
GPIO1  
TXD_INT_PHY  
CANH  
CANL  
SCLK  
SDI  
TX  
RX  
SPI slave,  
System  
Controller  
MCAN  
Core  
SDO  
nCS  
RXD_INT_PHY  
GPO2  
28. Transceiver Test Mode  
GPIO1  
RXD_INT_CAN  
CANH  
CANL  
SCLK  
SDI  
TX  
SPI slave,  
System  
Controller  
MCAN  
Core  
SDO  
nCS  
RX  
TXD_INT_CAN  
GPO2  
29. SPI and M_CAN Core Test Mode  
CANH  
CANL  
SCLK  
SDI  
= 1  
TX  
RX  
SPI slave,  
System  
Controller  
MCAN  
Core  
SDO  
nCS  
30. M_CAN Internal Loop Back Test Mode  
CANH  
CANL  
SCLK  
SDI  
TX  
RX  
SPI slave,  
System  
Controller  
MCAN  
Core  
SDO  
nCS  
31. M_CAN External Loop Back Test Mode  
版权 © 2018–2020, Texas Instruments Incorporated  
33  
 
 
 
 
 
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.4.5 Failsafe Feature  
The TCAN4550 has three methods the failsafe feature is used in order to reduce node power consumption for a  
node system issue. Failsafe is the method the device uses to enter sleep mode from various other modes when  
specific issues arise. This feature uses the Sleep Wake Error (SWE) timer to determine if the node processor  
can communicate to the TCAN4550. The SWE timer is default enabled through the SWE_DIS; 16'h0800[1] = 0  
but can be disabled by writing a one to this bit. Even when the timer is disabled, a power on reset re-enables the  
timer and thus be active. Failsafe Feature is default disabled but can be enabled by writing a one to  
16'h0800[13], FAILSAFE_EN.  
Upon power up the SWE timer starts, tINACTIVE, the processor has typically four minutes to configure the  
TCAN4550, clear the PWRON flag or configure the device for normal mode; see 32. This feature cannot be  
disabled. If the device has not had the PWRON flag cleared or been placed into normal mode, it enters sleep  
mode. The device wakes up if the CAN bus provides a WUP or a local wake event takes place, thus entering  
standby mode. Once in standby mode tSILENCE and tINACTIVE timers starts. If tINACTIVE expires, the device re-enters  
sleep mode.  
The second failure mechanism that causes the device to use the failsafe feature, if enabled, is when the device  
receives a CANINT, CAN bus wake (WUP) or WAKE pin (LWU), while in sleep mode such that the device leaves  
sleep mode and enters standby mode. The processor has four minutes to clear the flags and place the device  
into normal mode. If this does not happen the device enters sleep mode.  
The third failure mechanism that causes the device to use the failsafe feature is when in standby or normal mode  
and the CANSLNT flag persists for tINACTIVE, the device enters sleep mode. Examples of events that could create  
this are CLKIN or Crystal stops working, processor is no longer working and not able to exercise the SPI bus, a  
go-to-sleep command comes in and the processor is not able to receive it or is not able to respond. See state  
diagram 33.  
Standby Mode  
Power On  
Start Up  
SWE Timer  
tINACTIVE  
No &  
Cleared  
Does timer  
Expire and PWRON  
flag cleared?  
Stays in STBY mode  
or switches to Normal  
mode if programmed  
Timed out  
Sleep Mode  
RST: L  
Wake Sources: CAN, WAKE  
INH: floating  
Wake Pin: Active  
nINT Pin: Off  
nWKRQ Pin: Active  
Other GPIO: Off  
SPI: Off  
OSC: Off  
VCCOUT: Off  
32. Power On Failsafe Feature  
34  
版权 © 2018–2020, Texas Instruments Incorporated  
 
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
Normal Mode  
0800[13] = 1  
Fail Safe Mode En  
Bus Inactivity  
tSILENCE timer  
expires  
Standby Mode  
0800[13] = 1  
setting CANSLNT  
flag  
Fail Safe Mode En  
Bus Inactivity  
SWE Timer  
tINACTIVE  
Monitoring CAN  
No &  
Cleared  
Activity detected  
leaving device in  
current mode or  
placing in selected  
mode  
Does timer  
Expire and required  
flags cleared?  
Timed out  
Sleep Mode  
RST: L  
Wake Sources: CAN, WAKE  
INH: floating  
Wake Pin: Active  
nINT Pin: Off  
nWKRQ Pin: Active  
Other GPIO: Off  
SPI: Off  
OSC: Off  
VCCOUT: Off  
33. Normal and Standby Failsafe Feature  
8.4.6 Protection Features  
The TCAN4550 has several protection features that are described as follows.  
版权 © 2018–2020, Texas Instruments Incorporated  
35  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.4.6.1 Watchdog Function  
The TCAN4550 contains a watchdog (WD) timeout function. When using the WD timeout function the WD runs  
continuously. The WD is default enabled and can be configured with four different timer values. WD is active in  
normal and standby modes and off in sleep mode. Once the device enters standby or normal mode the timer  
does not start until the first input trigger event. This event can be either writing a one to register 16'h0800[18] or if  
selected, by changing the voltage level on the GPIO1 pin either high or low when configured for watchdog input.  
If the first trigger is not set the watchdog is disabled. The first trigger can happen in standby mode or normal  
mode. This is system implementation specific. While the timer is running, a SPI command writing a one to  
16'h0800[18] resets the WD_TIMER timer or if configured for pin control the GPIO1 behaves as the watchdog  
input bit.  
The TCAN4550 has two ways of setting the trigger bit: via a SPI command and, if selected, through a GPI  
(GPIO1 configured as GPI). When a GPI pin is used any rising or falling edge resets the timer. A watchdog event  
can be conveyed back to the microprocessor in two methods: interrupt on nINT pin or, if selected, the GPO2 pin  
can be programmed to toggle upon a WD timeout. A timeout can initiate one of three actions by the TCAN4550:  
interrupt, INH toggle plus putting the device into standby mode or toggle watchdog output reset pin if enabled.  
The input CLKIN or crystal values needs to be entered into reg 16'h0800[27] and is either 20 MHz or 40MHz.  
See 2 for the register settings for the watchdog function.  
If the device enters UVIO protected mode, the watchdog timer is held in reset. When  
the device returns to standby mode, the timer resumes counting.  
Once the command to enter sleep mode takes place, the WD timer is turned off and  
does not trigger a watchdog event.  
If the any of the watchdog registers needs to be changed, the watchdog must be  
disabled and the change made and then re-enabled.  
36  
版权 © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
2. Watchdog Registers and Descriptions  
Address  
BIT(S)  
Field  
Type  
Reset  
DESCRIPTION  
WD_TIMER: Watchdog timer  
00 = 60 ms  
29:28  
27  
WD_TIMER  
R/W  
2'b00  
01 = 600 ms  
10 = 3 s  
11 = 6 s  
CLK_REF: CLKIN/Crystal frequency reference  
0 = 20 MHz  
CLK_REF  
R/W  
R/W  
1'b1  
1 = 40 MHz  
GPO2_CONFIG: GPO2 configuration  
00 = No action  
GPO2_CONFI  
G
23:22  
2'b00  
01 = M_CAN_INT 0 interrupt (active low)  
10 = Watchdog output  
11 = Mirrors nINT pin  
WD_BIT_SET: write a 1 to reset timer: if times out; this bit is set and then  
the selected action from register 16'h0800[17:16] takes place.  
18  
WD_BIT_SET  
WD_ACTION  
W1C  
R/W  
1'b0  
Note: This is a self-clearing bit. Writing a 1 resets the timer and then the bit  
clears.  
16'h0800  
WD_ACTION: Selected action when WD_TIMER times out  
00 = Set interrupt flag and if a pin is configure to reflect WD output as an  
interrupt the pin shows a low.  
01 = Pulse INH pin and place device into standby mode – high - low - high  
300ms  
17:16  
2'b00  
10 = Pulse watchdog output pin if enabled – high - low - high 300ms  
11 = Reserved  
Note: Interrupt flag is always set for a WD timeout event.  
GPIO1_CONFIG: GPIO1 Pin Function Select  
00 = GPO  
GPIO1_CONFI  
G
15:14  
RW  
2'b01  
1'b1  
01 = Reserved  
10 = GPI – Automatically becomes a WD input trigger pin.  
11 = Reserved  
WD_EN - Watchdog Enable  
0 = Disable  
3
WD_EN  
RXU  
1 = Enabled  
8.4.6.2 Driver and Receiver Function  
The TXD_INT and RXD_INT are internal signal paths that behave like the TXD and RXD pins for a physical layer  
transceiver. During normal operation they are not accessible to external pins. The TCAN4550 provides a test  
mode that maps these signals to external pins see Test Mode. The digital logic input and output levels for these  
devices are CMOS levels with respect to VIO for compatibility with protocol controllers having 3.3 V to 5 V logic or  
I/O. 3 and provides the states of the CAN driver and CAN receiver in each mode.  
3. Driver Function Table  
BUS OUTPUTS  
DEVICE MODE  
TXD_INT INPUT  
DRIVEN BUS STATE  
Dominant  
CANH  
CANL  
L
H
Z
Z
Z
L
Z
Z
Z
Normal  
H or Open  
Biased Recessive  
Weak Pull to GND  
Weak Pull to GND  
Standby  
Sleep  
X
X
版权 © 2018–2020, Texas Instruments Incorporated  
37  
 
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
4. Receiver Function Table Normal and Standby Modes  
CAN DIFFERENTIAL INPUTS  
VID = VCANH – VCANL  
DEVICE MODE  
BUS STATE  
RXD_INT TERMINAL  
VID 0.9 V  
Dominant  
Undefined  
Recessive  
Dominant  
Undefined  
Recessive  
Open  
L
Normal  
0.5 V < VID < 0.9 V  
VID 0.5 V  
Undefined  
H
VID 1.15 V  
Standby/Sleep  
Any  
0.4 V < VID < 1.15 V  
VID 0.4 V  
See 24  
Open (VID 0 V)  
H
8.4.6.3 Floating Terminals  
There are internal pull ups and pull downs on critical terminals to place the device into known states if the  
terminal floats. See 5 for details on terminal bias conditions.  
5. Terminal Bias  
TERMINAL  
SCLK  
SDI  
PULL UP or PULL DOWN  
COMMENT  
Pull up  
Pull up  
Pull up  
Weakly biases input  
Weakly biases input  
nCS  
Weakly biases input so the device is not selected  
Weakly biases output when using internal voltage rail. When using  
open drain configuration an external pull up is be needed.  
nWKRQ  
RST  
Pull up  
Pull down  
Weakly biases RST terminal towards normal operation mode  
The internal bias should not be relied upon as only termination, especially in noisy  
environments but should be considered a failsafe protection. Special care needs to be  
taken when the device is used with MCUs utilizing open drain outputs.  
8.4.6.4 TXD_INT Dominant Timeout (DTO)  
The TCAN4550 supports dominant state timeout. This is an internal function based upon the TXD_INT path. The  
transceiver can be tested for this by placing the device into test mode and putting a dominant on the GPO1 pin  
and monitor the GPO2 for RXD_INT_PHY. The TXD_INT DTO circuit prevents the local node from blocking  
network communication in the event of a hardware or software failure where TXD_INT is held dominant (low)  
longer than the timeout period tTXD_INT_DTO. The TXD_INT DTO circuit is triggered by a falling edge on TXD_INT.  
If no rising edge is seen before the timeout constant of the circuit, tTXD_INT_DTO, the CAN driver is disabled. This  
frees the bus for communication between other nodes on the network. The CAN driver is re-activated when a  
recessive signal (high) is seen on TXD_INT terminal, thus clearing the dominant timeout. The receiver remains  
active and the RXD_INT terminal reflects the activity on the CAN bus and the bus terminals is biased to  
recessive level during a TXD_INT DTO fault.  
The minimum dominant TXD_INT time allowed by the TXD_INT DTO circuit limits the  
minimum possible transmitted data rate of the device. The CAN protocol allows a  
maximum of eleven successive dominant bits (on TXD_INT) for the worst case, where five  
successive dominant bits are followed immediately by an error frame.  
38  
版权 © 2018–2020, Texas Instruments Incorporated  
 
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.4.6.5 CAN Bus Short Circuit Current Limiting  
This device has several protection features that limit the short circuit current when a CAN bus line is shorted.  
These include CAN driver current limiting. The device has TXD_INT dominant timeout which prevents  
permanently having the higher short circuit current of dominant state in case of a system fault. During CAN  
communication the bus switches between dominant and recessive states, thus the short circuit current may be  
viewed either as the current during each bus state or as a DC average current. For system current and power  
considerations in the termination resistors and common mode choke ratings the average short circuit current  
should be used. The percentage dominant is limited by the TXD_INT dominant timeout and CAN protocol which  
has forced state changes and recessive bits such as bit stuffing, control fields, and inter frame space. These  
ensure there is a minimum recessive amount of time on the bus even if the data field contains a high percentage  
of dominant bits.  
The short circuit current of the bus depends on the ratio of recessive to dominant bits and  
their respective short circuit currents. The average short circuit current may be calculated  
using 公式 1.  
IOS(AVG) = %Transmit x [(%REC_Bits x IOS(SS)_REC) + (%DOM_Bits x IOS(SS)_DOM)] + [%Receive x  
IOS(SS)_REC]  
(1)  
Where  
IOS(AVG) is the average short circuit current.  
%Transmit is the percentage the node is transmitting CAN messages.  
%Receive is the percentage the node is receiving CAN messages.  
%REC_Bits is the percentage of recessive bits in the transmitted CAN messages.  
%DOM_Bits is the percentage of dominant bits in the transmitted CAN messages.  
IOS(SS)_REC is the recessive steady state short circuit current and IOS(SS)_DOM is the dominant steady  
state short circuit current.  
The short circuit current and possible fault cases of the network should be taken into  
consideration when sizing the power ratings of the termination resistance, other network  
components, and the power supply used to generate VSUP  
.
8.4.6.6 Thermal Shutdown  
This is a device preservation event. If the junction temperature of the device exceeds the thermal shut down  
threshold, the device turns off the internal 5 V LDO for the CAN transceiver thus blocking the signal to bus  
transmission path as well as turning of the ability to source current and voltage to the VCCOUT pin. A thermal shut  
down interrupt flag is set and an interrupt is inserted so that the microprocessor is informed. If this event  
happens, other interrupt flags may be set as an example a bus fault where the CAN bus is shorted to Vbat. When  
this happens the digital core and SPI interface are still active. After a time of 300 ms the device checks the  
temperature of the junction. The thermal shutdown (TSD) timer starts when TSD fault event starts and exits to  
standby mode when a TSD fault is not present when the TSD timer is expired. While in thermal shut down  
protected mode a SPI write to change the device to either Normal or Standby mode is ignored while writes to  
change to sleep mode is accepted.  
If a thermal shut down event happens while the device is experiencing a VIO under voltage  
event the device enters sleep mode.  
版权 © 2018–2020, Texas Instruments Incorporated  
39  
 
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.4.6.7 Under Voltage Lockout (UVLO) and Unpowered Device  
The TCAN4550 monitors the VSUP, VIO and VCCOUT pin for undervoltage events. These voltage rails have under  
voltage detection circuitry which places the device into a protected state if an under voltage fault occurs for  
UVSUP and UVIO. This protects the bus during an under voltage event on these terminals. If VSUP is in under  
voltage, the device loses the source needed to keep the internal regulators active. This causes the device to go  
into a state where communication between the microprocessor and the TCAN4550 is disabled. The TCAN4550  
is not able to receive information from the bus, and thus does not pass any signals from the bus, including any  
Bus Wake via BWRR signals to the microprocessor. See 6.  
8.4.6.7.1 UVSUP and UVCCOUT  
When VSUP drops to UVSUP level, the VCC CAN transceiver regulator loses the ability to maintain 5 V output. At  
this point, the UVCCOUT interrupt flag is set and the TCAN4550 turns off the regulator and place the CAN  
transceiver into a standby state. If VSUP returns to minimum levels the device enters standby mode. If VSUP  
continues to decrease to the power on reset level, the TCAN4550 shuts everything down. When VSUP returns to  
acceptable levels the device will come up the same as initial power on. All registers are cleared and the device  
has to be reconfigured.  
8.4.6.7.2 UVIO  
If VIO drops below UVIO under the voltage detection threshold, several functions are disabled. The transceiver  
switchs off until VIO has recovered. The input clock or crystal circuits are disabled and the IO between the  
TCAN4550 and microprocessor is not active. When UVIO triggers the tUV timer starts. If the timer times out and  
the UVIO is still there, the device enters sleep mode, see 23. Once in sleep mode a wake event is required to  
place the TCAN4550 into standby mode and enables the INH pin. As registers are cleared in sleep mode the  
UVIO interrupt flag is lost. If the UVIO event is still in place, the cycle repeats. If during a thermal shut down event  
a UVIO event happens, the device automatically enters sleep mode.  
The device is designed to be an "ideal passive" or “no load” to the CAN bus if the device is unpowered. The bus  
terminals (CANH, CANL) have extremely low leakage currents when the device is unpowered so it does not load  
the bus. This is critical if some nodes of the network are unpowered while the rest of the of network remains  
operational. Logic terminals also have extremely low leakage currents when the device is unpowered, so they do  
not load other circuits which may remain powered.  
The UVLO circuit monitors both rising and falling edge of a power rail when ramping and declining.  
6. Under Voltage Lockout I and O Level Shifting Devices  
VSUP  
VIO  
VCCOUT  
> UVCCOUT  
< UVCCOUT  
NA  
DEVICE STATE  
Normal  
BUS  
RXD_INT  
> UVSUP  
> UVSUP  
< UVSUP  
> UVSUP  
< UVSUP  
> UVVIO  
> UVVIO  
> UVVIO  
< UVVIO  
< UVVIO  
Per TXD_INT  
High Impedance  
High Impedance  
Recessive  
Mirrors Bus  
Protected  
Protected  
Protected  
Protected  
High (Recessive)  
High (Recessive)  
High Impedance  
High Impedance  
> UVCCOUT  
NA  
High Impedance  
Once an under voltage condition and interrupt flags are cleared and the VSUP supply has  
returned to valid level, the device typicallys need tMODE_CHANGE to transition to normal  
operation. The host processor should not attempt to send or receive messages until this  
transition time has expired. If EN is low and VSUP has an under voltage event, the device  
goes into a protected mode which disables the wake up receiver and places the RXD_INT  
output into a high impedance state.  
8.4.6.7.3 Fault and M_CAN Core Behavior:  
During a UVCCOUT or TSD fault the TCAN4550 automatically does the following to keep the M_CAN core in a  
known state. A write of 1 to CCCR.INIT will be issued anytime there is a transition from Normal Standby. Any  
currently pending TX or RX processing is halted. Once the device re-enters Normal mode, a write of 0 to  
CCCR.INIT is issued, and any pending messages (TXBRP active bits) is automatically transmitted.  
40  
版权 © 2018–2020, Texas Instruments Incorporated  
 
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.4.7 CAN FD  
The TCAN4550 performs CAN communication according to ISO 11898-1:2015 and Bosch CAN protocol  
specification 3.2.1.1.  
8.5 Programming  
The TCAN4550 uses 32 bit accesses. The TCAN4550 provides 2K bytes of MRAM that is fully configurable for  
TX/RX buffer/FIFO as needed based upon the system needs. To avoid ECC errors right after initialization, the  
MRAM should be zeroed out during the initialization, power up, power on reset and wake events, a process thus  
ensuring ECC is properly calculated.  
At power up, MRAM values are unknown and thus ECC values is not valid. It is important  
that at least 2 words (8 bytes) of payload data be written into any TX buffer element, even  
if the DLC is less than 8. Failure to do this results in a M_CAN BEU error, which puts the  
TCAN4550 device into initialization mode, and require user intervention before CAN  
communication can continue. One way to avoid this, the MRAM should be zeroed out after  
power up, a power on reset or coming out of sleep mode.  
8.5.1 SPI Communication  
The SPI communication uses a standard SPI interface. Physically the digital interface pins are nCS (Chip Select  
Not), SDI (Slave Data In), SDO (Slave Data Out) and SCLK (SPI Clock). Each SPI transaction is a 32 bit word  
containing a command byte followed by two address bytes and length bytes. The data shifted out on the SDO pin  
for the transaction always starts with the Global Status Register (byte). This register provides the high level  
status information about the device status. The two data bytes which are the ‘response’ to the command byte are  
shifted out next. Data bytes shifted out during a write command is content of the registers prior to the new data  
being written and updating the registers. Data bytes shifted out during a read command are the current content  
of the registers and the registers will not be updated.  
The SPI input data on SDI is sampled on the low to high edge of the SCLK. The SPI output data on SDO is  
changed on the high to low edge of the SCLK.  
8.5.1.1 Chip Select Not (nCS):  
This input pin is used to select the device for a SPI transaction. The pin is active low, so while nCS is high the  
SDO pin of the device is high impedance allowing a SPI bus to be designed. When nCS is low the SDO driver is  
activated and communication may be started. The nCS pin is held low for a SPI transaction. A special feature on  
this device allows the SDO pin to immediately show the Global Fault Flag on a falling edge of nCS.  
8.5.1.2 SPI Clock Input (SCLK):  
This input pin is used to input the clock for the SPI to synchronize the input and output serial data bit streams.  
The SPI Data Input is sampled on the rising edge of SCLK and the SPI Data Output is changed on the falling  
edge of the SCLK.  
版权 © 2018–2020, Texas Instruments Incorporated  
41  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Programming (接下页)  
SPI CLOCKING  
ACTIONs: C = data capture, S = data shift,  
L = load data out, P = process captured data  
MODE 0 (CPOL = 0, CPHA = 0)  
SCLK  
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
SDI. SDO  
ACTION  
L
C
S
C
S
C
S
C
S
C
S
C
S
C
S
C
L
C
S
C
S
C
S
C
S
C
S
C
S
C
S
C
P
P
INTERNAL  
CLK  
INTERNAL_CLK = !CS xor CLK  
34. SPI Clocking  
8.5.1.3 SPI Data Input (SDI):  
This input pin is used to shift data into the device. Once the SPI is enabled by a low on nCS the SDI samples the  
input shifted data on each rising edge of the SCLK. The data is shifted into a 32 bit shift register. If the command  
code was a write, the new data is written into the addressed register only after exactly 32 bits have been shifted  
in by SCLK and the nCS has a rising edge to deselect the device. If there are not exactly a multiple of 32 bits  
shifted in to the device, the during one SPI transaction (nCS low) the last word of the transfer is ignored, the  
SPIERR flag is set.  
Due to needing multiples of 32 bits on each SPI transaction, the device should be wired  
for parallel operation of the SPI as a bus with control to the device via nCS and not as a  
daisy chain of shift registers.  
8.5.1.4 SPI Data Output (SDO):  
This pin is high impedance until the SPI output is enabled via nCS. Once the SPI is enabled by a low on nCS,  
the SDO is immediately driven high or low showing the Global Fault Flag status which is also the first bit (bit 32)  
to be shifted out if the SPI is clocked. Once SCLK begins, on the first low to high edge of the clock the SDO  
retains the Global Fault Flag which is bit 31 of the shift. On the first falling edge of SCLK, the shifting out of the  
data continues with each falling edge on SCLK until all 32 bits have been shifted out the shift register.  
8.5.2 Register Descriptions  
The Addresses for each area of the device are as follows:  
Register 16'h0000 through 16'h000C are Device ID and SPI Registers  
Register 16'h0800 through 16'h083C are device configuration registers and Interrupt Flags  
Register 16'h1000 through 16'h10FC are for M_CAN  
Register 16'h8000 through 16'h87FF is for MRAM.  
The start address must be word aligned (32-bit). Any time the registers are accessed, bits [1:0] of the address  
are ignored as the addresses are always word (32-bit/4-byte) aligned. As an example for accessing the M_CAN  
registers, for the register 0x1004, give the SPI address 1004, 1005, 1006 or 1007, and access register 1004. The  
registers are 32 bit and only 1004 is valid in this example.  
When entering the MRAM start address, the 0x8000 prefix is not necessary. For example, if the desired start  
address is 0x8634, then bits SA[15:0] is 0x0634.  
7 provides programming op Codes.  
42  
版权 © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
Programming (接下页)  
7. Access Commands  
NAME  
OP CODE  
DESCRIPTION  
USAGE  
< WRITE_B_FL > <2 address bytes>  
<1 length bytes>  
WRITE_B_FL (burst: one  
SPI transfer Length: fixed)  
Write one or more  
addresses  
8'h61  
<length words of write data>  
< READ_B_FL > <2 address bytes>  
<1 length bytes>  
READ_B_FL (burst: one  
SPI transfer Length: fixed)  
Read one or more internal  
SPI addresses  
8'h41  
<length words of read data>  
Notes:  
The two low order address bits is ignored  
A length of 8’h00 indicates 256 words to be transferred  
WRITE_B_FL  
nCS  
SCLK  
SDI  
LENGTH[7:0]  
=8'H02  
CMD: WRITE_B_FL = 8'h61  
Reg0820[7:0]  
ADDRESS [15:8]  
ADDRESS [7:0]  
SDO  
nCS  
SCLK  
SDI  
DATA_0[31:24]  
DATA_0[23:16]  
DATA_0[15:8]  
DATA_0[7:0]  
SDO  
nCS  
SCLK  
SDI  
DATA_1[31:24]  
DATA_1[23:16]  
DATA_1[15:8]  
DATA_1[7:0]  
SDO  
35. Write  
版权 © 2018–2020, Texas Instruments Incorporated  
43  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
READ_B_FL  
nCS  
SCLK  
SDI  
CMD: READ_B_FL  
= 8'h41  
LENGTH[7:0]  
=8'H02  
ADDRESS [15:8]  
ADDRESS [7:0]  
SDO  
Reg0820[7:0]  
nCS  
SCLK  
SDI  
SDO  
DATA_0[31:24]  
DATA_0[23:16]  
DATA_0[15:8]  
DATA_0[7:0]  
nCS  
SCLK  
SDI  
SDO  
DATA_1[31:24]  
DATA_1[23:16]  
DATA_1[15:8]  
DATA_1[7:0]  
36. Read (Command OpCode 8h41)  
8.6 Register Maps  
The TCAN4550 has a comprehensive register set with 32 bit addressing. The register is broken down into  
several sections:  
Device ID and Interrupt/Diagnostic Flag Registers: 16'h0000 to 16'h002F.  
Device Configuration Registers: 16'h0800 to 16'h08FF .  
Interrupt/Diagnostic Flag and Enable Flag Registers: 16'h0820/0824 and 16'h0830.  
CAN FD Register Set: 16'h1000 to 16'h10FF.  
All addresses are the lower order 16 address bit within the defined 32 bit address space.  
Upper 16 address bits are ignored.  
44  
版权 © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
Register Maps (接下页)  
8.6.1 Device ID and Interrupt/Diagnostic Flag Registers: 16'h0000 to 16'h002F  
This register block provided the device name and revision level. It provides all the interrupt flags as well.  
Table 8. Device ID and Interrupt/Diagnostic Flag Registers  
TCAN4550  
VALUE  
ADDRESS  
REGISTER  
ACCESS  
DEVICE_ID[7:0] "T"  
54  
R
R
R
R
R
R
R
R
DEVICE_ID[15:8] "C"  
DEVICE_ID[23:16] "A"  
DEVICE_ID[31:24] "N"  
DEVICE_ID[39:32] "4"  
DEVICE_ID[47:40] "5"  
DEVICE_ID[55:48] "5"  
DEVICE_ID[63:56] "0"  
43  
‘h0000  
41  
4E  
34  
35  
‘h0004  
35  
30  
SPI_2_revision, 8’h00 (Reserved), REV_ID Major, REV_ID Minor REV_ID  
Major  
‘h0008  
‘h000C  
00  
00  
R
R
Status  
Table 9. Device Configuration Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
Write Type  
W
W
W
Write  
Write  
WC  
Reset or Default Value  
-n  
Value after reset or the default value  
Undefined  
U
U
Copyright © 2018–2020, Texas Instruments Incorporated  
45  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.1.1 DEVICE_ID1[31:0] (address = h0000) [reset = h4E414354]  
Figure 37. Device ID1  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
27  
26  
18  
10  
2
25  
17  
9
24  
16  
8
DEVICE_ID1[31:24]  
RO  
20  
19  
DEVICE_ID1[23:16]  
RO  
12  
DEVICE_ID1[15:8]  
RO  
11  
4
3
1
0
DEVICE_ID1[7:0]  
RO  
Table 10. Device ID Field Descriptions  
Bit  
31:0  
Field  
DEVICE_ID1[31:0]  
Type  
Reset  
Description  
RO  
h4E41435  
4
DEVICE_ID1[31:0]  
46  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.1.2 DEVICE_ID2[31:0] (address = h0004) [reset = h30353534]  
Figure 38. Device ID2  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
27  
26  
18  
10  
2
25  
17  
9
24  
16  
8
DEVICE_ID2[31:24]  
RO  
20  
19  
DEVICE_ID2[23:16]  
RO  
12  
DEVICE_ID2[15:8]  
RO  
11  
4
3
1
0
DEVICE_ID2[7:0]  
RO  
Table 11. Device ID Field Descriptions  
Bit  
31:0  
Field  
DEVICE_ID2[31:0]  
Type  
Reset  
Description  
RO  
h3035353  
4
DEVICE_ID2[63:32]  
Copyright © 2018–2020, Texas Instruments Incorporated  
47  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.1.3 Revision (address = h0008) [reset = h00110201]  
Figure 39. Revision  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
27  
26  
18  
10  
2
25  
17  
9
24  
16  
8
SPI_2_REVISION  
RO  
20  
12  
19  
11  
RSVD  
RO  
REV_ID MAJOR  
RO  
4
3
1
0
REV_ID MINOR  
RO  
Table 12. Revision Field Descriptions  
Bit  
Field  
Type  
RO  
Reset  
h00  
Description  
31:24  
23:16  
15:8  
7:0  
SPI_2_REVISION  
RSVD  
Revision version of the SPI module  
Reserved  
RO  
h11  
REV_ID MAJOR  
REV_ID MINOR  
RO  
h02  
Device REV_ID Major  
Device REV_ID Minor  
RO  
h01  
48  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.1.4 Status (address = h000C) [reset = h0000000U]  
Figure 40. Status  
31  
23  
30  
22  
29  
28  
27  
26  
25  
24  
RSVD  
RO  
Internal_read_e Internal_write_e Internal_error_l Read_fifo_unde Read_fifo_empt Write_fifo_overf  
rror  
rror  
og_write  
W1C  
rflow  
W1C  
y
low  
W1C  
W1C  
W1C  
W1C  
21  
20  
19  
18  
17  
16  
RSVD  
RO  
SPI_end_error Invalid_comma Write_overflow write_underflow Read_overflow read_underflow  
nd  
W1C  
13  
W1C  
12  
W1C  
11  
W1C  
10  
W1C  
9
W1C  
8
15  
7
14  
6
RSVD  
RO  
5
4
3
2
1
0
RSVD  
RO  
Write_fifo_avail Read_fifo_avail Internal_access Internal_error_i SPI_error_interr  
Interrupt  
able  
able  
_active  
nterrupt  
upt  
RO  
RO  
RO  
RO  
RO  
RO  
Table 13. Status Field Descriptions  
Bit  
Field  
Type  
RO  
Reset  
1’b0  
1’b0  
1’b0  
1’b0  
1’b0  
1’b0  
1’b0  
1’b0  
1’b0  
1’b0  
1’b0  
Description  
31:30  
29  
RSVD  
Reserved  
Internal_read_error  
Internal_write_error  
Internal_error_log_write  
Read_fifo_underflow  
Read_fifo_empty  
Write_fifo_overflow  
RSVD  
W1C  
W1C  
W1C  
W1C  
W1C  
W1C  
RO  
Internal read received an error response  
Internal write received an error response  
Entry written to the Internal error log  
28  
27  
26  
Read FIFO underflow after 1 or more read data words returned  
Read FIFO empty for first read data word to return  
Write/command FIFO overflow  
25  
24  
23:22  
21  
Reserved  
SPI_end_error  
W1C  
W1C  
W1C  
SPI transfer did not end on a byte boundary  
Invalid SPI command received  
20  
Invalid_command  
Write_overflow  
19  
SPI write sequence had continue requests after the data transfer  
was completed  
18  
17  
16  
write_underflow  
Read_overflow  
read_underflow  
W1C  
W1C  
W1C  
1’b0  
1’b0  
1’b0  
SPI write sequence ended with less data transferred then  
requested  
SPI read sequence had continue requests after the data transfer  
was completed  
SPI read sequence ended with less data transferred then  
requested  
15:8  
7:6  
5
RSVD  
RO  
RO  
RO  
8’h00  
1’b0  
1’b0  
Reserved  
Reserved  
RSVD  
Write_fifo_available  
write fifo empty entries is greater than or equal to the  
write_fifo_threshold  
4
Read_fifo_available  
RO  
1’b0  
Read fifo entries is greater than or equal to the  
read_fifo_threshold  
3
2
1
0
Internal_access_active  
Internal_error_interrupt  
SPI_error_interrupt  
Interrupt  
RO  
RO  
RO  
RO  
U
Internal Multiple transfer mode access in progress  
Unmasked Internal error set  
1’b0  
1’b0  
U
Unmasked SPI error set  
Value of interrupt input level (active high)  
Copyright © 2018–2020, Texas Instruments Incorporated  
49  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.2 Device Configuration Registers: 16'h0800 to 16'h08FF  
Registers not listed are reserved and return h’00.  
Table 14. Device Configuration Registers  
ADDRESS  
0800  
REGISTER  
VALUE  
ACCESS  
R/W/U  
R/W  
R/W  
R/W/U  
R
Modes of Operation and Pin Configurations  
Timestamp Prescalar  
Read and Write Test Registers  
ECC and TDR Registers  
Reserved  
h'C8000468  
h’00000002  
h’00000000  
h'00000000  
h'00000000  
h'00000000  
h’00000000  
h'00000000  
h’FFFFFFFF  
h'00000000  
0804  
0808  
080C – 0810  
0814 -081C  
0820  
Interrupt Flags  
R
0824  
MCAN Interrupt Flags  
Reserved  
R
0829 – 082F  
0830  
R
Interrupt Enable  
R/W  
R
0834 – 083F  
Reserved  
NOTE  
The following bits are being saved when entering sleep mode and will show up bold in  
register maps.  
16'h0800 bits 0, 1, 8, 9, 10, 11, 13, 14, 15, 19, 21, 22, 23, 30 and 31.  
16'h0820 bits 18, 19 and 21  
16'h0830 bits 14 and 15  
8.6.2.1 Modes of Operation and Pin Configuration Registers (address = h0800) [reset = hC8000468]  
Figure 41. Modes of Operation and Pin Configuration Registers  
31  
WAKE_CONFIG  
R/W  
30  
29  
28  
27  
CLK_REF  
R/W  
26  
RSVD  
R
25  
RSVD  
R
24  
RSVD  
R
WD_TIMER  
R/W  
23  
22  
21  
20  
19  
18  
17  
16  
GPO2_CONFIG  
TEST_MODE_  
EN  
RSVD  
nWKRQ_VOLT WD_BIT_SET  
WD_ACTION  
R/W  
AGE  
R/W  
R/W  
R
R/W  
R/W  
15  
14  
13  
12  
11  
10  
9
8
FAIL_SAFE_E  
N
RSVD  
GPO1_GPO_CONFIG  
INH_DIS  
nWKRQ_CON  
FIG  
R
R/W  
R
R/W  
R/W  
R/W  
7
6
5
4
3
2
1
0
MODE_SEL  
R/W/U  
RSVD  
RSVD  
WD_EN  
DEVICE_RESE  
T
SWE_DIS  
TEST_MODE_  
CONFIG  
R
R
R/W/U  
R/W/U  
R/W  
R/W  
Table 15. Modes of Operation and Pin Configuration Registers Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
WAKE_CONFIG: Wake pin configuration  
00 = Disabled  
31:30  
WAKE_CONFIG  
R/W  
2’b11  
01 = Rising edge  
10 = Falling edge  
11 = Bi-Directional – either edge  
50  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
Table 15. Modes of Operation and Pin Configuration Registers Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
WD_TIMER: Watchdog timer  
00 = 60 ms  
29:28  
WD_TIMER  
R/W  
2’b00  
01 = 600 ms  
10 = 3 s  
11 = 6 s  
CLK_REF: CLKIN/Crystal Frequency Reference  
27  
CLK_REF  
RSVD  
R/W  
R
1'b1  
0 = 20 MHz  
1 = 40 MHz  
26:24  
3'b000  
Reserved  
GPO2_CONFIG: GPO2 Pin GPO Configuration  
00 = No Action  
01 = MCAN_INT 0 interrupt (Active low)  
10 = Watchdog output  
23:22  
GPO2_CONFIG  
R/W  
2’b00  
11 = Mirrors nINT pin (Active low)  
See NOTE section  
TEST_MODE_EN: Test mode enable. When set device is in test  
mode  
0 = Disabled  
1 = Enabled  
21  
20  
19  
TEST_MODE_EN  
RSVD  
R/W  
R
1'b0  
1'b0  
1’b0  
Reserved  
nWKRQ_VOLTAGE: nWKRQ Pin GPO buffer voltage rail  
configuration: See  
0 = Internal voltage rail  
nWKRQ_VOLTAGE  
R/W  
1 = VIO voltage rail  
WD_BIT_SET: Write a 1 to reset timer: if times out this bit will  
set and then the selected action from 0800[17:16] will take  
place. (TCAN4x50 Only otherwise reserved) This is a self-  
clearing bit. Writing a 1 resets the timer and then the bit clears  
18  
WD_BIT_SET  
WD_ACTION  
R/W  
R/W  
1’b0  
WD_ACTION: Selected action when WD_TIMER times out  
00 = Set interrupt flag and if a pin is configure to reflect WD  
output as an interrupt the pin will show a low.  
01 = Pulse INH pin and placedevice into standby mode – high to  
low to high 300ms  
17:16  
2’b00  
10 = Pulse watchdog output pin if enabled – high to low to high  
300ms  
11 = Reserved  
NOTE: Interrupt flag is always set for a WD timeout event.  
GPIO1_CONFIG: GPIO1 Pin Function Select  
00 = GPO  
01 = Reserved  
10 = GPI – Automatically becomes a WD input trigger pin.  
11 = Reserved  
GPIO1_CONFIG  
R/W  
2’b00  
FAIL_SAFE_EN: Fail safe mode enable:  
0 = Disabled  
1 = Enabled  
13  
FAIL_SAFE_EN  
R/W  
R
1'b0  
1'b0  
NOTE: Excludes power up fail safe.  
12  
RSVD  
Reserved  
GPIO1_GPO_CONFIG: GPIO1 pin GPO1 function select  
00 = SPI fault Interrupt (Active low)  
11:10  
GPIO1_GPO_CONFIG  
R/W  
2’b01  
01 = MCAN_INT 1 (Active low)  
10 = Under voltage or thermal event interrupt (Active low)  
11 = Reserved  
INH_DIS: INH Pin Disable  
0 = Pin enabled  
1 = Pin disabled  
9
8
INH_DIS  
R/W  
R/W  
1'b0  
1'b0  
nWKRQ_CONFIG: nWKRQ Pin Function  
0 = Mirrors INH function  
nWKRQ_CONFIG  
1 = Wake request interrupt  
Copyright © 2018–2020, Texas Instruments Incorporated  
51  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Table 15. Modes of Operation and Pin Configuration Registers Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
MODE_SEL: Mode of operation select  
00 = Sleep  
01 = Standby  
10 = Normal  
7:6  
MODE_SEL  
R/W  
2'b01  
11 = Reserved  
See NOTE section  
5
4
RSVD  
RSVD  
R
R
1'b1  
1'b0  
If this bit is written to it must be a 1  
Reserved  
WD_EN: Watchdog Enable  
0 = Disabled  
3
WD_EN  
R/X/U  
1’b1  
1 = Enabled  
DEVICE_RESET: Device Reset  
0 = Current configuration  
1 = Device resets to default  
NOTE: Same function as RST pin  
2
DEVICE_RESET  
R/WC  
1'b0  
SWE_DIS: Sleep Wake Error Disable:  
0 = Enabled  
1 = Disabled  
NOTE: This disables the device from starting the four minute  
timer when coming out of sleep mode on a wake event. If this is  
enabled a SPI read or write must take place within this four  
minute window or the device will go back to sleep. This does not  
disable the function for initial power on or in case of a power on  
reset.  
1
0
SWE_DIS  
R/W  
R/W  
1'b0  
1'b0  
Test Mode Configuration  
0 = Phy Test with TXD/RXD_INT_PHY and EN_INT are mapped  
to external pins  
TEST_MODE_CONFIG  
1 = CAN Controller test with TXD/RXD_INT_CAN mapped to  
external pins  
NOTE  
The Mode of Operation changes the mode but will read back the mode the device is  
currently in.  
When the device is changing the device to normal mode a write of 0 to CCCR.INIT is  
automatically issued and when changing from normal mode to standby or sleep modes  
a write of 1 to CCCR.INIT is automatically issued.  
When GPO1 is configured as a GPO for interrupts the interrupts list represent the  
following and are active low:  
00: SPI Fault Interrupt. Matches SPIERR if not masked  
01: MCAN_INT:1 m_can_int1.  
10: Under Voltage or Thermal Event Interrupt: Logical OR of UVCCOUT, UVSUP  
,
UVVIO, TSD faults that are not masked.  
When GPO1 is configured as a GPO for interrupts the interrupts list represent the  
following and are active low:  
00: SPI Fault Interrupt. Matches SPIERR if not masked  
01: MCAN_INT:1 m_can_int1.  
10: Under Voltage or Thermal Event Interrupt: Logical OR of UVCCOUT, UVSUP  
,
UVVIO, TSD faults that are not masked.  
nWKRQ pin defaults to a push-pull active low configuration based off an internal  
voltage rail. When configuring this to work off of VIO the pin becomes and open drain  
output and a external pull up resistor to the VIO rail is required.  
52  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.2.2 Timestamp Prescalar (address = h0804) [reset = h00000002]  
Figure 42. Timestamp Prescalar  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
Timestamp Prescalar  
R/W  
Table 16. EMC Enhancement and Timestamp Prescalar Field Descriptions  
Bit  
Field  
Type  
R
Reset  
8’h00  
8’h00  
8’h00  
Description  
Reserved  
Reserved  
Reserved  
31:24  
23:16  
15:8  
RSVD  
RSVD  
RSVD  
R
R
Writing to this register resets the internal timestamp counter to 0  
and will set the internal CAN clock divider used for MCAN  
Timestamp generation to (Timestamp Prescalar x 8)  
7:0  
Timestamp Prescalar  
R/W  
8'h02  
Copyright © 2018–2020, Texas Instruments Incorporated  
53  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.2.3 Test Register and Scratch Pad (address = h0808) [reset = h00000000]  
Saved in sleep mode  
Figure 43. Test and Scratch Pad Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
27  
26  
18  
10  
2
25  
17  
9
24  
16  
8
Test Read and Write  
R/W  
20  
19  
Test Read and Write  
R/W  
12  
11  
Scratch Pad 1  
R/W  
4
3
1
0
Scratch Pad 2  
R/W  
Table 17. Test and Scratch Pad Register Field Descriptions  
Bit  
Field  
Type  
RW  
Reset  
8’h00  
8’h00  
8’h00  
8’h00  
Description  
31:24  
23:16  
15:8  
7:0  
Test Read and Write  
Test Read and Write  
Scratch Pad 1  
Test Read and Write Register  
Test Read and Write Register  
R/W  
R/W  
R/W  
Bits 15:8 are saved when device is configured for sleep mode  
Bits 7:0 are saved when device is configured for sleep mode  
Scratch Pad 2  
54  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.2.4 Test Register (address = h080C) [reset = h00000000]  
Figure 44. Test Register  
31  
30  
29  
21  
28  
20  
12  
27  
26  
18  
25  
17  
24  
16  
RSVD  
R
23  
RSVD  
R
22  
RSVD  
R
19  
ECC_ERR_FORCE_BIT_SEL  
R/W  
15  
14  
13  
11  
10  
9
8
RSVD  
R
RSVD  
ECC_ERR_FO ECC_ERR_CH  
RSVD  
RSVD  
RSVD  
RCE  
ECK  
R
5
R/W  
R/W  
R
2
R
1
R
0
7
6
4
3
RSVD  
R
Table 18. Test Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
8’h00  
2'b00  
Description  
Reserved  
Reserved  
31:24  
23:22  
RSVD  
RSVD  
R
6’b0000 ECC_ERR_FORCE_BIT_SEL  
00  
000000 = Bit 0  
000001 = Bit 1  
....  
21:16  
ECC_ERR_FORCE_BIT_SEL  
R/W  
100110 = Bit 38  
All other bit combinations are Reserved  
3’b000 Reserved  
ECC_ERR_FORCE  
15:13  
12  
RSVD  
R
ECC_ERR_FORCE  
R/W  
1’b0  
0 = No Force  
1 = Force a single bit ECC error  
ECC_ERR_CHECK  
11  
10  
ECC_ERR_CHECK  
RSVD  
R/W  
R
1’b0  
1b'0  
0 = No Single Bit ECC error detected  
1 = Single Bit ECC error detected  
Reserved  
10'b000 Reserved  
9:0  
RSVD  
R
000000  
0
Copyright © 2018–2020, Texas Instruments Incorporated  
55  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.3 Interrupt/Diagnostic Flag and Enable Flag Registers: 16'h0820/0824 and 16'h0830  
This register block provides all the interrupt flags for the device. As the M-CAN interrupt flags 16'h0824 are  
described in 16'h1050 MCAN register description section and will be shown here but need to go to 16'h1050 for  
description. 16h’0830 is Interrupt enable to trigger an interrupt for 16'h0820.  
8.6.3.1 Interrupts (address = h0820) [reset = h00100000]  
Figure 45. Interrupts  
31  
CANBUSNOM  
RU  
30  
RSVD  
R
29  
RSVD  
R
28  
RSVD  
R
27  
RSVD  
R
26  
RSVD  
R
25  
RSVD  
R
24  
RSVD  
R
23  
RSVD  
R
22  
21  
20  
19  
18  
17  
RSVD  
R
16  
UVSUP  
R/WC  
UVIO  
R/WC  
PWRON  
R/WC/U  
TSD  
R/WC  
WDTO  
RU/WC  
ECCERR  
R/WC  
15  
14  
13  
12  
RSVD  
R
11  
RSVD  
R
10  
9
RSVD  
R
8
CANINT  
R/WC  
LWU  
R/WC  
WKERR  
R/WC  
CANSLNT  
R/WC  
CANDOM  
R/WC  
7
GLOBALERR  
R
6
nWKRQ  
R
5
CANERR  
R
4
RSVD  
R
3
SPIERR  
R
2
RSVD  
R
1
M_CAN_INT  
R
0
VTWD  
R
Table 19. Interrupts Field Descriptions  
Bit  
31  
Field  
CANBUSNOM  
Type  
Reset  
Description  
CAN Bus normal (Flag and Not Interrupt)  
Will change to 1 when in normal mode after first Dom to Rec  
transition  
RU  
1'b0  
30:24  
23  
RSVD  
SMS  
R
7b'0000 Reserved  
000  
R/WC  
1'b0  
Sleep Mode Status (Flag & Not an interrupt) Only sets when  
sleep mode is entered by a WKERR, UVIO timeout, or  
UVIO+TSD fault  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
UVSUP  
UVIO  
R/WC  
R/WC  
1'b0  
1'b0  
Under Voltage VSUP and UVCCOUT  
Under Voltage VIO  
Power ON  
PWRON  
TSD  
R/WC/U 1'b1  
R/WC 1'b0  
RU/WC 1'b0  
Thermal Shutdown  
Watchdog Time Out  
Reserved  
WDTO  
RSVD  
R
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
ECCERR  
CANINT  
LWU  
R/WC  
R/WC  
R/WC  
R/WC  
R
Uncorrectable ECC error detected  
Can Bus Wake Up Interrupt  
Local Wake Up  
Wake Error  
WKERR  
RSVD  
Reserved  
RSVD  
R
Reserved  
CANSLNT  
RSVD  
R/WC  
R
CAN Silent  
Reserved  
8
CANDOM  
GLOBALERR  
WKRQ  
CANERR  
RSVD  
R/WC  
R
CAN Stuck Dominant  
Global Error (Any Fault)  
Wake Request  
CAN Error  
7
6
R
5
R
4
R
RSVD  
3
SPIERR  
RSVD  
R
SPI Error  
2
R
Reserved  
56  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
Table 19. Interrupts Field Descriptions (continued)  
Bit  
1
Field  
Type  
R
Reset  
1'b0  
Description  
M_CAN_INT  
VTWD  
M_CAN global INT  
0
R
1'b0  
Global Voltage, Temp or WDTO  
GLOBALERR: Logical OR of all faults in registers 0x0820-0824.  
WKRQ: Logical OR of CANINT, LWU and WKERR.  
CANBUSNOM is not an interrupt but a flag. In normal mode after the first dominant-recessive transition it will set.  
It will reset to 0 when entering Standby or Sleep modes or when a bus fault condition takes place in normal  
mode.  
CANERR: Logical OR of CANSLNT and CANDOM faults.  
SPIERR: Will be set if any of the SPI status register 16'h000C[30:16] is set.  
In the event of a SPI underflow, the error is not detected/alerted until the start of the next SPI transaction.  
16'h0010[30:16] are the mask for these errors  
VTWD: Logical or of UVCCOUT, UVSUP, UVVIO, TSD, WDTO (Watchdog time out) and ECCERR.  
CANINT: Indicates a WUP has occurred; Once a CANINT flag is set, LWU events will be ignored. Flag can be  
cleared by changing to Normal or Sleep modes.  
LWU: Indicates a local wake event, from toggling the WAKE pin, has occurred. Once a LWU flag is set, CANINT  
events will be ignored. Flag can be cleared by changing to Normal or Sleep modes.  
WKERR: If the device receives a wake up request WUP and does not transition to Normal mode or clear the  
PWRON or Wake flag before tINACTIVE, the device will transition to Sleep Mode. After the wake event, a Wake  
Error (WKERR) will be reported and the SMS flag will be set to 1.  
NOTE  
PWRON Flag is cleared by either writing a 1 or by going to sleep mode or normal mode  
from standby mode.  
Copyright © 2018–2020, Texas Instruments Incorporated  
57  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.3.2 MCAN Interrupts (address = h0824) [reset = h00000000]  
Figure 46. MCAN Interrupts  
31  
30  
29  
ARA  
R
28  
PED  
R
27  
PEA  
R
26  
WDI  
R
25  
BO  
R
24  
EW  
R
RSVD  
R
23  
EP  
R
22  
ELO  
R
21  
BEU  
R
20  
BEC  
R
19  
DRX  
R
18  
TOO  
R
17  
MRAF  
R
16  
TSW  
R
15  
TEFL  
R
14  
TEFF  
R
13  
TEFW  
R
12  
TEFN  
R
11  
TFE  
R
10  
TCF  
R
9
TC  
R
8
HPM  
R
7
RF1L  
R
6
RF1F  
R
5
RF1W  
R
4
RF1N  
R
3
RF0L  
R
2
RF0F  
R
1
RF0W  
R
0
RF0N  
R
Table 20. MCAN Interrupts Field Descriptions  
Bit  
Field  
RSVD  
ARA  
PED  
PEA  
Type  
R
Reset  
1'b0  
1'b0  
1'b0  
1’b0  
Description  
31:30  
29  
Reserved  
R
ARA: Access to Reserved Address  
28  
R
PED: Protocol Error in Data Phase (Data Bit Time is used)  
27  
R
PEA: Protocol Error in Arbitration Phase (Nominal Bit Time is  
used)  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
WDI  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1’b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1’b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1'b0  
1’b0  
1'b0  
1'b0  
1'b0  
WDI: Watchdog Interrupt  
BO  
BO: Bus_Off Status  
EW  
EW: Warning Status  
EP  
EP: Error Passive  
ELO  
ELO: Error Logging Overflow  
BEU: Bit Error Uncorrected  
BEU  
BEC  
DRX  
TOO  
MRAF  
TSW  
TEFL  
TEFF  
TEFW  
TEFN  
TFE  
BEC: Bit Error Corrected  
DRX: Message stored to Dedicated Rx Buffer  
TOO: Timeout Occurred  
MRAF: Message RAM Access Failure  
TSW: Timestamp Wraparound  
TEFL: Tx Event FIFO Element Lost  
TEFF: Tx Event FIFO Full  
TEFW: Tx Event FIFO Watermark Reached  
TEFN: Tx Event FIFO New Entry  
TFE: Tx FIFO Empty  
TCF  
TCF: Transmission Cancellation Finished  
TC: Transmission Completed  
HPM: High Priority Message  
RF1L: Rx FIFO 1 Message Lost  
RF1F: Rx FIFO 1 Full  
TC  
8
HPM  
RF1L  
RF1F  
RF1W  
RF1N  
RF0L  
RF0F  
RF0W  
RF0N  
7
6
5
RF1W: Rx FIFO 1 Watermark Reached  
RF1N: Rx FIFO 1 New Message  
RF0L: Rx FIFO 0 Message Lost  
RF0F: Rx FIFO 0 Full  
4
3
2
1
RF0W: Rx FIFO 0 Watermark Reached  
RF0N: Rx FIFO 0 New Message  
0
58  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.3.3 Interrupt Enables (address = h0830 ) [reset = hFFFFFFFF]  
Figure 47. 32-bit, 4 Rows  
31  
RSVD  
R
30  
RSVD  
R
29  
RSVD  
R
28  
RSVD  
R
27  
RSVD  
R
26  
RSVD  
R
25  
RSVD  
R
24  
RSVD  
R
23  
RSVD  
R
22  
21  
20  
RSVD  
R
19  
18  
RSVD  
R
17  
RSVD  
R
16  
UVSUP  
R/W  
UVIO  
R/W  
TSD  
R/W  
ECCERR  
R/W  
15  
14  
13  
RSVD  
R
12  
RSVD  
R
11  
RSVD  
R
10  
CANSLNT  
R/W  
9
RSVD  
R
8
CANDOM  
R
CANINT  
R/W  
LWU  
R/W  
7
6
5
4
3
2
1
0
RSVD  
R
Table 21. Interrupt Enables Field Descriptions  
Bit  
31:24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
Field  
Type  
R
Reset  
8'hFF  
1'b1  
1'b1  
1'b1  
1'b1  
1'b1  
1'b1  
1'b1  
1'b1  
1'b1  
1'b1  
1'b1  
1'b1  
1'b1  
1'b1  
1'b1  
1'b1  
8’hFF  
Description  
RSVD  
RSVD  
UVSUP  
Reserved  
R
Reserved  
R/W  
R/W  
R
Under Voltage VSUP and UVCC  
Under Voltage VIO  
Reserved  
RSVD  
TSD  
R/W  
R
Thermal Shutdown  
Reserved  
RSVD  
RSVD  
ECCERR  
CANINT  
LWU  
R
Reserved  
R/W  
R/W  
R/W  
R
Uncorrectable ECC error detected  
Can Bus Wake Up Interrupt  
Local Wake Up  
Reserved  
RSVD  
RSVD  
RSVD  
R
Reserved  
R
Reserved  
CANSLNT  
RSVD  
R/W  
R
CAN Silent  
Reserved  
8
CANDOM  
RSVD  
R/W  
R
CAN Stuck Dominant  
Reserved  
7:0  
Copyright © 2018–2020, Texas Instruments Incorporated  
59  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4 CAN FD Register Set: 16'h1000 to 16'h10FF  
The following tables provide the CAN FD programming register sets starting at 16'h1000.  
The MRAM and start address for the following registers has special consideration:  
SIDFC (0x1084)  
XIDFC (0x1088)  
RXF0C (0x10A0)  
RXF1C (0x10B0)  
TXBC (0x10C0)  
TXEFC (0x10F0)  
The start address must be word aligned (32-bit) in the MRAM. The 2 least significant bits are ignored on a write  
to ensure this behavior.  
When entering the MRAM start address, the 0x8000 prefix is NOT necessary. For example, if the desired start  
address is 0x8634, then bits SA[15:0] will be 0x0634.  
Table 22. Legend  
Code  
Description  
Read  
R
C
d
Clear on Write  
date  
n
Value after Reset  
Protected Set  
Protected Write  
Release  
p
P
r
S
t
Set on Read  
Test Value  
Undefined  
Write  
U
W
X
Reset on Read  
Table 23. CAN FD Register Set  
ADDRESS  
1000  
1004  
1008  
100C  
1010  
1014  
1018  
101C  
1020  
1024  
1028  
102C  
1030  
1034  
1038  
103C  
1040  
1044  
SYMBOL  
CREL  
ENDN  
CUST  
DBTP  
TEST  
RWD  
NAME  
RESET  
ACC  
R
Core Release Register  
rrrd dddd  
Endian Register  
8765 4321  
0000 0000  
0000 0A33  
0000 0000  
0000 0000  
0000 0019  
0600 0A03  
0000 0000  
0000 0000  
FFFF 0000  
0000 FFFF  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0707  
R
Customer Register  
R
Data Bit Timing & Prescaler Register  
Test Register  
RP  
RP  
RP  
RWPp  
RP  
RP  
RC  
RP  
RC  
R
RAM Watchdog  
CCCR  
NBTP  
TSCC  
TSCV  
TOCC  
TOCV  
RSVD  
RSVD  
RSVD  
RSVD  
ECR  
CC Control Register  
Nominal Bit Timing & Prescaler Register  
Timestamp Counter Configuration  
Timestamp Counter Value  
Timeout Counter Configuration  
Timeout Counter Value  
Reserved  
Reserved  
R
Reserved  
R
Reserved  
R
Error Counter Register  
Protocol Status Register  
RX  
RXS  
PSR  
60  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
Table 23. CAN FD Register Set (continued)  
ADDRESS  
1048  
104C  
1050  
1054  
1058  
105C  
1060  
1064  
1068  
106C  
1070  
1074  
1078  
107C  
1080  
1084  
1088  
108C  
1090  
1094  
1098  
109C  
10A0  
10A4  
10A8  
10AC  
10B0  
10B4  
10B8  
10BC  
10C0  
10C4  
10C8  
10CC  
10D0  
10D4  
10D8  
10DC  
10E0  
10E4  
10E8  
10EC  
10F0  
10F4  
10F8  
10FC  
SYMBOL  
TDCR  
RSVD  
IR  
NAME  
Transmitter Delay Compensation Register  
Reserved  
RESET  
ACC  
RP  
R
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
1FFF FFFF  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
Interrupt Register  
RW  
RW  
RW  
RW  
R
IE  
Interrupt Enable  
ILS  
Interrupt Line Select  
Interrupt Line Enable  
Reserved  
ILE  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
GFC  
Reserved  
R
Reserved  
R
Reserved  
R
Reserved  
R
Reserved  
R
Reserved  
R
Reserved  
R
Global Filter Configuration  
Standard ID Filter Configuration  
Extended ID Filter Configuration  
Reserved  
RP  
RP  
RP  
R
SIDFC  
XIDFC  
RSVD  
XIDAM  
HPMS  
NDAT1  
NDAT2  
RXF0C  
RXF0S  
RXF0A  
RXBC  
RXF1C  
RXF1S  
RXF1A  
RXESC  
TXBC  
TXFQS  
TXESC  
TXBRP  
TXBAR  
TXBCR  
TXBTO  
TXBCF  
TXBTIE  
TXBCIE  
RSVD  
RSVD  
TXEFC  
TXEFS  
TXEFA  
RSVD  
Extended ID and MASK  
High Priority Message Status  
New Data 1  
RP  
R
RW  
RW  
RP  
R
New Data 2  
Rx FIFO 0 Configuration  
Rx FIFO 0 Status  
Rx FIFO 0 Acknowledge  
Rx Buffer Configuration  
Rx FIFO 1 Configuration  
Rx FIFO 1 Status  
RW  
RP  
RP  
R
Rx FIFO 1 Acknowledge  
Rx Buffer/FIFO Element Size Configuration  
Tx Buffer Configuration  
Tx FIFO/Queue Status  
Tx Buffer Element Size Configuration  
Tx Buffer Request Pending  
Tx Buffer Add Request  
Tx Buffer Cancellation Request  
Tx Buffer Transmission Occurred  
Tx Buffer Cancellation Finished  
Tx Buffer Transmission Interrupt Enable  
Tx Buffer Cancellation Finished Interrupt Enable  
Reserved  
RW  
RP  
RP  
R
RP  
R
RW  
RW  
R
R
RW  
RW  
R
Reserved  
R
Tx Event FIFO Configuration  
Tx Event FIFO Status  
Tx Event FIFO Acknowledge  
Reserved  
RP  
R
RW  
R
Copyright © 2018–2020, Texas Instruments Incorporated  
61  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Table 24. CAN FD Register Set Description  
Offset  
Name  
Bit Pos.  
7:0  
MSB  
LSB  
Access  
Day[7:0] (two digit, BCD-Coded)  
R
R
R
R
R
R
R
R
15:8  
23:16  
31:24  
7:0  
Month[15:8] (two digit, BCD-Coded)  
1000  
CREL  
SUBSTEP[7:4] (One digit, BCD-Coded)  
REL[7:4] (One digit, BCD-Coded)  
Year[3:0] (one digit, BCD-Coded)  
STEP[3:0] (one digit, BCD-Coded)  
ETV[7:0] (Endianness Test Value)  
15:8  
23:16  
31:24  
7:0  
ETV[15:8] (Endianness Test Value)  
ETV[23:16] (Endianness Test Value)  
ETV[31:24] (Endianness Test Value)  
1004  
1008  
100C  
1010  
1014  
1018  
101C  
1020  
1024  
1028  
ENDN  
CUST  
DBTP  
TEST  
RWD  
15:8  
23:16  
31:24  
7:0  
DTSEG2(Data Time Seg before Sample Point)  
Reserved  
Reserved  
DSJW (Data (Re)Synchronization Jump Width)  
RP  
RP  
RP  
R
15:8  
23:16  
31:24  
7:0  
DTSEG1(Data Time Seg before Sample Point)  
DBRP (Data Bit Rate Prescaler)  
TDC  
Reserved  
RX  
TX  
LBCK  
Reserved  
RP-U  
R
15:8  
23:16  
31:24  
7:0  
Reserved  
Reserved  
Reserved  
R
R
WDC (Watchdog Configuration)  
WDV (Watchdog Counter Value)  
Reserved  
RP  
R
15:8  
23:16  
31:24  
7:0  
R
Reserved  
R
TEST  
NISO  
DAR  
TXP  
MON  
EFBI  
CSR  
CSA  
ASM  
CCE  
INIT  
RWp  
RP  
R
15:8  
23:16  
31:24  
7:0  
PXHD  
Reserved  
BRSE  
FDOE  
CCCR  
NBTP  
TSCC  
TSCV  
TOCC  
Reserved  
Reserved  
R
Reserved  
NTSEG2 (Nominal time Segment After Sample Point)  
RP  
RP  
RP  
15:8  
23:16  
31:24  
7:0  
NTSEG1 (Nominal Time Segment Before Sample Point)  
NBRP[7:0] (Nominal Bit Rate Prescaler)  
NSJW[6;0] (Nominal (RE)Synchronization Jump Width)  
NBRP[8]  
TSS[1:0] Timestamp Select  
RP  
RP  
R
Reserved  
Reserved  
15:8  
23:16  
31:24  
7:0  
Reserved  
TCP (Timestamp Counter Prescaler)  
RP  
R
Reserved  
RC  
RC  
R
TSC[15:0] (Timestamp Counter)  
15:8  
23:16  
31:24  
7:0  
Reserved  
Reserved  
R
Reserved  
TOS (Timeout SEL)  
ETOC  
RP  
R
15:8  
23:16  
31:24  
7:0  
Reserved  
RP  
RP  
RC  
RC  
R
TOP[15:0] (Timeout Period)  
TOC[15:0] (Timeout Counter)  
15:8  
23:16  
31:24  
31:0  
7:0  
102C  
1030 – 103C  
1040  
TOCV  
RSVD  
ECR  
Reserved  
Reserved  
R
Reserved  
R
TEC (Transmit Error Counter)  
REC (Receive Error Counter)  
CEL (CAN Error Logging)  
Reserved  
R
15:8  
23:16  
31:24  
R
X
R
62  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
Table 24. CAN FD Register Set Description (continued)  
Offset  
Name  
Bit Pos.  
7:0  
MSB  
LSB  
Access  
RS  
RSX  
R
BO  
EW  
EP  
ACT (Activity)  
RBRS RESI  
LEC (Last Error Code)  
DLEC ( Data Phase Last Error Code)  
15:8  
23:16  
31:24  
7:0  
Reserved  
Reserved  
PXE  
RFDF  
1044  
PSR  
TDCV[6:0] (Transmitter Delay Compensation Value)  
Reserved  
R
Reserved  
Reserved  
TDCF (Transmitter Delay Compensation Filter Window Length)  
RP  
RP  
R
15:8  
23:16  
31:24  
31:0  
7:0  
TDCO (Transmitter Delay Compensation Offset)  
1048  
104C  
1050  
TDCR  
RSVD  
IR  
Reserved  
Reserved  
Reserved  
R
R
RF1L  
TEFL  
EP  
RF1F  
TEFF  
ELO  
RF1W  
TEFW  
BEU  
RF1N  
TEFN  
BEC  
RF0L  
TFE  
RF0F  
TCF  
RF0W  
TC  
RF0N  
HPM  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
15:8  
23:16  
31:24  
7:0  
DRX  
TOO  
MRAF  
BO  
TSW  
Reserved  
ARA  
PED  
PEA  
WDI  
EW  
RF1LE  
TEFLE  
EPE  
RF1FE  
TEFFE  
ELOE  
RF1WE  
TEFWE  
BEUE  
ARAE  
RF1WL  
TEFWL  
BEUL  
RF1NE  
TEFNE  
BECE  
PEDE  
RF1NL  
TEFNL  
BECL  
PEDL  
RF0LE  
TFEE  
DRXE  
PEAE  
RF0LL  
TFEL  
DRXL  
PEAL  
RF0FE  
TCFE  
TOOE  
WDIE  
RF0FL  
TCFL  
TOOL  
WDIL  
RF0WE  
TCE  
RF0NE  
HPME  
TSWE  
EWE  
15:8  
23:16  
31:24  
7:0  
1054  
1058  
IE  
MRAFE  
BOE  
Reserved  
RF1LL  
TEFLL  
EPL  
RF1FL  
TEFFL  
ELOL  
RF0WL  
TCL  
RF0NL  
HPML  
TSWL  
EWL  
15:8  
23:16  
31:24  
7:0  
ILS  
MRAFL  
BOL  
Reserved  
ARAL  
Reserved  
EINT1  
EINT0  
15:8  
23:16  
31:24  
31:0  
7:0  
Reserved  
105C  
1060 – 107C  
1080  
ILE  
RSVD  
GFC  
Reserved  
Reserved  
Reserved  
R
R
R
Reserved  
ANFS  
ANFE  
RRFS  
RRFE  
RP  
R
15:8  
23:16  
31:24  
7:0  
Reserved  
Reserved  
Reserved  
R
R
FLSS[7:2] (Filter List Standard Start Address)  
Reserved  
RP  
RP  
RP  
R
15:8  
23:16  
31:24  
7:0  
FLSS[15:8] (Filter List Standard Start Address)  
LSS (List Size Standard)  
Reserved  
1084  
SIDFC  
FLESA[7:2] (Filter List Extended Start Address)  
Reserved  
RP  
RP  
RP  
R
15:8  
23:16  
31:24  
31:0  
7:0  
FLESA[15:8] (Filter List Extended Start Address)  
LSE (List Size Extended)  
1088  
108C  
1090  
XIDFC  
RSVD  
XIDAM  
Reserved  
Reserved  
Reserved  
R
EIDM[7:0] (Extended ID AND MASK)  
EIDM[15:8] (Extended ID AND MASK)  
EIDM[23:16] (Extended ID AND MASK)  
RP  
RP  
RP  
RP  
15:8  
23:16  
31:24  
Reserved  
EIDM[28:24] (Extended ID AND MASK)  
BIDX (Buffer Index)  
MSI (Message Storage  
Index)  
7:0  
R
15:8  
23:16  
31:24  
7:0  
FLST  
FIDX (Filter Index)  
Reserved  
Reserved  
R
1094  
HPMS  
R
R
ND7  
ND6  
ND5  
ND4  
ND3  
ND2  
ND1  
ND9  
ND0  
ND8  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
15:8  
ND15  
ND23  
ND31  
ND39  
ND47  
ND55  
ND63  
ND14  
ND22  
ND30  
ND38  
ND46  
ND54  
ND62  
ND13  
ND21  
ND29  
ND37  
ND45  
ND53  
ND61  
ND12  
ND20  
ND28  
ND36  
ND44  
ND52  
ND60  
ND11  
ND19  
ND27  
ND35  
ND43  
ND51  
ND59  
ND10  
ND18  
ND26  
ND34  
ND42  
ND50  
ND58  
1098  
109C  
NDAT1  
NDAT2  
23:16  
31:24  
7:0  
ND17  
ND25  
ND33  
ND41  
ND49  
ND57  
ND16  
ND24  
ND32  
ND40  
ND48  
ND56  
15:8  
23:16  
31:24  
Copyright © 2018–2020, Texas Instruments Incorporated  
63  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Table 24. CAN FD Register Set Description (continued)  
Offset  
Name  
Bit Pos.  
7:0  
MSB  
LSB  
Access  
RP  
RP  
RP  
RP  
R
F0SA[7:2] (RX FIFO 0 Start Address)  
F0SA[15:8] (RX FIFO 0 Start Address)  
Reserved  
15:8  
23:16  
31:24  
7:0  
10A0  
RXF0C  
Reserved  
F0OM  
F0S (RX FIFO 0 Size)  
F0WM (RX FIFO 0 Watermark)  
Reserved  
15:8  
23:16  
31:24  
7:0  
Reserved  
R
10A4  
10A8  
10AC  
10B0  
10B4  
10B8  
10BC  
10C0  
10C4  
10C8  
10CC  
10D0  
10D4  
RXF0S  
RXF0A  
RXBC  
Reserved  
R
Reserved  
R
Reserved  
F0A (RX FIFO 0 Acknowledge Index)  
R/W  
R
15:8  
23:16  
31:24  
7:0  
Reserved  
Reserved  
Reserved  
R
R
RBSA[7:2] (RX Buffer Configuration)  
RBSA[15:8] (RX Buffer Configuration)  
Reserved  
Reserved  
RP  
RP  
R
15:8  
23:16  
31:24  
7:0  
Reserved  
Reserved  
R
F1SA[7:2] (RX FIFO 1 Start Address)  
RP  
RP  
RP  
RP  
R
15:8  
23:16  
31:24  
7:0  
F1SA[15:8] (RX FIFO 1 Start Address)  
RXF1C  
RXF1S  
RXF1A  
RXESC  
TXBC  
Reserved  
F1S (RX FIFO 1 Size)  
F1WM (RX FIFO 1 Watermark)  
F1FL (RX FIFO 1 Fill Level)  
F1GI (RX FIFO 1 Get Index)  
F1PI (RX FIFO 1 Put Index)  
Reserved  
F1OM  
Reserved  
15:8  
23:16  
31:24  
7:0  
Reserved  
R
Reserved  
DMS (Data Message Status)  
Reserved  
R
RF1L  
F1F  
R
F1AI (RX FIFO 1 Acknowledge Index)  
Reserved  
R/W  
R
15:8  
23:16  
31:24  
7:0  
Reserved  
R
Reserved  
R
Reserved  
F1DS (RX FIFO 1 Data Field Size)  
Reserved  
Reserved  
F0DS (RX FIFO 0 Data Field Size)  
RBDS (RX Buffer Data Field Size)  
RP  
RP  
R
15:8  
23:16  
31:24  
7:0  
Reserved  
Reserved  
TBSA[7:2] (TX Buffer Start Address)  
TBSA[15:8] (TX Buffer Start Address)  
NDTB (Number of Dedicated Transmit Buffers)  
R
Reserved  
RP  
RP  
RP  
RP  
R
15:8  
23:16  
31:24  
7:0  
Reserved  
Reserved TFQM  
Reserved  
Reserved  
Reserved  
TFQS (Transmit FIFO/Queue Size)  
TFFL (TX FIFO Free Level)  
15:8  
23:16  
31:24  
7:0  
TFGI (TX FIFO Get Index)  
R
TXQFS  
TXESC  
TXBRP  
TXBAR  
TXBCR  
TFQF  
TFQP (TX FIFO/Queue Put Index)  
R
Reserved  
R
Reserved  
TBDS (TX Buffer Data Field Size)  
RP  
R
15:8  
23:16  
31:24  
7:0  
Reserved  
Reserved  
Reserved  
R
R
TRP7  
TRP15  
TRP23  
TRP31  
AR7  
TRP6  
TRP5  
TRP13  
TRP21  
TRP29  
AR5  
TRP4  
TRP3  
TRP11  
TRP19  
TRP27  
AR3  
TRP2  
TRP10  
TRP18  
TRP26  
AR2  
TRP1  
TRP9  
TRP17  
TRP25  
AR1  
TRP0  
TRP8  
TRP16  
TRP24  
AR0  
R
15:8  
23:16  
31:24  
7:0  
TRP14  
TRP22  
TRP30  
AR6  
TRP12  
TRP20  
TRP28  
AR4  
R
R
R
R/W  
R/W  
R/W  
R/W  
RW  
RW  
RW  
RW  
15:8  
23:16  
31:24  
7:0  
AR15  
AR23  
AR31  
CR7  
AR14  
AR22  
AR30  
CR6  
AR13  
AR21  
AR29  
CR5  
AR12  
AR20  
AR28  
CR4  
AR11  
AR19  
AR27  
CR3  
AR10  
AR18  
AR26  
CR2  
AR9  
AR8  
AR17  
AR25  
CR1  
AR16  
AR24  
CR0  
15:8  
23:16  
31:24  
CR15  
CR23  
CR31  
CR14  
CR22  
CR30  
CR13  
CR21  
CR29  
CR12  
CR20  
CR28  
CR11  
CR19  
CR27  
CR10  
CR18  
CR26  
CR9  
CR8  
CR17  
CR25  
CR16  
CR24  
64  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
Table 24. CAN FD Register Set Description (continued)  
Offset  
Name  
Bit Pos.  
7:0  
MSB  
LSB  
TO0  
Access  
R
TO7  
TO6  
TO14  
TO22  
TO30  
CF6  
TO5  
TO13  
TO21  
TO29  
CF5  
TO4  
TO12  
TO20  
TO28  
CF4  
TO3  
TO11  
TO19  
TO27  
CF3  
TO2  
TO10  
TO18  
TO26  
CF2  
TO1  
TO9  
15:8  
23:16  
31:24  
7:0  
TO15  
TO23  
TO31  
CF7  
TO8  
R
10D8  
TXBTO  
TO17  
TO25  
CF1  
TO16  
TO24  
CF0  
R
R
R
15:8  
23:16  
31:24  
7:0  
CF15  
CF23  
CF31  
TIE7  
CF14  
CF22  
CF30  
TIE6  
CF13  
CF21  
CF29  
TIE5  
CF12  
CF20  
CF28  
TIE4  
CF11  
CF19  
CF27  
TIE3  
CF10  
CF18  
CF26  
TIE2  
CF9  
CF8  
R
10DC  
10E0  
TXBCF  
TXBTIE  
CF17  
CF25  
TIE1  
CF16  
CF24  
TIE0  
R
R
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
R
15:8  
23:16  
31:24  
7:0  
TIE15  
TIE23  
TIE31  
CFIE7  
CFIE15  
CFIE23  
CFIE31  
TIE14  
TIE22  
TIE30  
CFIE6  
CFIE14  
CFIE22  
CFIE30  
TIE13  
TIE21  
TIE29  
CFIE5  
CFIE13  
CFIE21  
CFIE29  
TIE12  
TIE20  
TIE28  
CFIE4  
CFIE12  
CFIE20  
CFIE28  
TIE11  
TIE19  
TIE27  
CFIE3  
CFIE11  
CFIE19  
CFIE27  
TIE10  
TIE18  
TIE26  
CFIE2  
CFIE10  
CFIE18  
CFIE26  
TIE9  
TIE8  
TIE17  
TIE25  
CFIE1  
CFIE9  
CFIE17  
CFIE25  
TIE16  
TIE24  
CFIE0  
CFIE8  
CFIE16  
CFIE24  
15:8  
23:16  
31:24  
31:0  
7:0  
10E4  
10E8 - 10EC  
10F0  
TXBCIE  
RSVD  
Reserved  
EFSA[7:2] (Event FIFO Start Address)  
EFSA[15:8] (Event FIFO Start Address)  
Reserved  
RP  
RP  
RP  
RP  
15:8  
23:16  
31:24  
7:0  
TXEFC  
Reserved  
EFS (Event FIFO Size)  
EFWM (Event FIFO Watermark)  
EFFL (Event FIFO Fill Level)  
Reserved  
Reserved  
15:8  
23:16  
31:24  
7:0  
Reserved  
EFGI (Event FIFO Get Index)  
EFPI (Event FIFO Put Index)  
10F4  
TXEFS  
Reserved  
Reserved  
Reserved  
TEFL  
EFA (Event FIFO Acknowledge Index)  
EFF  
R
RW  
R
15:8  
23:16  
31:24  
31:0  
Reserved  
Reserved  
Reserved  
Reserved  
10F8  
10FC  
TXEFA  
RSVD  
R
R
R
Copyright © 2018–2020, Texas Instruments Incorporated  
65  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.1 Core Release Register (address = h1000) [reset = hrrrddddd]  
Figure 48. Core Release Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
REL[3:0]  
R
STEP[3:0]  
R
SUBSTEP[3:0]  
R
YEAR[3:0]  
R
MONTH[7:0]  
R
1
0
DAY[7:0]  
R
Table 25. Core Release Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
Description  
31:28  
27:24  
23:20  
19:16  
15:8  
REL[3:0]  
STEP[3:0]  
r
one digit, BCD-coded  
one digit, BCD-coded  
one digit, BCD-coded  
one digit, BCD-coded  
two digit, BCD-coded  
two digit, BCD-coded  
R
r
SUBSTEP[3:0]  
YEAR[3:0]  
R
r
R
d
d
d
MONTH[7:0]  
DAY[7:0]  
R
7:0  
R
66  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.2 Endian Register (address = h1004) [reset = h87654321]  
Figure 49. Endian Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
ETV[31:24]  
R
ETV[23:16]  
R
ETV[15:8]  
R
1
0
ETV[7:0]  
R
Table 26. Endian Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x87  
0x65  
0x43  
0x21  
Description  
31:24  
23:16  
15:8  
7:0  
ETV[31:24]  
ETV[23:16]  
ETV[15:8]  
ETV[7:0]  
Endianness Test Value  
Endianness Test Value  
Endianness Test Value  
Endianness Test Value  
R
R
R
Copyright © 2018–2020, Texas Instruments Incorporated  
67  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.3 Customer Register (address = h1008) [reset = h00000000]  
Figure 50. Customer Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
RSVD  
R
Table 27. Customer Register Field Descriptions  
Bit  
31:0  
Field  
Type  
Reset  
Description  
RSVD  
R
h0000000 Reserved  
0
68  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.4 Data Bit Timing & Prescaler (address = h100C) [reset = h0000A33]  
Figure 51. Data Bit Timing & Prescaler  
31  
30  
22  
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
25  
17  
9
24  
16  
8
RSVD  
R
23  
TDC  
n
18  
DBRP[4:0]  
RP  
RSVD  
R
15  
14  
RSVD  
R
10  
DTSEG1[4:0]  
RP  
7
6
2
1
0
DTSEG2[3:0]  
RP  
DSJW[3:0]  
RP  
Table 28. Data Bit Timing & Prescaler Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:24  
RSVD  
R
0x0  
Reserved  
Transmitter Delay Compensation  
0 – TDC Disabled  
23  
TDC  
RP  
0x0  
1 – TDC Enabled  
22:21  
20:16  
15:13  
12:8  
7:4  
RSVD  
R
0x0  
0x0  
0x0  
0xA  
0x3  
0x3  
Reserved  
DBRP[4:0]  
RSVD  
RP  
R
Data Bit Rate Prescaler  
Reserved  
DTSEG1[4:0]  
DTSEG2[3:0]  
DSJW[3:0]  
RP  
RP  
RP  
Data time Segment before sample point  
Data time Segment before sample point  
Data (Re)Synchronization Jump Width  
2:0  
Copyright © 2018–2020, Texas Instruments Incorporated  
69  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.5 Test Register (address = h1010 ) [reset = h00000000]  
Figure 52. Test Register  
31  
23  
15  
30  
22  
14  
6
29  
21  
13  
5
28  
RSVD  
R
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
20  
RSVD  
R
12  
RSVD  
R
7
RX  
R
4
1
0
TX[1:0]  
RP  
LBCK  
RP  
RSVD  
R
Table 29. Test Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
Reserved  
Reserved  
Reserved  
31:24  
23:16  
15:8  
RSVD  
RSVD  
RSVD  
R
0x0  
R
0x0  
Receive Pin (m_can_rx)  
0 – CAN Bus is Dominant  
1 – CAN Bus is Recessive  
7
RX  
R
U
Control of Transmit Pin (m_can_tx)  
00 – Reset Value, updated at the end of the CAN bit time  
01 – Sample Point can be monitored at PIN m_can_tx  
10 – Dominant (‘0’) level at pin  
6:5  
TX[1:0]  
RP  
0x0  
11 – Recessive (‘1’) level at pin  
LBCK: Loop Back Mode  
4
LBCK  
RSVD  
RP  
R
0
0 – Reset Value, Loop Back Mode is Disabled  
1 – Loop Back Mode is Enabled  
3:0  
0x0  
Reserved  
70  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.6 RAM Watchdog (address = h1014) [reset = h00000000]  
Figure 53. RAM Watchdog  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
WDV[7:0]  
R
1
0
WDC[7:0]  
RP  
Table 30. RAM Watchdog Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
31:24  
23:16  
15:8  
7:0  
RSVD  
Reserved  
RSVD  
R
0x0  
Reserved  
WDV[7:0]  
WDC[7:0]  
R
0x0  
Watchdog Counter Value  
Watchdog Configuration  
RP  
0x0  
Copyright © 2018–2020, Texas Instruments Incorporated  
71  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.7 Control Register (address = h1018) [reset = 0000 0019]  
Figure 54. Control Register  
31  
23  
30  
22  
29  
21  
28  
20  
27  
19  
11  
26  
18  
10  
25  
17  
24  
16  
RSVD  
R
RSVD  
R
15  
NISO  
RP  
14  
TXP  
RP  
13  
EFBI  
RP  
12  
PXHD  
RP  
9
8
RSVD  
R
BRSE  
RP  
FDOE  
RP  
7
6
5
4
3
CSA  
R
2
1
0
TEST  
Rp  
DAR  
RP  
MON  
Rp  
CSR  
R/W  
ASM  
Rp  
CCE  
RP  
INIT  
R/W  
Table 31. Control Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
Reserved  
31:24  
23:16  
RSVD  
RSVD  
R
0x0  
Reserved  
Non ISO Operation  
0 – CAN FD Frame format according to ISO 11898-1:2015  
1 – CAN FD Frame format according to Bosch CAN FD  
Specification V1.0  
15  
14  
13  
NISO  
TXP  
RP  
RP  
RP  
0
0
0
Transmitter Pause  
0 – Transmitter Pause Disabled  
1 – Transmitter Pause Enabled  
Edge Filtering during Bus Integration  
0 – Edge Filtering Disabled  
1 – Two Consecutive Dominant tq required to detect an edge for  
hard synchronization  
EFBI  
Protocol Exception Handling Disable  
0 – Protocol Exception Handling Enabled  
1 – Protocol Exception Handling Disabled  
12  
11:10  
9
PXHD  
RSVD  
BRSE  
RP  
R
0
0x0  
0
Reserved  
Bit Rate Switch Enable  
0 – Bit Rate Switching for Transmission Disabled  
1 – Bit Rate Switching for Transmission Enabled  
RP  
FD Operation Enable  
8
7
FDOE  
TEST  
RP  
Rp  
0
0
0 – FD Operation Disabled  
1 – FD Operation Enabled  
Test Mode Enable  
0 – Normal Mode of Operation, Register TEST Holds Reset  
Value  
1 – Test Mode, Write Access to Register TEST Enabled  
Disable Automatic Retransmission  
0 – Automatic Retransmission of Messages not Transmitted  
Successfully Enabled  
1 – Automatic Retransmission Disabled  
6
5
DAR  
RP  
Rp  
0
0
Bus Monitoring Mode is Disabled  
0 – Bus Monitoring Mode is Disabled  
1 – Bus Monitoring Mode is Enabled  
MON  
Clock Stop Request  
0 – No clock Stop is requested  
1 – Clock Stop Requested. When requested first INIT and then  
CSA will be set after all pending transfer request have  
completed and the CAN bus reached idle  
See NOTE section  
4
CSR  
R/W  
1
72  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
Table 31. Control Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
Clock Stop Acknowledge  
0 – No Clock Stop Requested  
1 – m_can may be set in power down by stopping m_can-hclk  
and m_can_cclk  
3
CSA  
ASM  
R
1
Restricted Operation Mode  
0 – Normal CAN Operation  
1 – Restricted Operation Mode Active  
2
1
0
Rp  
0
0
1
Configuration Change Enable  
0 – CPU has no write access to the protected configuration  
registers  
1 – CPU has write access to the protected configuration  
registers (While CCCR.INIT =1)  
CCE  
INIT  
RP  
Initialization  
0 – Normal Operation  
1 – Initialization has started  
R/W  
NOTE  
The TCAN4550 handles stop request through hardware. The means that a 1 should not  
be written to CCCR.CSR (Clock Stop Request) as this will interfere with normal operation.  
If a Read-Modify-Write operation is performed in Standby mode a CSR = 1 will be read  
back but a 0 should be written to it.  
Copyright © 2018–2020, Texas Instruments Incorporated  
73  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.8 Nominal Bit Timing & Prescaler Register (address = h101C) [reset = h06000A03]  
Figure 55. Nominal Bit Timing & Prescaler Register  
31  
23  
15  
30  
22  
14  
6
29  
21  
13  
5
28  
NSJW[6:0]  
RP  
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
NBRP[8]  
RP  
20  
16  
NBRP[7:0]  
RP  
12  
4
8
NTSEG1[7:0]  
RP  
7
RSVD  
R
1
0
NTSEG2[6:0]  
RP  
Table 32. Nominal Bit Timing & Prescaler Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Nominal (RE)Synchronization Jump Width  
0x00 - 0x7F – Valid values are 0 to 127 - The actual  
interpretation by the hardware of this value is such that one  
more than the value programmed here is used.  
31:25  
NSJW[6:0]  
RP  
0x3  
Nominal Bit Rate Prescaler  
0x000 - 0x1FF – Value by which the oscillator frequency is  
divided for generating the bit time quanta. Valid values are 0 to  
511. - The actual interpretation by the hardware of this value is  
such that one more than the value programmed here is used.  
24:16  
NBRP[8:0]  
RP  
0x0  
Nominal Time Segment Before Sample Point)  
0x01-0xFF – Valid values are 1 to 255 - The actual interpretation  
by the hardware of this value is such that one more than the  
value programmed here is used.  
15:8  
7
NTSEG1[7:0]  
RSVD  
RP  
R
0xA  
0
Reserved  
Nominal Time Segment After Sample Point  
0x01-0x7F – Valid values are 1 to 127 - The actual interpretation  
by the hardware of this value is such that one more than the  
value programmed here is used.  
6:0  
NTSEG2[6:0]  
RP  
0x3  
74  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.9 Timestamp Counter Configuration (address = h1020) [reset = h00000000]  
Figure 56. Timestamp Counter Configuration  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
TCP[3:0]  
RP  
RSVD  
R
1
0
RSVD  
R
TSS[1:0]  
RP  
Table 33. Timestamp Counter Configuration Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
31:24  
23:20  
RSVD  
RSVD  
Reserved  
R
0x0  
Reserved  
Timestamp Counter Prescaler  
19:16  
TCP[3:0]  
RP  
0x0  
0x0 - 0xF – Configures timestamp and timeout counters time  
unit in multiples of CAN bit times [1…16]  
15:8  
7:2  
RSVD  
RSVD  
R
R
0x0  
0x0  
Reserved  
Reserved  
Timestamp Select  
00 – Timestamp counter value always 0x0000  
01 – Timestamp counter value incremented according to TCP  
10 – External timestamp counter value used  
11 – Same as "00"  
1:0  
TSS[1:0]  
RP  
0x0  
Copyright © 2018–2020, Texas Instruments Incorporated  
75  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.10 Timestamp Counter Value (address = h1024) [reset = h00000000]  
Figure 57. Timestamp Counter Value  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
TSC[15:8]  
RC  
1
0
TSC[7:0]  
RC  
Table 34. Timestamp Counter Value Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
Reserved  
31:24  
23:20  
15:8  
RSVD  
RSVD  
R
0x0  
Reserved  
Timestamp Counter  
The internal/external Timestamp Counter value is captured on  
start of frame (both Rx and Tx). When TSCC.TSS = “01”, the  
Timestamp Counter is incremented in multiples of CAN bit times  
[1…16] depending on the configuration of TSCC.TCP. A wrap  
around sets interrupt flag IR.TSW. Write access resets the  
counter to zero. When TSCC.TSS = “10”, TSC reflects the  
external  
TSC[7:0]  
RC  
0x0  
Timestamp Counter value. A write access has no impact.  
7:0  
Timestamp Counter  
The internal/external Timestamp Counter value is captured on  
start of frame (both Rx and Tx). When TSCC.TSS = “01”, the  
Timestamp Counter is incremented in multiples of CAN bit times  
[1…16] depending on the configuration of TSCC.TCP. A wrap  
around sets interrupt flag IR.TSW. Write access resets the  
counter to zero. When TSCC.TSS = “10”, TSC reflects the  
external  
TSC[7:0]  
RC  
0x0  
Timestamp Counter value. A write access has no impact.  
76  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.11 Timeout Counter Configuration (address = h1028) [reset = hFFFF0000]  
Figure 58. Timeout Counter Configuration  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
TOP[15:8]  
R
TOP[7:0]  
R
RSVD  
R
5
RSVD  
R
1
0
TOS[1:0]  
RP  
ETOC  
RP  
Table 35. Timeout Counter Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Timeout Period  
31:24  
23:16  
TOP[15:8]  
RP  
0xFF  
Start value of the timeout counter (down-counter). Configures  
the timeout period  
Timeout Period  
TOP[7:0]  
RP  
0xFF  
Start value of the timeout counter (down-counter). Configures  
the timeout period  
15:8  
7:3  
RSVD  
RSVD  
R
R
0x0  
0x0  
Reserved  
Reserved  
Timeout Select  
When operating in Continuous mode, a write to TOCV presets  
the counter to the value configured by TOCC.TOP and  
continues down-counting. When the Timeout Counter is  
controlled by one of the FIFOs, an empty FIFO presets the  
counter to the value configured by TOCC.TOP. Down-counting  
is started when the first FIFO element is stored  
00 – Continuous Operation  
01 – Timeout controlled by TX Event FIFO  
10 – Timeout controlled by Rx FIFO 0  
11 – Timeout controlled by Rx FIFO 1  
2:1  
TOS[1:0]  
RP  
RP  
0x0  
Enable Timeout Counter  
0 – Timeout counter disabled  
1 – Timeout counter enabled  
0
ETOC  
0
Copyright © 2018–2020, Texas Instruments Incorporated  
77  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.12 Timeout Counter Value (address = h102C) [reset = h0000FFFF]  
Figure 59. Timeout Counter Value  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
TOC[15:8]  
RC  
1
0
TOC[7:0]  
RC  
Table 36. Timeout Counter Value Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
Reserved  
31:24  
23:16  
RSVD  
RSVD  
R
0x0  
Reserved  
Timeout Counter  
The Timeout Counter is decremented in multiples of CAN bit  
times [1…16] depending on the configuration of TSCC.TCP.  
When decremented to zero, interrupt flag IR.TOO is set and the  
Timeout Counter is stopped. Start and reset/restart conditions  
are configured via TOCC.TOS  
15:8  
7:0  
TOC[15:8]  
TOC[7:0]  
RC  
RC  
0xFF  
0xFF  
Timeout Counter  
The Timeout Counter is decremented in multiples of CAN bit  
times [1…16] depending on the configuration of TSCC.TCP.  
When decremented to zero, interrupt flag IR.TOO is set and the  
Timeout Counter is stopped. Start and reset/restart conditions  
are configured via TOCC.TOS  
78  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.13 Reserved (address = h1030 - h103C) [reset = h00000000]  
Figure 60. Reserved  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
RSVD  
R
Table 37. Reserved Field Descriptions  
Bit  
31:0  
Field  
Type  
Reset  
Description  
RSVD  
R
0
Reserved  
Copyright © 2018–2020, Texas Instruments Incorporated  
79  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.14 Error Counter Register (address = h1040) [reset = h00000000]  
Figure 61. Error Counter Register  
31  
23  
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
CEL[7:0]  
X
15  
RP  
R
11  
REC[6:0]  
R
7
3
1
0
TEC[7:0]  
R
Table 38. Error Counter Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:24  
RSVD  
R
0x0  
Reserved  
CAN Error Logging  
The counter is incremented each time when a CAN protocol  
error causes the Transmit Error Counter or the Receive Error  
Counter to be incremented. It is reset by read access to CEL.  
The counter stops at 0xFF; the next increment of TEC or REC  
sets interrupt flag IR.ELO  
23:16  
CEL[7:0]  
RP  
X
R
0x0  
0
0 – The Receive Error Counter is below the error passive level  
of 128  
1 – The Receive Error Counter has reached the error passive  
level of 128  
15  
Actual state of the Receive Error Counter, values between 0 and  
127  
14:8  
7:0  
REC[6:0]  
TEC[7:0]  
R
R
0x0  
0x0  
Actual state of the Transmit Error Counter, values between 0  
and 255  
NOTE  
When CCCR.ASM is set, the CAN protocol controller does not increment TEC and REC  
when a CAN protocol error is detected, but CEL is still incremented.  
80  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.15 Protocol Status Register (address = h1044) [reset = h00000707]  
Figure 62. Protocol Status Register  
31  
30  
22  
29  
21  
28  
20  
27  
26  
18  
10  
2
25  
17  
24  
16  
8
RSVD  
R
23  
RSVD  
R
19  
TDCV[6:0]  
R
15  
RSVD  
R
14  
PXE  
X
13  
RFDF  
X
12  
RBRS  
X
11  
RESI  
X
9
DLEC[2:0]  
S
7
BO  
R
6
EW  
R
5
EP  
R
4
3
1
LEC[2:0]  
S
0
ACT[1:0]  
R
Table 39. Protocol Status Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
Reserved  
Reserved  
31:24  
23  
RSVD  
RSVD  
R
0x0  
Transmitter Delay Compensation Value  
0x00-0x7F – Position of the secondary sample point, defined by  
the sum of the measured delay from m_can_tx to m_can_rx and  
TDCR.TDCO. The SSP position is, in the data phase, the  
number of mtq between the start of the transmitted bit and the  
secondary sample point. Valid values are 0 to 127 mtq.  
22:16  
TDCV[6:0]  
R
0x0  
15  
14  
RSVD  
PXE  
R
X
0
0
Reserved  
Protocol Exception Event  
0 – No protocol exception event occurred since last read access  
1 – Protocol exception event occurred  
Received a CAN FD Message  
This bit is set independent of acceptance filtering  
0 – Since this bit was reset by the CPU, no CAN FD message  
has been received  
13  
RFDF  
X
0
1 – Message in CAN FD format with FDF flag set has been  
received  
BRS flag of last received CAN FD Message  
This bit is set together with RFDF, independent of acceptance  
filtering.  
0 – Last received CAN FD message did not have its BRS flag  
set  
12  
11  
RBRS  
X
X
X
0
1 – Last received CAN FD message had its BRS flag set  
ESI flag of last received CAN FD Message  
This bit is set together with RFDF, independent of acceptance  
filtering.  
0 – Last received CAN FD message did not have its ESI flag set  
1 – Last received CAN FD message had its ESI flag set  
RESI  
0
Data Phase Last Error Code  
Type of last error that occurred in the data phase of a CAN FD  
format frame with its BRS flag set. Coding is the same as for  
LEC. This field will be cleared to zero when a CAN FD format  
frame with its BRS flag set has been transferred (reception or  
transmission) without error.  
10:8  
DLEC[2:0]  
0x7  
Bus_Off Status  
7
6
BO  
R
R
0
0
0 – The M_CAN is not Bus_Off  
1 – The M_CAN is in Bus_Off state  
Warning Status  
0 – Both error counters are below the Error_Warning limit of 96  
1 – At least one of error counter has reached the Error_Warning  
limit of 96  
EW  
Copyright © 2018–2020, Texas Instruments Incorporated  
81  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Table 39. Protocol Status Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
Error Passive  
0 – The M_CAN is in the Error_Active state. It normally takes  
part in bus communication and sends an active error flag when  
an error has been detected  
5
EP  
R
0
1 – The M_CAN is in the Error_Passive state  
Activity  
Monitors the module’s CAN communication state.  
00 – Synchronizing - node is synchronizing on CAN  
communication  
4:3  
ACT[1:0]  
R
0x0  
01 – Idle - node is neither receiver nor transmitter  
10 – Receiver - node is operating as receiver  
11 – Transmitter - node is operating as transmitter  
Last Error Code  
The LEC indicates the type of the last error to occur on the CAN  
bus. This field will be cleared to ‘0’ when a message has been  
transferred (reception or transmission) without error.  
0 – No Error: No error occurred since LEC has been reset by  
successful reception or transmission  
1 – Stuff Error: More than 5 equal bits in a sequence have  
occurred in a part of a received message where this is not  
allowed.  
2 – Form Error: A fixed format part of a received frame has the  
wrong format.  
3 – AckError: The message transmitted by the M_CAN was not  
acknowledged by another node.  
4 – Bit1Error: During the transmission of a message (with the  
exception of the arbitration field), the device wanted to send a  
recessive level (bit of logical value ‘1’), but the monitored bus  
value was dominant.  
2:0  
LEC[2:0]  
S
0x7  
5 – Bit0Error: During the transmission of a message (or  
acknowledge bit, or active error flag, or overload flag), the  
device wanted to send a dominant level (data or identifier bit  
logical value ‘0’), but the monitored bus value was recessive.  
During Bus_Off recovery this status is set each time a sequence  
of 11 recessive bits has been monitored. This enables the CPU  
to monitor the proceeding of the Bus_Off recovery sequence  
(indicating the bus is not stuck at dominant or continuously  
disturbed).  
6 – CRCError: The CRC check sum of a received message was  
incorrect. The CRC of an incoming message does not match  
with the CRC calculated from the received data.  
7 – NoChange: Any read access to the Protocol Status Register  
re-initializes the LEC to ‘7’. When the LEC shows the value ‘7’,  
no CAN bus event was detected since the last CPU read access  
to the Protocol Status Register.  
NOTE  
When a frame in CAN FD format has reached the data phase with BRS flag set, the next  
CAN event (error or valid frame) will be shown in DLEC instead of LEC. An error in a fixed  
stuff bit of a CAN FD CRC sequence will be shown as a Form Error, not Stuff Error  
82  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
NOTE  
The Bus_Off recovery sequence (see ISO 11898-1:2015) cannot be shortened by setting  
or resetting CCCR.INIT. If the device goes Bus_Off, it will set CCCR.INIT of its own  
accord, stopping all bus activities. Once CCCR.INIT has been cleared by the CPU, the  
device will then wait for 129 occurrences of Bus Idle (129 * 11 consecutive recessive bits)  
before resuming normal operation. At the end of the Bus_Off recovery sequence, the Error  
Management Counters will be reset. During the waiting time after the resetting of  
CCCR.INIT, each time a sequence of 11 recessive bits has been monitored, a Bit0Error  
code is written to PSR.LEC, enabling the CPU to readily checkup whether the CAN bus is  
stuck at dominant or continuously disturbed and to monitor the Bus_Off recovery  
sequence. ECR.REC is used to count these sequences.  
Copyright © 2018–2020, Texas Instruments Incorporated  
83  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.16 Transmitter Delay Compensation Register (address = h1048) [reset = h00000000]  
Figure 63. Transmitter Delay Compensation Register  
31  
23  
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
15  
RSVD  
R
11  
TDCO[6:0]  
RP  
7
RSVD  
R
3
1
0
TDCF[6:0]  
RP  
Table 40. Transmitter Delay Compensation Register Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
0x0  
0
Description  
31:24  
23:16  
15  
RSVD  
RSVD  
RSVD  
Reserved  
R
Reserved  
R
Reserved  
Transmitter Delay Compensation Offset  
0x00-0x7F - Offset value defining the distance between the  
measured delay from m_can_tx to m_can_rx and the secondary  
sample point. Valid values are 0 to 127 mtq.  
14:8  
7
TDCO[6:0]  
RSVD  
RP  
R
0x0  
0
Reserved  
Transmitter Delay Compensation Filter Window Length  
0x00-0x7F - Defines the minimum value of the SSP position,  
dominant edges on m_can_rx that would result in an earlier SSP  
position are ignored for transmitter delay measurement. The  
feature is enabled when TDCF is configured to a value greater  
than TDCO. Valid values are 0 to 127 mtq.  
6:0  
TDCF[6:0]  
RP  
0x0  
84  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.17 Reserved (address = h104C) [reset = h00000000]  
Figure 64. Reserved  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
RSVD  
R
Table 41. Reserved Field Descriptions  
Bit  
31:0  
Field  
Type  
Reset  
Description  
RSVD  
R
0
Reserved  
Copyright © 2018–2020, Texas Instruments Incorporated  
85  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.18 Interrupt Register (address = h1050) [reset = h00000000]  
Figure 65. Interrupt Register  
31  
30  
29  
28  
27  
26  
25  
BO  
24  
RSVD  
R
ARA  
R/W  
PED  
R/W  
PEA  
R/W  
WDI  
R/W  
EW  
R/W  
R/W  
23  
EP  
22  
21  
20  
19  
18  
17  
16  
ELO  
R/W  
BEU  
R/W  
BEC  
R/W  
DRX  
R/W  
TOO  
R/W  
MRF  
R/W  
TSW  
R/W  
R/W  
15  
14  
13  
12  
11  
10  
9
8
TEFL  
R/W  
TEFF  
R/W  
TEFW  
R/W  
TEFN  
R/W  
TFE  
R/W  
TCF  
R/W  
TC  
HPM  
R/W  
R/W  
7
6
5
4
3
2
1
0
RF1L  
R/W  
RF1F  
R/W  
RF1W  
R/W  
RF1N  
R/W  
RF0L  
R/W  
RF0F  
R/W  
RF0W  
R/W  
RF0N  
R/W  
Table 42. Interrupt Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:30  
RSVD  
R
0x0  
Reserved  
Access to Reserved Address  
29  
ARA  
PED  
PEA  
WDI  
BO  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0
0 – No access to reserved address occurred  
1 – Access to reserved address occurred  
Protocol Error in Data Phase (Data Bit Time is used)  
0 – No protocol error in data phase  
1 – Protocol error in data phase detected (PSR.DLEC 0,7)  
28  
27  
26  
25  
24  
23  
22  
Protocol Error in Arbitration Phase (Nominal Bit Time is used)  
0 – No protocol error in arbitration phase  
1 – Protocol error in arbitration phase detected (PSR.LEC 0,7)  
Watchdog Interrupt  
0 – No Message RAM Watchdog event occurred  
1 – Message RAM Watchdog event due to missing READY  
Bus_Off Status  
0 – Bus_Off status unchanged  
1 – Bus_Off status changed  
Warning Status  
0 – Error_Warning status unchanged  
1 – Error_Warning status changed  
EW  
Error Passive  
0 – Error_Passive status unchanged  
1 – Error_Passive status changed  
EP  
ELO: Error Logging Overflow  
0 – CAN Error Logging Counter did not overflow  
1 – Overflow of CAN Error Logging Counter occurred  
ELO  
Bit Error Uncorrected  
Message RAM bit error detected, uncorrected. Controlled by  
input signal m_can_aeim_berr[1] generated by an optional  
external parity / ECC logic attached to the Message RAM. An  
uncorrected Message RAM bit error sets CCCR.INIT to ‘1’. This  
is done to avoid transmission of corrupted data.  
21  
20  
BEU  
BEC  
R/W  
R/W  
0
0
0 – No bit error detected when reading from Message RAM  
1 – Bit error detected, uncorrected (e.g. parity logic)  
Bit Error Corrected  
Message RAM bit error detected and corrected. Controlled by  
input signal m_can_aeim_berr[0] generated by an optional  
external parity / ECC logic attached to the Message RAM.  
0 – No bit error detected when reading from Message RAM  
1 – Bit error detected and corrected (e.g. ECC)  
86  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
Table 42. Interrupt Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
Message stored to Dedicated Rx Buffer  
The flag is set whenever a received message has been stored  
into a dedicated Rx Buffer.  
0 – No Rx Buffer updated  
1 – At least one received message stored into an Rx Buffer  
19  
DRX  
TOO  
R/W  
0
Timeout Occurred  
0 – No timeout  
18  
R/W  
0
1 – Timeout reached  
Message RAM Access Failure  
The flag is set, when the Rx Handler  
has not completed acceptance filtering or storage of an  
accepted message until the arbitration field of the following  
message has been received. In this case acceptance  
filtering or message storage is aborted and the Rx Handler  
start processing of the following message  
was not able to write a message to the Message RAM. In  
this case message storage is aborted.  
In both cases the FIFO put index is not updated resp. the New  
Data flag for a dedicated Rx Buffer is not set, a partly stored  
message is overwritten when the next message is stored to this  
location. The flag is also set when the Tx Handler was not able  
to read a message from the Message RAM in time. In this case  
message transmission is aborted. In case of a Tx Handler  
access failure the M_CAN is switched into Restricted Operation  
Mode. To leave restricted Operation Mode, the Host CPU has to  
reset CCCR.ASM.  
17  
MRF  
R/W  
0
0 – No Message RAM access failure occurred  
1 – Message RAM access failure occurred  
Timestamp Wraparound  
16  
15  
TSW  
R/W  
R/W  
0
0
0 – No timestamp counter wrap-around  
1 – Timestamp counter wrapped aroundo  
Tx Event FIFO Element Lost  
0 – No Tx Event FIFO element lost  
1 – Tx Event FIFO element lost, also set after write attempt to  
Tx Event FIFO of size zero  
TEFL  
Tx Event FIFO Full  
14  
13  
12  
11  
10  
9
TEFF  
TEFW  
TEFN  
TFE  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
0
0
0
0
0
0
0
0 – Tx Event FIFO not full  
1 – Tx Event FIFO full  
Tx Event FIFO Watermark Reached  
0 – Tx Event FIFO fill level below watermark  
1 – Tx Event FIFO fill level reached watermark  
Tx Event FIFO New Entry  
0 – Tx Event FIFO unchanged  
1 – Tx Handler wrote Tx Event FIFO element  
Tx FIFO Empty  
0 – Tx FIFO non-empty  
1 – Tx FIFO empty  
Transmission Cancellation Finished  
0 – No transmission cancellation finished  
1 – Transmis  
TCF  
Transmission Completed  
0 – No transmission completed  
1 – Transmission completed  
TC  
High Priority Message  
0 – No high priority message received  
1 – High priority message received  
8
HPM  
Rx FIFO 1 Message Lost  
0 – No Rx FIFO 1 message lost  
1 – Rx FIFO 1 message lost, also set after write attempt to Rx  
FIFO 1 of size zero  
7
6
RF1L  
RF1F  
R/W  
R/W  
0
0
Rx FIFO 1 Full  
0 – Rx FIFO 1 not full  
1 – Rx FIFO 1 full  
Copyright © 2018–2020, Texas Instruments Incorporated  
87  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Table 42. Interrupt Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
Rx FIFO 1 Watermark Reached  
5
RF1W  
R/W  
0
0 – Rx FIFO 1 fill level below watermark  
1 – Rx FIFO 1 fill level reached watermark  
Rx FIFO 1 New Message  
4
3
RF1N  
RF0L  
R/W  
R/W  
0
0
0 – No new message written to Rx FIFO  
1 – New message written to Rx FIFO 1  
Rx FIFO 0 Message Lost  
0 – No Rx FIFO 0 message lost  
1 – Rx FIFO 0 message lost, also set after write attempt to Rx  
FIFO 0 of size zero  
Rx FIFO 0 Full  
2
1
0
RF0F  
RF0W  
RF0N  
R/W  
R/W  
R/W  
0
0
0
0 – Rx FIFO 0 not full  
1 – Rx FIFO 0 full  
Rx FIFO 0 Watermark Reached  
0 – Rx FIFO 0 fill level below watermark  
1 – Rx FIFO 0 fill level reached watermark  
Rx FIFO 0 New Message  
0 – No new message written to Rx FIFO 0  
1 – New message written to Rx FIFO 0  
88  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.19 Interrupt Enable (address = h1054) [reset = h00000000]  
The settings in the Interrupt Enable register determine which status changes in the Interrupt Register will be  
signaled on an interrupt line.  
0 – Interrupt disabled  
1 – Interrupt enabled  
Figure 66. Interrupt Enable Register  
31  
30  
29  
28  
27  
26  
25  
24  
RSVD  
R
ARAE  
R/W  
PEDE  
R/W  
PEAE  
R/W  
WDIE  
R/W  
BOE  
R/W  
EWE  
R/W  
23  
22  
21  
20  
19  
18  
17  
16  
EPE  
R/W  
ELOE  
R/W  
BEUE  
R/W  
BECE  
R/W  
DRXE  
R/W  
TOOE  
R/W  
MRAFE  
R/W  
TSWE  
R/W  
15  
14  
13  
12  
11  
10  
9
8
TEFLE  
R/W  
TEFFE  
R/W  
TEFW  
R/W  
TEFNE  
R/W  
TFEE  
R/W  
TCFE  
R/W  
TCE  
R/W  
HPME  
R/W  
7
6
5
4
3
2
1
0
RF1LE  
R/W  
RF1FE  
R/W  
RF1WE  
R/W  
RF1NE  
R/W  
RF0LE  
R/W  
RF0FE  
R/W  
RF0WE  
R/W  
RF0NE  
R/W  
Table 43. Interrupt Enable Field Descriptions  
Bit  
31:30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
Field  
Type  
R
Reset  
0x0  
0
Description  
RSVD  
ARAE  
PEDE  
PEAE  
WDIE  
BOE  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Access to Reserved Address Enable  
Protocol Error in Data Phase Enable  
Protocol Error in Arbitration Phase Enable  
Watchdog Interrupt Enable  
0
0
0
0
Bus_Off Status Interrupt Enable  
Warning Status Interrupt Enable  
Error Passive Interrupt Enable  
EWE  
0
EPE  
0
ELOE  
BEUE  
BECE  
DRXE  
TOOE  
MRAFE  
TSWE  
TEFLE  
TEFFE  
TEFW  
TEFNE  
TFEE  
TCFE  
TCE  
0
Error Logging Overflow Interrupt Enable  
Bit Error Uncorrected Interrupt Enable  
Bit Error Corrected Interrupt Enable  
0
0
0
Message stored to Dedicated Rx Buffer Interrupt Enable  
Timeout Occurred Interrupt Enable  
0
0
Message RAM Access Failure Interrupt Enable  
Timestamp Wraparound Interrupt Enable  
Tx Event FIFO Event Lost Interrupt Enable  
Tx Event FIFO Full Interrupt Enable  
0
0
0
0
Tx Event FIFO Watermark Reached Interrupt Enable  
Tx Event FIFO New Entry Interrupt Enable  
Tx FIFO Empty Interrupt Enable  
0
0
0
Transmission Cancellation Finished Interrupt Enable  
Transmission Completed Interrupt Enable  
High Priority Message Interrupt Enable  
Rx FIFO 1 Message Lost Interrupt Enable  
Rx FIFO 1 Full Interrupt Enable  
0
8
HPME  
RF1LE  
RF1FE  
RF1WE  
RF1NE  
RF0LE  
0
7
0
6
0
5
0
Rx FIFO 1 Watermark Reached Interrupt Enable  
Rx FIFO 1 New Message Interrupt Enable  
Rx FIFO 0 Message Lost Interrupt Enable  
4
0
3
0
Copyright © 2018–2020, Texas Instruments Incorporated  
89  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Table 43. Interrupt Enable Field Descriptions (continued)  
Bit  
2
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
RF0FE  
RF0WE  
RF0NE  
0
0
0
Rx FIFO 0 Full Interrupt Enable  
Rx FIFO 0 Watermark Reached Interrupt Enable  
Rx FIFO 0 New Message Interrupt Enable  
1
0
90  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.20 Interrupt Line Select (address = h1058) [reset = h00000000]  
The Interrupt Line Select register assigns an interrupt generated by a specific interrupt flag from the Interrupt  
Register to one of the two module interrupt lines. For interrupt generation the respective interrupt line has to be  
enabled via ILE.EINT0 and ILE.EINT1.  
0 – Interrupt assigned to interrupt line m_can_int0  
1 – Interrupt assigned to interrupt line m_can_int1  
Figure 67. Interrupt Line Select Register  
31  
30  
29  
28  
27  
26  
25  
24  
RSVD  
R
ARAL  
R/W  
PEDL  
R/W  
PEAL  
R/W  
WDIL  
R/W  
BOL  
R/W  
EWL  
R/W  
23  
22  
21  
20  
19  
18  
17  
16  
EPL  
R/W  
ELOL  
R/W  
BEUL  
R/W  
BECL  
R/W  
DRXL  
R/W  
TOOL  
R/W  
MRAFL  
R/W  
TSWL  
R/W  
15  
14  
13  
12  
11  
10  
9
8
TEFLL  
R/W  
TEFFL  
R/W  
TEFWL  
R/W  
TEFNL  
R/W  
TFEL  
R/W  
TCFL  
R/W  
TCL  
R/W  
HPML  
R/W  
7
6
5
4
3
2
1
0
RF1LL  
R/W  
RF1FL  
R/W  
RF1WL  
R/W  
RF1NL  
R/W  
RF0LL  
R/W  
RF0FL  
R/W  
RF0WL  
R/W  
RF0NL  
R/W  
Table 44. Interrupt Line Select Field Descriptions  
Bit  
31:30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
Field  
Type  
R
Reset  
0x0  
0
Description  
RSVD  
ARAL  
PEDL  
PEAL  
WDIL  
BOL  
Reserved  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Access to Reserved Address Line  
Protocol Error in Data Phase Line  
0
0
Protocol Error in Arbitration Phase Line  
Watchdog Interrupt Line  
0
0
Bus_Off Status Interrupt Line  
EWL  
0
Warning Status Interrupt Line  
EPL  
0
Error Passive Interrupt Line  
ELOL  
BEUL  
BECL  
DRXL  
TOOL  
MRAFL  
TSWL  
TEFLL  
TEFFL  
TEFWL  
TEFNL  
TFEL  
0
Error Logging Overflow Interrupt Line  
Bit Error Uncorrected Interrupt Line  
Bit Error Corrected Interrupt Line  
0
0
0
Message stored to Dedicated Rx Buffer Interrupt Line  
Timeout Occurred Interrupt Line  
0
0
Message RAM Access Failure Interrupt Line  
Timestamp Wraparound Interrupt Line  
Tx Event FIFO Event Lost Interrupt Line  
Tx Event FIFO Full Interrupt Line  
0
0
0
0
Tx Event FIFO Watermark Reached Interrupt Line  
Tx Event FIFO New Entry Interrupt Line  
Tx FIFO Empty Interrupt Line  
0
0
TCFL  
TCL  
0
Transmission Cancellation Finished Interrupt Line  
Transmission Completed Interrupt Line  
High Priority Message Interrupt Line  
Rx FIFO 1 Message Lost Interrupt Line  
Rx FIFO 1 Full Interrupt Line  
0
8
HPML  
RF1LL  
RF1FL  
RF1WL  
RF1NL  
RF0LL  
0
7
0
6
0
5
0
Rx FIFO 1 Watermark Reached Interrupt Line  
Rx FIFO 1 New Message Interrupt Line  
Rx FIFO 0 Message Lost Interrupt Line  
4
0
3
0
Copyright © 2018–2020, Texas Instruments Incorporated  
91  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Table 44. Interrupt Line Select Field Descriptions (continued)  
Bit  
2
Field  
Type  
R/W  
R/W  
R/W  
Reset  
Description  
RF0FL  
RF0WL  
RF0NL  
0
0
0
Rx FIFO 0 Full Interrupt Line  
Rx FIFO 0 Watermark Reached Interrupt Line  
Rx FIFO 0 New Message Interrupt Line  
1
0
92  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.21 Interrupt Line Enable (address = h105C) [reset = h00000000]  
Figure 68. Interrupt Line Enable Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
RSVD  
R
EINT1  
R/W  
EINT0  
R/W  
Table 45. Interrupt Line Enable Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
Reserved  
31:24  
23:16  
15:8  
7:2  
RSVD  
RSVD  
RSVD  
RSVD  
R
0x0  
Reserved  
R
0x0  
Reserved  
R
0x0  
Reserved  
Enable Interrupt Line 1  
1
0
EINT1  
EINT0  
R/W  
R/w  
0
0
0 - Interrupt line m_can_int1 disabled  
1 - Interrupt line m_can_int1 enabled  
Enable Interrupt Line 0  
0 - Interrupt line m_can_int0 disabled  
1 - Interrupt line m_can_int0 enabled  
Copyright © 2018–2020, Texas Instruments Incorporated  
93  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.22 Reserved (address = h1060 - h107C) [reset = h00000000]  
Figure 69. Reserved  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
RSVD  
R
Table 46. Reserved Field Descriptions  
Bit  
31:0  
Field  
Type  
Reset  
Description  
RSVD  
R
0
Reserved  
94  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.23 Global Filter Configuration (address = h1080) [reset = h00000000]  
Figure 70. Global Filter Configuration Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
RSVD  
R
ANFS[1:0]  
RP  
ANFE[1:0]  
RP  
RRFS  
RP  
RRFE  
RP  
Table 47. Global Filter Configuration Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
31:24  
23:16  
15:8  
7:6  
RSVD  
RSVD  
RSVD  
RSVD  
R
0x0  
R
0x0  
R
0x0  
Accept Non-matching Frames Standard  
Defines how received messages with 11-bit IDs that do not  
match any element of the filter list are treated.  
00 - Accept in Rx FIFO 0  
01 - Accept in Rx FIFO 1  
10 - Reject  
5:4  
3:2  
ANFS[1:0]  
ANFE[1:0]  
RP  
RP  
0x0  
0x0  
11 - Reject  
Accept Non-matching Frames Extended  
Defines how received messages with 29-bit IDs that do not  
match any element of the filter list are treated.  
00 - Accept in Rx FIFO 0  
01 - Accept in Rx FIFO 1  
10 - Reject  
11 - Reject  
Reject Remote Frames Standard  
1
0
RRFS  
RRFE  
RP  
RP  
0
0
0 - Filter remote frames with 11-bit standard IDs  
1 - Reject all remote frames with 11-bit standard IDs  
Reject Remote Frames Extended  
0 - Filter remote frames with 29-bit extended IDs  
1 - Reject all remote frames with 29-bit extended IDs  
Copyright © 2018–2020, Texas Instruments Incorporated  
95  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.24 Standard ID Filter Configuration (address = h1084) [reset = h00000000]  
The MRAM and start address for this register, FLSSA, has special consideration.  
The start address must be word aligned (32-bit) in the MRAM. The 2 least significant bits are ignored on a  
write to ensure this behavior.  
When entering the MRAM start address, the 0x8000 prefix is NOT necessary. For example, if the desired  
start address is 0x8634, then bits SA[15:0] will be 0x0634.  
Figure 71. Standard ID Filter Configuration Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
LSS[7:0]  
RP  
FLSSA[15:8]  
RP  
1
0
FLSSA[7:0]  
RP  
Table 48. Standard ID Filter Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:24  
RSVD  
R
0x0  
Reserved  
List Size Standard  
0 - No standard Message ID filter  
1-128 - Number of standard Message ID filter elements  
>128 - Values greater than 128 are interpreted as 128  
23:16  
LSS[7:0]  
RP  
RP  
0x0  
0x0  
Filter List Standard Start Address  
Start address of standard Message ID filter list  
15:0  
FLSSA[15:0]  
96  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.25 Extended ID Filter Configuration (address = h1088) [reset = h00000000]  
The MRAM and start address for this register, FLSEA, has special consideration.  
The start address must be word aligned (32-bit) in the MRAM. The 2 least significant bits are ignored on a  
write to ensure this behavior.  
When entering the MRAM start address, the 0x8000 prefix is NOT necessary. For example, if the desired  
start address is 0x8634, then bits SA[15:0] will be 0x0634.  
Figure 72. Extended ID Filter Configuration Register  
31  
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
23  
RSVD  
R
19  
LSE[6:0]  
RP  
15  
11  
FLSEA[15:8]  
RP  
7
3
1
0
FLSEA[7:0]  
RP  
Table 49. Extended ID Filter Configuration Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
0
Description  
Reserved  
Reserved  
31:24  
23  
RSVD  
RSVD  
R
List Size Extended  
0 - No extended Message ID filter  
1-64 - Number of extended Message ID filter elements  
>64 - Values greater than 64 are interpreted as 64  
22:16  
15:0  
LSE[6:0]  
RP  
RP  
0x0  
0x0  
Filter List Extended Start Address  
Start address of extended Message ID filter list  
FLSEA[15:0]  
Copyright © 2018–2020, Texas Instruments Incorporated  
97  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.26 Reserved (address = h108C) [reset = h00000000]  
Figure 73. Reserved  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
RSVD  
R
Table 50. Reserved Field Descriptions  
Bit  
31:0  
Field  
Type  
Reset  
Description  
RSVD  
R
0
Reserved  
98  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.27 Extended ID AND Mask (address = h1090) [reset = h1FFFFFFF]  
Figure 74. Extended ID AND Mask Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
EIDM[28:24]  
RP  
EIDM[23:16]  
RP  
EIDM[15:8]  
RP  
1
0
RP-0xFF  
RP  
Table 51. Extended ID AND Mask Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Reserved  
31:30  
RSVD  
R
2'b00  
Extended ID Mask  
For acceptance filtering of extended frames the Extended ID  
29:24  
EIDM[28:24]  
RP  
RP  
6'b011111 AND Mask is ANDed with the Message ID of a received frame.  
Intended for masking of 29-bit IDs in SAE J1939. With the reset  
value of all bits set to one the mask is not active.  
Extended ID Mask  
For acceptance filtering of extended frames the Extended ID  
0xFFFFFF AND Mask is ANDed with the Message ID of a received frame.  
Intended for masking of 29-bit IDs in SAE J1939. With the reset  
value of all bits set to one the mask is not active.  
23:0  
EIDM[23:16] to EIDM[7:0]  
Copyright © 2018–2020, Texas Instruments Incorporated  
99  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.28 High Priority Message Status (address = h1094) [reset = h00000000]  
Figure 75. High Priority Message Status Register  
31  
23  
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
15  
FLST  
R
11  
FIDX[6:0]  
R
7
3
1
0
MSI[1:0]  
R
BIDX[5:0]  
R
Table 52. High Priority Message Status Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
Reserved  
Reserved  
Filter List  
31:24  
23:16  
RSVD  
RSVD  
R
0x0  
Indicates the filter list of the matching filter element.  
0 - Standard Filter List  
1 - Extended Filter List  
15  
FLST  
R
R
0x0  
0x0  
Filter Index  
14:8  
FIDX[6:0]  
Index of matching filter element.  
Range is 0 to SIDFC.LSS - 1 resp. XIDFC.LSE - 1.  
Message Storage Indicator  
00 - No FIFO selected  
7:6  
5:0  
MSI[1:0]  
R
R
0x0  
0x0  
01 - FIFO message lost  
10 - Message stored in FIFO 0  
11 - Message stored in FIFO 1  
Buffer Index  
BIDX[5:0]  
Index of Rx FIFO element to which the message was stored.  
Only valid when MSI[1] = ‘1’  
100  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.29 New Data 1 (address = h1098) [reset = h00000000]  
Figure 76. New Data 1 Register  
31  
30  
29  
28  
27  
26  
25  
24  
ND31  
R/W  
ND30  
R/W  
ND29  
R/W  
ND28  
R/W  
ND27  
R/W  
ND26  
R/W  
ND25  
R/W  
ND24  
R/W  
23  
22  
21  
20  
19  
18  
17  
16  
ND23  
R/W  
ND22  
R/W  
ND21  
R/W  
ND20  
R/W  
ND19  
R/W  
ND18  
R/W  
ND17  
R/W  
ND16  
R/W  
15  
14  
13  
12  
11  
10  
9
8
ND15  
R/W  
ND14  
R/W  
ND13  
R/W  
ND12  
R/W  
ND11  
R/W  
ND10  
R/W  
ND9  
R/W  
ND8  
R/W  
7
6
5
4
3
2
1
0
ND7  
R/W  
ND6  
R/W  
ND5  
R/W  
ND4  
R/W  
ND3  
R/W  
ND2  
R/W  
ND1  
R/W  
ND1  
R/W  
Table 53. New Data 1 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
The register holds the New Data flags of Rx Buffers 0 to 31. The  
flags are set when the respective Rx Buffer has been updated  
from a received frame. The flags remain set until the Host clears  
them. A flag is cleared by writing a ’1’ to the corresponding bit  
position. Writing a ’0’ has no effect. A hard reset will clear the  
register.  
31:0  
ND31 to ND0  
R/W  
0
0 - Rx Buffer not updated  
1 - Rx Buffer updated from new message  
Copyright © 2018–2020, Texas Instruments Incorporated  
101  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.30 New Data 2 (address = h109C) [reset = h00000000]  
Figure 77. New Data 2 Register  
31  
30  
29  
28  
27  
26  
25  
24  
ND63  
R/W  
ND62  
R/W  
ND61  
R/W  
ND60  
R/W  
ND59  
R/W  
ND58  
R/W  
ND57  
R/W  
ND56  
R/W  
23  
22  
21  
20  
19  
18  
17  
16  
ND55  
R/W  
ND54  
R/W  
ND53  
R/W  
ND52  
R/W  
ND51  
R/W  
ND50  
R/W  
ND49  
R/W  
ND48  
R/W  
15  
14  
13  
12  
11  
10  
9
8
ND47  
R/W  
ND46  
R/W  
ND45  
R/W  
ND44  
R/W  
ND43  
R/W  
ND42  
R/W  
ND41  
R/W  
ND40  
R/W  
7
6
5
4
3
2
1
0
ND39  
R/W  
ND38  
R/W  
ND37  
R/W  
ND36  
R/W  
ND35  
R/W  
ND34  
R/W  
ND33  
R/W  
ND32  
R/W  
Table 54. New Data 2 Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
The register holds the New Data flags of Rx Buffers 32 to 63.  
The flags are set when the respective Rx Buffer has been  
updated from a received frame. The flags remain set until the  
Host clears them. A flag is cleared by writing a ’1’ to the  
corresponding bit position. Writing a ’0’ has no effect. A hard  
reset will clear the register  
31:0  
ND63 to ND32  
R/W  
0
0 - Rx Buffer not updated  
1 - Rx Buffer updated from new message  
102  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.31 Rx FIFO 0 Configuration (address = h10A0) [reset = h00000000]  
The MRAM and start address for this register, F0SA, has special consideration.  
The start address must be word aligned (32-bit) in the MRAM. The 2 least significant bits are ignored on a  
write to ensure this behavior.  
When entering the MRAM start address, the 0x8000 prefix is NOT necessary. For example, if the desired  
start address is 0x8634, then bits SA[15:0] will be 0x0634.  
Figure 78. Rx FIFO 0 Configuration Register  
31  
F0OM  
RP  
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
F0WM[6:0]  
RP  
26  
18  
10  
2
25  
17  
9
24  
16  
8
23  
RSVD  
R
19  
F0S[6:0]  
RP  
15  
11  
F0SA[15:8]  
RP  
7
3
1
0
F0SA[7:0]  
RP  
Table 55. Rx FIFO 0 Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
FIFO 0 Operation Mode  
FIFO 0 can be operated in blocking or in overwrite mode  
0 - FIFO 0 blocking mode  
31  
F0OM  
RP  
0
1 - FIFO 0 overwrite mode  
Rx FIFO 0 Watermark  
0 - Watermark interrupt disabled  
1-64 - Level for Rx FIFO 0 watermark interrupt (IR.RF0W)  
>64 - Watermark interrupt disabled  
32:24  
23  
F0WM[6:0]  
RSVD  
RP  
R
0x0  
0
Reserved  
Rx FIFO 0 Size  
0 - No Rx FIFO 0  
22:16  
15:0  
F0S[6:0]  
RP  
RP  
0x0  
1-64 - Number of Rx FIFO 0 elements  
>64 - Values greater than 64 are interpreted as 64  
The Rx FIFO 0 elements are indexed from 0 to F0S-1  
Rx FIFO 0 Start Address  
Start address of Rx FIFO 0 in Message RAM  
F0SA[15:0]  
0x00  
Copyright © 2018–2020, Texas Instruments Incorporated  
103  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.32 Rx FIFO 0 Status (address = h10A4) [reset = h00000000]  
Figure 79. Rx FIFO 0 Status Register  
31  
23  
15  
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
RF0L  
R
24  
F0F  
R
RSVD  
R
17  
16  
RSVD  
R
F0PI[5:0]  
R
9
8
RSVD  
R
F0GI[5:0]  
R
7
RSVD  
R
1
0
F0FL[6:0]  
R
Table 56. Rx FIFO 0 Status Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:26  
RSVD  
R
0x0  
Reserved  
Rx FIFO 0 Message Lost  
This bit is a copy of interrupt flag IR.RF0L. When IR.RF0L is  
reset, this bit is also reset.  
0 - No Rx FIFO 0 message lost  
1 - Rx FIFO 0 message lost; also set after write attempt to Rx  
FIFO 0 of size zero  
25  
RF0L  
R
0
Note: Overwriting the oldest message when RXF0C.F0OM = ‘1’  
will not set this flag  
Rx FIFO 0 Full  
24  
F0F  
R
0
0 - Rx FIFO 0 not full  
1 - Rx FIFO 0 full  
23:22  
21:16  
15:14  
13:8  
7
RSVD  
R
R
R
R
R
R
0x0  
0x0  
0x0  
0x0  
0
Reserved  
Rx FIFO 0 Put Index  
Rx FIFO 0 write index pointer, range 0 to 63  
F0PI[5:0]  
RSVD  
Reserved  
Rx FIFO 0 Get Index  
Rx FIFO 0 read index pointer, range 0 to 63  
F0GI[5:0]  
RSVD  
Reserved  
Rx FIFO 0 Fill Level  
Number of elements stored in Rx FIFO 0, range 0 to 64.  
6:0  
F0FL[6:0]  
0x0  
104  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.33 Rx FIFO 0 Acknowledge (address = h10A8) [reset = h00000000]  
Figure 80. Rx FIFO 0 Acknowledge Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
RSVD  
R
F0AI[5:0]  
R/W  
Table 57. Rx FIFO 0 Acknowledge Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
Reserved  
31:24  
23:16  
15:8  
7:6  
RSVD  
RSVD  
RSVD  
RSVD  
R
0x0  
Reserved  
R
0x0  
Reserved  
R
0x0  
Reserved  
Rx FIFO 0 Acknowledge Index  
After the Host has read a message or a sequence of messages  
from Rx FIFO 0 it has to write the buffer index of the last  
element read from Rx FIFO 0 to F0AI. This will set the Rx FIFO  
0 Get Index RXF0S.F0GI to F0AI + 1 and update the FIFO 0 Fill  
Level RXF0S.F0FL.  
5:0  
F0AI[5:0]  
R/W  
0x0  
Copyright © 2018–2020, Texas Instruments Incorporated  
105  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.34 Rx Buffer Configuration (address = h10AC) [reset = h00000000]  
Figure 81. Rx Buffer Configuration Register  
31  
23  
30  
22  
29  
28  
27  
26  
25  
17  
24  
16  
RSVD  
21  
20  
19  
18  
RSVD  
R
15  
7
14  
6
13  
5
12  
4
11  
3
10  
2
9
1
8
0
RBSA[15:8]  
RP  
RBSA[7:0]  
RP  
Table 58. Rx Buffer Configuration Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
31:24  
23:16  
RSVD  
RSVD  
Reserved  
R
0x0  
Reserved  
Rx Buffer Start Address  
15:0  
RBSA[15:0]  
RP  
0x0  
Configures the start address of the Rx Buffers section in the  
Message RAM . Also used to reference debug messages A,B,C  
106  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.35 Rx FIFO 1 Configuration (address = h10B0) [reset = h00000000]  
The MRAM and start address for this register, F1SA, has special consideration.  
The start address must be word aligned (32-bit) in the MRAM. The 2 least significant bits are ignored on a  
write to ensure this behavior.  
When entering the MRAM start address, the 0x8000 prefix is NOT necessary. For example, if the desired  
start address is 0x8634, then bits SA[15:0] will be 0x0634.  
Figure 82. Rx FIFO 1 Configuration Register  
31  
F10M  
RP  
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
F1WM[6:0]  
RP  
26  
18  
10  
2
25  
17  
9
24  
16  
8
23  
RSVD  
R
19  
F1S[6:0]  
RP  
15  
11  
F1SA[15:8]  
RP  
7
3
1
0
F1SA[7:0]  
RP  
Table 59. Rx FIFO 1 Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
FIFO 1 Operation Mode  
FIFO 1 can be operated in blocking or in overwrite mode  
0 - FIFO 1 blocking mode  
31  
F10M  
RP  
0
1- FIFO 1 overwrite mode  
Rx FIFO 1 Watermark  
0 - Watermark interrupt disabled  
1-64 - Level for Rx FIFO 1 watermark interrupt (IR.RF1W)  
>64 - Watermark interrupt disabled  
30:24  
23  
F1WM[6:0]  
RSVD  
RP  
R
0x0  
0
Reserved  
Rx FIFO 1 Size  
0 - No Rx FIFO 1  
20:16  
15:0  
F1S[6:0]  
RP  
RP  
0x0  
0x0  
1-64 - Number of Rx FIFO 1 elements  
>64 - Values greater than 64 are interpreted as 64  
The Rx FIFO 1 elements are indexed from 0 to F1S - 1  
Rx FIFO 1 Start Address  
Start address of Rx FIFO 1 in Message RAM  
F1SA[15:0]  
Copyright © 2018–2020, Texas Instruments Incorporated  
107  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.36 Rx FIFO 1 Status (address = h10B4) [reset = h00000000]  
Figure 83. Rx FIFO 1 Status Register  
31  
23  
15  
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
26  
18  
10  
2
25  
RF1L  
R
24  
F1F  
R
DMS[1:0]  
R
RSVD  
R
17  
16  
RSVD  
R
F1PI[5:0]  
R
9
8
RSVD  
R
F1GI[5:0]  
R
3
7
RSVD  
R
1
0
F1FL[6:0]  
R
Table 60. Rx FIFO 1 Status Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Debug Message Status  
00 - Idle state, wait for reception of debug messages, DMA  
request is cleared  
01 - Debug message A received  
10 - Debug messages A, B received  
11 - Debug messages A, B, C received, DMA request is set  
31:30  
29:26  
DMS[1:0]  
RSVD  
R
0x0  
R
0x0  
Reserved  
Rx FIFO 1 Message Lost  
This bit is a copy of interrupt flag IR.RF1L. When IR.RF1L is  
reset, this bit is also reset  
0 - No Rx FIFO 1 message lost  
1 - Rx FIFO 1 message lost, also set after write attempt to Rx  
FIFO 1 of size zero  
25  
RF1L  
R
0
Note: Overwriting the oldest message when RXF1C.F1OM = ‘1’  
will not set this flag.  
Rx FIFO 1 Full  
24  
F1F  
R
0
0 - Rx FIFO 1 not full  
1 - Rx FIFO 1 full  
23:22  
21:16  
15:14  
13:8  
7
RSVD  
R
R
R
R
R
R
0x0  
0x0  
0x0  
0x0  
0
Reserved  
Rx FIFO 1 Put Index  
Rx FIFO 1 write index pointer, range 0 to 63  
F1PI[5:0]  
RSVD  
Reserved  
Rx FIFO 1 Get Index  
Rx FIFO 1 read index pointer, range 0 to 63.  
F1GI[5:0]  
RSVD  
Reserved  
Rx FIFO 1 Fill Level  
Number of elements stored in Rx FIFO 1, range 0 to 64.  
6:0  
F1FL[6:0]  
0x0  
108  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.37 Rx FIFO 1 Acknowledge (address = h10B8) [reset = h00000000]  
Figure 84. Rx FIFO 1 Acknowledge Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
RSVD  
R
F1AI[5:0]  
R/W  
Table 61. Rx FIFO 1 Acknowledge Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
Reserved  
31:24  
23:16  
15:8  
7:6  
RSVD  
RSVD  
RSVD  
RSVD  
R
0x0  
Reserved  
R
0x0  
Reserved  
R
0x0  
Reserved  
Rx FIFO 1 Acknowledge Index  
After the Host has read a message or a sequence of messages  
from Rx FIFO 1 it has to write the buffer index of the last  
element read from Rx FIFO 1 to F1AI. This will set the Rx FIFO  
1 Get Index RXF1S.F1GI to F1AI + 1 and update the FIFO 1 Fill  
Level RXF1S.F1FL.  
5:0  
F1AI[5:0]  
R/W  
0x0  
Copyright © 2018–2020, Texas Instruments Incorporated  
109  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.38 Rx Buffer/FIFO Element Size Configuration (address = h10BC) [reset = h00000000]  
Figure 85. Rx Buffer/FIFO Element Size Configuration Register  
31  
23  
15  
30  
22  
14  
6
29  
21  
28  
20  
12  
4
27  
19  
11  
26  
18  
10  
2
25  
17  
24  
16  
8
RSVD  
R
RSVD  
R
13  
RSVD  
R
9
RBDS[2:0]  
RP  
7
RSVD  
R
5
3
RSVD  
R
1
0
F1DS[2:0]  
RP  
F0DS[2:0]  
RP  
Table 62. Rx Buffer/FIFO Element Size Configuration Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
Reserved  
Reserved  
Reserved  
31:24  
31:24  
31:24  
RSVD  
RSVD  
RSVD  
R
0x0  
R
0x0  
Rx Buffer Data Field Size  
000 - 8 byte data field  
001 - 12 byte data field  
010 - 16 byte data field  
011 - 20 byte data field  
100 - 24 byte data field  
101 - 32 byte data field  
110 - 48 byte data field  
111 - 64 byte data field  
10:8  
RBDS[2:0]  
RSVD  
RP  
R
0x0  
0
7
Reserved  
Rx FIFO 1 Data Field Size  
000 - 8 byte data field  
001 - 12 byte data field  
010 - 16 byte data field  
011 - 20 byte data field  
100 - 24 byte data field  
101 - 32 byte data field  
110 - 48 byte data field  
111 - 64 byte data field  
6:4  
3
F1DS[2:0]  
RSVD  
RP  
R
0x0  
0
Reserved  
Rx FIFO 0 Data Field Size  
000 - 8 byte data field  
001 - 12 byte data field  
010 - 16 byte data field  
011 - 20 byte data field  
100 - 24 byte data field  
101 - 32 byte data field  
110 - 48 byte data field  
111 - 64 byte data field  
2:0  
F0DS[2:0]  
RP  
0x0  
110  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.39 Tx Buffer Configuration (address = h10C0) [reset = h00000000]  
The MRAM and start address for this register, TBSA, has special consideration.  
The start address must be word aligned (32-bit) in the MRAM. The 2 least significant bits are ignored on a  
write to ensure this behavior.  
When entering the MRAM start address, the 0x8000 prefix is NOT necessary. For example, if the desired  
start address is 0x8634, then bits SA[15:0] will be 0x0634.  
Figure 86. Tx Buffer Configuration Register  
31  
RSVD  
R
30  
TFQM  
RP  
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
TFQS[5:0]  
RP  
23  
15  
7
22  
14  
6
RSVD  
R
NDTB[5:0]  
RP  
TBSA[15:8]  
RP  
1
0
TBSA[7:0]  
RP  
Table 63. Tx Buffer Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31  
RSVD  
R
0
Reserved  
Tx FIFO/Queue Mode  
0 - Tx FIFO operation  
1 - Tx Queue operation  
30  
TFQM  
RP  
0
Transmit FIFO/Queue Size  
0 - No Tx FIFO/Queue  
1-32 - Number of Tx Buffers used for Tx FIFO/Queue  
>32 - Values greater than 32 are interpreted as 32  
29:24  
23:22  
21:16  
TFQS[5:0]  
RSVD  
RP  
R
0x0  
0x0  
0x0  
Reserved  
Number of Dedicated Transmit Buffers  
0 - No Dedicated Tx Buffers  
1-32 - Number of Dedicated Tx Buffers  
>32 - Values greater than 32 are interpreted as 32  
NDTB[5:0]  
RP  
Tx Buffers Start Address  
Start address of Tx Buffers section in Message RAM  
Note: Be aware that the sum of TFQS and NDTB may be not  
greater than 32. There is no check for erroneous configurations.  
The Tx Buffers section in the Message RAM starts with the  
dedicated Tx Buffers.  
15:0  
TBSA[15:0]  
RP  
0x0  
Copyright © 2018–2020, Texas Instruments Incorporated  
111  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.40 Tx FIFO/Queue Status (address = h10C4) [reset = h00000000]  
Figure 87. Tx FIFO/Queue Status Register  
31  
23  
15  
7
30  
22  
29  
28  
20  
12  
4
27  
19  
11  
3
26  
25  
17  
9
24  
16  
8
RSVD  
R
21  
TFQF  
R
18  
TFQPI[4:0]  
R
RSVD  
R
14  
RSVD  
R
13  
10  
TFGI[4:0]  
R
6
5
2
1
0
RSVD  
R
TFFL[5:0]  
R
Table 64. Tx FIFO/Queue Status Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
Reserved  
Reserved  
31:24  
23:22  
RSVD  
RSVD  
R
0x0  
Tx FIFO/Queue Full  
21  
TFQF  
R
0
0 - Tx FIFO/Queue not full  
1 - Tx FIFO/Queue full  
Tx FIFO/Queue Put Index  
Tx FIFO/Queue write index pointer, range 0 to 31.  
20:16  
15:13  
TFQPI[4:0]  
RSVD  
R
R
0x0  
0x0  
Reserved  
Tx FIFO Get Index  
12:8  
7:6  
TFGI[4:0]  
RSVD  
R
R
0x0  
0x0  
Tx FIFO read index pointer, range 0 to 31. Read as zero when  
Tx Queue operation is configured (TXBC.TFQM = ‘1’).  
Reserved  
Tx FIFO Free Level  
Number of consecutive free Tx FIFO elements starting from  
TFGI, range 0 to 32. Read as zero when Tx Queue operation is  
configured (TXBC.TFQM = ‘1’)  
Note: In case of mixed configurations where dedicated Tx  
Buffers are combined with a Tx FIFO or a Tx Queue, the Put  
and Get Indices indicate the number of the Tx Buffer starting  
with the first dedicated Tx Buffers  
5:0  
TFFL[5:0]  
R
0x0  
Example: For a configuration of 12 dedicated Tx Buffers and a  
Tx FIFO of 20 Buffers a Put Index of 15 points to the fourth  
buffer of the Tx FIFO  
112  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.41 Tx Buffer Element Size Configuration (address = h10C8) [reset = h00000000]  
Figure 88. Tx Buffer Element Size Configuration Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
5
RSVD  
R
1
0
TBDS[2:0]  
RP  
Table 65. Tx Buffer Element Size Configuration Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
Reserved  
Reserved  
Reserved  
Reserved  
31:24  
23:16  
15:8  
7:3  
RSVD  
RSVD  
RSVD  
RSVD  
R
0x0  
R
0x0  
R
0x0  
Tx Buffer Data Field Size  
000 - 8 byte data field  
001 - 12 byte data field  
010 - 16 byte data field  
011 - 20 byte data field  
100 - 24 byte data field  
101 - 32 byte data field  
110 - 48 byte data field  
111 - 64 byte data field  
2:0  
TBDS[2:0]  
RP  
0x0  
Note: In case the data length code DLC of a Tx Buffer element  
is configured to a value higher than the Tx Buffer data field size  
TXESC.TBDS, the bytes not defined by the Tx Buffer are  
transmitted as “0xCC” (padding bytes).  
Copyright © 2018–2020, Texas Instruments Incorporated  
113  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.42 Tx Buffer Request Pending (address = h10CC) [reset = h00000000]  
Figure 89. Tx Buffer Request Pending Register  
31  
TRP31  
R
30  
TRP30  
R
29  
TRP29  
R
28  
TRP28  
R
27  
TRP27  
R
26  
TRP26  
R
25  
TRP22  
R
24  
TRP24  
R
23  
TRP23  
R
22  
TRP22  
R
21  
TRP21  
R
20  
TRP20  
R
19  
TRP19  
R
18  
TRP18  
R
17  
TRP17  
R
16  
TRP16  
R
15  
TRP15  
R
14  
TRP14  
R
13  
TRP13  
R
12  
TRP12  
R
11  
TRP11  
R
10  
TRP10  
R
9
TRP9  
R
8
TRP8  
R
7
TRP7  
R
6
TRP6  
R
5
TRP5  
R
4
TRP4  
R
3
TRP3  
R
2
TRP2  
R
1
TRP1  
R
0
TRP0  
R
Table 66. Tx Buffer Request Pending Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Transmission Request Pending  
Each Tx Buffer has its own Transmission Request Pending bit.  
The bits are set via register TXBAR.  
The bits are reset after a requested transmission has completed  
or has been cancelled via register TXBCR. TXBRP bits are set  
only for those Tx Buffers configured via TXBC. After a TXBRP  
bit has been set, a Tx scan is started to check for the pending  
Tx request with the highest priority (Tx Buffer with lowest  
Message ID).  
A cancellation request resets the corresponding transmission  
request pending bit of register TXBRP. In case a transmission  
has already been started when a cancellation is requested, this  
is done at the end of the transmission, regardless whether the  
transmission was successful or not. The cancellation request  
bits are reset directly after the corresponding TXBRP bit has  
been reset.  
After a cancellation has been requested, a finished cancellation  
is signaled via TXBCF  
31:0  
TRP31 to TRP0  
R
0
after  
successful  
transmission  
together  
with  
the  
corresponding TXBTO bit  
when the transmission has not yet been started at the point  
of cancellation  
when the transmission has been aborted due to lost  
arbitration  
when an error occurred during frame transmission  
In DAR mode all transmissions are automatically cancelled if  
they are not successful. The corresponding TXBCF bit is set for  
all unsuccessful transmissions.  
0 - No transmission request pending  
1- Transmission request pending  
Note: TXBRP bits which are set while a Tx scan is in progress  
are not considered during this particular Tx scan. In case a  
cancellation is requested for such a Tx Buffer, this Add Request  
is cancelled immediately, the corresponding TXBRP bit is reset.  
114  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.43 Tx Buffer Add Request (address = h10D0) [reset = h00000000]  
Figure 90. Tx Buffer Add Request Register  
31  
30  
29  
28  
27  
26  
25  
24  
AR31  
R/W  
AR30  
R/W  
AR29  
R/W  
AR28  
R/W  
AR27  
R/W  
AR26  
R/W  
AR25  
R/W  
AR24  
R/W  
23  
22  
21  
20  
19  
18  
17  
16  
AR23  
R/W  
AR22  
R/W  
AR21  
R/W  
AR20  
R/W  
AR19  
R/W  
AR18  
R/W  
AR17  
R/W  
AR16  
R/W  
15  
14  
13  
12  
11  
10  
9
8
AR14  
R/W  
AR14  
R/W  
AR13  
R/W  
AR12  
R/W  
AR11  
R/W  
AR10  
R/W  
AR9  
R/W  
AR8  
R/W  
7
6
5
4
3
2
1
0
AR7  
R/W  
AR6  
R/W  
AR5  
R/W  
AR4  
R/W  
AR3  
R/W  
AR2  
R/W  
AR1  
R/W  
AR0  
R/W  
Table 67. Tx Buffer Add Request Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Add Request  
Each Tx Buffer has its own Add Request bit. Writing a ‘1’ will set  
the corresponding Add Request bit; writing a ‘0’ has no impact.  
This enables the Host to set transmission requests for multiple  
Tx Buffers with one write to TXBAR. TXBAR bits are set only for  
those Tx Buffers configured via TXBC. When no Tx scan is  
running, the bits are reset immediately, else the bits remain set  
until the Tx scan process has completed.  
31:0  
AR31 to AR0  
R/W  
0
0 - No transmission request added  
1 - Transmission requested added  
Note: If an add request is applied for a Tx Buffer with pending  
transmission request (corresponding TXBRP bit already set),  
this add request is ignored.  
Copyright © 2018–2020, Texas Instruments Incorporated  
115  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.43.1 Tx Buffer Cancellation Request (address = h10D4 [reset = h00000000]  
Figure 91. Tx Buffer Cancellation Request Register  
31  
30  
29  
28  
27  
26  
25  
24  
CR31  
R/W  
CR30  
R/W  
CR29  
R/W  
CR28  
R/W  
CR27  
R/W  
CR26  
R/W  
CR25  
R/W  
CR24  
R/W  
23  
22  
21  
20  
19  
18  
17  
16  
CR23  
R/W  
CR22  
R/W  
CR21  
R/W  
CR20  
R/W  
CR19  
R/W  
CR18  
R/W  
CR17  
R/W  
CR16  
R/W  
15  
14  
13  
12  
11  
10  
9
8
CR15  
R/W  
CR14  
R/W  
CR13  
R/W  
CR12  
R/W  
CR11  
R/W  
CR10  
R/W  
CR9  
R/W  
CR8  
R/W  
7
6
5
4
3
2
1
0
CR7  
R/W  
CR6  
R/W  
CR5  
R/W  
CR4  
R/W  
CR3  
R/W  
CR2  
R/W  
CR1  
R/W  
CR0  
R/W  
Table 68. Tx Buffer Cancellation Request Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Cancellation Request  
Each Tx Buffer has its own Cancellation Request bit. Writing a  
‘1’ will set the corresponding Cancellation Request bit; writing a  
‘0’ has no impact. This enables the Host to set cancellation  
requests for multiple Tx Buffers with one write to TXBCR.  
TXBCR bits are set only for those Tx Buffers configured via  
TXBC. The bits remain set until the corresponding bit of TXBRP  
is reset.  
31:0  
CR31 to CR0  
R/W  
0
0 - No cancellation pending  
1 - Cancellation pending  
116  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.43.2 Tx Buffer Add Request Transmission Occurred (address = h10D8) [reset = h00000000]  
Figure 92. Tx Buffer Add Request Transmission Occurred Register  
31  
TO31  
R
30  
TO30  
R
29  
TO29  
R
28  
TO28  
R
27  
TO27  
R
26  
TO26  
R
25  
TO25  
R
24  
TO24  
R
23  
TO23  
R
22  
TO22  
R
21  
TO21  
R
20  
TO20  
R
19  
TO19  
R
18  
TO18  
R
17  
TO17  
R
16  
TO16  
R
15  
TO15  
R
14  
TO14  
R
13  
TO13  
R
12  
TO12  
R
11  
TO11  
R
10  
TO10  
R
9
TO9  
R
8
TO8  
R
7
TO7  
R
6
TO6  
R
5
TO5  
R
4
TO4  
R
3
TO3  
R
2
TO2  
R
1
TO1  
R
0
TO0  
R
Table 69. Tx Buffer Add Request Transmission Occurred Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Transmission Occurred  
Each Tx Buffer has its own Transmission Occurred bit. The bits  
are set when the corresponding TXBRP bit is cleared after a  
successful transmission. The bits are reset when a new  
transmission is requested by writing a ‘1’ to the corresponding  
bit of register TXBAR.  
31:0  
TO31 to TO0  
R
0
0 - No transmission occurred  
1 - Transmission occurred  
Copyright © 2018–2020, Texas Instruments Incorporated  
117  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.43.3 Tx Buffer Cancellation Finished (address = h10DC) [reset = h00000000]  
Figure 93. Tx Buffer Cancellation Finished Register  
31  
CF31  
R
30  
CF30  
R
29  
CF29  
R
28  
CF28  
R
27  
CF27  
R
26  
CF26  
R
25  
CF25  
R
24  
CF24  
R
23  
CF23  
R
22  
CF22  
R
21  
CF21  
R
20  
CF20  
R
19  
CF19  
R
18  
CF18  
R
17  
CF17  
R
16  
CF16  
R
15  
CF15  
R
14  
CF14  
R
13  
CF13  
R
12  
CF12  
R
11  
CF11  
R
10  
CF10  
R
9
CF9  
R
8
CF8  
R
7
CF7  
R
6
CF6  
R
5
CF5  
R
4
CF4  
R
3
CF3  
R
2
CF2  
R
1
CF1  
R
0
CF0  
R
Table 70. Tx Buffer Cancellation Finished Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Cancellation Finished  
Each Tx Buffer has its own Cancellation Finished bit. The bits  
are set when the corresponding TXBRP bit is cleared after a  
cancellation was requested via TXBCR. In case the  
corresponding TXBRP bit was not set at the point of  
cancellation, CF is set immediately. The bits are reset when a  
new transmission is requested by writing a ‘1’ to the  
corresponding bit of register TXBAR.  
31:0  
CF31 to CF0  
R
0
0 - No transmit buffer cancellation  
1 - Transmit buffer cancellation finished  
118  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.43.4 Tx Buffer Transmission Interrupt Enable (address = h10E0) [reset = h00000000]  
Figure 94. Tx Buffer Transmission Interrupt Enable Register  
31  
30  
29  
28  
27  
26  
25  
24  
TIE31  
R/W  
TIE30  
R/W  
TIE29  
R/W  
TIE28  
R/W  
TIE27  
R/W  
TIE26  
R/W  
TIE25  
R/W  
TIE24  
R/W  
23  
22  
21  
20  
19  
18  
17  
16  
TIE23  
R/W  
TIE22  
R/W  
TIE21  
R/W  
TIE20  
R/W  
TIE19  
R/W  
TIE18  
R/W  
TIE17  
R/W  
TIE16  
R/W  
15  
14  
13  
12  
11  
10  
9
8
TIE15  
R/W  
TIE14  
R/W  
TIE13  
R/W  
TIE12  
R/W  
TIE11  
R/W  
TIE10  
R/W  
TIE9  
R/W  
TIE8  
R/W  
7
6
5
4
3
2
1
0
TIE7  
R/W  
TIE6  
R/W  
TIE5  
R/W  
TIE4  
R/W  
TIE3  
R/W  
TIE2  
R/W  
TIE1  
R/W  
TIE0  
R/W  
Table 71. Tx Buffer Transmission Interrupt Enable Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Transmission Interrupt Enable  
Each Tx Buffer has its own Transmission Interrupt Enable bit.  
0 - Transmission interrupt disabled  
TIE31 to TIE0  
R/W  
0
1 - Transmission interrupt enable  
Copyright © 2018–2020, Texas Instruments Incorporated  
119  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.43.5 Tx Buffer Cancellation Finished Interrupt Enable (address = h10E4) [reset = h00000000]  
Figure 95. Tx Buffer Cancellation Finished Interrupt Enable Register  
31  
30  
29  
28  
27  
26  
25  
24  
CFIE31  
R/W  
CFIE30  
R/W  
CFIE29  
R/W  
CFIE28  
R/W  
CFIE27  
R/W  
CFIE26  
R/W  
CFIE25  
R/W  
CFIE24  
R/W  
23  
22  
21  
20  
19  
18  
17  
16  
CFIE23  
R/W  
CFIE22  
R/W  
CFIE21  
R/W  
CFIE20  
R/W  
CFIE19  
R/W  
CFIE18  
R/W  
CFIE17  
R/W  
CFIE16  
R/W  
15  
14  
13  
12  
11  
10  
9
8
CFIE15  
R/W  
CFIE14  
R/W  
CFIE13  
R/W  
CFIE12  
R/W  
CFIE11  
R/W  
CFIE10  
R/W  
CFIE9  
R/W  
CFIE8  
R/W  
7
6
5
4
3
2
1
0
CFIE7  
R/W  
CFIE6  
R/W  
CFIE5  
R/W  
CFIE4  
R/W  
CFIE3  
R/W  
CFIE2  
R/W  
CFIE1  
R/W  
CFIE0  
R/W  
Table 72. Tx Buffer Cancellation Finished Interrupt Enable Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
Bit 31:0 CFIE[31:0]: Cancellation Finished Interrupt Enable  
Each Tx Buffer has its own Cancellation Finished Interrupt  
Enable bit.  
31:0  
CFIE31 to CFIE0  
RW  
0
0 - Cancellation finished interrupt disabled  
1 - Cancellation finished interrupt enabled  
120  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.43.6 Reserved (address = h10E8) [reset = h00000000]  
Figure 96. Reserved  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
RSVD  
R
Table 73. Reserved Field Descriptions  
Bit  
31:0  
Field  
Type  
Reset  
Description  
RSVD  
R
0
Reserved  
Copyright © 2018–2020, Texas Instruments Incorporated  
121  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.43.7 Reserved (address = h10EC) [reset = h00000000]  
Figure 97. Reserved  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
RSVD  
R
Table 74. Reserved Field Descriptions  
Bit  
31:0  
Field  
Type  
Reset  
Description  
RSVD  
R
0
Reserved  
122  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.43.8 Tx Event FIFO Configuration (address = h10F0) [reset = h00000000]  
The MRAM and start address for this register, EFSA, has special consideration.  
The start address must be word aligned (32-bit) in the MRAM. The 2 least significant bits are ignored on a  
write to ensure this behavior.  
When entering the MRAM start address, the 0x8000 prefix is NOT necessary. For example, if the desired  
start address is 0x8634, then bits SA[15:0] will be 0x0634.  
Figure 98. Tx Event FIFO Configuration Register  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
EFWM[5:0]  
RP  
RSVD  
R
EFS[5:0]  
RP  
EFSA[15:8]  
RP  
1
0
EFSA[7:0]  
RP  
Table 75. Tx Event FIFO Configuration Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:30  
29:24  
23:22  
RSVD  
R
0x0  
Reserved  
Event FIFO Watermark  
0 - Watermark interrupt disabled  
1-32 - Level for Tx Event FIFO watermark interrupt (IR.TEFW)  
>32 - Watermark interrupt disabled  
EFWM[5:0]  
RSVD  
RP  
R
0x0  
0x0  
Reserved  
Event FIFO Size  
0 - Tx Event FIFO disabled  
21:16  
15:0  
EFS[5:0]  
RP  
RP  
0x0  
0x0  
1-32 - Number of Tx Event FIFO elements  
>32 - Values greater than 32 are interpreted as 32  
The Tx Event FIFO elements are indexed from 0 to EFS - 1  
Event FIFO Start Address  
Start address of Tx Event FIFO in Message RAM  
EFSA[15:0]  
Copyright © 2018–2020, Texas Instruments Incorporated  
123  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.43.9 Tx Event FIFO Status (address = h10F4) [reset = h00000000]  
Figure 99. Tx Event FIFO Status Register  
31  
23  
15  
7
30  
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
25  
TEFL  
R
24  
EFF  
R
RSVD  
R
22  
RSVD  
R
18  
EFPI[4:0]  
R
17  
16  
14  
RSVD  
R
10  
REFGI[4:0]  
R
9
8
6
2
1
0
RSVD  
R
EFFL[5:0]  
R
Table 76. Tx Event FIFO Status Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
31:26  
RSVD  
R
0x0  
Reserved  
Tx Event FIFO Element Lost  
This bit is a copy of interrupt flag IR.TEFL. When IR.TEFL is  
reset, this bit is also reset.  
0 - No Tx Event FIFO element lost  
1 - Tx Event FIFO element lost, also set after write attempt to Tx  
Event FIFO of size zero.  
25  
TEFL  
EFF  
R
0
Event FIFO Full  
0 - Tx Event FIFO not full  
1 - Tx Event FIFO full  
24  
R
0
23:21  
20:16  
15:13  
12:8  
7:6  
RSVD  
R
R
R
R
R
R
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Reserved  
Event FIFO Put Index  
Tx Event FIFO write index pointer, range 0 to 31.  
EFPI[4:0]  
RSVD  
Reserved  
Event FIFO Get Index  
Tx Event FIFO read index pointer, range 0 to 31.  
REFGI[4:0]  
RSVD  
Reserved  
Event FIFO Fill Level  
Number of elements stored in Tx Event FIFO, range 0 to 32  
5:0  
EFFL[5:0]  
124  
Copyright © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
8.6.4.43.10 Tx Event FIFO Acknowledge (address = h10F8) [reset = h00000000]  
Figure 100. Tx Event FIFO Acknowledge Register  
31  
23  
15  
7
30  
22  
14  
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
6
RSVD  
R
2
1
0
EFAI[4:0]  
R/W  
Table 77. Tx Event FIFO Acknowledge Field Descriptions  
Bit  
Field  
Type  
R
Reset  
0x0  
Description  
31:24  
23:16  
15:18  
7:5  
RSVD  
RSVD  
RSVD  
RSVD  
Reserved  
R
0x0  
Reserved  
R
0x0  
Reserved  
R
0x0  
Reserved  
Event FIFO Acknowledge Index  
After the Host has read an element or a sequence of elements  
from the Tx Event FIFO it has to write the index of the last  
element read from Tx Event FIFO to EFAI. This will set the Tx  
Event FIFO Get Index TXEFS.EFGI to EFAI + 1 and update the  
Event FIFO Fill Level TXEFS.EFFL.  
4:0  
EFAI[4:0]  
E/W  
0x0  
Copyright © 2018–2020, Texas Instruments Incorporated  
125  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
8.6.4.43.11 Reserved (address = h10FC) [reset = h00000000]  
Figure 101. Reserved  
31  
23  
15  
7
30  
22  
14  
6
29  
21  
13  
5
28  
20  
12  
4
27  
19  
11  
3
26  
18  
10  
2
25  
17  
9
24  
16  
8
RSVD  
R
RSVD  
R
RSVD  
R
1
0
RSVD  
R
Table 78. Reserved Field Descriptions  
Bit  
31:0  
Field  
Type  
Reset  
Description  
RSVD  
R
0
Reserved  
126  
版权 © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
9 Application and Implementation  
Information in the following applications sections is not part of the TI component  
specification, and TI does not warrant its accuracy or completeness. TI’s customers are  
responsible for determining suitability of components for their purposes. Customers should  
validate and test their design implementation to confirm system functionality.  
9.1 Application Design Consideration  
9.1.1 Crystal and Clock Input Requirements  
Selecting the crystal or clock input depends upon system implementation. To support 2 and 5 Mbps CAN FD the  
clock in or crystal needs to have 0.5% frequency accuracy. The minimum value of 20 MHz is needed to support  
CAN FD with a rate of 2 Mbps. The recommended value for CLKIN or crystal is 40 MHz to meet CAN FD rates  
up to 5 Mbps data rates in order to support higher data throughout. If a crystal is used see the manufacturer’s  
documentation on proper biasing.  
The TCAN4550 was evaluated with the NX2016SA 20MHz and 40MHz crystals  
9.1.2 Bus Loading, Length and Number of Nodes  
A typical CAN application can have a maximum bus length of 40 m and maximum stub length of 0.3 m. However,  
with careful design, users can have longer cables, longer stub lengths, and many more nodes to a bus. A high  
number of nodes require a transceiver with high input impedance such as this transceiver family.  
Many CAN organizations and standards have scaled the use of CAN for applications outside the original ISO  
11898-2:2016 standard. They made system level trade off decisions for data rate, cable length, and parasitic  
loading of the bus. Examples of these CAN systems level specifications are ARINC825, CANopen, DeviceNet,  
SAE J2284, SAE J1939, and NMEA200.  
A CAN system design is a series of tradeoffs. In ISO 11898-2:2016 the driver differential output is specified with  
a bus load that can range from 50 Ω to 65 Ω where the differential output must be greater than 1.5 V. The  
TCAN4550 is specified to meet the 1.5 V requirement with a across this load range and is specified to meet 1.4  
V differential output at 45 Ω bus load. The differential input resistance of this family of transceiver is a minimum  
of 30kΩ. If 167 of these transceivers are in parallel on a bus, this is equivalent to an 180 Ω differential load in  
parallel with the 60 Ω from termination gives a total bus load of 45 Ω. Therefore, this family theoretically supports  
over 167 transceivers on a single bus segment with margin to the 1.2 V minimum differential input voltage  
requirement at each receiving node. However for CAN network design margin must be given for signal loss  
across the system and cabling, parasitic loadings, timing, network imbalances, ground offsets and signal integrity  
thus a practical maximum number of nodes is much lower. Bus length may also be extended beyond the original  
ISO 11898-2:2016 standard of 40 m by careful system design and data rate tradeoffs. For example CANopen  
network design guidelines allow the network to be up to 1km with changes in the termination resistance, cabling,  
less than 64 nodes and significantly lowered data rate.  
This flexibility in CAN network design is one of its key strengths allowing for these system level network  
extensions and additional standards to build on the original ISO 11898-2 CAN standard. However, when using  
this flexibility the CAN network system designer must take the responsibility of good network design to ensure  
robust network operation.  
9.1.3 CAN Termination  
The standard CAN bus interconnection to be a single twisted pair cable (shielded or unshielded) with 120 Ω  
characteristic impedance (ZO).  
版权 © 2018–2020, Texas Instruments Incorporated  
127  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Application Design Consideration (接下页)  
9.1.3.1 Termination  
Resistors equal to the characteristic impedance of the line should be used to terminate both ends of the cable to  
prevent signal reflections. Unterminated drop-lines (stubs) connecting nodes to the bus should be kept as short  
as possible to minimize signal reflections. The termination may be in a node but is generally not recommended,  
especially if the node may be removed from the bus. Termination must be carefully placed so that it is not  
removed from the bus. System level CAN implementations such as CANopen allow for different termination and  
cabling concepts for example to add cable length.  
Node 2  
Node 3  
Node n  
(with termination)  
MCU or DSP  
MCU or DSP  
Node 1  
MCU or DSP  
CAN  
Controller  
CAN  
Controller  
MCU or DSP  
TCAN4550  
RTERM  
TCAN4550  
TCAN1051/G  
TCAN1042/G  
RTERM  
102. Typical CAN Bus  
Termination may be a single 120 Ω resistor at each end of the bus, either on the cable or in a terminating node.  
If filtering and stabilization of the common mode voltage of the bus is desired then “split termination” may be  
used, see 103. Split termination improves the electromagnetic emissions behavior of the network by  
eliminating fluctuations in the bus common mode voltage levels at the start and end of message transmissions.  
Split Termination  
Standard Termination  
CANH  
CANH  
RTERM/2  
CAN  
Transceiver  
CAN  
Transceiver  
RTERM  
CSPLIT  
RTERM/2  
CANL  
CANL  
103. CAN Bus Termination Concepts  
9.1.3.2 CAN Bus Biasing  
Bus biasing can be normal biasing, active in normal mode and inactive in low-power mode. Automatic voltage  
biasing is where the bus is active in normal mode but is controlled by the voltage between CANH and CANL in  
lower power modes. See Figure 104 for the state diagram on how the TCAN4550 performs automatic biasing.  
Figure 105 provides the bus biasing based upon the mode of operation.  
128  
版权 © 2018–2020, Texas Instruments Incorporated  
 
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
Application Design Consideration (接下页)  
Recessive state > tWK-FILTER  
Wait  
Bus Biasing Inactive  
Bus Biasing Inactive  
Power On  
Dominant state > tWK-FILTER  
tWK_TIMEOUT  
1
Bus Biasing Inactive  
Recessive state > tWK-FILTER  
tWK_TIMEOUT  
2
Bus Biasing Inactive  
Dominant state > tWK-FILTER  
On implementation  
enters Normal Mode  
tSILENCE expired and implementation  
In low power mode  
3
Bus Biasing Active  
From all other nodes  
Low Power Mode:  
Dominant state > tWK-FILTER  
Normal Mode: Dominant state  
Low Power Mode:  
Recessive state > tWK-FILTER  
Normal Mode: Recessive state  
tSILENCE expired and implementation  
In low power mode  
4
Bus Biasing  
Active  
104. Automatic bus biasing state diagram  
版权 © 2018–2020, Texas Instruments Incorporated  
129  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Application Design Consideration (接下页)  
Power Up &  
Reset  
Prog to  
Sleep  
Prog to  
Normal  
Sleep Mode  
Bus Bias: GND  
Standby Mode  
Bus Bias: GND  
Normal Mode  
Bus Bias: 2.5 V  
Fail-Safe  
WAKE Pin  
Prog to  
Sleep  
Prog to  
Standby or  
Fault  
Yes  
tSILENCE  
Expired  
Yes  
tSILENCE  
Expired  
No  
No  
tSILENCE  
Expired  
WAKE  
Pin  
Standby Mode  
Bus Bias: 2.5 V  
Sleep Mode  
Bus Bias: 2.5 V  
WUP  
WUP  
tSILENCE  
Expired  
105. Bus Biasing Based on Modes of Operation  
9.1.4 INH Brownout Behavior  
A brownout condition takes place when VSUP ramps down below the minimum recommended operation  
conditions and then ramps back above the recommended operating conditions. 106 provides the behavior of  
the INH pin based upon process, voltage and temperature during this condition. Once VSUP drops below the  
digital core going into reset, the device will have to be reprogrammed as all registers will be set back to default.  
~ 5.5 V  
UVSUP rise  
VSUP  
Digital core out  
of reset  
UVSUP fall  
~ 4.7 V  
~ 3.6 V  
~ 4.25 V  
Digital core into reset  
1.67 V > INH on > 4.15 V  
1.42 V < INH off < 3.14 V  
INH  
106. INH Brownout Behavior  
130  
版权 © 2018–2020, Texas Instruments Incorporated  
 
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
9.2 Typical Application  
The TCAN4550 is typically used in applications with a host microprocessor or FPGA that does not include the  
link layer portion of the CAN protocol. Below is a typical application configuration for 3.3 V microprocessor  
applications.  
3 k  
10 µF  
10 nF  
33 kꢀ  
VBAT  
330 nF  
10 µF  
100 nF  
EN  
VIN  
VSUP  
WAKE  
FLTR  
VCCOUT  
Voltage  
Regulator  
(e.g.  
INH  
VINT  
VLVRX  
VIO  
TPSxxxx)  
LDO(s)  
Filter  
VOUT  
Under  
Voltage  
CNTL  
POR  
TCAN4550  
VIO  
100 nF  
10 µF  
CANH  
TXD_INT  
VINT  
VCC  
nWKRQ  
TX/RX Data  
Buffer  
GPIO3  
TX/RX CAN-FD  
Controller with  
Filters  
VIO  
2-wire  
CAN  
bus  
RST  
SCLK  
SDI  
Reset  
SCLK  
RXD_INT  
CAN-FD  
Transceiver  
SPI slave,  
System  
Controller  
MOSI  
MISO  
SDO  
MCU  
CANL  
nCS  
nCS  
GPIO2  
GPIO1  
GPIO  
GPO2  
nINT  
GPIO1  
Optional:  
Terminating  
Node  
Optional:  
Filtering,  
GND  
OSC1  
OSC2  
Transient and  
ESD  
40 MHz  
107. Typical CAN Applications for TCAN4550 for 3.3 V µC and Crystal  
Note: Add decoupling capacitors as needed.  
版权 © 2018–2020, Texas Instruments Incorporated  
131  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
Typical Application (接下页)  
3 k  
10 µF  
10 nF  
33 kꢀ  
VBAT  
330 nF  
10 µF  
100 nF  
EN  
VIN  
VSUP  
WAKE  
FLTR  
VCCOUT  
Voltage  
Regulator  
(e.g.  
INH  
VINT  
VLVRX  
VIO  
TPSxxxx)  
LDO(s)  
Filter  
VOUT  
Under  
Voltage  
CNTL  
POR  
VIO  
TCAN4550  
100 nF  
10 µF  
CANH  
TXD_INT  
VINT  
nWKRQ  
TX/RX Data  
Buffer  
GPIO3  
VCC  
TX/RX CAN-FD  
Controller with  
Filters  
VIO  
2-wire  
CAN  
bus  
RST  
SCLK  
SDI  
Reset  
SCLK  
RXD_INT  
CAN-FD  
Transceiver  
SPI slave,  
System  
Controller  
MOSI  
MISO  
SDO  
MCU  
CANL  
nCS  
nCS  
GPIO2  
GPIO1  
GPIO  
GPO2  
nINT  
GPIO1  
Optional:  
Terminating  
Node  
Optional:  
Filtering,  
GND  
OSC1  
OSC2  
Transient and  
ESD  
20 MHz  
OSC1  
OSC2  
108. Typical CAN Applications for TCAN4550 for 3.3 V µC; Clock from MCU  
9.2.1 Detailed Requirements  
The TCAN4550 works with 3.3 V and 5 V microprocessors when using the VIO pin from the microprocessor  
voltage regulator. The bus termination is shown for illustrative purposes.  
9.2.2 Detailed Design Procedures  
The TCAN4550 is designed to work in application using the ISO 11898 standard supporting bus loads from 50 Ω  
to 65 Ω. As the TCAN4550 supports CAN FD data rates up to 8 Mbps it is recommended to use a 40 MHz  
crystal and keep trace lengths matched and short as feasible between the processor and device. As the CAN  
stub length are defined in the standard it is recommended to design the system according to these. As the  
TCAN4550 CAN transceiver is self-powered but also allows for up to 70 mA at 5 V to be sourced on VCCOUT, the  
system design needs to account for the CAN transceiver requirements when determining the load the LDO is to  
support. With this and the high temperature and input voltage range it is recommended to use a high-k board  
using proper thermal dissipation methods to ensure the highest performance.  
132  
版权 © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
Typical Application (接下页)  
9.2.3 Application Curves  
54  
53.7  
53.4  
53.1  
52.8  
52.5  
52.2  
51.9  
51.6  
51.3  
51  
125  
120  
115  
110  
105  
100  
95  
-40 °C  
25 °C  
55 °C  
85 °C  
100 °C  
125 °C  
-40 °C  
25 °C  
55 °C  
85 °C  
100 °C  
125 °C  
90  
85  
80  
75  
70  
65  
60  
55  
50  
50.7  
45  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
D002  
6
8
10  
12  
14  
16  
18  
20  
22  
24  
D004  
VSUP (V)  
VSUP (V)  
VCCOUT = Off  
CAN Bus State =  
Dominant  
CAN Bus Load =  
ICCOUT = 70 mA  
CAN Bus State =  
Dominant  
CAN Bus Load =  
60 Ω  
60 Ω  
109. ISUP Across VSUP and Temperature  
110. ISUP Across VSUP, Temperature and VCCOUT with  
Maximum Load Current  
9.2.4 Application Curves  
111 and 112 shows the behavior of the 5 V LDO in relationship to ISUP, VSUP, LDO load of 70 mA, CAN bus  
dominant and ambient temperature. The ISUP current is based upon a 70 mA load on VCCOUT and the CAN bus  
held dominant for about a total of 120 mA. As can be seen, an ambient temperature of 125°C can cause a  
thermal shut down event when VSUP reaches 20 V and VCCOUT is providing 70 mA to a load. The load on the  
CAN bus is 60 Ω. When the CAN bus load is 50 Ω a VSUP of 19 V and ambient temperature of 125 can trigger a  
thermal shut down event. The reason the curve shows ISUP leveling out to approximately 74.5 mA is due to  
thermal shut down where the device shuts off the LDO and CAN transceiver. The device cools below TSD  
leaving thermal shutdown quickly. When the TSD event goes away the device then enters standby mode, turning  
on the LDO. The 74.5 mA is the 70 mA LDO load and a dominant on the CAN bus in standby mode. This is  
happening quickly enough that LDO shut off is not seen. If the TSD event is prolonged the current would drop to  
micro-amps and VCCOUT would be 0 V once the decoupling capacitor discharges.  
140  
120  
100  
80  
5.5  
5
4.5  
4
3.5  
3
2.5  
2
60  
40  
1.5  
1
-40°C  
25°C  
55°C  
85°C  
105°C  
125°C  
-40°C  
25°C  
55°C  
85°C  
105°C  
125°C  
20  
0.5  
0
0
0
3
6
9
12  
15  
VSUP (V)  
18  
21  
24  
27  
30  
D003  
0
3
6
9
12  
15  
VSUP (V)  
18  
21  
24  
27  
30  
D005  
VCCOUT = 5 V at 70  
mA  
CAN Bus =  
Dominant  
CAN Load = 60 Ω  
VCCOUT = 5 V at 70  
mA  
CAN Bus =  
Dominant  
CAN Load = 60 Ω  
111. ISUP vs VSUP CAN Dominant with 70 mA Load on  
112. VCCOUT vs VSUP  
VCCOUT  
版权 © 2018–2020, Texas Instruments Incorporated  
133  
 
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
10 Power Supply Recommendations  
The TCAN4550 is designed to operate off of the battery Vbat. It has internal regulators to reduce the voltage to  
acceptable low power levels supporting the CAN FD controller, CAN transceiver and low voltage CAN receiver.  
In order to support a wide range of microprocessors the SPI and GPIO are powered off of the VIO pin which  
supports levels from V to 5.5 V. Bulk capacitance, should be placed on the VSUP and the VIO voltage rails where  
system requirements are met. It is recommended that a capacitance of a 100 nF is placed near the TCAN4550  
VSUP and the VIO supply terminals. The FLTR terminal requires a minimum of 300 nF capacitance to ground to  
regulate the internal digital power rail. VCCOUT needs a minimum capacitance to ground of 10 µF at the terminal.  
The capacitance values selected should take into consideration the degradation over  
time such that the values do not fall below the minimum values shown  
Above is a minimum amount of capacitance but due to system considerations more  
may be needed  
134  
版权 © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
11 Layout  
Robust and reliable bus node design often requires the use of external transient protection device in order to  
protect against EFT and surge transients that may occur in industrial environments. Because ESD and transients  
have a wide frequency bandwidth from approximately 3 MHz to 3 GHz, high-frequency layout techniques must  
be applied during PCB design. The family comes with high on-chip IEC ESD protection, but if higher levels of  
system level immunity are desired external TVS diodes can be used. TVS diodes and bus filtering capacitors  
should be placed as close to the on-board connectors as possible to prevent noisy transient events from  
propagating further into the PCB and system.  
11.1 Layout Guidelines  
Place the protection and filtering circuitry as close to the bus connector, J1, to prevent transients, ESD and noise  
from propagating onto the board. The layout example provides information on components around the device  
itself. Transient voltage suppression (TVS) device can be added for extra protection, shown as D1. The  
production solution can be either a bi-directional TVS diode or a varistor with ratings matching the application  
requirements. This example also shows optional bus filter capacitors C10 and C11. A series common mode  
choke (CMC) is placed on the CANH and CANL lines between TCAN4550 and connector J1.  
Design the bus protection components in the direction of the signal path. Do not force the transient current to  
divert from the signal path to reach the protection device. Use supply and ground planes to provide low  
inductance.  
High-frequency currents follows the path of least impedance and not the path of least  
resistance.  
Use at least two vias for supply and ground connections of bypass capacitors and protection devices to minimize  
trace and via inductance.  
Bypass and bulk capacitors should be placed as close as possible to the supply terminals of transceiver,  
examples are C3, C4 and C5 on the FLTR, VIO, VCCOUT, pins and C6 and C7 on the VSUP supply.  
Bus termination: this layout example shows split termination. This is where the termination is split into two  
resistors, R5 and R6, with the center or split tap of the termination connected to ground via capacitor C9. Split  
termination provides common mode filtering for the bus. When bus termination is placed on the board instead  
of directly on the bus, additional care must be taken to ensure the terminating node is not removed from the  
bus thus also removing the termination.  
As terminal 8 (nINT) and 9 (GPO2) are open drain an external resistor to VIO is required. These can have a  
value between 2 kΩ and 10 kΩ.  
Terminal 12 (WAKE) is a bi-directional triggered wake up input that is usually connected to an external switch.  
It should be configured as shown with a 10 nF (C8) to GND where R2 is 33 kΩ and R3 is 3 kΩ.  
Terminal 15 (INH) can be left floating if not used but a 100 kΩ pull-down resistor can be used to discharge the  
INH to a sufficient level when the INH output is high-Z.  
版权 © 2018–2020, Texas Instruments Incorporated  
135  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
11.2 Layout Example  
GND  
Crystal  
40 MHz  
50 Ω  
Traces for Pin 1 and 20  
need to be Matched length  
C1  
GND  
C2  
19  
nWKRQ  
GPIO1  
SCLK  
2
RST  
FLTR  
C3  
GND  
VIO  
C4  
GND  
SDI  
VCCOUT  
C5  
GND  
SDO  
INH  
R1  
GND  
nCS  
VIO  
VSUP  
C6  
C7  
GND  
C8  
R7  
R6  
nINT  
VIO  
R2  
9
12  
VSUP  
GPO2  
R3  
WAKE  
To Switch  
Choke  
R5  
R4  
C9  
C11  
C10  
CANH  
CANL  
GND  
D1  
J1  
113. Example Layout  
136  
版权 © 2018–2020, Texas Instruments Incorporated  
TCAN4550  
www.ti.com.cn  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
12 器件和文档支持  
12.1 文档支持  
12.1.1 相关文档  
12.1.1.1 CAN 收发器物理层标准:  
ISO 11898-2:2016:低功耗模式高速媒介访问单元  
ISO 8802-3: CSMA/CD – 作为 ISO11898-2 碰撞检测的参考  
CAN FD 1.0 规范和论文  
Bosch“CAN 位计时配置,第 6 届国际 CAN 会议 (ICC) 上的论文,1999 年。复制到本系统规范的 DCAN IP  
CAN 控制器规范中多次引用了该论文。  
SAE J2284-2:针对适用于汽车类 应用 的 250kbps 高速 CAN (HSC)  
SAE J2284-3:针对适用于汽车类 应用 的 500kbps 高速 CAN (HSC)  
Bosch M_CAN 控制器局域网修订版 3.2.1.12016 3 24 日)  
12.1.1.2 EMC 要求:  
SAE J2962-2:针对 CAN 收发器的 US3 要求  
CANLINFR V1.3 的硬件要求  
12.1.1.3 符合性测试要求:  
HS_TRX_Test_Spec_V_1_0GIFT/ICT CAN 的高速物理层测试要求  
12.1.1.4 支持文档  
“A Comprehensible Guide to Controller Area Network”, Wilfried Voss, Copperhill Media Corporation  
“CAN System Engineering: From Theory to Practical Applications”, 2nd Edition, 2013; Dr. Wolfhard Lawrenz,  
Springer.  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.2 接收文档更新通知  
要接收文档更新通知,请导航至 ti.com.cn 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产  
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight  
from the experts. Search existing answers or ask your own question to get the quick design help you need.  
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do  
not necessarily reflect TI's views; see TI's Terms of Use.  
12.4 商标  
E2E is a trademark of Texas Instruments.  
All other trademarks are the property of their respective owners.  
12.5 静电放电警告  
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可  
能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可  
能会导致器件与其发布的规格不相符。  
版权 © 2018–2020, Texas Instruments Incorporated  
137  
TCAN4550  
ZHCSJ74A DECEMBER 2018REVISED JANUARY 2020  
www.ti.com.cn  
12.6 Glossary  
SLYZ022 TI Glossary.  
This glossary lists and explains terms, acronyms, and definitions.  
13 机械、封装和可订购信息  
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且  
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查看左侧的导航栏。  
138  
版权 © 2018–2020, Texas Instruments Incorporated  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TCAN4550RGYR  
TCAN4550RGYT  
ACTIVE  
VQFN  
VQFN  
RGY  
20  
20  
3000 RoHS & Green  
250 RoHS & Green  
SN  
Level-2-260C-1 YEAR  
Level-2-260C-1 YEAR  
-40 to 125  
-40 to 125  
TCAN  
4550  
ACTIVE  
RGY  
SN  
TCAN  
4550  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Dec-2020  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Apr-2022  
TAPE AND REEL INFORMATION  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TCAN4550RGYR  
TCAN4550RGYT  
VQFN  
VQFN  
RGY  
RGY  
20  
20  
3000  
250  
330.0  
180.0  
12.4  
12.4  
3.8  
3.8  
4.8  
4.8  
1.18  
1.18  
8.0  
8.0  
12.0  
12.0  
Q1  
Q1  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
12-Apr-2022  
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TCAN4550RGYR  
TCAN4550RGYT  
VQFN  
VQFN  
RGY  
RGY  
20  
20  
3000  
250  
367.0  
213.0  
367.0  
191.0  
38.0  
35.0  
Pack Materials-Page 2  
GENERIC PACKAGE VIEW  
RGY 20  
3.5 x 4.5, 0.5 mm pitch  
VQFN - 1 mm max height  
PLASTIC QUAD FGLATPACK - NO LEAD  
This image is a representation of the package family, actual package may vary.  
Refer to the product data sheet for package details.  
4225264/A  
www.ti.com  
PACKAGE OUTLINE  
RGY0020C  
VQFN - 1 mm max height  
S
C
A
L
E
3
.
0
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
3.6  
3.4  
B
A
PIN 1 INDEX AREA  
4.6  
4.4  
0.1 MIN  
(0.05)  
SECTION A-A  
SCALE 30.000  
SECTION A-A  
TYPICAL  
C
1 MAX  
SEATING PLANE  
0.08 C  
0.05  
0.00  
2.2 0.1  
2X 1.5  
SYMM  
EXPOSED  
THERMAL PAD  
(0.2) TYP  
10  
11  
14X 0.5  
9
12  
4.2 0.1  
3.2 0.1  
21  
SYMM  
2X  
3.5  
A
A
2
19  
0.3  
0.2  
1
20  
PIN 1 ID  
(OPTIONAL)  
20X  
0.1  
0.05  
C A B  
4X 0.25 0.05  
0.5  
0.3  
20X  
4223814/A 06/2017  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RGY0020C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(2.2)  
4X (0.75)  
(0.85)  
SYMM  
1
20  
20X (0.6)  
2
19  
20X (0.25)  
(R0.05) TYP  
(1.35)  
(4.2)  
4X  
21  
SYMM  
(3.2)  
(4.3)  
14X (0.5)  
12  
9
(
0.2) TYP  
VIA  
10  
4X (0.25)  
11  
2X (0.75)  
(3.3)  
LAND PATTERN EXAMPLE  
EXPOSED METAL SHOWN  
SCALE:18X  
0.07 MIN  
ALL AROUND  
0.07 MAX  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
EXPOSED METAL  
EXPOSED METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
SOLDER MASK  
DEFINED  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4223814/A 06/2017  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown  
on this view. It is recommended that vias under paste be filled, plugged or tented.  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RGY0020C  
VQFN - 1 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
4X (0.98)  
20  
2X (0.25)  
1
2X (0.2)  
20X (0.6)  
2
19  
24X (0.25)  
4X  
(1.43)  
(R0.05) TYP  
21  
SYMM  
4X  
(4.3)  
(0.82)  
TYP  
14X (0.5)  
12  
9
EXPOSED METAL  
TYP  
10  
11  
4X (0.75)  
(0.59) TYP  
SYMM  
(3.3)  
SOLDER PASTE EXAMPLE  
BASED ON 0.125 mm THICK STENCIL  
EXPOSED PAD 21  
80% PRINTED SOLDER COVERAGE BY AREA UNDER PACKAGE  
SCALE:20X  
4223814/A 06/2017  
NOTES: (continued)  
6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2022,德州仪器 (TI) 公司  

相关型号:

TCAN4550RGYTQ1

具有集成 CAN FD 控制器和收发器的汽车类系统基础芯片 (SBC) | RGY | 20 | -40 to 125
TI

TCAN4551-Q1

具有集成收发器的汽车控制局域网灵活数据速率 (CAN FD) 控制器
TI

TCAN4551RGYRQ1

具有集成收发器的汽车控制局域网灵活数据速率 (CAN FD) 控制器 | RGY | 20 | -40 to 125
TI

TCAQ22340HDH

Silicon Controlled Rectifier, 6440A I(T)RMS, 2200V V(DRM), 2200V V(RRM), 1 Element, HERMETIC SEALED, CERAMIC PACKAGE-4
POWEREX

TCAW-T10-N05

Fixed Attenuator,
APITECH

TCB100

Current Transformer, CURRENT TRANSFORMER
VISHAY

TCB4F-617DB1643

Balun Transformer General Information
TOKEN

TCB4F-617DB1644

Balun Transformer General Information
TOKEN

TCB4F-617DB1645

Balun Transformer General Information
TOKEN

TCB4F-617DB1646

Balun Transformer General Information
TOKEN

TCB4F-617DB1653

Balun Transformer General Information
TOKEN

TCB4F-617DB1654

Balun Transformer General Information
TOKEN