TDP0604IRNQR [TI]

DP++ 6Gbps HDMI 2.0 转接驱动器 | RNQ | 40 | -40 to 85;
TDP0604IRNQR
型号: TDP0604IRNQR
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

DP++ 6Gbps HDMI 2.0 转接驱动器 | RNQ | 40 | -40 to 85

驱动 驱动器
文件: 总67页 (文件大小:2488K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDP0604  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
TDP0604 6Gbps 直流或交流耦合HDMI2.0 电平转换器混合转接驱动器  
1 特性  
3 说明  
• 支持高6Gbps HDMI 2.0 数据速率的交流耦合或  
直流耦合输入和输出  
TDP0604 是一款 HDMI 2.0 转接驱动器支持高达  
6Gbps 的数据速率向后兼容 HDMI 1.4b。高速差分  
输入和输出可以是交流耦合或直流耦合从而支持将  
TDP0604 用作 DP++ HDMI 电平转换器或 HDMI 转  
接驱动器。  
– 向后兼HDMI 1.4b  
• 支持双DisplayPort (DP++)  
• 可编程的接收器均衡器3GHz 下  
12dB  
TDP0604 是一款混合转接驱动器同时支持源端和接  
收端应用。混合转接驱动器可用作线性转接驱动器也  
可用作限幅转接驱动器。配置为限幅转接驱动器时,  
TDP0604 的差分输出电压电平独立于图形处理单元  
(GPU) 的输出电平从而确保插座的 HDMI 电平符合  
要求。限幅转接驱动器模式推荐用于 HDMI 源端应  
用。配置为线性转接驱动器时TDP0604 的差分输出  
电平是 GPU 出电平的线性函数而支持将  
TDP0604 用于透明呈现链路训练或用作通道缩短器。  
建议将线性转接驱动器模式用HDMI 接收端应用。  
I2C 或引脚搭接可编程  
• 集成HPD 电平转换器同时支持  
1.8V 3.3V LVCMOS 电平  
• 集成DDC 缓冲器支持最低  
1.2V 电平  
• 主通道上全通道交换  
• 用于链路配置的数字显示控(DDC) 监控功能  
• 低功耗:  
6Gbps 有源限制215mW  
– 关(HPD_IN = L)0.55mW  
• 可用于商业级和工业级温度范围  
3.3V 单电源  
40 引脚、0.4mm 间距、4mm × 6mm  
WQFN 封装  
TDP0604 有一个集成的 HPD 电平转换器该转换器  
可将 5V HPD 信号转换为 1.8V 3.3V。电平转换器  
输出还可配置为推挽式或开漏式。另外TDP0604 还  
集成了一个数字显示控制 (DDC) 缓冲器。DDC 缓冲器  
可提供电容隔离电平转换器可将 5V DDC 电平转换  
至最低 1.2V 电平。集成电平转换器后无需分立式解  
决方案因此节省了系统成本。  
2 应用  
笔记本电脑和台式机  
电视  
家庭影院和娱乐系统  
游戏系统  
扩展坞  
TDP0604 支持 3.3V VCC 单电源轨可用于商业级温  
度范(TDP0604) 和工业级温度范(TDP0604I)。  
器件信息  
器件型号(1)  
专业音频、视频和标牌  
温度  
封装  
1.14V to  
3.6V  
TDP0604  
TDP0604I  
Ta = 0°C 70°C  
Ta = -40°C 85°C  
3.3V  
RNQWQFN40)  
Optional  
OUT_D2p  
OUT_D2n  
IN_D2p  
IN_D2n  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
OUT_D1p  
OUT_D1n  
IN_D1p  
IN_D1n  
OUT_D0p  
OUT_D0n  
IN_D0p  
IN_D0n  
GPU  
(DP++, HDMI)  
OUT_CLKp  
OUT_CLKn  
IN_CLKp  
IN_CLKn  
HDMI_5V  
LV_DDC_SDA HV_DDC_SDA  
LV_DDC_SCL  
HPD_OUT  
HV_DDC_SCL  
HPD_IN  
简化版原理图  
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSFJ8  
 
 
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
Table of Contents  
8.3 Feature Description...................................................25  
8.4 Device Functional Modes..........................................36  
8.5 Programming............................................................ 39  
8.6 Register Maps...........................................................41  
9 Application and Implementation..................................51  
9.1 Application Information............................................. 51  
9.2 Typical Source-Side Application............................... 51  
9.3 Power Supply Recommendations.............................57  
9.4 Layout....................................................................... 57  
10 Device and Documentation Support..........................59  
10.1 Documentation Support.......................................... 59  
10.2 接收文档更新通知................................................... 59  
10.3 支持资源..................................................................59  
10.4 Trademarks.............................................................59  
10.5 静电放电警告.......................................................... 59  
10.6 术语表..................................................................... 59  
11 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 6  
6.1 Absolute Maximum Ratings........................................ 6  
6.2 ESD Ratings............................................................... 6  
6.3 Recommended Operating Conditions.........................6  
6.4 Thermal Information....................................................7  
6.5 Electrical Characteristics.............................................7  
6.6 Timing Requirements................................................12  
6.7 Switching Characteristics..........................................13  
6.8 Typical Characteristics..............................................16  
6.9 Typical Characteristics..............................................17  
7 Parameter Measurement Information..........................18  
8 Detailed Description......................................................23  
8.1 Overview...................................................................23  
8.2 Functional Block Diagram ........................................24  
Information.................................................................... 59  
4 Revision History  
以前版本的页码可能与当前版本的页码不同  
Changes from Revision * (December 2021) to Revision A (June 2023)  
Page  
• 更新了器件信息 表以包含环境温度.................................................................................................................... 1  
Corrected swap of R and F in EQ1 pin column in the Receiver EQ Settings when GLOBAL_DCG = 0x2  
table. ................................................................................................................................................................27  
Added DisplayPort section................................................................................................................................36  
Added requirement that device must be enabled for linear redriver mode when configured for DisplayPort  
mode. ...............................................................................................................................................................36  
Added DP_MODE_CONFIG register at offset 0x31. ....................................................................................... 41  
Added CLK_CONFIG2 register at offset 0x13. Register only valid when device is in DisplayPort Mode.........41  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFJ8  
2
Submit Document Feedback  
Product Folder Links: TDP0604  
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
5 Pin Configuration and Functions  
VCC  
1
28  
27  
26  
25  
24  
23  
22  
21  
VCC  
HPDOUT_SEL  
2
3
HV_DDC_SCL  
HV_DDC_SDA  
LV_DDC_SDA  
LV_DDC_SCL  
AC_EN  
TEST1  
CTLEMAP_SEL  
4
5
6
7
8
Thermal  
Pad  
LINEAR_EN  
VCC  
EN  
SDA/CFG1  
SCL/CFG0  
EQ1  
Not to scale  
5-1. RNQ Package, 40-Pin WQFN (Top View)  
5-1. Pin Functions  
PIN  
NO.  
1
TYPE(1)  
DESCRIPTION  
NAME  
VCC  
P
I
3.3-V power supply  
HPDOUT_SEL. Selects whether HPD_OUT pin is push/pull, or open-drain. Open-drain is  
not supported in pin-strap mode. Therefore this pin should be left floating or pull-down to  
GND.  
HPDOUT_SEL  
TEST1  
2
3
2-Level (PD)  
O
Test1. For internal Texas Instruments use only. This pin can be left unconnected.  
CTLE Map select. When TDP0604 is configured in pin-strap mode, this pin selects the  
CTLE Map used. 8-7 provides more details. In I2C mode, CTLE map is determined by  
registers.  
I
CTLEMAP_SEL  
4
4-Level  
(PU/PD)  
I
In pin-strap mode, selects whether TDP0604 operates in linear or limited redriver mode.  
8-4 provides more details.  
LINEAR_EN  
VCC  
5
6
4-Level  
(PU/PD)  
P
3.3-V power supply.  
When low, TDP0604 will be held in reset. The IN_D[2:0], IN_CLK, OUT_D[2:0] and  
OUT_CLK pins will be held in high impedance while EN is low. On rising edge of EN,  
2-Level (PU) device will sample 4-level inputs and function based on the sampled state of the pins.  
This pin has a internal 250k pull-up to VIO.  
I
EN  
7
EQ1 pin setting when TDP0604 is configured for pin strap mode; Works in conjunction  
with EQ0; 8-5 provides the settings. In I2C mode, EQ settings are controlled through  
the registers.  
I
EQ1  
8
9
4 Level  
(PU/PD)  
IN_D2p  
I
Channel 2 differential positive input.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
5-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
NAME  
NO.  
IN_D2n  
10  
I
Channel 2 differential negative input.  
Hot plug detect output to source side. If not used, then this pin can be left floating. If  
used, then it is recommended to have a external 220k resistor to GND on this pin.  
HPD_OUT  
11  
O
IN_D1p  
IN_D1n  
VIO  
12  
13  
14  
15  
16  
I
I
Channel 1 differential positive input.  
Channel 1 differential negative input.  
Voltage supply for I/Os. 8-2 provides more details.  
Channel 0 differential positive input.  
P
I
IN_D0p  
IN_D0n  
I
Channel 0 differential negative input.  
I
MODE  
17  
4-Level  
(PU/PD)  
Mode control pin. Selects between pin-strap and I2C mode. Refer to 8.4.1.  
IN_CLKp  
IN_CLKn  
VCC  
18  
19  
20  
I
I
Clock differential positive input.  
Clock differential negative input.  
3.3-V power supply.  
P
I2C Clock/CFG0: When TDP0604 is configured for I2C mode, this pin will function as the  
SCL/CFG0  
SDA/CFG1  
21  
22  
I
I2C clock. Otherwise, this pin will function as CFG0 as provided in 8-13.  
I2C Data / CFG1: When TDP0604 is configured for I2C mode, this pin will function as the  
I2C clock. Otherwise, this pin will function as CFG1 as provided in 8-14.  
I/O  
In pin-strap mode, selects whether high speed transmitters are externally AC or DC-  
coupled.  
2-Level (PD) 0: DC-coupled  
1: AC-coupled  
I
AC_EN  
23  
LV_DDC_SCL  
LV_DDC_SDA  
24  
25  
26  
27  
28  
I/O  
I/O  
I/O  
I/O  
P
Low voltage side bidirectional DDC clock line. Internally pulled-up to VIO.  
Low voltage side bidirectional DDC data line. Internally pulled-up to VIO.  
High voltage side bidirectional DDC data line. Pull-up externally to HDMI 5 V.  
High voltage side bidirectional DDC clock line. Pull-up externally to HDMI 5 V.  
3.3-V power supply.  
HV_DDC_SDA  
HV_DDC_SCL  
VCC  
TX pre-emphasis control: In pin-strap mode with limited enabled, this pin controls TX EQ.  
8-11 provides the available TXPRE settings when operating in pin strap mode. In I2C  
mode, TX pre-emphasis is controlled through the registers.  
I
TXPRE  
29  
4-Level  
(PU/PD)  
OUT_CLKn  
OUT_CLKp  
30  
31  
O
O
I
TMDS data clock differential negative output  
TMDS data clock differential positive output  
Hot plug detect input from sink side. This pin has an internal pull-down resistor and is fail-  
HPD_IN  
32  
2-Level (PD) safe.  
OUT_D0n  
OUT_D0p  
33  
34  
O
O
TMDS data 0 differential negative output  
TMDS data 0 differential positive output  
Address bit for I2C programming when TDP0604 is configured for I2C mode. 8-18  
provides more information.  
I
ADDR/EQ0  
35  
4-Level  
(PU/PD)  
EQ0 pin setting when TDP0604 is configured for pin strap mode; works in conjunction  
with EQ1; 8-5 provides the settings. In I2C mode, EQ settings are controlled through  
the registers.  
OUT_D1n  
OUT_D1p  
36  
37  
O
O
TMDS data 1 differential negative output  
TMDS data 1 differential positive output  
I
TX output swing control: 4 settings. This pin is only used in pin strap mode. 8-12  
provides the available TX swing settings. In I2C mode, TX output swing is controlled  
through the registers.  
TXSWG  
38  
4-Level  
(PU/PD)  
OUT_D2n  
OUT_D2p  
39  
40  
O
O
TMDS data 2 differential negative output  
TMDS data 2 differential positive output  
Copyright © 2023 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
5-1. Pin Functions (continued)  
PIN  
TYPE(1)  
DESCRIPTION  
Thermal pad. Connect to a solid ground plane.  
NAME  
NO.  
Thermal Pad  
41  
GND  
(1) I = input, O = output, GND = ground, P = power, PU = pull-up, PD = pull-down  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
-0.5  
MAX  
UNIT  
Supply Voltage VCC and VIO  
4
4
4
4
V
V
V
V
Input Voltage  
Differential Inputs (IN_D[2:0], IN_CLK)  
-0.3  
Output voltage HPD_OUT output  
0.3  
0.3  
Output voltage Differential outputs (OUT_D[2:0], OUT_CLK)  
LV_DDC_SDA, LV_DDC_SCL, SCL/CFG0, SDA/CFG1, MODE,  
CLTEMAP_SEL, HPDOUT_SEL, TXSWG, TXPRE, EQ1, ADDR/  
EQ0, EN, AC_EN, LINEAR_EN  
4
V
0.5  
0.5  
Control pins  
HPD_IN  
6
105  
125  
150  
V
TJ  
TDP0604 Junction temperature  
TDP0604I Junction temperature  
Storage temperature  
°C  
°C  
°C  
TJ  
Tstg  
65  
(1) Operation outside the Absolute Maximum Rating may cause permanent damage to the device. Absolute maximum ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Condition.  
If briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality,  
performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/  
JEDEC JS-002, all pins(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
Supply voltage when high-speed RX pins (IN_D[2:0] and IN_CLK) is AC-  
coupled to a DP++ TX  
VCC  
VCC  
3.0  
3.3  
3.6  
V
Supply voltage when high-speed RX pins (IN_D[2:0] and IN_CLK) is DC-  
coupled to a HDMI TX  
3.135  
3.3  
3.465  
V
VIO  
VIO supply when 1.2-V LVCMOS level used.  
1.14  
1.7  
3
1.2  
1.8  
3.3  
1.26  
1.9  
V
V
VIO  
VIO supply when 1.8-V LVCMOS level used.  
VIO  
VIO supply when 3.3-V LVCMOS level used.  
3.6  
V
VPSN  
Peak to peak Power supply noise on VCC pins (less than 4 MHz).  
100  
mV  
DC input voltage for SCL/CFG0, SDA/CFG1, MODE, AC_EN, LINEAR_EN,  
EN, CTLEMAP_SEL, TXSWG, TXPRE, EQ1, ADDR1/EQ0, LV_DDC_SCL,  
LV_DDC_SDA, HPDOUT_SEL  
VCTL3  
3.6  
V
0.3  
VCTL5  
DC input voltage for HV_DDC_SCL, HV_DDC_SDA, HPD_IN pins  
Optional external AC-coupling capacitor on IN_Dx and IN_CLK.  
5.5  
V
0.3  
CACRX  
85  
253  
nF  
External AC-coupling capacitor on OUT_Dx and OUT_CLK when AC_EN =  
H.  
CACTX  
TA  
85  
0
253  
70  
nF  
°C  
TDP0604 Ambient temperature  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFJ8  
6
Submit Document Feedback  
Product Folder Links: TDP0604  
 
 
 
 
 
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
6.3 Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
TA  
TDP0604I Ambient temperature  
85  
°C  
40  
6.4 Thermal Information  
TDP0604  
THERMAL METRIC(1)  
RNQ (WQFN)  
40 PINS  
30.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
21.2  
11.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ΨJT  
11.7  
ΨJB  
RθJC(bot)  
3.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
265  
UNIT  
POWER  
Pin Strap mode; DR = 3.4 Gbps; HPD_IN  
PACTIVE-  
Power dissipation in HDMI 1.4 3.4 Gbps = H; No de-emphasis/pre-emphasis;  
active operation  
190  
mW  
H14-LT-  
Limited redriver mode; DC-coupled TX;  
AC-coupled RX; 3 Gbps CTLE;  
ARX-DTX  
Pin Strap mode; DR = 6 Gbps; HPD_IN =  
H; No de-emphasis/pre-emphasis;  
Limited redriver mode; DC-coupled TX;  
AC-coupled RX; 6 Gbps CTLE;  
PACTIVE-  
Power dissipation in HDMI 2.0 6 Gbps  
active operation  
215  
0.55  
1.0  
305  
mW  
mW  
mW  
H20-LT-  
ARX-DTX  
Pin Strap mode; HPD_IN = L; EN = L or  
H; High-speed outputs are disconnected;  
PPD  
Power in power-down (HPD_IN = L)  
Power in standby (HPD_IN = H) but no  
Pin Strap mode; HPD_IN = H; No  
incoming signal; EN = H; DC-coupled TX;  
incoming signal with DDC Buffer disabled AC-coupled RX; Limited redriver mode;  
High-speed outputs are connected;  
PSD  
1.85  
2.05  
Pin Strap mode; HPD_IN = H; No  
incoming signal; EN = H; DC-coupled TX;  
incoming signal with DDC buffer enabled. AC-coupled RX; Limited redriver mode;  
High-speed outputs are connected;  
Power in standby (HPD_IN = H) but no  
PSD  
1.2  
mW  
HPD_IN = H;VCC = VIO = 3.6 V;  
VIO quiescent current  
IVIOQ  
IVIOA  
16  
1
µA  
LV_DDC_SDA/SCL = H;  
VIO active instantaneous current  
VCC = VIO = 3.6 V; HPD_IN = H;  
mA  
2-LEVEL CONTROL PINS (EN, SCL/CFG0, SDA/CFG1, AC_EN)  
VIO_TRSH Threshold for selecting between 1.2-V  
1.5  
2.5  
V
V
V
V
LVCMOS / 1.8-V LVCMOS  
D
VIO_TRSH Threshold for selecting between 1.8-V  
LVCMOS / 3.3-V LVCMOS  
D
Low-level input voltage for SCL/CFG0,  
SDA/CFG1  
VIL_1p2V  
VIH_1p2V  
VIO = 1.26 V; VCC = 3.0 V;  
-0.3  
0.8  
0.378  
3.6  
High-level input voltage for SCL/CFG0,  
SDA/CFG1  
VIO = 1.14 V; VCC = 3.6 V;  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
6.5 Electrical Characteristics (continued)  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Low-level input voltage for SCL/CFG0,  
SDA/CFG1  
VIL_1p8V  
VIH_1p8V  
VIL_3p3V  
VIO = 1.9 V; VCC = 3.0 V;  
-0.3  
0.57  
3.6  
V
High-level input voltage for SCL/CFG0,  
SDA/CFG1  
VIO = 1.7 V; VCC = 3.6 V;  
1.19  
V
Low-level input voltage for SCL/CFG0,  
SDA/CFG1  
VIO = 3.6 V; VCC = 3.0 V;  
VIO = 3.6 V; VCC = 3.0 V;  
VIO = 3.0 V; VCC = 3.6 V;  
-0.3  
-0.3  
2.2  
0.8  
0.8  
3.6  
V
V
V
VIL_3p3V Low-level input voltage for AC_EN  
High-level input voltage for SCL/CFG0,  
SDA/CFG1  
VIH_3p3V  
High-level input voltage for AC_EN,  
HPDOUT_SEL  
VIH_3p3V  
VIO = 3.0 V; VCC = 3.6 V;  
2.2  
3.6  
0.3  
V
VOL_1p2V Low-level output voltage SDA/CFG1  
IOL_1p2V Low-level output current SDA/CFG1  
VCC = 3.0 V; VIO = 1.2 V;  
-0.3  
2
V
mA  
V
VCC = 3.0 V; VIO = 1.2 V;  
VOL  
IOL  
Low-level output voltage SDA/CFG1  
Low-level output current SDA/CFG1  
VCC = 3.0 V; VIO = 1.8 V or 3.3 V;  
VCC = 3.0 V; VIO = 1.8 V or 3.3 V;  
-0.3  
4
0.4  
mA  
Low-level input current SCL/CFG0, SDA/  
CFG1  
IIL_I2C  
ILEAK  
VIN = 0 V; VIO = 1.8 V or 3.3 V;  
VIN = 3.6 V; VCC = 0 V;  
1
µA  
µA  
1  
Fail-safe input current for SCL/CFG0,  
SDA/CFG1  
25  
25  
VIL_EN  
VIH_EN  
Low-level input voltage for EN pin.  
High-level input voltage for EN pin.  
VIO = 1.14 V; VCC = 3.3 V;  
VIO = 3.6 V; VCC = 3.3 V;  
-0.3  
0.8  
0.4  
3.6  
V
V
VIN = 0 V; VIO = 1.8 V or 3.3 V; VCC =  
3.6 V  
IIL  
Low-level input current EN  
20  
µA  
20  
IIL  
Low-level input current AC_EN  
High-level input current for EN  
VIN = 0 V; VIO = 1.8 V or 3.3 V;  
VIN = 3.6 V; VIO = 1.8 V or 3.3 V;  
VIN = 3.6 V; VIO = 1.8 V or 3.3 V;  
1
1
µA  
µA  
µA  
1  
1  
IIH_EN  
IIH_ACEN High-level input current for AC_EN  
IIH_HPDOU High-level input current for  
24  
24  
VIN = 3.6 V; VIO = 1.8 V or 3.3 V;  
30  
350  
350  
µA  
kΩ  
kΩ  
24  
125  
125  
HPDOUT_SEL  
TSEL  
RPU_EN  
Internal Pull-up resistance on EN.  
250  
250  
RPD_ACE  
Internal Pull-down resistance on AC_EN  
N
RPD_HPD Internal Pull-down resistance on  
125  
250  
350  
5
kΩ  
pF  
pF  
pF  
HPDOUT_SEL  
OUTSEL  
Capacitance for SCL/CFG0 and SDA/  
CI2C-PINS  
CFG1  
f = 100 kHz;  
C(I2C_FM+  
I2C bus capacitance for FM+ (1 MHz)  
150  
150  
910  
2200  
_BUS)  
C(I2C_FM_  
I2C bus capacitance for FM (400 kHz)  
BUS)  
R(EXT_I2C External resistors on both SDA and SCL  
C(I2C_FM+_BUS) = 150 pF  
C(I2C_FM_BUS) = 150 pF  
620  
620  
820  
when operating at FM+ (1 MHz)  
_FM+)  
R(EXT_I2C External resistors on both SDA and SCL  
1500  
when operating at FM (400 kHz)  
_FM)  
LV_DDC_SDA and LV_DDC_SCL  
VIL_1p2V Low-level input voltage  
VIH_1p2V High-level input voltage  
VIL_1p8V Low-level input voltage  
VIH_1p8V High-level input voltage  
VIL_3p3V Low-level input voltage  
VCC = 3.0 V;  
VCC = 3.6 V;  
VCC = 3.0 V;  
VCC = 3.6 V;  
VCC = 3.0 V;  
-0.3  
0.8  
0.378  
3.6  
V
V
V
V
V
-0.3  
1.19  
-0.3  
0.57  
3.6  
0.8  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFJ8  
8
Submit Document Feedback  
Product Folder Links: TDP0604  
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
6.5 Electrical Characteristics (continued)  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VIH_3p3V High-level input voltage  
VCC = 3.6 V;  
2.2  
3.6  
V
DDC Buffer (LV_DDC_SCL, LV_DDC_SDA, HV_DDC_SCL, HV_DDC_SDA)  
High-level input voltage for  
HV_DDC_SCL and HV_DDC_SDA  
VHV_IH  
VHV_IL  
VLV_IH  
VLV_IH  
VLV_IH  
VLV_IL  
VLV_IL  
VLV_IL  
IHV_IL_FS  
IHV_IL  
VIO = 3.3 V; VCC = 3.0 V  
VIO = 3.3 V; VCC = 3.0 V  
VIO = 1.14 V; VCC = 3.3 V  
VIO = 1.7 V; VCC = 3.3 V  
VIO = 3.0 V; VCC = 3.3 V  
VIO = 1.26 V; VCC = 3.3 V  
VIO = 1.9 V; VCC = 3.3 V  
VIO = 3.6 V; VCC = 3.3 V  
3.3  
-0.3  
0.8  
5.3  
1.6  
3.6  
3.6  
3.6  
V
V
Low-level input voltage for HV_DDC_SCL  
and HV_DDC_SDA  
High-level input voltage for LV_DDC_SCL  
and LV_DDC_SDA for 1.2-V LVCMOS  
V
High-level input voltage for LV_DDC_SCL  
and LV_DDC_SDA for 1.8-V LVCMOS  
1.15  
2.1  
V
High-level input voltage for LV_DDC_SCL  
and LV_DDC_SDA for 3.3-V LVCMOS  
V
Low-level input voltage for LV_DDC_SCL  
and LV_DDC_SDA for 1.2-V LVCMOS  
0.082 *  
VIO  
-0.3  
-0.3  
-0.3  
-5  
V
Low-level input voltage for LV_DDC_SCL  
and LV_DDC_SDA for 1.8-V LVCMOS  
0.10 *  
VIO  
V
Low-level input voltage for LV_DDC_SCL  
and LV_DDC_SDA for 3.3-V LVCMOS  
0.10 *  
VIO  
V
Failsafe Input leakage for HV_DDC_SCL  
and HV_DDC_SDA  
VIN = 5.3 V through 1.5 k; VCC = 0 V;  
VIO = 0 V;  
5
5
µA  
µA  
µA  
mA  
V
Input leakage for HV_DDC_SCL and  
HV_DDC_SDA  
HV VIN = 5.3 V; LV VIN = VIO;  
HV VIN = 5.3 V; LV VIN = VIO;  
-5  
Input leakage for LV_DDC_SCL and  
LV_DDC_SDA  
ILV_IL  
-5.5  
3.5  
5.5  
VHV_OL = 0.4 V; HDMI5V= 5.3 V; Pullup  
with 1.4 k; VCC = 3.0 V;  
IHV_OL  
VHV_OL  
Low-level output current  
Low-level output voltage for  
HV_DDC_SCL and HV_DDC_SDA  
HDMI5V= 5.3 V; Pullup with 1.4 k; VCC  
= 3.0 V;  
0.4  
0.3  
Low-level output voltage for  
LV_DDC_SCL and LV_DDC_SDA for 1.2- VCC = 3.0 V; VIO = 1.26 V  
V LVCMOS  
VLV_OL  
0.2  
0.3  
0.6  
V
V
Low-level output voltage for  
LV_DDC_SCL and LV_DDC_SDA for 1.8- VCC = 3.0 V; VIO = 1.9 V  
V LVCMOS  
VLV_OL  
0.4  
Low-level output voltage for  
LV_DDC_SCL and LV_DDC_SDA for 3.3- VCC = 3.0 V; VIO = 3.6 V  
V LVCMOS  
VLV_OL  
0.75  
V
Δ
VLV_HYST Hysteresis on LV side for 1.2 V LVCMOS VIO = 1.2 V; VCC = 3.3 V;  
20  
20  
mV  
mV  
_1p2V  
Δ
VLV_HYST Hysteresis on LV side for 1.8 V LVCMOS VIO = 1.8 V; VCC = 3.3 V;  
_1p8V  
Δ
VLV_HYST Hysteresis on LV side for 3.3 V LVCMOS VIO = 3.3 V; VCC = 3.3 V  
50  
mV  
mV  
_3p3V  
VIO = 3.3 V; VCC = 3.3 V; HDMI5V = 4.8  
V or 5.3 ;  
Δ
VHV_HYST  
Hysteresis on HV side  
500  
RPULV  
RPUHV  
Internal pull-up resistor to VIO  
7450  
1500  
10000  
1800  
13000  
2000  
External pull-up resistor to HDMI 5 V  
Capacitance for HV_DDC_SCL and  
HV_DDC_SDA  
CIOHV  
12  
pF  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
6.5 Electrical Characteristics (continued)  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
pF  
Capacitance for LV_DDC_SCL and  
LV_DDC_SDA  
CIOLV  
7
5.3  
VHDMI5V HDMI 5V  
4.8  
V
Bus capacitance for HV_DDC_SCL and  
HV_DDC_SDA  
CHV_BUS  
750  
pF  
Bus capacitance for LV_DDC_SCL and  
LV_DDC_SDA  
CLV_BUS  
50  
pF  
HPD_IN  
VIL-HPDIN Low-level input voltage for HPD_IN  
VIH-HPDIN High-level input voltage for HPD_IN  
VCC = 3.6 V;  
-0.3  
2.0  
0.8  
5.5  
V
V
VCC = 3.6 V  
Device powered; VIH = 5.5 V; Includes  
internal pull-down resistor  
IH-HPDIN High-level input current for HPD_IN  
-50  
-1  
50  
1
µA  
µA  
kΩ  
µA  
Device powered; VIL = 0 V; Includes  
internal pull-down resistor  
IL-HPDIN  
Low-level input current for HPD_IN  
RPD-  
Internal Pull-down resistance on HPD_IN VCC = 3.3 V; HPD_IN = 5.5 V  
110  
-50  
150  
210  
50  
HPDIN  
ILEAK-  
Fail-safe condition leakage current for  
VCC = 0 V; HPD_IN = 5.5 V  
HPD_IN  
HPDIN  
HPD_OUT  
High level output voltage when configured  
VCC = 3.0 V;  
VOH_3p3V  
2.4  
1.3  
3.465  
1.95  
0.4  
V
V
for 3.3 V LVCMOS push/pull.  
High level output voltage when configured  
VCC = 3.0 V;  
VOH_1p8V  
for 1.8 V LVCMOS push/pull.  
Low level output voltage when configured  
VCC = 3.0 V;  
VOL_PP  
-0.3  
-0.3  
V
for push/pull.  
Low level output voltage when configured  
VCC = 3.0 V; 0.5 kto 3.6 V load;  
for open drain.  
VOL_OD  
IOH_3p3V  
IOL_3p3V  
IOH_1p8V  
IOL_1p8V  
0.4  
V
High level output current for 3.3-V  
LVCMOS  
HPD_IN = VIH-HPDIN  
HPD_IN = VIL-HPDIN; I2C mode;  
HPD_IN = VIH-HPDIN  
HPD_IN = VIL-HPDIN; I2C mode;  
;
-4  
mA  
mA  
mA  
mA  
Low level output current for 3.3-V  
LVCMOS  
4
High level output current for 1.8-V  
LVCMOS  
;
-1.1  
Low level output current for 1.8-V  
LVCMOS  
1.2  
4-LEVEL CONTROL (MODE, LINEAR_EN, EQ1, ADDR/EQ0, TXSLEW, TXPRE, TXSWG)  
VTH  
VTH  
VTH  
IIH  
Threshold "0" / "R"  
VCC = 3.3 V  
0.55  
1.65  
2.7  
V
V
Threshold "R" / "F"  
VCC = 3.3 V  
Threshold "F" / "1"  
VCC = 3.3 V  
V
High-level input current  
Low-level input current  
Internal pullup resistance  
Internal pull-down resistance  
VIH = 3.6 V; VCC = 3.6 V;  
VIL = 0 V; VCC = 3.6 V;  
20  
60  
µA  
µA  
IIL  
-40  
100  
R4PU  
R4PD  
48  
98  
kΩ  
kΩ  
HDMI HIGH SPEED INPUTS  
DR_RX_DA  
Data lanes data rate  
0.25  
6
6
Gbps  
Gbps  
TA  
DR_RX_CL  
Clock lane data rate  
0.25  
400  
K
VID(DC)  
DC differential input swing  
At pins; LINEAR_EN = L;  
1200 mVpp  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFJ8  
10  
Submit Document Feedback  
Product Folder Links: TDP0604  
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
6.5 Electrical Characteristics (continued)  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
VID(EYE) Differential input swing eye opening  
At pins;  
75  
mVpp  
VRX_ASSE  
Signal detect assert level.  
PRBS7 pattern; 6 Gbps;  
150  
mVpp  
RT  
VRX_DEAS  
Signal detect deassert level.  
PRBS7 pattern; 6 Gbps;  
At pins;  
95  
3.3  
mVpp  
V
SERT  
VICM-DC Input DC common mode voltage bias  
2.5  
VCC  
EEQ_6Gbs  
At 3 GHz; 6 Gbps CTLE; EQ15; DC Gain  
= 0 dB; Limited Mode; At output of RX;  
Maximum Fixed EQ gain (AC - DC)  
12.0  
dB  
_MAX_LT  
EEQ_6Gbp  
At 3 GHz; 6 Gbps CTLE; EQ0; DC Gain =  
0 dB; Limited Mode; At output of RX;  
Minimum Fixed EQ gain (AC - DC)  
0.6  
dB  
dB  
s_MIN_LT  
EEQ_6Gbp  
Maximum Fixed EQ Gain when EQ is  
bypassed. (AC - DC)  
At 3 GHz; 6 Gbps CTLE; DC Gain = 0 dB;  
Limited Mode; At output of RX;  
-2.0  
s_BYPASS_  
LT  
At 1.5 GHz; 3 Gbps CTLE; EQ15; DC  
Gain = 0 dB; Limited Mode; At output of  
RX;  
EEQ_3Gbs  
Maximum Fixed EQ gain (AC - DC)  
12  
dB  
_MAX_LT  
EEQ_3Gbp  
At 1.5 GHz; 3 Gbps CTLE; EQ0; DC Gain  
= 0 dB; Limited Mode; At output of RX;  
Minimum Fixed EQ gain (AC - DC)  
0.8  
dB  
s_MIN_LT  
Input differential impedance when  
termination is enabled  
RINT  
At TTP2; HPD_IN = H;  
85  
100  
115  
2.9  
Ω
HDMI HIGH SPEED OUTPUTS (Limited Mode)  
DR = 270 Mbps; HPD_IN = H; AC_EN =  
L (DC-coupled); TXSWG = "F" (1000  
mV); TXPRE = "F" (0dB); TX termination  
open; VCC_EXT = 3.3 V; 25TA ≤  
85;  
Single-ended low-level output voltage for  
VOL_open  
2.7  
V
V
DR 1.65 Gbps data rate  
DR = 3.4 Gbps; HPD_IN = H; AC_EN = L  
(DC-coupled); TXSWG = "F" (1000 mV);  
TXPRE = "F" (0 dB); TX termination 300-  
ohms; VCC_EXT = 3.3 V; 25TA ≤  
85;  
Single-ended low-level output voltage  
VOL_300  
2.6  
2.9  
1.65 Gbps < DR 3.4 Gbps.  
DR = 5.94 Gbps; HPD_IN = H; AC_EN =  
L (DC-coupled); TXSWG = "F" (1000  
mV); TXPRE = "F" (0 dB); VCC_EXT =  
3.3 V; 25TA 85;  
Data lane single-ended low-level output  
voltage 3.4 Gbps < DR 6 Gbps.  
VOL_DAT2  
2.3  
400  
400  
400  
400  
2.9  
600  
600  
600  
600  
V
0
DR = 1.5 Gbps; HPD_IN = H; AC_EN = L  
(DC-coupled); TXSWG = "F" (1000 mV);  
TXPRE = "F" (0 dB); VCC_EXT = 3.3  
V; 25TA 85;  
VSWING_D Single-ended output voltage swing on  
500  
500  
500  
500  
mV  
mV  
mV  
mV  
data lanes with TX term set to open.  
A_14  
DR = 3.4 Gbps;HPD_IN = H; AC_EN = L  
(DC-coupled); TXSWG = "F" (1000 mV);  
TXPRE = "F" (0 dB); VCC_EXT = 3.3  
V; 25TA 85;  
VSWING_D Single-ended output voltage swing on  
data lanes with TX term set to 300-ohms.  
A_14  
DR = 5.94 Gbps;HPD_IN = H; AC_EN = L  
(DC-coupled); TXSWG = "F" (1000 mV);  
TXPRE = "F" (0 dB); VCC_EXT = 3.3  
V; 25TA 85;  
VSWING_D Single-ended output voltage swing on  
data lanes for HDMI2.0 operation.  
A_20  
HPD_IN = H; AC_EN = L (DC-coupled);  
TXSWG = "F" (1000 mV); TXPRE = "F" (0  
dB); VCC_EXT = 3.3 V; 25TA ≤  
85; TERM set to open;  
VSWING_C  
Single-ended output voltage swing on  
clock lane for DR 3.4 Gbps datarate  
LK_14_OPE  
N
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
6.5 Electrical Characteristics (continued)  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
HPD_IN = H; AC_EN = L (DC-coupled);  
TXSWG = "F" (1000 mV); TXPRE = "F" (0  
dB); VCC_EXT = 3.3 V; 25TA ≤  
85;  
VSWING_C Single-ended output voltage swing on  
300  
400  
600  
1560  
1560  
mV  
clock lane for HDMI 2.0  
LK_20  
At TTP4; 2.97 Gbps; HPD_IN = H;  
AC_EN = L or H; TXSWG = "F" (1000  
mV); TXPRE = "F" (0 dB); 25TA ≤  
85;  
VOD_3G  
Data lanes Differential output swing  
Data lanes Differential output swing  
400  
150  
mV  
mV  
At TTP4_EQ; 5.94 Gbps; HPD_IN = H;  
AC_EN = L or H; TXSWG = "F" (1000  
mV); TXPRE = "F" (0 dB); 25TA ≤  
85;  
VOD_6G  
VCC = 0 V; DC-coupled; TMDS output  
pulled to 3.465 V with 50 resistors  
ILEAK  
IOS  
Failsafe condition leakage current  
Short circuit current limit  
35  
62  
µA  
OUT_CLK, OUT_D[2:0] outputs P or N  
shorted to GND  
mA  
TERM = 1h; AC_EN = L (DC-  
coupled);HPD_IN=H; Active state; 20℃  
TA 85;  
Internal termination for DR 3.4 Gbps  
when DC-coupled  
RTERM14  
RTERM14  
RTERM2+  
RTERM2+  
235  
235  
90  
295  
295  
100  
100  
375  
375  
115  
115  
Ω
Ω
Ω
Ω
TERM = 1h; AC_EN = H (AC-  
coupled); HPD_IN=H; Active state; –  
20TA 85;  
Internal termination for DR 3.4 Gbps  
when AC-coupled  
TERM = 3h; AC_EN = L (DC-coupled);  
HPD_IN=H; Active state; 25TA ≤  
85;  
Internal termination for DR > 3.4 Gbps  
when DC-coupled.  
TERM = 3h; AC_EN = H (AC-  
coupled); HPD_IN=H; Active state; 25℃  
TA 85;  
Internal termination for DR > 3.4 Gbps  
when AC-coupled.  
90  
TERM = 3h; HPD_IN = H; TX_AC_EN =  
0; CLK_VOD = 3h; D0_TXFFE = 0h;  
VTXPRE0- Transmitter FFE pre-emphasis ratio for 0 D0_VOD = 3h; D1_TXFFE = 0h; D1_VOD  
0
4.0  
6.5  
dB  
dB  
dB  
dB.  
= 3h; D2_TXFFE = 0h; D2_VOD = 3h; 20  
* log (Vp/Vn); 128 zeros followed by 128  
ones;  
RATIO  
At 5.94 Gbps HDMI 2.0; TERM = 3h;  
HPD_IN = H; TX_AC_EN = 0; CLK_VOD  
= 3h; D0_TXFFE = 1h; D0_VOD = 3h;  
D1_TXFFE = 1h; D1_VOD = 3h;  
VTXPRE1- Transmitter FFE pre-emphasis ratio for  
3.5 dB for data lanes  
RATIO  
D2_TXFFE = 1h; D2_VOD = 3h; 20 * log  
(Vp/Vn); 128 zeros followed by 128 ones;  
At 5.94 Gbps HDMI 2.0; TERM = 3h;  
HPD_IN = H; TX_AC_EN = 0; CLK_VOD  
VTXPRE2- Transmitter FFE pre-emphasis ratio for 6 = 3h; D0_TXFFE = 2h; D0_VOD = 3h;  
dB for data lanes  
D1_TXFFE = 2h; D1_VOD = 3h;  
RATIO  
D2_TXFFE = 2h; D2_VOD = 3h; 20 * log  
(Vp/Vn); 128 zeros followed by 128 ones;  
6.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
Local I2C (SCL/CFG0, SDA/CFG1). Refer to 7-9.  
fSCL  
tBUF  
I2C clock frequency  
1
MHz  
µs  
Bus free time between START and STOP conditions  
0.5  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFJ8  
12  
Submit Document Feedback  
Product Folder Links: TDP0604  
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
6.6 Timing Requirements (continued)  
MIN  
NOM  
MAX  
UNIT  
Hold time after repeated START condition. After this period, the first clock  
pulse is generated  
tHD_STA  
0.26  
µs  
tLOW  
Low period of the I2C clock  
High period of the I2C clock  
Setup time for a repeated START condition  
Data hold time  
0.5  
0.26  
0.26  
0
µs  
µs  
tHIGH  
tSU_STA  
tHD_DAT  
tSU_DAT  
tR  
µs  
μs  
ns  
Data setup time  
50  
Rise time of both SDA and SCL signals  
Fall time of both SDA and SCL signals  
Setup time for STOP condition  
120  
120  
ns  
tF  
4
ns  
tSU_STO  
0.26  
μs  
DDC Snoop I2C Timings. Refer to 7-9.  
fSCL  
tBUF  
I2C DDC clock frequency  
100  
kHz  
µs  
Bus free time between START and STOP conditions  
4.7  
4
Hold time after repeated START condition. After this period, the first clock  
pulse is generated  
tHD_STA  
µs  
tLOW  
Low period of the I2C clock  
4.7  
4
µs  
µs  
tHIGH  
tSU_STA  
tHD_DAT  
tSUDAT  
tR  
High period of the I2C clock  
Setup time for a repeated START condition  
Data hold time  
4.7  
0
µs  
μs  
ns  
Data setup time  
250  
Rise time of both SDA and SCL signals. Measured from 30% to 70%.  
Fall time of both SDA and SCL signals Measured from 70% to 30%.  
Setup time for STOP condition  
1000  
300  
ns  
tF  
ns  
tSU_STO  
Cb_LV  
4
μs  
pF  
Capacitive load for each bus line on LV side  
50  
Power-On. Refer to 7-1.  
tVCC_RAMP VCC supply ramp. Measured from 10% to 90%.  
0.10  
50  
5
ms  
ms  
µs  
µs  
µs  
tD_PG  
Internal POR de-assertion delay  
tVIO_SU  
tCFG_SU  
tCFG_HD  
VIO supply stable before reset(2) high.  
Configuration pins(1) setup before reset(2) high.  
Configuration pins(1) hold after reset(2)high.  
100  
0
500  
(1) Follow comprise the configuration pins: MODE, ADDR/EQ0, EQ1, TXSWG, TXSLEW, TXPRE, AC_EN, HPDOUT_SEL, DCGAIN  
(2) Reset is the logical AND of internal POR and EN pin.  
6.7 Switching Characteristics  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Redriver  
Maximum HDMI 1.4 clock frequency at  
which TX termination is assured to be  
open  
HDMI1.4; 25 MHz IN_CLK 340  
MHz; TXTERM_AUTO_HDMI14 = 0h;  
TERM = 2h; TX is DC-coupled;  
fHDMI14_o  
165  
MHz  
pen  
Minimum HDMI 1.4 clock frequency at  
which TX termination is assured to be  
300-ohms  
HDMI1.4; 25 MHz IN_CLK 340  
MHz; TXTERM_AUTO_HDMI14 = 0h;  
TERM = 2h; TX is DC-coupled;  
fHDMI14_3  
250  
220  
MHz  
ps  
00  
tPD  
Propagation delay time  
At TTP4;  
90  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
6.7 Switching Characteristics (continued)  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
At TTP4; No intra-pair skew at input; 6  
Gbps with 150 MHz clock; TX termination  
100-; Limited mode;  
Clock lane Intra-pair output skew with  
zero intra-pair skew at inputs  
tSK1(T)  
0.10  
0.15  
0.09  
UI  
At TTP4; No intra-pair skew at input; At 6  
Gbps; TX termination 100-; Limited  
mode;  
Data lane Intra-pair output skew with zero  
intra-pair skew at inputs  
tSK1(T)  
0.035  
UI  
tSK2(T)  
Inter-pair output skew  
At TTP4; At 6 Gbps;  
30  
ps  
ps  
Transition time (rise and fall time) for  
clock lane when operating at HDMI1.4  
At TTP4; 20% to 80%; Clock Frequency =  
300 MHz;  
tRF-CLK-14  
75  
75  
600  
Transition time (rise and fall time) for  
clock lane when operating at HDMI 2.0  
At TTP4; 20% to 80%; Clock Frequency =  
150 MHz;  
tRF-CLK-20  
600  
195  
ps  
ps  
At TTP4; 20% to 80%; DR = 3 Gbps;  
SLEW_HDMI14 = default; PRBS7  
pattern; Clock Frequency = 300 MHz;  
Transition time (rise and fall time) for data  
lanes when operating at HDMI 1.4  
tRF_14  
75  
At TTP4; 20% to 80%; DR = 6 Gbps;  
SLEW_HDMI20 = default; PRBS7  
pattern; Clock Frequency = 150 MHz;  
Transition time (rise and fall time) for data  
lanes when operating at HDMI 2.0  
tRFDAT_20  
42.5  
115  
ps  
Transition bit duration when de-emphasis/ At TTP4; DR = 3 Gbps; Clock pattern of  
tTRANS_3G  
0.4  
0.4  
1
1
UI  
UI  
pre-emphasis is enabled  
128 zeros followed by 128 ones;  
Transition bit duration when de-emphasis/ At TTP4; DR = 6 Gbps; Clock pattern of  
tTRANS_6G  
pre-emphasis is enabled  
128 zeros followed by 128 ones;  
HPD  
tHPD_PD HPD_IN to HPD_OUT propagation delay  
100  
4
µs  
Refer to 7-7  
Refer to 7-7  
HPD_IN debounce time before declaring  
tHPD_PWR  
Powerdown. Enter Powerdown if  
HPD_IN is low after debounce time.  
2
2
ms  
DOWN  
HPD_IN debounce time required for  
tHPD_STAN exiting Powerdown to Standby. Exit  
4
ms  
Refer to 7-8  
Powerdown if HPD_IN is high after  
DBY  
debounce time.  
Standby  
tSTANDBY_ Detection of electrical idle to entry into  
HPD_IN = H;  
HPD_IN = H;  
300  
25  
µs  
µs  
Standby.  
ENTRY  
Maximum differential signal glitch time  
tSIGDET_D  
rejected during debounce before  
transitioning from standby to active  
B
Maximum differential signal glitch time  
tSIGDET_D  
rejected during debounce before  
HPD_IN = H;  
HPD_IN = H;  
50  
ns  
B
transitioning from active to standby  
tSTANDBY_ Detection of differential signal to exit from  
200  
100  
µs  
kHz  
ns  
Standby to Active state  
EXIT  
fSCL  
DDC buffer frequency  
Propagation delay time. Low-to-high-level LV to HV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 1.2 V LVCMOS levels. DDC_LV_DCC_EN = 1'b1;  
1400  
Propagation delay time. Low-to-high-level LV to HV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 1.8 V LVCMOS levels. DDC_LV_DCC_EN = 1'b1;  
tPLH1  
1400  
1400  
ns  
ns  
Propagation delay time. Low-to-high-level LV to HV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 3.3 V LVCMOS levels. DDC_LV_DCC_EN = 1'b1;  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFJ8  
14  
Submit Document Feedback  
Product Folder Links: TDP0604  
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
6.7 Switching Characteristics (continued)  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Propagation delay time. Low-to-high-level HV to LV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 1.2 V LVCMOS levels. DDC_LV_DCC_EN = 1'b1;  
410  
ns  
Propagation delay time. Low-to-high-level HV to LV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 1.8 V LVCMOS levels. DDC_LV_DCC_EN = 1'b1;  
tPLH2  
tPHL1  
tPHL2  
410  
410  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Propagation delay time. Low-to-high-level HV to LV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 3.3 V LVCMOS levels. DDC_LV_DCC_EN = 1'b1;  
Propagation delay time. High to low-level LV to HV; CLV_BUS = CHV_BUS = 50 pF;  
1200  
1200  
1200  
535  
output. VIO set to 1.2 V LVCMOS.  
Propagation delay time. High to low-level LV to HV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 1.8 V LVCMOS. DDC_LV_DCC_EN = 1'b1;  
Propagation delay time. High to low-level LV to HV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 3.3 V LVCMOS. DDC_LV_DCC_EN = 1'b1;  
Propagation delay time. High to low-level HV to LV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 1.2 V LVCMOS. DDC_LV_DCC_EN = 1'b1;  
Propagation delay time. High to low-level HV to LV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 1.8 V LVCMOS. DDC_LV_DCC_EN = 1'b1;  
Propagation delay time. High to low-level HV to LV; CLV_BUS = CHV_BUS = 50 pF;  
DDC_LV_DCC_EN = 1'b1;  
535  
535  
output. VIO set to 3.3 V LVCMOS.  
DDC_LV_DCC_EN = 1'b1;  
LV side fall time for 1.2-V LVCMOS  
70% to 30%; CLV_BUS = CHV_BUS = 50 pF;  
70% to 30%; CLV_BUS = CHV_BUS = 50 pF;  
70% to 30%; CLV_BUS = CHV_BUS = 50 pF;  
70% to 30%; CLV_BUS = CHV_BUS = 50 pF;  
30% to 70%; CLV_BUS = CHV_BUS = 50 pF;  
75  
75  
75  
75  
260  
260  
260  
260  
ns  
ns  
ns  
ns  
tLV_FALL LV side fall time for 1.8-V LVCMOS  
LV side fall time for 3.3-V LVCMOS  
tHV_FALL HV side fall time  
LV side rise time for 1.2-V LVCMOS  
tLV_RISE LV side rise time for 1.8-V LVCMOS  
LV side rise time for 3.3-V LVCMOS  
300  
300  
300  
670  
670  
670  
ns  
ns  
ns  
Pulled up to VIO using RPULV  
30% to 70%; CLV_BUS = CHV_BUS = 50 pF;  
Pulled up to VIO using RPULV  
30% to 70%; CLV_BUS = CHV_BUS = 50 pF;  
Pulled up to VIO using RPULV  
;
;
;
30% to 70%; CLV_BUS = CHV_BUS = 50 pF;  
VCC = 3.0 V; HDMI5V = 5.3 V; Pulled up  
tHV_RISE_  
HV side rise time (50 pF load)  
225  
ns  
ns  
50pF  
to HDMI5V using RPUHV  
;
30% to 70%; CLV_BUS = 50 pF; CHV_BUS  
750 pF; VCC = 3.0 V; HDMI5V = 5.3 V;  
=
tHV_RISE_  
HV side rise time (750 pF load)  
1250  
750pF  
Pulled up to HDMI5V using RPUHV  
;
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
6.8 Typical Characteristics  
6-1. 3 Gbps CTLE EQ Curves with GLOBAL_DCG = 0x2 in  
6-2. 6 Gbps CTLE EQ Curves with GLOBAL_DCG = 0x2 in  
Limited Mode  
Limited Mode  
6-3. Input Differential Return Loss (SDD11)  
6-4. Output Differential Return Loss (SDD22)  
Copyright © 2023 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
6.9 Typical Characteristics  
6-5. 3 Gbps CTLE EQ Curves with  
6-6. 6 Gbps CTLE EQ Curves with  
GLOBAL_DCG = 0x2 in Limited Mode  
GLOBAL_DCG = 0x2 in Limited Mode  
6-7. Input Differential Return Loss (SDD11)  
6-8. Output Differential Return Loss (SDD22)  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
7 Parameter Measurement Information  
VIO(min)  
VIO  
tVIO_SU  
2.8 V  
tD_PG  
VCC  
Internal POR  
tCFG_SU  
Reset  
(POR && EN pin)  
VIH  
EN pin  
tCFG_HD  
CFG pins  
7-1. Power-On Timing Requirements  
VCC  
3.3 V  
50  
50  
50  
50  
0.5 pF  
D+  
D-  
Y
Z
Receiver  
Driver  
VID  
VD+  
VY  
VID = VD+ - VD-  
VOD = VY - VZ  
VD-  
VZ  
VICM = (VD+ + VD-  
2
)
VOCM = (VY + VZ)  
2
7-2. TMDS Main Link Test Circuit  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFJ8  
18  
Submit Document Feedback  
Product Folder Links: TDP0604  
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
4.0 V  
Vcc  
VID+  
VID  
2.6 V  
VID(pp)  
0 V  
VID-  
tPHL  
tPLH  
80%  
80%  
VOD(pp)  
VOD  
0 V  
20%  
20%  
tr  
tf  
7-3. Input or Output Timing Measurements  
VOD(SS)  
PRE = L  
7-4. Output Differential Waveform  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
TXPRE = —F“  
TXPRE = 0“ or —1“  
VOD(PP)  
VOD(SS)  
7-5. Output Differential Waveform with De-Emphasis  
Avcc(4)  
RT  
(5)  
RT  
SMA  
SMA  
SMA  
REF  
Cable  
EQ  
Coax  
Coax  
Coax  
Coax  
Data +  
Data -  
RX  
+EQ  
OUT  
SMA  
Parallel (6)  
BERT  
Jitter Test  
Instrument (2,3)  
FR4 PCB trace(1)  
AC coupling Caps  
&
Device  
FR4 PCB trace  
AVcc  
RT  
[No Pre-  
emphasis]  
RT  
REF  
Cable  
EQ  
SMA  
SMA  
SMA  
SMA  
Coax  
Coax  
Coax  
Coax  
Clk+  
Clk-  
RX  
+EQ  
OUT  
Jitter Test  
Instrument (2,3)  
TTP4_EQ  
Copyright © 2016, Texas Instruments Incorporated  
TTP4  
TTP1  
TTP2  
TTP3  
TTP2_EQ  
(1) The FR4 trace between TTP1 and TTP2 is designed to emulate 1-12of FR4, AC-coupling capacitor, connector and another 2of  
FR4. Trace width 4 mils. 100 Ωdifferential impedance.  
(2) All Jitter is measured at a BER of 109.  
(3) Residual jitter reflects the total jitter measured at TTP4 minus the jitter measured at TTP  
(4) AVCC = 3.3 V.  
(5) RT = 50 Ω.  
(6) For HDMI 1.4 or 2.0, the input signal from parallel Bert does not have any pre-emphasis or de-emphasis. Refer to Recommended  
Operating Conditions.  
7-6. HDMI Output Jitter Measurement  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFJ8  
20  
Submit Document Feedback  
Product Folder Links: TDP0604  
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
HPD_IN  
VIL  
tHPD_PWRDOWN  
tHPD_PD  
HPD_OUT  
VOL  
Device Active or Standby  
Power Down  
7-7. HPD Logic Shutdown and Propagation Timing  
VIH  
HPD_IN  
tHPD_STANDBY  
tHPD_PD  
VOH  
HPD_OUT  
Standby  
Device In Power Down  
7-8. HPD Logic Standby and Propagation Timing  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
t
t
r
t
SU_DAT  
f
70 %  
30 %  
70 %  
30 %  
SDA  
SCL  
cont.  
t
t
HD_DAT  
VD_DAT  
t
f
t
HIGH  
t
r
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
cont.  
t
HD_STA  
t
LOW  
th  
9
clock  
1 / f  
S
SCL  
st  
1
clock cycle  
t
BUF  
SDA  
SCL  
t
VD_ACK  
t
t
t
t
SU_STO  
SU_STA  
HD_STA  
SP  
70 %  
30 %  
Sr  
P
S
th  
9
clock  
7-9. I2C SCL and SDA Timing  
VID(DC)  
VID(EYE)  
7-10. VID(DC) and VID(EYE)  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFJ8  
22  
Submit Document Feedback  
Product Folder Links: TDP0604  
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
8 Detailed Description  
8.1 Overview  
The TDP0604 is a HDMI 2.0 redriver supporting data rates up to 6 Gbps. It is also backwards compatible to  
HDMI 1.4b. The high-speed differential inputs and outputs can be either AC-coupled or DC-coupled, which  
qualifies the TDP0604 to be used as a DP++ to HDMI level shifter or HDMI redriver.  
The TDP0604 configuration can be programmed by pin strap or I2C. Receiver equalization, TX pre-emphasis,  
and TX voltage swing are controlled globally by pin-strap pins such as CTLEMAP_SEL, EQ[1:0], TXSWG, and  
TXPRE. In I2C mode, all transmitter and receiver settings for each lane are independently controlled. Four  
TDP0604 devices can be used on one I2C bus with each unique TDP0604 address set by the ADDR pin.  
The TDP0604 is a hybrid redriver supporting both source and sink applications. A hybrid redriver can operate  
either in a linear or limited redriver function. When configured as a limited redriver, the TDP0604 differential  
output voltage levels are independent of the graphics process unit (GPU) output levels ensuring HDMI compliant  
levels at the receptacle. The limited redriver is a recommended mode for HDMI source applications. When  
configured as a linear redriver, the TDP0604 differential output levels are a linear function of the GPU output  
levels. Linear redriver mode is the recommended mode for sink applications.  
For ease of use, the TDP0604 supports single power supply rails of 3.3 V on VCC, integrated HPD level shifter,  
and DDC buffer eliminating the need for external discrete solutions.  
TDP0604 supports up to 16 EQ gain options to compensate for different lengths of input cables or board traces.  
The EQ gain can be software adjusted by I2C control or pin strapping EQ0 and EQ1 pins. To assist in ease of  
implementation, the TDP0604 supports lanes swapping; see 8.3.4. Two temperature gradient versions of the  
device are available: commercial with a temperature range of 0°C to 70°C (TDP0604) and an industrial  
temperature range of 40°C to 85°C (TDP0604I).  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
8.2 Functional Block Diagram  
SigDet  
OUT_D2p  
OUT_D2n  
IN_D2p  
Driver  
Driver  
EQ  
IN_D2n  
OUT_D1p  
OUT_D1n  
IN_D1p  
EQ  
IN_D1n  
OUT_D0p  
IN_D0p  
Driver  
EQ  
OUT_D0n  
OUT_CLKp  
IN_D0n  
IN_CLKp  
Driver  
EQ  
OUT_CLKn  
IN_CLKn  
SigDet  
VIO  
SCL/CFG0  
SDA/CFG1  
ADDR/EQ0  
EN  
I2C  
Target  
CTLEMAP_SEL  
TXPRE  
TXSWG  
EQ1  
TEST1  
HPD_IN  
MODE  
AC_EN  
HPD_OUT  
DDC  
Snoop  
LINEAR_EN  
HPDOUT_SEL  
VIO  
RPULV  
DDC  
Buer  
HV_DDC_SDA  
HV_DDC_SCL  
LV_DDC_SDA  
LV_DDC_SCL  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFJ8  
24  
Submit Document Feedback  
Product Folder Links: TDP0604  
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
8.3 Feature Description  
8.3.1 4-Level Inputs  
The TDP0604 has 4-level inputs pins that control the receiver equalization gain, transmitter voltage swing, and  
pre-emphasis, and place TDP0604 into different modes of operation. These 4-level inputs utilize a resistor  
divider to help set the 4 valid levels and provide a wider range of control settings. There are internal pull-up and  
a pull-down resistors. These resistors are combined with the external resistor connection to achieve the desired  
voltage level.  
8-1. 4-Level Control Pin Settings  
LEVEL  
SETTINGS  
0
R
F
1
Tie 1-k5% to GND.  
Tie 20-k5% to GND.  
Float (leave pin open)  
Tie 1-k5% to VCC  
.
备注  
7-1 shows how all 4-level inputs are latched after the rising edge of the EN pin. After these pins are  
sampled, the internal pull-up and pull-down resistors will be isolated to save power.  
8.3.2 I/O Voltage Level Selection  
The TDP0604 supports 1.2-V, 1.8-V, and 3.3-V LVCMOS levels. The VIO pin is used to select which voltage  
level is used for the following 2-level control pins: LV_DDC_SDA, LV_DDC_SCL, SCL/CFG0, and SDA/CFG1.  
The AC_EN pin threshold is fixed at 3.3-V LVCMOS levels. EN pin threshold is fixed at 1.2-V LVCMOS  
threshold.  
8-2. Selection of LVCMOS Signaling Level  
VIO pin  
LVCMOS Signaling Level  
VALUE < 1.5-V  
1.2-V  
1.8-V  
3.3-V  
1.5-V < VALUE < 2.5-V  
VALUE > 2.5-V  
8.3.3 HPD_OUT  
The TDP0604 will level shift the 5-V signaling level present on the HPD_IN pin to a lower voltage such as 1.8-V  
or 3.3-V levels on the HPD_OUT pin. The HPD_OUT supports both push-pull and open drain. The default  
operation is push-pull. Selection between push-pull and open drain is done through the HPDOUT_SEL register.  
8-2 lists how the VIO determines the output level of HPD_OUT when HPD_OUT is configured for push-pull  
operation. Please note push-pull operation is not supported for VIO less than 1.7-V.  
备注  
Open-drain operation is only supported when TDP0604 is configured for I2C mode.  
When EN pin is low, the HPD_OUT pin will be in a high impedance state. It is recommended to have a  
weak pull-down resistor (such as 220k) on HPD_OUT.  
8.3.4 Lane Control  
The TDP0604 has various lane control features. Pin strapping globally controls features like receiver  
equalization, VOD swing, slew rate, and pre-emphasis or de-emphasis. Through I2C receiver equalization,  
transmitter swing, and pre-emphasis for each lane can be independently controlled.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
8.3.5 Swap  
8-1 shows how TDP0604 incorporates a swap function which can swap the lanes. The RX EQ, pre-emphasis,  
termination, and slew configurations will follow the new mapping. This function is supported in pin strap mode as  
well as when TDP0604 is configured for I2C mode. A register controls the swap function in I2C mode.  
8-3. Swap Functions  
Normal Operation  
CFG1 = H or LANE_SWAP Register is 1h  
CFG1 pin = L or LANE_SWAP Register is 0h  
IN_D2 OUT_D2  
IN_D1 OUT_D1  
IN_D0 OUT_D0  
IN_CLK OUT_CLK  
IN_CLK OUT_CLK  
IN_D0 OUT_D0  
IN_D1 OUT_D1  
IN_D2 OUT_D2  
IN_D2p  
IN_D2n  
IN_D2p  
OUT_D2p  
OUT_D2n  
OUT_D2p  
OUT_D2n  
DATA LANE2  
DATA LANE1  
DATA LANE0  
CLOCK LANE  
IN_D2n  
IN_D1p  
IN_D1n  
OUT_D1p  
OUT_D1n  
IN_D1p  
IN_D1n  
OUT_D1p  
OUT_D1n  
DATA LANE0  
DATA LANE1  
IN_D0p  
IN_D0n  
IN_D0p  
IN_D0n  
OUT_D0p  
OUT_D0n  
OUT_D0p  
OUT_D0n  
IN_CLKp  
IN_CLKn  
OUT_CLKp  
OUT_CLKn  
IN_CLKp  
IN_CLKn  
OUT_CLKp  
OUT_CLKn  
DATA LANE2  
CLOCK LANE  
In Normal Working  
Lane Swap  
Copyright © 2018, Texas Instruments Incorporated  
8-1. TDP0604 Swap Function  
8.3.6 Linear and Limited Redriver  
The TDP0604 supports both linear and limited redriver. Selection between linear and limited can be done from  
the LINEAR_EN pin in pin-strap mode or through GLOBAL_LINR_EN register in I2C mode.  
The limited redriver mode will decouple TDP0604 transmitter's voltage swing, pre-emphasis or de-emphasis,  
and slew rate from the GPUs transmitter. This allows the GPU to use a lower power TX setting and depends on  
the TDP0604 transmitter to meet TX compliance requirements. For source applications, it is recommended to  
configure TDP0604 as a limited redriver. It is not recommended to use limited redriver mode in sink applications.  
Unlike limited redriver mode, in linear redriver mode the TDP0604 transmitter's output is not decoupled from the  
GPU's transmitter. In linear redriver mode, the TDP0604 transmitter's output is a linear function of its input. For  
HDMI sink applications, it is recommended to configure TDP0604 as a linear redriver.  
For HDMI source applications, it is recommended to use TDP0604 in limited redriver mode.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFJ8  
26  
Submit Document Feedback  
Product Folder Links: TDP0604  
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
8-4. Pin-Strap Mode LINEAR_EN Pin Function  
LINEAR_EN Pin Level  
Description  
1
F
Limited Enabled  
Linear Enabled.  
Recommended for HDMI sink application.  
R
0
Reserved  
Limited Enabled.  
Recommended for HDMI source application  
8.3.7 Main Link Inputs  
Each main link input (IN_D[2:0] and IN_CLK) is internally biased to 3.3-V through approximately 100-(50-Ω  
single-ended). When using TDP0604 in DisplayPort++ applications, external AC-coupling capacitance should be  
used. When using TDP0604 in an HDMI application such as in an HDMI monitor, the main link inputs can be DC-  
coupled to a compliant HDMI transmitter. Each input data channel contains an equalizer to compensate for cable  
or board losses.  
8.3.8 Receiver Equalizer  
The equalizer is used to clean up inter-symbol interference (ISI) jitter or loss from the bandwidth-limited board  
traces or cables. TDP0604 supports fixed receiver equalizer by setting the EQ0 and EQ1 pins or through I2C  
register.  
The TDP0604 has two sets of CTLE curves (3 Gbps CTLE and 6 Gbps CTLE) with each curve having 16 ac gain  
settings and 3 dc gain settings. The 16 ac gain settings with GLOBAL_DCG = 0x2 is detailed in 8-5.  
The TDP0604 in pin-strap mode has two CTLE HDMI Datarate Maps: Map B and Map C. These maps are  
detailed in 8-6. The expectation is Map B or C should be used if TDP0604 is used in a source application and  
Map B for a sink application.  
When the TDP0604 is configured for pin-strap mode, the default CTLE HDMI data rate map will be determined  
by the sampled state of the CTLEMAP_SEL pin as detailed in 8-7.  
In the I2C mode, the default CTLE (3 Gbps or 6 Gbps) used for each HDMI mode can be controlled from a  
register.  
8-5. Receiver EQ Settings when GLOBAL_DCG = 0x2  
RX EQ Level for 3Gbps CTLE  
(Gain at 1.5 GHz - Gain at 10 MHz)  
RX EQ Level for 6Gbps CTLE  
(Gain at 3 GHz - Gain at 10 MHz)  
EQ Setting(1)  
EQ1 PIN  
EQ0 PIN  
0(2)  
1
1.0  
2.0  
0.5  
1.0  
0
0
0
R
F
1
2
3.2  
2.4  
0
3
4.2  
3.3  
0
4
5.3  
4.4  
R
R
R
R
F
F
F
F
1
0
5
6.0  
5.2  
R
F
1
6
7.0  
6.0  
7
7.7  
6.8  
8
9.0  
7.5  
0
9
9.5  
8.2  
R
F
1
10  
11  
12  
13  
14  
15  
10.0  
10.5  
11.0  
11.5  
12.0  
12.3  
8.8  
9.3  
10.0  
10.5  
11.0  
11.8  
0
1
R
F
1
1
1
(1) In I2C mode, the receiver EQ setting is determined by D0_EQ, D1_EQ, and D2_EQ registers.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
 
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
(2) When CTLEBYP_EN = 1 and dcGAIN = 0-dB, EQ settings 0 will be 0-dB due to the CTLE is bypassed.  
8-6. CTLE HDMI Datarate Map B and C  
HDMI Mode  
Map B  
Map C  
1.4  
2.0  
3 Gbps CTLE  
6 Gbps CTLE  
6 Gbps CTLE  
6 Gbps CTLE  
8-7. Pin-Strap Mode CTLE HDMI Datarate Mapping  
Sampled State of CTLEMAP_SEL Pin  
"0"  
"R"  
"F"  
"1"  
CTLE HDMI Datarate Map  
Reserved  
Map C  
Reserved  
Map B  
备注  
The clock lane EQ when operating in HDMI 1.4 or 2.0 will use the 3-Gbps CTLE and will be set to the  
zero EQ setting.  
8.3.9 CTLE Bypass  
The TDP0604 will operate as a buffer when CTLE bypass is enabled. In pin-strap mode, this feature is disabled.  
In I2C mode, this feature is enabled when CTLEBYP_EN = 1h and GLOBAL_DCG = 2h. Any lane that has EQ  
setting of 0h will operate in CTLE bypass.  
8.3.10 Input Signal Detect  
When standby state is enabled, the TDP0604 waits for a signal on IN_CLK (SWAP disabled) or IN_D2 (SWAP  
enabled) and is fully functional when a signal is detected. If no signal is detected, then the device reenters  
standby state waiting for a signal again. In the standby state all of the TMDS outputs are in high-Z status. In both  
pin-strap mode and I2C mode, standby is enabled by default. In I2C mode, standby can be disabled by setting  
the STANDBY_DISABLE register.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFJ8  
28  
Submit Document Feedback  
Product Folder Links: TDP0604  
 
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
8.3.11 Main Link Outputs  
8.3.11.1 Transmitter Bias  
The TDP0604 transmitter supports both external (DC-coupled) and internal bias (AC-coupled) to a receiver.  
Selection between DC and AC-coupled is done through use of the AC_EN pin in pin-strap mode and TX_AC_EN  
register in I2C mode. The AC_EN pin informs the TDP0604 whether or not an external AC-coupling capacitor is  
present. When AC_EN is greater than VIH, then TDP0604 transmitters are internally biased to approximately  
VCC. For AC-coupled application, the AC_EN pin should be connected to greater than VIH and an external AC-  
coupling capacitor should be placed on each of the OUT_D[2:0] pins and the OUT_CLK pin. If the AC_EN pin is  
connected to less than VIL, then the AC_EN pin will inform TDP0604 that AC_EN pin is DC-coupled (externally  
biased) to the far-end HDMI compliant receiver.  
备注  
8-3 shows that if using AC-coupled TX mode (AC_EN = high) in an HDMI source application, then  
an external 499 Ω pull-down to GND must be placed on each OUT pin (OUT_D2:0p/n and  
OUT_CLKp/n) between the AC-coupling capacitor and the HDMI receptacle. The purpose of the 499  
Ωresistor is to set the common mode voltage to HDMI compliant levels.  
OUT_D2p  
OUT_D2n  
OUT_D1p  
OUT_D1n  
OUT_D0p  
OUT_D0n  
OUT_CLKp  
OUT_CLKn  
8-2. DC-Coupled TX in HDMI Source Application (AC_EN = Low). External ESD is Not Shown.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
499  
CACTX  
OUT_D2p  
OUT_D2n  
OUT_D1p  
OUT_D1n  
OUT_D0p  
OUT_D0n  
OUT_CLKp  
OUT_CLKn  
System 3.3 V  
8-3. AC-Coupled TX in HDMI Source Application (AC_EN = High). External ESD is Not Shown.  
8.3.11.2 Transmitter Impedance Control  
HDMI 2.0 standards require a source termination impedance approximately 100-for data rates > 3.4-Gbps.  
HDMI 1.4b requires no source termination but has a provision for termination for higher data rates greater than  
1.65-Gbps. Enabling this termination is optional. 8-9 lists how the TDP0604 terminations are controlled  
automatically when in pin strap mode. Depending on the MODE pin, the CFG0 pin can be used to select the  
HDMI 1.4 termination between open and 300-Ω.  
The TDP0604 supports automatic selection between open and 300-Ω termination when operating in HDMI 1.4.  
In pin-strap mode with CTL0 low, the TDP0604 will enable open termination when HDMI clock frequency is less  
than fHDMI14_open and will enable 300-Ω termination when HDMI clock frequency is greater than fHDMI14_300  
.
TXTERM_AUTO_HDMI14 register controls this feature in I2C mode.  
In I2C mode, termination is controlled through the registers as provided in 8-8.  
8-8. Source Termination Control in I2C mode  
TXTERM_AUTO_HDMI14  
Register  
TX_AC_EN Register  
TERM Register  
Source Termination  
0
0
0
0
00  
01  
10  
10  
X
X
X
1
None  
Parallel 300-Ωacross P and N  
Automatic. parallel 100-Ωacross P and N  
Automatic. HDMI 1.4. parallel 300-Ωacross P and N  
Automatic. HDMI 1.4. No termination if HDMI clock  
0
0
10  
10  
0
0
frequency is fHDMI14_open  
.
Automatic. HDMI 1.4. Parallel 300-Ωacross P and N  
termination if HDMI clock frequency is fHDMI14_300  
Parallel 100-Ωacross P and N  
.
0
1
1
11  
00  
01  
X
X
X
150-Ωto supply (VCC) on both P and N  
150-Ωto supply (VCC) on both P and N  
Automatic. 150-Ωto supply (VCC) on both P and N  
for HDMI 1.4. Otherwise 50-Ωto supply (VCC) on  
both P and N.  
1
1
10  
11  
X
X
50-Ωto supply (VCC) on both P and N  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFJ8  
30  
Submit Document Feedback  
Product Folder Links: TDP0604  
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
8-9. Automatic Source Termination Control in Pin-Strap Mode  
HDMI Mode  
AC_EN pin  
Source Termination  
None or parallel 300-Ωacross P and N  
depending on state of SCL/CFG0 pin  
HDMI 1.4  
0
HDMI 2.0  
HDMI 1.4  
HDMI 2.0  
0
1
1
Parallel 100-Ωacross P and N  
150-Ωto supply (VCC) on both P and N  
50-Ωto supply (VCC) on both P and N  
8.3.11.3 TX Slew Rate Control  
The TDP0604 has the ability to slow down the TMDS output edge rates. In pin-strap mode the TX slew rate can  
not be controlled. In I2C mode both clock and data lanes slew rate can be controlled from a register. 8-10  
shows the supported settings for each slew rate register based on HDMI data rate. The TDP0604 must be  
configured in limited redriver mode to control the TX slew rate.  
8-10. I2C Mode TX Slew Register Supported Settings  
HDMI Datarate  
HDMI 1.4  
SLEW_CLK register  
3'b000 through 3'b011  
3'b000 through 3'b011  
SLEW_3G register  
3'b010 through 3'b101  
N/A  
SLEW_6G register  
N/A  
HDMI 2.0  
3'b011 through 3'b110  
8.3.11.4 TX Pre-Emphasis and De-Emphasis Control  
The TDP0604 provides pre-emphasis and de-emphasis on the data lanes allowing the output signal pre-  
conditioning to offset interconnect losses between the TDP0604 outputs and a TMDS receiver. Pre-emphasis  
and de-emphasis is not implemented on the clock lane. There are two methods to implement pre-emphasis, pin  
strapping or through I2C programming. TX pre-emphasis and de-emphasis control is only supported in limited  
mode.  
When using pin strap mode, the TXPRE pin controls four different global pre-emphasis and de-emphasis values  
for all data lanes when TDP0604 is operating in HDMI 1.4 or HDMI 2.0. These pre-emphasis and de-emphasis  
values are described in 8-11.  
8-11. Pin-Strap TXPRE Pin Function  
TXPRE Pin  
HDMI 1.4 or HDMI 2.0  
3.5 dB pre-emphasis  
-2.5 dB de-emphasis  
0 dB  
0
R
F
1
6.0 dB pre-emphasis  
8.3.11.5 TX Swing Control  
The TDP0604 transmitter swing level can be adjusted in both pin strap and I2C mode. In I2C mode, TX swing  
settings are controlled independently for each lane (both clock and data) through registers.  
In I2C mode, the TX swing used when operating in HDMI 1.4 and HDMI 2.0 can be independently controlled  
through HDMI14_VOD and HDMI20_VOD registers.  
In pin strap mode with limited enabled, the TXSWG pin adjusts the default 1000 mV swing as detailed in 8-12.  
In HDMI 1.4 the TXSWG pin controls the swing for both the data and clock lanes. In HDMI 2.0, the TXSWG pin  
controls the swing for data lanes while the clock lane will remain at default value.  
In pin-strap mode with linear enabled, the linearity range is fixed at the highest level (1200 mVpp) and therefore  
TXSWG pin is not used. In I2C mode, the linearity range can be adjusted from a register.  
8-12. Pin Strap TXSWG Control  
TXSWG pin  
Limited Mode for HDMI 1.4  
Limited Mode for HDMI 2.0  
Linear Mode  
0
Default (1000 mVpp)  
Default (1000 mVpp)  
1200 mVpp  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
 
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
8-12. Pin Strap TXSWG Control (continued)  
TXSWG pin  
Limited Mode for HDMI 1.4  
Limited Mode for HDMI 2.0  
Linear Mode  
R
F
1
Default - 5%  
Default - 5%  
1200 mVpp  
1200 mVpp  
1200 mVpp  
Default (1000 mVpp)  
Default (1000 mVpp)  
Default (1000 mVpp)  
Default + 5%  
8.3.12 DDC Buffer  
The TDP0604 has a DDC buffer for capacitance isolation and for shifting 5-V levels present on the HDMI  
connector to as low as 1.2-V levels on the GPU source side. The HV_DDC_SDA and HV_DDC_SCL pins  
support 5-V levels while the LV_DDC_SDA and LV_DDC_SCL pins support 1.2-V, 1.8-V, and 3.3-V levels. When  
the DDC buffer is used in source application, the HV side must be pulled up using 1.5-kΩto 2-kΩresistors. It is  
recommended to use 1.8-kΩ ±5% resistor. HV_DDC_SDA and HV_DDC_SCL pins will typically be pulled up to  
HDMI 5-V. The LV_DDC_SDA and LV_DDC_SCL are internally pulled up to VIO.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFJ8  
32  
Submit Document Feedback  
Product Folder Links: TDP0604  
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
The TDP0604 enables DDC translation from low voltage (system side) voltage levels to 5-V (HDMI cable side)  
voltage levels without degradation of system performance. The TDP0604 contains 2 bidirectional, open-drain  
buffers specifically designed to support up and down-translation between the low voltage (LV) side DDC-bus and  
the high voltage (HV) 5-V DDC-bus. The HV I/Os (HV_DDC_SCL and HV_DDC_SDA) are overvoltage tolerant  
to 5.5-V. After HPD_IN high, a LOW level on LV side (below VILC = 0.08 × VIO) turns the corresponding HV  
driver (either SDA or SCL) on and drives HV side down to VHVOL. When LV side rises above approximately 0.10  
× VIO, the HV pulldown driver is turned off and the internal pullup resistor pulls the pin HIGH. When HV side falls  
first and goes below 1.6-V, a CMOS hysteresis input buffer detects the falling edge, turns on the LV driver, and  
pulls LV down to approximately VLVOL = 0.16 × VIO. The LV side pulldown is not enabled unless the LV voltage  
goes below VILC. If the LV side low voltage goes below VILC, the HV side pulldown driver is enabled until LV  
side rises above (VILC + ΔVT-HYST), then HV side, if not externally driven LOW, continues to rise being pulled  
up by the external pullup resistor.  
VIO  
RPULV  
HDMI 5V  
RPUHV  
LV_DDC_SDA  
LV_DDC_SCL  
VIC  
+
-
HV_DDC_SDA  
HV_DDC_SCL  
CHV_BUS  
CLV_BUS  
VLV_OL  
8-4. DDC Buffer Block Diagram  
8-5 shows the connection of the LV and HV DDC pins when using the DDC buffer. This connection is  
supported in pin-strap mode when MODE pin is "0" or "1". In I2C mode, the DDCBUF_EN register must be set to  
enable the DDC Buffer.  
备注  
The TDP0604 has integrated pullups to VIO on the DDC LV pins. Therefore, no external pull-ups shall  
be present between the TDP0604's DDC LV pins and DDC host when using TDP0604's DDC buffer.  
HDMI_5V  
VIO (1.14 V to 3.6 V)  
1.8-k  
Redriver  
LV_DDC_SDA  
LV_DDC_SCL  
HV_DDC_SDA  
HV_DDC_SCL  
DP++  
Or HDMI  
Source  
8-5. Source Application: DDC Buffer Enabled  
8-6 shows an example source application of snooping from the HV DDC pins. In this example, the DDC buffer  
must be enabled and the LV DDC pins must be floating. This connection is supported in pin-strap mode when  
MODE pin is "0" or "1". In I2C mode, the DDCBUF_EN register must be set to enable the DDC Buffer.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
HDMI_5V  
1.8-k  
VIO (1.14 V to 3.6 V)  
1.8-k  
Redriver  
HV_DDC_SDA  
LV_DDC_SDA  
LV_DDC_SCL  
I2C Voltage  
HV_DDC_SCL  
DP++  
Or HDMI  
Source  
Discrete  
DDC  
Level shi er  
8-6. Source Application: DDC Buffer Enabled and Snoop from HV DDC pins  
8-7 shows an example source application of snooping from the LV DDC pins. In this example, the DDC buffer  
must be disabled and the HV DDC pins must be floating. This connection is supported in pin-strap mode when  
MODE pin is "R". In I2C mode, the DDCBUF_EN register must be cleared to disable the DDC Buffer.  
VIO (1.14 V to 3.6 V)  
Redriver  
LV_DDC_SDA  
LV_DDC_SCL  
HV_DDC_SDA  
HV_DDC_SCL  
DP++  
Or HDMI  
Source  
HDMI_5V  
1.8-k  
Discrete  
DDC  
Level shi er  
8-7. Source Application: DDC Buffer Disabled and Snoop from LV DDC pins  
8-8 shows the connection of the LV and HV DDC pins when using the DDC buffer in a sink application. This  
connection is supported in pin-strap mode when MODE pin is "0" or "1". In I2C mode, the DDCBUF_EN register  
must be set to enable the DDC Buffer.  
HDMI_5V  
VIO (1.14 V to 3.6 V)  
47-k  
Redriver  
LV_DDC_SDA  
LV_DDC_SCL  
HV_DDC_SDA  
HV_DDC_SCL  
HDMI SINK  
(scaler)  
8-8. Sink Application: DDC Buffer Enabled  
8-9 shows an example sink application of snooping from the LV DDC pins. In this example, the DDC buffer  
must be disabled and the HV DDC pins must be floating. This connection is supported in pin-strap mode when  
MODE pin is "R". In I2C mode, the DDCBUF_EN register must be cleared to disable the DDC Buffer.  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFJ8  
34  
Submit Document Feedback  
Product Folder Links: TDP0604  
 
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
VIO (1.14 V to 3.6 V)  
Redriver  
HV_DDC_SDA  
HV_DDC_SCL  
LV_DDC_SDA  
LV_DDC_SCL  
HDMI_5V  
47-k  
HDMI SINK  
(scaler)  
Discrete  
DDC  
Level shier  
8-9. Sink Application: DDC Buffer Disabled and Snoop from LV DDC pins  
8-10 shows an example sink application of snooping from the HV DDC pins. In this example, the DDC buffer  
must be enabled and the LV DDC pins must be floating. This connection is supported in pin-strap mode when  
MODE pin is "0" or "1". In I2C mode, the DDCBUF_EN register must be set to enable the DDC Buffer.  
HDMI_5V  
VIO (1.14 V to 3.6 V)  
47-k  
Redriver  
HV_DDC_SDA  
HV_DDC_SCL  
LV_DDC_SDA  
LV_DDC_SCL  
I2C Voltage  
Discrete  
DDC  
Level shi er  
HDMI SINK  
(scaler)  
8-10. Sink Application: DDC Buffer Enable and Snoop from HV DDC pins  
8.3.13 HDMI DDC Capacitance  
The HDMI specification limits the DDC bus capacitance to 50-pF for both an HDMI source and sink.  
Therefore, care must be taken to make sure the total capacitance of all components (TDP0604, FR4 trace, ESD,  
source, and sink) is less than 50-pF.  
The TDP0604s DDC Buffer offers capacitance isolation between the LV DDC pins and the HV DDC pin. The  
total capacitance of components, including the FR4 trace, between the TDP0604 HV_DDC_SDA/SCL pins and  
the HDMI receptacle must be (50-pF CIOHV).  
If implementing a DDC level shifter using pass gates, then the total capacitance will include all components  
between source or sink and the HDMI receptacle. These components include and are not limited to Source or  
Sink, the FR4 trace, ESD components, and TDP0604.  
备注  
Trace capacitance can be in the range of 2 to 5-pF per inch. A general rule is a 50-FR4 trace will be  
around 3.3-pF per inch.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
8.3.14 DisplayPort  
The TDP0604 supports DisplayPort at datarates up to 5.4 Gbps (HBR2) when configured for either pin-strap and  
I2C mode. In pin-strap mode, DisplayPort mode is enabled as provided in 8-13. In I2C mode, DisplayPort  
mode is enabled when DP_MODE field (offset 0x31) is programmed to 0x3 and RATE_SNOOP_CTRL (offset  
0xA bit 2) is disabled.  
备注  
The TDP0604 must be configured as a linear redriver when enabled for DisplayPort mode. The linear  
range should be programmed to highest level (Dx_VOD = 0x3 and CLK_VOD = 0x3). The TDP0604  
TX termination must be set to 100-ohms (TERM = 0x3) and TX bias must be set to ac-coupled  
(TX_AC_EN = 0x1).  
8.4 Device Functional Modes  
8.4.1 MODE Control  
The MODE pin provides four modes of operation. There are three pin-strap modes and one I2C mode. In all  
three pin strap modes, DDC snooping feature is enabled. In I2C mode, DDC snoop feature is enabled by default  
but can be disabled by a register.  
8.4.1.1 I2C Mode (MODE = "F")  
In I2C mode, all settings of the TDP0604 can be controlled through the registers. The TDP0604 7-bit I2C  
address is determined by the ADDR/EQ0 pin. All other 4-level and 2-level pins are not used in I2C mode since  
the functions exist in a register. The SCL/CFG0 pin will function as the I2C clock and the SDA/CFG1 pin will  
function as the I2C data.  
The TDP0604 defaults to power down in I2C mode. Upon completion of initialization of the TDP0604, software  
must clear the PD_EN field to exit the power down state. The HPD_OUT pin will be asserted low while the  
PD_EN register is set.  
The TDP0604 supports 1.2-V, 1.8-V, and 3.3-V I2C signaling levels. Selection of 1.2-V, 1.8-V, or 3.3-V is  
determined by the VIO pin as provided in 8-2.  
8.4.1.2 Pin Strap Modes  
8-13 and 8-14 lists how the SCL/CFG0 and the SDA/CFG1 pins will be used to control the HDMI 1.4  
termination, lane SWAP function, and the DisplayPort mode in pin-strap mode.  
8-13. SCL/CFG0 Pin in Pin-Strap Mode  
SCL/CFG0 Pin  
AC_EN Pin  
TDP0604 Function  
0
0
HDMI 1.4 termination is open if HDMI clock  
frequency fHDMI14_open  
0
0
HDMI 1.4 termination is 300-if HDMI  
clock frequency fHDMI14_300  
1
0
0
1
HDMI 1.4 termination is 300-Ω  
Normal HDMI. Function determined by  
MODE pin.  
DisplayPort mode. DDC snoop disabled. All  
four lanes enabled when HPD_IN is high.  
1
1
8-14. SDA/CFG1 Pin in Pin-Strap Mode  
SDA/CFG1 Pin  
TDP0604 Function  
0
1
Normal Lane ordering  
Lane Swap enabled  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFJ8  
36  
Submit Document Feedback  
Product Folder Links: TDP0604  
 
 
 
 
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
备注  
The SCL/CFG0 is the only two-level pin that is continuously sampled in pin-strap mode. AC_EN,  
HPDOUT_SEL, and SDA/CFG1 will not be continuously sampled in pin-strap mode unless indicated  
otherwise.  
The TDP0604 must be configured as a linear redriver when operating in DisplayPort mode.  
8.4.1.2.1 Pin-Strap: HDMI 1.4 and HDMI 2.0 Functional Description  
The TDP0604 will always use the sampled state of EQ[1:0] pins when operating in either HDMI 1.4 and HDMI  
2.0. The amount of EQ applied is determined by the CTLE Map used (for more information, refer to 8.3.8).  
If TDP0604 is configured for limited redriver mode, the OUT_D[2:0] and OUT_CLKP/N levels will be fixed based  
on the sampled state of TXSWG pin (refer to 8-12) and TXPRE pin (refer to 8-11).  
If TDP0604 is configured for linear redriver mode, then OUT_D[2:0] and OUT_CLK will be a linear function of the  
input signals.  
8-15. MODE Pin Function  
MODE Pin Level  
Description  
0
R
F
1
Pin Strap with DDC Buffer enabled  
Pin Strap with DDC Buffer disabled  
I2C mode  
Reserved  
备注  
In source application, it is recommended to use limited redriver mode for both HDMI 1.4 and HDMI  
2.0.  
8.4.2 DDC Snoop Feature  
As part of discovery the source reads the sink E-EDID information to understand the sinks capabilities. Part of  
this read is HDMI Forum Vendor Specific Data Block (HF-VSDB) located at target address 0xA8. From the  
LV_DDC_SDA and LV_DDC_SCL pins the TDP0604 DDC snoop function will monitor both reads and writes to  
TMDS Configuration at offset 20h of the Status and Control Data Channel Structure (SCDCS) located within the  
HF-VSDB. The DDC snoop function resides on the LV_DDC_SDA and LV_DDC_SCL pins.  
The TDP0604 has similar SCDCS registers within its register space. Through TDP0604 local I2C interface,  
external microprocessor can control TDP0604 to perform all the necessary functions required for each HDMI  
type.  
8.4.2.1 HDMI Type  
The TDP0604 monitors offset 20h in order to determine HDMI type as either HDMI 1.4 or HDMI 2.0, as provided  
in 8-16.  
8-16. HDMI Type Selection  
HDMI Type  
TMDS_CLK_RATIO  
SCDCS Offset 20h[1]  
HDMI 1.4 (TMDS x10)  
HDMI 2.0 (TMDS x40)  
0
1
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
备注  
TDP0604 will default to HDMI 1.4 following a power-on reset or whenever it enters the power down  
state. Upon exiting standby, the TDP0604 will hold data rate value (HDMI 1.4 or 2.0) prior to entering  
the standby.  
8.4.3 Low Power Modes  
The TDP0604 has two low power modes: Power Down and Standby. Both lower power modes are detailed in 表  
8-17. Power down is entered when HPD_IN is low for tHPD_PWRDOWN or in I2C if PD_EN bit is set. Power down is  
also entered when the EN pin is low. The TDP0604 will exit power down to the standby state when HPD_IN is  
high for tHPD_STANDBY  
.
The TDP0604 implements a two stage standby power process when HPD_IN is high.  
Stage 1: If there is no signal (electrical idle) on the IN_CLK lane, the TDP0604 will enter Standby state within  
tSTANDBY_ENTRY  
Stage 2: If a signal is detected which last longer than tSIGDET_DB, then TDP0604 will declare a valid signal and  
exit standby within tSTANDY_EXIT  
.
.
If a signal is detected, the TDP0604 will go into normal active operation and signals present at IN_CLK and  
IN_D[2:0] inputs will be passed through to the OUT_CLK and OUT_D[2:0] outputs.  
If it is determined that no signal is present, the TDP0604 will re-enter stage 1.  
The TDP0604 will exit normal operation and return to the standby state within tSTANDBY_ENTRY anytime the  
electrical idle is detected.  
8-17. Power Modes  
INPUTS  
STATUS  
STANDBY_ HPD_PWRDW  
HDMI  
1.4/2.0:  
IN_CLK pin  
HPD_IN  
pin  
PD_EN  
register  
OUT_Dx  
OUT_CLK  
EN pin  
DISABLE  
register  
N_DISABLE  
register  
HPD_OUT pin IN_Dx pins SDA/SCL  
DDC  
Mode  
Power  
Down Mode  
L
X
L
X
X
X
1
X
0
X
0
1
0
0
X
X
X
X
X
High-Z  
High-Z  
High-Z  
High-Z  
Disabled  
Active  
Active  
Active  
Active  
High-Z  
Disabled  
Disabled  
Disabled  
Active  
Power  
Down Mode  
H
H
H
H
L
High-Z  
Power  
Down Mode  
X
H
X
X
X
1
L
HPD_IN  
H
High-Z  
All RX  
Active  
Normal  
operation  
TX Active  
TX Active  
All RX  
Active  
Normal  
operation  
1
Active  
HDMI  
1.4/2.0:  
IN_CLK  
Active  
Standby  
state  
(Squelch  
waiting)  
H
H
H
H
H
H
X
X
0
0
0
0
X
X
1
1
0
0
0
0
No signal  
HPD_IN  
Active  
Active  
Active  
Active  
High-Z  
TX Active  
High-Z  
Active  
Active  
Active  
Active  
Valid signal  
detected  
All RX  
Active  
Normal  
operation  
HPD_IN  
HDMI  
1.4/2.0:  
IN_CLK  
Active  
Standby  
state  
(Squelch  
waiting)  
No signal  
H
H
Valid signal  
detected  
All RX  
Active  
Normal  
operation  
TX Active  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFJ8  
38  
Submit Document Feedback  
Product Folder Links: TDP0604  
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
8.5 Programming  
8.5.1 Pseudocode Examples  
These are examples of configuring TDP0604 when it is configured for I2C mode.  
8.5.1.1 HDMI 2.0 Source Example with DDC Snoop and DDC Buffer Enabled  
When using TDP0604's DDC buffer with snooping enabled, this example can be used.  
This example will initialize the following:  
Limited redriver mode with DC-coupled output.  
TX slew rate for each data rate  
CTLE used for each data rate.  
Receiver EQ setting for each lane (D0, D1, and D2).  
TX voltage swing for each lane (clock, D0, D1, and D2).  
TX pre-emphasis/de-emphasis for HDMI 1.4 and 2.0.  
// (address, data)  
// Initial power-on configuration.  
(0x0A, 0x0A), // Rate snoop and TXFFE snoop enabled.  
(0x0B, 0x34), // 3G and 6G slew rate control  
(0x0C, 0x71), // HDMI clock slew rate  
(0x0D, 0x22), // Limited mode, DC-coupled TX, 0dB DCG, Auto Term, disable CTLE bypass  
(0x0E, 0x05), // HDMI14 and 2.0 CTLE selection  
(0x10, 0x03), // Enabled DDC DCC correction and DDC buffer  
(0x11, 0x0F), // HDMI1.4 and 2.0 VOD controlled per lane  
(0x12, 0x03), // Clock lane VOD  
(0x14, 0x03), // D0 lane VOD and TXFFE.  
(0x15, 0x0Y), // D0 lane EQ. Set "Y" to desired value.  
(0x16, 0x03), // D1 lane VOD and TXFFE.  
(0x17, 0x0Y), // D1 lane EQ. Set "Y" to desired value.  
(0x18, 0x03), // D2 lane VOD and TXFFE.  
(0x19, 0x0Y), // D2 lane EQ. Set "Y" to desired value.  
(0x09, 0x00), // Take out of PD state. Should be done after initialization is complete.  
8.5.2 TDP0604 I2C Address Options  
For further programmability, the TDP0604 can be controlled using I2C. The SCL/CFG0 and SDA/CFG1 terminals  
are used for I2C clock and I2C data respectively.  
8-18. TDP0604 I2C Device Address Description  
ADDR/EQ0 pin  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (W/R)  
HEX  
BC/BD  
BA/BB  
B8/B9  
B6/B7  
0
R
F
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
1
0
1
0
1
0/1  
0/1  
0/1  
0/1  
8.5.3 I2C Target Behavior  
Register O set  
Target Address  
Data wri en  
P
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0
A
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
Start  
Stop  
Ack  
Write  
8-11. I2C Write with Data  
The following procedure should be followed to write data to TDP0604 I2C registers (refer to 8-11):  
1. The controller initiates a write operation by generating a start condition (S), followed by the TDP0604 7-bit  
address and a zero-value W/Rbit to indicate a write cycle.  
2. The TDP0604 acknowledges the address cycle.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
 
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
3. The controller presents the register offset within TDP0604 to be written, consisting of one byte of data, MSB-  
first.  
4. The TDP0604 acknowledges the sub-address cycle.  
5. The controller presents the first byte of data to be written to the I2C register.  
6. The TDP0604 acknowledges the byte transfer.  
7. The controller may continue presenting additional bytes of data to be written, with each byte transfer  
completing with an acknowledge from the TDP0604.  
8. The controller terminates the write operation by generating a stop condition (P).  
Data from o set 0x00  
or  
last read address + 1  
Target Address  
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
1
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
P
Start  
Stop  
Ack  
Read  
8-12. I2C Read Without Repeated Start  
The following procedure should be followed to read the TDP0604 I2C registers without a repeated Start (refer to  
8-12).  
1. The controller initiates a read operation by generating a start condition (S), followed by the TDP0604 7-bit  
address and a zero-value W/Rbit to indicate a read cycle.  
2. The TDP0604 acknowledges the 7-bit address cycle.  
3. Following the acknowledge the controller continues sending clock.  
4. The TDP0604 transmit the contents of the memory registers MSB-first starting at register 00h or last read  
register offset+1. If a write to the I2C register occurred prior to the read, then the TDP0604 shall start at the  
register offset specified in the write.  
5. The TDP0604 waits for either an acknowledge (ACK) or a not-acknowledge (NACK) from the controller after  
each byte transfer; the I2C controller acknowledges reception of each data byte transfer.  
6. If an ACK is received, then the TDP0604 transmits the next byte of data as long as controller provides the  
clock. If a NAK is received, then the TDP0604 stops providing data and waits for a stop condition (P).  
7. The controller terminates the write operation by generating a stop condition (P).  
Register O set Xh  
Target Address  
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0
A
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
A
Sr  
Start  
Ack  
Write  
Repeated Start  
Data from Register Xh  
Target Address  
Data from Register Xh + 1  
P
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
1
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
Stop  
Read  
8-13. I2C Read with Repeated Start  
The following procedure should be followed to read the TDP0604 I2C registers with a repeated Start (refer to 图  
8-13).  
1. The controller initiates a read operation by generating a start condition (S), followed by the TDP0604 7-bit  
address and a zero-value W/Rbit to indicate a write cycle.  
2. The TDP0604 acknowledges the 7-bit address cycle.  
3. The controller presents the register offset within TDP0604 to be written, consisting of one byte of data, MSB-  
first.  
4. The TDP0604 acknowledges the register offset cycle.  
5. The controller presents a repeated start condition (Sr).  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFJ8  
40  
Submit Document Feedback  
Product Folder Links: TDP0604  
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
6. The controller initiates a read operation by generating a start condition (S), followed by the TDP0604 7-bit  
address and a one-value W/Rbit to indicate a read cycle.  
7. The TDP0604 acknowledges the 7-bit address cycle.  
8. The TDP0604 transmit the contents of the memory registers MSB-first starting at the register offset.  
9. The TDP0604 shall wait for either an acknowledge (ACK) or a not-acknowledge (NACK) from the controller  
after each byte transfer; the I2C controller acknowledges reception of each data byte transfer.  
10. If an ACK is received, then the TDP0604 transmits the next byte of data as long as controller provides the  
clock. If a NAK is received, then the TDP0604 stops providing data and waits for a stop condition (P).  
11. The controller terminates the read operation by generating a stop condition (P).  
Register O set  
Target Address  
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0
A
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
A
P
Start  
Ack  
Write  
Stop  
8-14. I2C Write Without Data  
The following procedure should be followed for setting a starting sub-address for I2C reads (refer to 8-14).  
1. The controller initiates a write operation by generating a start condition (S), followed by the TDP0604 7-bit  
address and a zero-value W/Rbit to indicate a write cycle.  
2. The TDP0604 acknowledges the address cycle.  
3. The controller presents the register offset within TDP0604 to be written, consisting of one byte of data, MSB-  
first.  
4. The TDP0604 acknowledges the register offset cycle.  
5. The controller terminates the write operation by generating a stop condition (P).  
备注  
8-12 that if no register offset is included for the read procedure after initial power-up, then reads  
start at register offset 00h and continue byte by byte through the registers until the I2C controller  
terminates the read operation. During a read operation, the TDP0604 auto-increments the I2C internal  
register address of the last byte transferred independent of whether or not an ACK was received from  
the I2C controller.  
8.6 Register Maps  
8.6.1 TDP0604 Registers  
8-19 lists the memory-mapped registers for the TDP0604 registers. All register offset addresses not listed in  
8-19 should be considered as reserved locations and the register contents should not be modified.  
8-19. TDP0604 Registers  
Offset Acronym  
Register Name  
Section  
Go  
8h  
9h  
Ah  
Bh  
REV_ID  
Revision ID  
PD_RST  
Power Down and Reset control  
Misc Control  
Go  
MISC_CONTROL  
GBL_SLEW_CTRL  
Go  
Global TX Slew control for data lanes in  
HDMI1.4 and 2.0  
Go  
Ch  
Dh  
GBL_SLEW_CTRL2  
GBL_CTRL1  
Global TX Slew control for data and clock  
Global control  
Go  
Go  
Go  
Go  
Go  
Go  
Go  
Eh  
GBL_CTLE_CTRL  
DDC_CFG  
Global CTLE control  
10h  
11h  
12h  
13h  
DDC Buffer controls  
LANE_ENABLE  
CLK_CONFIG1  
CLK_CONFIG2  
Lane enables  
CLK lane TX swing control  
CLK lane RX EQ control  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
8-19. TDP0604 Registers (continued)  
Offset Acronym  
Register Name  
Section  
Go  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Ch  
20h  
31h  
D0_CONFIG1  
D0 lane TX swing and FFE control  
D0 lane RX EQ control  
D0_CONFIG2  
Go  
D1_CONFIG1  
D1 lane TX swing and FFE control  
D1 lane RX EQ control  
Go  
D1_CONFIG2  
Go  
D2_CONFIG1  
D2 lane TX swing and FFE control  
D2 lane RX EQ control  
Go  
D2_CONFIG2  
Go  
SIGDET_TH_CFG  
GBL_STATUS  
SIGDET voltage threshold control  
Global Powerdown and Standby Status  
SCDC TMDS Clock Ratio  
Go  
Go  
SCDC_TMDS_CONFIG  
DP_MODE_CONFIG  
Go  
Selects between DP and HDMI.  
Go  
Complex bit access types are encoded to fit into small table cells. 8-20 shows the codes that are used for  
access types in this section.  
8-20. TDP0604 Access Type Codes  
Access Type  
Code  
Description  
Read Type  
R
R
Read  
RH  
R
H
Read  
Set or cleared by hardware  
Write Type  
W
W
Write  
W1S  
W
Write  
1S  
1 to set  
WtoPH  
W
Write  
toPH  
Pulse high  
Reset or Default Value  
-n  
Value after reset or the default  
value  
8.6.1.1 REV_ID Register (Offset = 8h) [Reset = 03h]  
REV_ID is shown in 8-21.  
Return to the Summary Table.  
8-21. REV_ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
REV_ID  
RH  
3h  
Device revision.  
8.6.1.2 PD_RST Register (Offset = 9h) [Reset = 01h]  
PD_RST is shown in 8-22.  
Return to the Summary Table.  
8-22. PD_RST Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
SOFT_RST  
SCDC_SOFT_RST  
WtoPH  
WtoPH  
0h  
Writing a 1 to this field resets all fields  
Writing a 1 to this field resets the SCDC register 20h.  
6
0h  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFJ8  
42  
Submit Document Feedback  
Product Folder Links: TDP0604  
 
 
 
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
8-22. PD_RST Register Field Descriptions (continued)  
Bit  
5
Field  
Type  
Reset  
Description  
Reserved  
Reserved  
Reserved  
RESERVED  
RESERVED  
RESERVED  
R
0h  
4
R/W  
R
0h  
3
0h  
2
HPD_PWRDWN_DISABL R/W  
E
0h  
Mode to ignore HPD pin and always enter active state unless  
PD_EN is high  
0h = Automatically enter power down based on HPD_IN  
1h = Always remain in active state or Standby  
1
0
STANDBY_DISABLE  
R/W  
R/W  
0h  
1h  
When high, standby mode is disabled and the device will  
immediately enter active mode with all lanes enabled when not in  
power down. When low, the device will enter standby mode when  
exiting power down and wait for incoming data before entering active  
mode.  
0h = Standby mode enabled  
1h = Standby mode disabled  
PD_EN  
I2C power down. Software should clear this field after it has  
completed initialization. HPD_OUT will be asserted low when this  
field is set.  
0h = Normal operation  
1h = Forced power down by I2C  
8.6.1.3 MISC_CONTROL Register (Offset = Ah) [Reset = 08h]  
MISC_CONTROL is shown in 8-23.  
Return to the Summary Table.  
8-23. MISC_CONTROL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LANE_SWAP  
R/W  
0h  
This field swaps the input and output lanes.  
0h = No lanes swapped  
1h = Both input and output lanes swapped  
6
5
RESERVED  
R/W  
R/W  
0h  
0h  
Reserved  
RX_TERM_DISABLE  
When set will disable Rx termination.  
0h = Enabled when HPD_IN high.  
1h = Disable  
4
HPD_OUT_SEL  
R/W  
0h  
Selects whether HPD_OUT is push/pull or open-drain.  
0h = Push Pull  
1h = Open Drain  
3
2
RESERVED  
R/W  
R/W  
1h  
0h  
Reserved  
RATE_SNOOP_CTRL  
Control snooping of HDMI rates. When snooping is disabled, correct  
HDMI rate must be written through I2C to register 20h.  
0h = Snooping enabled  
1h = Snooping disabled  
1-0  
RESERVED  
R/W  
0h  
Reserved  
8.6.1.4 GBL_SLEW_CTRL Register (Offset = Bh) [Reset = 34h]  
GBL_SLEW_CTRL is shown in 8-24.  
Return to the Summary Table.  
8-24. GBL_SLEW_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
R
0h  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
 
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
8-24. GBL_SLEW_CTRL Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6-4  
SLEW_3G  
R/W  
3h  
Field controls slew rate for HDMI 1.4 data lane.  
0h = slowest edge rate  
7h = fastest edge rate  
3
RESERVED  
SLEW_6G  
R
0h  
4h  
Reserved  
2-0  
R/W  
Field controls slew rate for HDMI 2.0 data lanes.  
0h = slowest edge rate  
7h = fastest edge rate  
8.6.1.5 GBL_SLEW_CTRL2 Register (Offset = Ch) [Reset = 71h]  
GBL_SLEW_CTRL2 is shown in 8-25.  
Return to the Summary Table.  
8-25. GBL_SLEW_CTRL2 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
RESERVED  
RESERVED  
SLEW_CLK  
R
0h  
Reserved  
6-4  
3
R/W  
R
7h  
0h  
1h  
Reserved  
Reserved  
2-0  
R/W  
Field control slew rate of clock lane.  
0h = slowest edge rate  
7h = fastest edge rate  
8.6.1.6 GBL_CTRL1 Register (Offset = Dh) [Reset = 22h]  
GBL_CTRL1 is shown in 8-26.  
Return to the Summary Table.  
8-26. GBL_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GLOBAL_LINR_EN  
R/W  
0h  
Global control for selecting between linear redriver or limited redriver.  
0h = Limited  
1h = Linear  
6
5-4  
3
TX_AC_EN  
R/W  
R/W  
0h  
2h  
0h  
Controls selection of ac-coupled or dc-coupled TX termination. When  
AC-coupled is enabled, 50 Ωtermination on both P and N to VCC  
will be enabled.  
0h = dc-coupled  
1h = ac-coupled  
GLOBAL_DCG  
CTLE DCGain for all lane.  
0h = -3 dB  
1h = -3 dB  
2h = 0 dB  
3h = +1 dB  
TXTERM_AUTO_HDMI14 R/W  
Selects between no termination and 300 Ωs when TERM = 2h and  
operating in HDMI1.4.  
0h = No termination for clock less than or equal to 165MHz and 300  
Ωfor clock greater than 225MHz  
1h = 300 Ω  
2
CTLEBYP_EN  
R/W  
0h  
Selects whether or not CTLE bypass is enabled or not when  
GLOBAL_DCG is set to 2h and EQ set to 0h.  
0h = CTLE bypass disabled  
1h = CTLE bypass enabled  
Copyright © 2023 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
 
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
8-26. GBL_CTRL1 Register Field Descriptions (continued)  
Bit  
Field  
TERM  
Type  
Reset  
Description  
1-0  
R/W  
2h  
TX termination control  
0h = No termination  
1h = 300 Ω  
2h = Automatic based HDMI mode  
3h = 100 Ω  
8.6.1.7 GBL_CTLE_CTRL Register (Offset = Eh) [Reset = 3Fh]  
GBL_CTLE_CTRL is shown in 8-27.  
Return to the Summary Table.  
8-27. GBL_CTLE_CTRL Register Field Descriptions  
Bit  
7-6  
5-4  
Field  
Type  
Reset  
Description  
RESERVED  
HDMI14_CTLE_SEL  
R/W  
0h  
Reserved  
R/W  
R/W  
R/W  
3h  
3h  
3h  
Selects the CTLE used when datarate is HDMI 1.4. Value  
programmed into this field will apply to data lanes only. Clock lane  
will always use 3Gbps CTLE.  
0h = 3 Gbps CTLE  
1h = 6 Gbps CTLE  
2h = Auto select based on snoop datarate  
3h = Reserved  
3-2  
1-0  
HDMI20_CTLE_SEL  
Selects the CTLE used when datarate is HDMI 2.0. Value  
programmed into this field will apply to data lanes only. Clock lane  
will always use 3Gbps CTLE.  
0h = 3 Gbps CTLE  
1h = 6 Gbps CTLE  
2h = Auto select based on snoop datarate  
3h = Reserved  
RESERVED  
Reserved  
8.6.1.8 DDC_CFG Register (Offset = 10h) [Reset = 02h]  
DDC_CFG is shown in 8-28.  
Return to the Summary Table.  
8-28. DDC_CFG Register Field Descriptions  
Bit  
7-2  
1
Field  
Type  
Reset  
Description  
RESERVED  
DDC_LV_DCC_EN  
R
0h  
Reserved  
R/W  
1h  
Controls whether duty cycle correction is enabled for DDC LV side.  
0h = DCC disabled  
1h = DCC enabled  
0
DDCBUF_EN  
R/W  
0h  
Controls whether or not DDC buffer is enabled. Regardless of the  
state of this field, the device will always disable the DDC buffer  
anytime HPD_IN is low or when PD_EN field is 1.  
0h = DDC Buffer Disabled  
1h = DDC Buffer Enabled  
8.6.1.9 LANE_ENABLE Register (Offset = 11h) [Reset = 5Fh]  
LANE_ENABLE is shown in 8-29.  
Return to the Summary Table.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
 
 
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
8-29. LANE_ENABLE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
HDMI20_VOD  
R/W  
1h  
VOD control for limited redriver in HDMI 2.0  
0h = Use values in CLK_VOD, D0_VOD, D1_VOD and D2_VOD  
1h = Default (1000 mV)  
2h = Default - 5%  
3h = Default + 5%  
5-4  
HDMI14_VOD  
R/W  
1h  
VOD control for limited redriver in HDMI 1.4  
0h = Use values in CLK_VOD, D0_VOD, D1_VOD and D2_VOD  
1h = Default (1000 mV)  
2h = Default - 5%  
3h = Default - 10%  
3
2
1
0
CLK_LANE_EN  
D0_LANE_EN  
D1_LANE_EN  
D2_LANE_EN  
R/W  
R/W  
R/W  
R/W  
1h  
1h  
1h  
1h  
Enable for CLK lane  
0h = Disabled  
1h = Enabled  
Enable for D0 lane  
0h = Disabled  
1h = Enabled  
Enable for D0 lane  
0h = Disabled  
1h = Enabled  
Enable for D0 lane  
0h = Disabled  
1h = Enabled  
8.6.1.10 CLK_CONFIG1 Register (Offset = 12h) [Reset = 03h]  
CLK_CONFIG1 is shown in 8-30.  
Return to the Summary Table.  
8-30. CLK_CONFIG1 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
RESERVED  
RESERVED  
CLK_VOD  
R
0h  
Reserved  
6-4  
3
R/W  
R
0h  
0h  
3h  
Reserved  
Reserved  
2-0  
R/W  
Differential Swing control for CLK lane.  
0h = Limited -15% Linear 800mV  
1h = Limited -10% Linear 900mV  
2h = Limited - 5% Linear 1000mV  
3h = Limited 800mV Linear 1200mV  
4h = Limited +5% Linear Reserved  
5h = Limited +10% Linear Reserved  
6h = Limited +15% Linear Reserved  
7h = Limited +20% Linear Reserved  
8.6.1.11 CLK_CONFIG2 Register (Offset = 13h) [Reset = 00h]  
CLK_CONFIG2 is shown in 8-31.  
Return to the Summary Table.  
8-31. CLK_CONFIG2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
RESERVED  
R
0h  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFJ8  
46  
Submit Document Feedback  
Product Folder Links: TDP0604  
 
 
 
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
8-31. CLK_CONFIG2 Register Field Descriptions (continued)  
Bit  
Field  
CLK_EQ  
Type  
Reset  
Description  
3-0  
R/W  
0h  
EQ control for CLK lane. This field is only honored in DisplayPort  
mode.  
0h = Min EQ  
Fh = Max EQ  
8.6.1.12 D0_CONFIG1 Register (Offset = 14h) [Reset = 03h]  
D0_CONFIG1 is shown in 8-32.  
Return to the Summary Table.  
8-32. D0_CONFIG1 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
D0_TXFFE  
R
0h  
Reserved  
6-4  
R/W  
0h  
TXFFE control for D0 lane.  
0h = 0.0 dB  
1h = 3.5 dB  
2h = 6.0 dB  
3h = Reserved  
4h = -1.5 dB  
5h = -2.5 dB  
6h = -3.5 dB  
7h = -4.8 dB  
3
RESERVED  
D0_VOD  
R
0h  
3h  
Reserved  
2-0  
R/W  
Differential Swing control for D0 lane.  
0h = Limited -15% Linear 800mV  
1h = Limited -10% Linear 900mV  
2h = Limited - 5% Linear 1000mV  
3h = Limited 1000mV Linear 1200mV  
4h = Limited +5% Linear Reserved  
5h = Limited +10% Linear Reserved  
6h = Limited +15% Linear Reserved  
7h = Limited +20% Linear Reserved  
8.6.1.13 D0_CONFIG2 Register (Offset = 15h) [Reset = 00h]  
D0_CONFIG2 is shown in 8-33.  
Return to the Summary Table.  
8-33. D0_CONFIG2 Register Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
Reset  
Description  
RESERVED  
D0_EQ  
R
0h  
Reserved  
R/W  
0h  
EQ control for D0 lane.  
0h = Min EQ  
Fh = Max EQ  
8.6.1.14 D1_CONFIG1 Register (Offset = 16h) [Reset = 03h]  
D1_CONFIG1 is shown in 8-34.  
Return to the Summary Table.  
8-34. D1_CONFIG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
R
0h  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
 
 
 
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
8-34. D1_CONFIG1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6-4  
D1_TXFFE  
R/W  
0h  
TXFFE control for D1 lane.  
0h = 0.0 dB  
1h = 3.5 dB  
2h = 6.0 dB  
3h = Reserved  
4h = -1.5 dB  
5h = -2.5 dB  
6h = -3.5 dB  
7h = -4.8 dB  
3
RESERVED  
D1_VOD  
R
0h  
3h  
Reserved  
2-0  
R/W  
Differential Swing control for D1 lane.  
0h = Limited -15% Linear 800mV  
1h = Limited -10% Linear 900mV  
2h = Limited - 5% Linear 1000mV  
3h = Limited 1000mV Linear 1200mV  
4h = Limited +5% Linear Reserved  
5h = Limited +10% Linear Reserved  
6h = Limited +15% Linear Reserved  
7h = Limited +20% Linear Reserved  
8.6.1.15 D1_CONFIG2 Register (Offset = 17h) [Reset = 00h]  
D1_CONFIG2 is shown in 8-35.  
Return to the Summary Table.  
8-35. D1_CONFIG2 Register Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
Reset  
Description  
RESERVED  
D1_EQ  
R
0h  
Reserved  
R/W  
0h  
EQ control for D1 lane  
0h = Min EQ  
Fh = Max EQ  
8.6.1.16 D2_CONFIG1 Register (Offset = 18h) [Reset = 03h]  
D2_CONFIG1 is shown in 8-36.  
Return to the Summary Table.  
8-36. D2_CONFIG1 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
D2_TXFFE  
R
0h  
Reserved  
6-4  
R/W  
0h  
TXFFE control for D2 lane  
0h = 0.0 dB  
1h = 3.5 dB  
2h = 6.0 dB  
3h = Reserved  
4h = -1.5 dB  
5h = -2.5 dB  
6h = -3.5 dB  
7h = -4.8 dB  
3
RESERVED  
R
0h  
Reserved  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFJ8  
48  
Submit Document Feedback  
Product Folder Links: TDP0604  
 
 
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
8-36. D2_CONFIG1 Register Field Descriptions (continued)  
Bit  
Field  
D2_VOD  
Type  
Reset  
Description  
2-0  
R/W  
3h  
Differential Swing control for D2 lane.  
0h = Limited -15% Linear 800mV  
1h = Limited -10% Linear 900mV  
2h = Limited - 5% Linear 1000mV  
3h = Limited 1000mV Linear 1200mV  
4h = Limited +5% Linear Reserved  
5h = Limited +10% Linear Reserved  
6h = Limited +15% Linear Reserved  
7h = Limited +20% Linear Reserved  
8.6.1.17 D2_CONFIG2 Register (Offset = 19h) [Reset = 00h]  
D2_CONFIG2 is shown in 8-37.  
Return to the Summary Table.  
8-37. D2_CONFIG2 Register Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
Reset  
Description  
RESERVED  
D2_EQ  
R
0h  
Reserved  
R/W  
0h  
EQ control for D2 lane.  
0h = Min EQ  
Fh = Max EQ  
8.6.1.18 SIGDET_TH_CFG Register (Offset = 1Ah) [Reset = 44h]  
SIGDET_TH_CFG is shown in 8-38.  
Return to the Summary Table.  
8-38. SIGDET_TH_CFG Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
CFG_SIGDET_HYST  
R
0h  
Reserved  
6-4  
R/W  
4h  
Controls the SIGDET hysteresis. Value programmed into this field  
plus value programmed into CFG_SIGDET_VTH field defines the  
SIGDET assert threshold.  
0h = 0mV  
1h = 12mV  
2h = 25mV  
3h = 37mV  
4h = 55mV  
5h = 63mV  
6h = 75mV  
7h = 90mV  
3
RESERVED  
R
0h  
4h  
Reserved  
2-0  
CFG_SIGDET_VTH  
R/W  
Controls the SIGDET de-assert voltage threshold.  
0h = 58mV  
1h = 60mV  
2h = 72mV  
3h = 84mV  
4h = 95mV  
5h = 108mV  
6h = 120mV  
7h = 135mV  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
 
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
8.6.1.19 GBL_STATUS Register (Offset = 1Ch) [Reset = 00h]  
GBL_STATUS is shown in 8-39.  
Return to the Summary Table.  
8-39. GBL_STATUS Register Field Descriptions  
Bit  
7
Field  
Type  
RH  
RH  
R
Reset  
Description  
PD_STATUS  
STANDBY_STATUS  
RESERVED  
0h  
Power Down status  
Standby Status  
Reserved  
6
0h  
5-0  
0h  
8.6.1.20 SCDC_TMDS_CONFIG Register (Offset = 20h) [Reset = 00h]  
SCDC_TMDS_CONFIG is shown in 8-40.  
Return to the Summary Table.  
8-40. SCDC_TMDS_CONFIG Register Field Descriptions  
Bit  
7-2  
1
Field  
Type  
Reset  
Description  
RESERVED  
TMDS_CLK_RATIO  
R
0h  
Reserved  
RH/W  
0h  
TMDS Bit Period to TMDS Clock Period Ratio. Reads last value  
snooped through DDC read/write or I2C write.  
0h = 1/10 (HDMI 1.4b)  
1h = 1/40 (HDMI 2.0)  
0
RESERVED  
R
0h  
Reserved  
8.6.1.21 DP_MODE_CONFIG Register (Offset = 31h) [Reset = 00h]  
DP_MODE_CONFIG is shown in 8-41.  
Return to the Summary Table.  
8-41. DP_MODE_CONFIG Register Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
RH/W  
RH/W  
Reset  
0h  
0h  
Description  
RESERVED  
DP_MODE  
Reserved  
Selects between HDMI and DisplayPort. When enable DisplayPort,  
software should also enable linear mode.  
0h = DisplayPort mode disabled  
3h = DisplayPort mode enabled  
Copyright © 2023 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
 
 
 
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
TDP0604 is designed to accept AC or DC-coupled HDMI input signals. The device provides signal conditioning  
and level shifting functions to drive a compliant HDMI source connector. The device can be used in an HDMI  
sink application such as monitor or TV. In many major PC or gaming systems APU/GPU will provide AC-coupled  
HDMI signals. TDP0604 is suitable for such platforms.  
9.1 Application Information  
The TDP0604 is designed to work in source applications such as Blu-rayDVD player, gaming system,  
desktops, notebooks, or audio video receivers (AVR) and in sink applications such as TV or monitors. The  
following sections provide design considerations for various types of applications.  
9.2 Typical Source-Side Application  
9-1 shows a schematic representation of what is considered a standard source implementation.  
B
D
C
A
LCD  
LAB  
Op onal  
CAC-RX  
Op onal  
RESD  
IN_D2p  
IN_D2n  
OUT_D2p  
OUT_D2n  
OUT_D1p  
OUT_D1n  
IN_D1p  
IN_D1n  
OUT_D0p  
OUT_D0n  
Redriver  
IN_D0p  
IN_D0n  
GPU  
OUT_CLKp  
OUT_CLKn  
IN_CLKp  
IN_CLKn  
LCAP-RX  
LR_ESD  
LESD  
9-1. TDP0604 in Source Side Application  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
 
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
9.2.1 Design Requirements  
The TDP0604 can be designed into many different applications. In all the applications there are certain  
requirements for the system to work properly. The EN pin must have a 0.1-µF capacitor to ground. This pin can  
be driven by a processor but the pin needs to change states (low to high) after voltage rails have stabilized. The  
best way to configure the device is by using I2C, but pin strapping is also provided as I2C is not available in all  
cases. As sources may have many different naming conventions it is necessary to confirm that the link between  
the source and the TDP0604 are correctly mapped. A Swap function is provide for the input pins in case  
signaling is reversed between the source and receptacle. 9-1 provides information on the expected values to  
perform properly.  
For this design example, the TDP0604 is assumed to be configured for pin-strap mode. If I2C mode is desired,  
MODE pin should be set to "F" and software must configure TDP0604. For information about how to configure  
TDP0604, refer to 8.5.1.  
9-1. Design Parameters  
Design Parameter  
VCC  
Value  
3.3-V  
VIO (1.2-V, 1.8-V, or 3.3-V LVCMOS levels)  
Maximum HDMI Datarate (3 or 6Gbps)  
Pin-strap or I2C mode (if I2C, then MODE = "F").  
Pin Strap Mode. (MODE = "0" or "R").  
1.8-V  
6 Gbps  
Pin-strap  
Mode = "0" (Fixed EQ with DDC Buffer support)  
DDC Snoop Feature. (Y/N). Required when in pin strap. Optional in  
I2C mode.  
Yes  
SWAP function (Y/N). In pin strap mode controlled by SDA/CFG1  
pin.  
No. SDA/CFG1 pin = L.  
DDC Level Shifter Support (Y/N)  
HPD_IN to HPD_OUT Level Shifter Support (Y/N)  
Pre-Channel Length (Refer to 9-2 on length restrictions)  
Post-Channel Length (Refer to 9-2 on length restrictions)  
Limited or linear redriver mode?  
Yes  
Yes, HPD_OUT is used. If no, then HPD_OUT can be left floating.  
Length = 16 inches (10 dB at 3 GHz insertion loss)  
Length = 2 inches (1.5 dB at 3 GHz insertion loss)  
Limited redriver (LINEAR_EN pin = "0").  
TX is DC or AC coupled to HDMI receptacle?  
DC-coupled. AC_EN pin = Low.  
GPU Launch Voltage (500 to 1200 mVpp) if using limited redriver  
mode.  
800 mVpp  
Map B  
CTLE HDMI Datarate Map (Map B or Map C)  
RX EQ (16 possible values. Value chosen based on pre-channel  
length).  
EQ1 pin: "F"  
ADDR/EQ0 pin: "F"  
TX Pre-emphasis. In pre-strap mode controlled by TXPRE pin.  
TX Swing. In pre-strap mode controlled by TXSWG pin.  
Default 0 dB of pre-emphasis. Float TXPRE pin.  
Default TX swing level. Float TXSWG pin.  
Copyright © 2023 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
9-2. Source Layout and Component Placement Constraints  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
External series resistor between ESD component and  
TDP0604  
RESD  
0
2.5  
(1) (2)  
LAB  
PCB trace length from GPU to TDP0604  
At 6-Gbps  
At 6-Gbps  
1
16  
2
inches  
inches  
(1)  
LCD  
PCB trace length from TDP0604 to receptacle  
0.75  
PCB trace length from TDP0604 to optional external  
CAC-RX capacitor  
LCAP-RX  
0.3  
inches  
LESD  
PCB trace length from ESD component to receptacle  
PCB trace length from RESD to ESD component  
0.5  
0.25  
1
inches  
inches  
inches  
LR_ESD  
LINTER-PAIR Inter-pair skew between all four channels (D0, D1, D2,  
(3)  
and CLK)  
dB / inch /  
GHz  
ILPCB  
PCB trace insertion loss  
0.1  
0.2  
ZPCB_AB  
ZPCB_CD  
VIAAB  
Differential impedance of LAB  
75  
90  
110  
110  
2
Differential impedance of LCD  
Number of vias between GPU and TDP0604  
VIA  
VIACD  
Number of vias between HDMI connector and  
TDP0604  
1
VIA  
Differential crosstalk between adjacent differential  
pairs on PCB.  
XTALK  
<= 3 GHz  
-24  
dB  
(1) Maximum distance assumes PCB trace insertion loss meets ILPCB requirement. If PCB trace insertion loss exceeds the maximum limit,  
then distance needs be reduced.  
(2) Minimum distance assumes PCB trace insertion loss meets ILPCB requirement. If PCB trace insertion loss is less than the minimum  
limit, then distance needs to be increased.  
(3) Calculation of channel length is the sum of LAB and LCD  
.
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
 
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
9.2.2 Detailed Design Procedure  
VCC (3.3V)  
VIO  
100nF  
100nF  
10 µF  
100nF  
100nF  
VCC (3.3V)  
Common mode  
choke op onal  
100nF  
GPU  
CAC-RX  
RESD  
OUT_D2p  
OUT_D2n  
OUT_D1p  
OUT_D1n  
OUT_D0p  
OUT_D0n  
OUT_CLKp  
OUT_CLKn  
HPD_IN  
D2+  
D2-  
IN_D2p  
D2p  
D2n  
IN_D2n  
D1+  
D1-  
IN_D1p  
D1p  
IN_D1n  
D1n  
D0+  
D0-  
IN_D0p  
D0p  
IN_D0n  
D0n  
CLK+  
CLK-  
HPD  
SCL  
IN_CLKp  
IN_CLKn  
HPD_OUT  
LV_DDC_SCL  
LV_DDC_SDA  
CLKp  
CLKn  
HPD  
HPD_OUT  
HV_DDC_SCL  
HV_DDC_SDA  
DDC_SCL  
SDA  
DDC_SDA  
SCL/GPIO  
SDA/GPIO  
GPIO  
1.8-k  
MODE  
1.8-k  
MODE  
+5V  
TXPRE  
TXPRE  
+5V  
TXSWG  
CTLEMAP_SEL  
EQ1  
TXSWG  
CTLEMAP_SEL  
EQ1  
VCC (3.3V)  
DNI  
VIO  
AC_EN  
AC_EN  
LINEAR_EN  
ADDR/EQ0  
SCL/CFG0  
SDA/CFG1  
EN  
DNI  
SCL/CFG0  
ADDR/EQ0  
SCL/CFG0  
SDA/CFG1  
EN  
LINEAR_EN  
MODE  
HPDOUT_SEL  
HPDOUT_SEL  
1-k  
10-k  
VCC (3.3V)  
DNI  
VIO  
100nF  
DNI  
SDA/CFG1  
redriver  
TXPRE  
HPD_OUT  
220-k  
DNI  
10-k  
VCC (3.3V)  
DNI  
VCC (3.3V)  
VCC (3.3V)  
DNI  
VCC (3.3V)  
R1  
VCC (3.3V)  
R3  
VCC (3.3V)  
VCC (3.3V)  
DNI  
HPDOUT_SEL  
DNI  
DNI  
AC_EN  
CTLEMAP_SEL  
TXSWG  
EQ1  
ADDR/EQ0  
LINEAR_EN  
20-k  
1-k  
DNI  
R2  
R4  
DNI (Do Not Install)  
9-2. TDP0604 in Source Application Schematics  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFJ8  
54  
Submit Document Feedback  
Product Folder Links: TDP0604  
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
9.2.2.1 Pre-Channel (LAB  
)
The TDP0604 can support up to 12 dB at 3 GHz of insertion loss. The loss profile between the GPU and the  
TDP0604 input, referred to the pre-channel as shown in 9-1, is less than the TDP0604 maximum receiver  
equalization. The loss profile of FR4 trace at different lengths is detailed in Application Curves section. The  
TDP0604 EQ0 and EQ1 pins should be configured to match the pre-channel insertion loss. 8-5 provides the  
EQ0 and EQ1 configuration options.  
The GPU transmitter differential output voltage swing must be large enough so that the TDP0604s VID(DC) and  
VID(EYE) requirements are met. The VID(EYE) is the eye height after the contribution of the ISI jitter only. Because  
a redriver can only compensate for ISI jitter, all non-ISI sources of jitter (random, sinusoidal, and so forth) will be  
passed through TDP0604. If the system designer requires the worse case channel length of 16 inches, then the  
GPU transmitter differential voltage swing without de-emphasis should be at least 1000 mVpp in order to meet  
the VID(DC) and VID(EYE) requirements of the TDP0604. A GPU transmitter which incorporates de-emphasis can  
meet the requirement with less than 1000 mVpp.  
9.2.2.2 Post-Channel (LCD  
)
The post-channel, as shown in 9-1, should be 2 inches or less. If ESD devices are used, then it may be  
necessary to overcome the insertion loss of the ESD device by increasing the TDP0604 transmitter voltage  
swing. This is done by configuring the TXSWG pin to the appropriate value as provided in 8-12.  
The post-channel is greater than 2 inches, then transmitter pre-emphasis may need to be employed. This is  
done by configuring the TDP0604 TXPRE pin to the appropriate setting as provided in 8-11. Adjusting the  
TDP0604 transmitter voltage swing may also be necessary.  
9.2.2.3 Common Mode Choke  
It may be necessary to incorporate a common mode choke (CMC) to reduce EMI. The purpose of a CMC is to  
have a minimal impact to the differential signal while attenuating common mode noise thereby reducing radiated  
emissions. The CMC should be placed between the TDP0604 and the ESD device.  
9-3. Recommended Common Mode Chokes  
Manufacturer  
Part Number  
DLW21SN900HQ2  
DLP11SA900HL2  
Murata  
Murata  
9.2.2.4 ESD Protection  
It may be necessary to incorporate an ESD component to protect the TDP0604 from electrostatic discharge  
(ESD). It is recommended that the ESD protection component has a breakdown voltage of 4.5 V and a clamp  
voltage of 4.3 V. A clamp voltage greater than 4.3 V will require a RESD on each high-speed differential pin.  
The ESD component should be placed near the HDMI connector.  
9-4. Recommended ESD Protection Component  
Manufacturer  
Part Number  
NXP  
PUSB3FR4  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
9.2.3 Application Curves  
9-3. FR4 Trace Insertion Loss at 3 GHz  
9-4. Pre-Channel Insertion Loss at TTP2  
9-5. Post-Channel Insertion Loss at TTP4  
9-6. 2.97 Gbps Input Eye at TTP2 After Pre-  
Channel  
9-7. 2.97 Gbps Output Eye at TTP4 After Pre and  
9-8. 5.94 Gbps Input Eye at TTP2 After Pre-  
Post Channels  
Channel  
9-9. 5.94 Gbps Output Eye at TTP4 After Pre and Post Channels  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFJ8  
56  
Submit Document Feedback  
Product Folder Links: TDP0604  
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
9.3 Power Supply Recommendations  
9.3.1 Supply Decoupling  
Texas Instruments recommends a single bulk capacitor of 10-µF on the VCC supply. Along with the bulk  
capacitor, Texas Instruments recommends a 0.1-µF decoupling capacitor on each TDP0604 VCC pin that is  
placed as close to the VCC pin as possible. 9-2 shows an example.  
9.4 Layout  
9.4.1 Layout Guidelines  
For the TDP0604 on a high-K board, it is required to solder the PowerPADonto the thermal land to ground. A  
thermal land is the area of solder-tinned-copper underneath the PowerPAD package. On a high-K board, the  
TDP0604 can operate over the full temperature range by soldering the PowerPAD onto the thermal land. For the  
device to operate across the temperature range on a low-K board, a 1-oz Cu trace connecting the GND pins to  
the thermal land must be used. A simulation shows RθJA = 30.9°C/W allowing 950-mW power dissipation at  
70°C ambient temperature. For information about a general PCB design guide for PowerPAD packages, refer to  
the PowerPAD Thermally Enhanced Package application report. TI recommends using a four layer stack up at a  
minimum to accomplish a low-EMI PCB design. TI recommends four layers as the TDP0604 is a single voltage  
rail device.  
Routing the high-speed TMDS traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects from the HDMI connectors to the Redriver inputs and  
outputs. It is important to match the electrical length of these high speed traces to minimize both inter-pair  
and intra-pair skew.  
Placing a solid ground plane next to the high-speed single layer establishes controlled impedance for  
transmission link interconnects and provides an excellent low-inductance path for the return current flow.  
Placing a power plane next to the ground plane creates an additional high-frequency bypass capacitance.  
Routing slower seed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to  
the stack to keep symmetry. This makes the stack mechanically stable and prevents it from warping. Also the  
power and ground plane of each power system can be placed closer together, thus increasing the high  
frequency bypass capacitance significantly.  
To minimize crosstalk between adjacent differential pairs, the distance between the differential pairs should  
be at least five times longer than the trace width (5W rule). For the clock differential pair, the distance should  
be increased to 8W or 10W.  
Layer 1: TMDS signal layer  
Layer 1: TMDS signal layer  
5 to 10  
mils  
Layer 2: Ground Plane  
Layer 2: Ground Plane  
Layer 3: VCC Power Plane  
20 to 40  
mils  
Layer 4: VDD Power Plane  
Layer 5: Ground Plane  
Layer 3: Power Plane  
5 to 10  
mils  
Layer 4: Control signal layer  
Layer 6: Control signal layer  
9-10. Recommended 4 or 6-Layer PCB Stack  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
 
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
9.4.2 Layout Example  
GND  
1
9
40  
IN_D2p/n  
IN_D1p/n  
OUT_D2p/n  
HPD_OUT  
VIO  
TXSWG  
OUT_D1p/n  
OUT_D0p/n  
OUT_CLKp/n  
ADDR/EQ0  
HPD_IN  
GND  
IN_D0p/n  
IN_CLKp/n  
MODE  
GND  
TXPRE  
20  
29  
VCC  
GND  
HV_DDC_SCL  
HV_DDC_SDA  
LV_DDC_SCL  
LV_DDC_SDA  
9-11. Source Example Layout  
Copyright © 2023 Texas Instruments Incorporated  
English Data Sheet: SLLSFJ8  
58  
Submit Document Feedback  
Product Folder Links: TDP0604  
TDP0604  
www.ti.com.cn  
ZHCSLM6A DECEMBER 2021 REVISED JUNE 2023  
10 Device and Documentation Support  
10.1 Documentation Support  
10.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, PowerPAD Thermally Enhanced Package application report  
10.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
10.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
10.4 Trademarks  
HDMIis a trademark of HDMI Licensing Administrator.  
Blu-rayis a trademark of Blu-ray Disc Association (BDA).  
PowerPADand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
10.5 静电放电警告  
静电放(ESD) 会损坏这个集成电路。德州仪(TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理  
和安装程序可能会损坏集成电路。  
ESD 的损坏小至导致微小的性能降级大至整个器件故障。精密的集成电路可能更容易受到损坏这是因为非常细微的参  
数更改都可能会导致器件与其发布的规格不相符。  
10.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
11 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2023 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TDP0604  
English Data Sheet: SLLSFJ8  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jun-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TDP0604IRNQR  
TDP0604IRNQT  
TDP0604RNQR  
TDP0604RNQT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
RNQ  
RNQ  
RNQ  
RNQ  
40  
40  
40  
40  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
0 to 85  
TDP04  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
TDP04  
TDP04  
TDP04  
0 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
27-Jun-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
27-Jun-2023  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
K0  
P1  
W
B0  
Reel  
Diameter  
Cavity  
A0  
A0 Dimension designed to accommodate the component width  
B0 Dimension designed to accommodate the component length  
K0 Dimension designed to accommodate the component thickness  
Overall width of the carrier tape  
W
P1 Pitch between successive cavity centers  
Reel Width (W1)  
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE  
Sprocket Holes  
Q1 Q2  
Q3 Q4  
Q1 Q2  
Q3 Q4  
User Direction of Feed  
Pocket Quadrants  
*All dimensions are nominal  
Device  
Package Package Pins  
Type Drawing  
SPQ  
Reel  
Reel  
A0  
B0  
K0  
P1  
W
Pin1  
Diameter Width (mm) (mm) (mm) (mm) (mm) Quadrant  
(mm) W1 (mm)  
TDP0604IRNQR  
TDP0604IRNQT  
TDP0604RNQR  
TDP0604RNQT  
WQFN  
WQFN  
WQFN  
WQFN  
RNQ  
RNQ  
RNQ  
RNQ  
40  
40  
40  
40  
3000  
250  
330.0  
180.0  
330.0  
180.0  
12.4  
12.4  
12.4  
12.4  
4.3  
4.3  
4.3  
4.3  
6.3  
6.3  
6.3  
6.3  
1.1  
1.1  
1.1  
1.1  
8.0  
8.0  
8.0  
8.0  
12.0  
12.0  
12.0  
12.0  
Q2  
Q2  
Q2  
Q2  
3000  
250  
Pack Materials-Page 1  
PACKAGE MATERIALS INFORMATION  
www.ti.com  
27-Jun-2023  
TAPE AND REEL BOX DIMENSIONS  
Width (mm)  
H
W
L
*All dimensions are nominal  
Device  
Package Type Package Drawing Pins  
SPQ  
Length (mm) Width (mm) Height (mm)  
TDP0604IRNQR  
TDP0604IRNQT  
TDP0604RNQR  
TDP0604RNQT  
WQFN  
WQFN  
WQFN  
WQFN  
RNQ  
RNQ  
RNQ  
RNQ  
40  
40  
40  
40  
3000  
250  
367.0  
210.0  
367.0  
210.0  
367.0  
185.0  
367.0  
185.0  
35.0  
35.0  
35.0  
35.0  
3000  
250  
Pack Materials-Page 2  
PACKAGE OUTLINE  
RNQ0040A  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
A
PIN 1 INDEX AREA  
4.1  
3.9  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
4.7±0.1  
2X 4.4  
(0.2) TYP  
9
20  
EXPOSED  
THERMAL PAD  
36X 0.4  
8
21  
2X  
2.8  
2.7±0.1  
1
28  
0.25  
40X  
0.15  
29  
40  
PIN 1 ID  
0.1  
C A  
B
0.5  
0.3  
(OPTIONAL)  
40X  
0.05  
4222125/B 01/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNQ0040A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(4.7)  
2X (2.1)  
6X (0.75)  
40  
29  
40X (0.6)  
1
28  
40X (0.2)  
SYMM  
4X  
(1.1)  
(3.8)  
(2.7)  
36X (0.4)  
8
21  
(R0.05) TYP  
9
20  
SYMM  
(5.8)  
(
0.2) TYP  
VIA  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222125/B 01/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNQ0040A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
4X (1.5)  
40  
29  
40X (0.6)  
1
28  
40X (0.2)  
SYMM  
6X  
(0.695)  
(3.8)  
6X  
(1.19)  
36X (0.4)  
8
21  
(R0.05) TYP  
METAL  
TYP  
9
20  
6X (1.3)  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
73% PRINTED SOLDER COVERAGE BY AREA  
SCALE:18X  
4222125/B 01/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TDP0604IRNQT

DP++ 6Gbps HDMI 2.0 转接驱动器 | RNQ | 40 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TDP0604RNQR

DP++ 6Gbps HDMI 2.0 转接驱动器 | RNQ | 40 | 0 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TDP0604RNQT

DP++ 6Gbps HDMI 2.0 转接驱动器 | RNQ | 40 | 0 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TDP06H0SB1

Half-pitch Side-Actuated DIP Switches

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CK-COMPONENTS

TDP06H0SBD1

Half-pitch Side-Actuated DIP Switches

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CK-COMPONENTS

TDP06H1SBD1

Half-pitch Side-Actuated DIP Switches

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CK-COMPONENTS

TDP08H0SB1

Ultra-miniature Surface Mount Half-pitch Side-Actuated DIP Switches

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ITT

TDP08H0SB1

Half-pitch Side-Actuated DIP Switches

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CK-COMPONENTS

TDP08H0SB1R

Ultra-miniature Surface Mount Half-pitch Side-Actuated DIP Switches

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ITT

TDP08H0SBD1

Ultra-miniature Surface Mount Half-pitch Side-Actuated DIP Switches

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ITT

TDP08H0SBD1

Half-pitch Side-Actuated DIP Switches

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
CK-COMPONENTS

TDP08H0SBD1R

Ultra-miniature Surface Mount Half-pitch Side-Actuated DIP Switches

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ITT