TDP1204 [TI]

12Gbps DP++ 1.1 至 HDMI 2.1 源侧转接驱动器;
TDP1204
型号: TDP1204
厂家: TEXAS INSTRUMENTS    TEXAS INSTRUMENTS
描述:

12Gbps DP++ 1.1 至 HDMI 2.1 源侧转接驱动器

驱动 驱动器
文件: 总77页 (文件大小:2771K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDP1204  
ZHCSQR9 JULY 2022  
TDP1204 12Gbps、直流/交流耦合HDMI2.1 电平转换器混合转接驱动器  
1 特性  
3 说明  
• 支持高12Gbps HDMI 2.1 数据速率的交流耦合或  
直流耦合输入和输出  
TDP1204 是一款 HDMI 2.1 转接驱动器支持高达  
12Gbps 的数据速率向后兼容 HDMI 1.4b HDMI  
2.0b。高速差分输入和输出可以是交流耦合或直流耦  
支持TDP1204 DP++ HDMI 电平转换器  
HDMI 转接驱动器。TDP1204 可支持 36810  
12Gbps 的三通道和四通HDMI 2.1 FRL。  
– 向后兼HDMI 1.4b HDMI 2.0b  
HDMI 2.1 固定速率链(FRL) 36810  
12Gbps  
– 支HDMI 2.1 三通道和四通FRL  
• 已针HDMI 源应用进行优化  
6GHz 时高12dB 的可编程接收器均衡器  
I2C 或引脚搭接可编程  
• 集成HPD 电平转换器同时支1.8V 3.3V  
LVCMOS 电平  
• 集成DDC 缓冲器支持最1.2V 电平  
• 主通道上全通道交换  
• 用于链路配置的数字显示控(DDC) 监控功能  
• 低功耗:  
TDP1204 是一款混合转接驱动器同时支持源端和接  
收端应用。混合转接驱动器可用作线性转接驱动器也  
可用作限幅转接驱动器。配置为限幅转接驱动器时,  
TDP1204 的差分输出电压电平独立于图形处理单元  
(GPU) 的输出电平从而确保插座的 HDMI 电平符合  
要求。限幅转接驱动器模式推荐用于 HDMI 源端应  
用。配置为线性转接驱动器时TDP1204 的差分输出  
电平是 GPU 出电平的线性函数而支持将  
TDP1204 用于透明呈现链路训练或用作通道缩短器。  
建议将线性转接驱动器模式用HDMI 接收端应用。  
12G FRL 四通道有源限制575mW  
12G FRL 四通道有源线性220mW  
– 断电0.6mW  
TDP1204 有一个集成的 HPD 电平转换器该转换器  
可将 5V HPD 信号转换为 1.8V 3.3V。电平转换器  
输出还可配置为推挽式或开漏式。另外TDP1204 还  
集成了一个数字显示控制 (DDC) 缓冲器。DDC 缓冲器  
可提供电容隔离电平转换器可将 5V DDC 电平转换  
3.3V1.8V 1.2V 电平。集成电平转换器后无  
需分立式解决方案因此节省了系统成本。  
• 可用于商业级和工业级温度范围  
3.3V 单电源  
40 0.4mm 4mm × 6mm WQFN 封装  
2 应用  
笔记本电脑和台式机  
电视  
家庭影院和娱乐系统  
游戏系统  
扩展坞  
TDP1204 支持 3.3V VCC 单电源轨可用于商业级温  
度范(TDP1204) 和工业级温度范(TDP1204I)。  
器件信息(1)  
专业音频、视频和标牌  
封装尺寸标称值)  
器件型号  
TDP1204  
封装  
WQFN (40)  
1.14V to  
4.00mm × 6.00mm  
3.3V  
3.6V  
Optional  
(1) 如需了解所有可用封装请参阅数据表末尾的可订购产品附  
录。  
OUT_D2p  
OUT_D2n  
IN_D2p  
IN_D2n  
OUT_D1p  
OUT_D1n  
IN_D1p  
IN_D1n  
OUT_D0p  
OUT_D0n  
IN_D0p  
IN_D0n  
GPU  
(DP++, HDMI)  
OUT_CLKp  
OUT_CLKn  
IN_CLKp  
IN_CLKn  
HDMI_5V  
LV_DDC_SDA HV_DDC_SDA  
LV_DDC_SCL  
HPD_OUT  
HV_DDC_SCL  
HPD_IN  
简化版原理图  
.
.
.
本文档旨在为方便起见提供有TI 产品中文版本的信息以确认产品的概要。有关适用的官方英文版本的最新信息请访问  
www.ti.com其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前请务必参考最新版本的英文版本。  
English Data Sheet: SLLSFI6  
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
Table of Contents  
8.5 Register Maps...........................................................47  
9 Application and Implementation..................................60  
9.1 Application Information............................................. 60  
9.2 Typical Source-Side Application............................... 60  
9.3 Typical Sink-Side Application....................................65  
10 Power Supply Recommendations..............................69  
10.1 Supply Decoupling..................................................69  
11 Layout...........................................................................69  
11.1 Layout Guidelines................................................... 69  
11.2 Layout Example...................................................... 70  
12 Device and Documentation Support..........................71  
12.1 Documentation Support.......................................... 71  
12.2 接收文档更新通知................................................... 71  
12.3 支持资源..................................................................71  
12.4 Trademarks.............................................................71  
12.5 Electrostatic Discharge Caution..............................71  
12.6 术语表..................................................................... 71  
13 Mechanical, Packaging, and Orderable  
1 特性................................................................................... 1  
2 应用................................................................................... 1  
3 说明................................................................................... 1  
4 Revision History.............................................................. 2  
5 Pin Configuration and Functions...................................3  
6 Specifications.................................................................. 5  
6.1 Absolute Maximum Ratings........................................ 5  
6.2 ESD Ratings............................................................... 5  
6.3 Recommended Operating Conditions.........................5  
6.4 Thermal Information....................................................6  
6.5 Electrical Characteristics.............................................6  
6.6 Timing Requirements................................................13  
6.7 Switching Characteristics..........................................14  
6.8 Typical Characteristics..............................................17  
7 Parameter Measurement Information..........................18  
8 Detailed Description......................................................24  
8.1 Functional Block Diagram ........................................24  
8.2 Feature Description...................................................25  
8.3 Device Functional Modes..........................................37  
8.4 Programming............................................................ 42  
Information.................................................................... 71  
4 Revision History  
DATE  
REVISION  
NOTES  
July 2022  
*
Initial Release  
Copyright © 2022 Texas Instruments Incorporated  
2
Submit Document Feedback  
Product Folder Links: TDP1204  
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
5 Pin Configuration and Functions  
VCC  
1
28  
27  
26  
25  
24  
23  
22  
21  
VCC  
HPDOUT_SEL  
2
3
HV_DDC_SCL  
HV_DDC_SDA  
LV_DDC_SDA  
LV_DDC_SCL  
AC_EN  
TEST1  
CTLEMAP_SEL  
4
5
6
7
8
Thermal  
Pad  
LINEAR_EN  
VCC  
EN  
SDA/CFG1  
SCL/CFG0  
EQ1  
Not to scale  
5-1. RNQ Package 40-Pin WQFN (Top View)  
5-1. Pin Functions  
DESCRIPTION  
PIN  
TYPE(1)  
NAME  
NO.  
VCC  
1
P
I
3.3-V power supply  
HPDOUT_SEL. Selects whether HPD_OUT pin is push, pull, or open-drain. Open-drain is not  
HPDOUT_SEL  
TEST1  
2
3
2-level (PD) supported in pin-strap mode. Therefore this pin should be left floating or pull-down to GND.  
O
Test1. For TI internal use only. This pin can be left unconnected.  
CTLE Map select. When TDP1204 is configured in pin-strap mode, this pin selects the CTLE  
Map used. 8-8 lists more details. Also in pin-strap this pin will control whether or not AEQ is  
enabled. 8-9 lists more details. In I2C mode, CTLE map and AEQ enable is determined by  
registers.  
I
CTLEMAP_SEL  
4
4-level  
(PU/PD)  
I
In pin-strap mode, selects whether TDP1204 operates in linear or limited redriver mode. 8-5  
lists more details.  
LINEAR_EN  
VCC  
5
6
4-level  
(PU/PD)  
P
3.3-V power supply  
When low, TDP1204 will be held in reset. The IN_D[2:0], IN_CLK, OUT_D[2:0] and OUT_CLK  
pins will be held in high impedance while EN is low. On rising edge of EN, the device will sample  
2-level (PU) four-level inputs and function based on the sampled state of the pins. This pin has an internal  
250-k pull-up to VIO.  
I
EN  
7
8
I
EQ1 pin setting when TDP1204 is configured for pin strap mode; works in conjunction with EQ0;  
8-6 lists the settings. In I2C mode, EQ settings are controlled through the registers.  
EQ1  
4-level  
(PU/PD)  
IN_D2p  
IN_D2n  
9
I
I
Channel 2 differential positive input  
Channel 2 differential negative input  
10  
Hot plug detect output to source side. If not used, then this pin can be left floating. If used, then it  
is recommended to have an external 220k resistor to GND on this pin.  
HPD_OUT  
11  
O
IN_D1p  
IN_D1n  
12  
13  
I
I
Channel 1 differential positive input.  
Channel 1 differential negative input.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
3
Product Folder Links: TDP1204  
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
5-1. Pin Functions (continued)  
PIN  
NAME  
TYPE(1)  
DESCRIPTION  
NO.  
14  
VIO  
P
I
Voltage supply for I/Os. 8-2 lists more details.  
Channel 0 differential positive input  
IN_D0p  
IN_D0n  
15  
16  
I
Channel 0 differential negative input  
I
MODE  
17  
4-level  
(PU/PD)  
Mode control pin. Selects between pin-strap and I2C mode. For more details, refer to 8.3.1.  
IN_CLKp  
IN_CLKn  
VCC  
18  
19  
20  
I
I
Clock differential positive input  
Clock differential negative input  
3.3-V power supply  
P
I2C Clock/CFG0: when TDP1204 is configured for I2C mode, this pin will function as the I2C  
clock. 8-18 lists how this pin otherwise functions as CFG0.  
SCL/CFG0  
SDA/CFG1  
21  
22  
I
I2C Data / CFG1: when TDP1204 is configured for I2C mode, this pin will function as the I2C  
clock. 8-19 lists how this pin will otherwise function as CFG1.  
I/O  
In pin-strap mode, the AC_EN pin selects whether high speed transmitters are externally AC or  
DC-coupled.  
2-level (PD) 0: DC-coupled  
1: AC-coupled  
I
AC_EN  
23  
LV_DDC_SCL  
LV_DDC_SDA  
HV_DDC_SDA  
HV_DDC_SCL  
VCC  
24  
25  
26  
27  
28  
I/O  
I/O  
I/O  
I/O  
P
Low voltage side bidirectional DDC clock line. Internally pulled-up to VIO.  
Low voltage side bidirectional DDC data line. Internally pulled-up to VIO.  
High voltage side bidirectional DDC data line. Pull-up externally to HDMI 5-V.  
High voltage side bidirectional DDC clock line. Pull-up externally to HDMI 5-V.  
3.3-V power supply  
TX pre-emphasis control: in pin-strap mode with limited enabled, this pin controls TX EQ. In pin-  
strap with linear and AEQ enabled, this pin will adjust the adapted value. 8-15 lists the  
available settings for the TXPRE when operating in pin strap mode. In I2C mode, Tx pre-  
emphasis is controlled through the registers.  
I
TXPRE  
29  
4-level  
(PU/PD)  
OUT_CLKn  
OUT_CLKp  
30  
31  
O
O
TMDS data clock differential negative output  
TMDS data clock differential positive output  
I
HPD_IN  
32  
Hot plug detect input from sink side. This pin has an internal pull-down resistor and is fail-safe.  
2-level (PD)  
OUT_D0n  
OUT_D0p  
33  
34  
O
O
TMDS data 0 differential negative output  
TMDS data 0 differential positive output  
Address bit for I2C programming when TDP1204 is configured for I2C mode. 8-22 lists more  
details.  
EQ0 pin setting when TDP1204 is configured for pin strap mode; works in conjunction with EQ1;  
8-6 lists the EQ pin settings. In I2C mode, EQ settings are controlled through the registers.  
I
ADDR/EQ0  
35  
4-level  
(PU/PD)  
OUT_D1n  
OUT_D1p  
36  
37  
O
O
TMDS data 1 differential negative output  
TMDS data 1 differential positive output  
I
TX output swing control: 4 settings. This pin is only used in pin strap mode. 8-17 lists the  
TXSWG  
38  
4-level  
(PU/PD)  
available TX swing settings. In I2C mode, Tx output swing is controlled through the registers.  
OUT_D2n  
OUT_D2p  
Thermal Pad  
39  
40  
O
O
TMDS data 2 differential negative output  
TMDS data 2 differential positive output  
Thermal pad. Connect to a solid ground plane.  
(1) I = input, O = output, G = ground, and P = power.  
Copyright © 2022 Texas Instruments Incorporated  
4
Submit Document Feedback  
Product Folder Links: TDP1204  
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
6 Specifications  
6.1 Absolute Maximum Ratings  
over operating free-air temperature range (unless otherwise noted)(1)  
MIN  
-0.5  
MAX  
UNIT  
Supply Voltage VCC and VIO  
4
4
4
4
V
V
V
V
Input Voltage  
Differential Inputs (IN_D[2:0], IN_CLK)  
-0.3  
Output voltage HPD_OUT output  
0.3  
0.3  
Output voltage Differential outputs (OUT_D[2:0], OUT_CLK)  
LV_DDC_SDA, LV_DDC_SCL, SCL/CFG0, SDA/CFG1, MODE,  
CLTEMAP_SEL, HPDOUT_SEL, TXSWG, TXPRE, EQ1, ADDR/  
EQ0, EN, AC_EN, LINEAR_EN  
4
V
0.5  
0.5  
Control pins  
HPD_IN, HV_DDC_SCL, HV_DDC_SDA  
TDP1204 Junction temperature  
TDP1204I Junction temperature  
Storage temperature  
6
105  
125  
150  
V
TJ  
°C  
°C  
°C  
TJ  
Tstg  
65  
(1) Operation outside the Absolute Maximum Rating may cause permanent damage to the device. Absolute maximum ratings do not imply  
functional operation of the device at these or any other conditions beyond those listed under the Recommended Operating Condition.  
If briefly operating outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not  
sustain damage, but it may not be fully functional. Operating the device in this manner may affect device reliability, functionality,  
performance, and shorten the device lifetime.  
6.2 ESD Ratings  
VALUE  
UNIT  
Human body model (HBM), per ANSI/ESDA/  
JEDEC JS-001, all pins(1)  
±4000  
V(ESD)  
Electrostatic discharge  
V
Charged device model (CDM), per ANSI/ESDA/  
JEDEC JS-002, all pins(2)  
±1500  
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.  
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.  
6.3 Recommended Operating Conditions  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
UNIT  
Supply voltage when high-speed RX pins (IN_D[2:0] and IN_CLK) is AC-  
coupled to a DP++ TX  
VCC  
VCC  
3.0  
3.3  
3.6  
V
Supply voltage when high-speed RX pins (IN_D[2:0] and IN_CLK) is DC-  
coupled to a HDMI TX  
3.135  
3.3  
3.465  
V
VIO  
VIO supply when 1.2-V LVCMOS level used.  
1.14  
1.7  
3
1.2  
1.8  
3.3  
1.26  
1.9  
V
V
VIO  
VIO supply when 1.8-V LVCMOS level used.  
VIO  
VIO supply when 3.3-V LVCMOS level used.  
3.6  
V
VPSN  
Peak to peak Power supply noise on VCC pins (less than 4 MHz).  
100  
mV  
DC input voltage for SCL/CFG0, SDA/CFG1, MODE, AC_EN, LINEAR_EN,  
EN, CTLEMAP_SEL, TXSWG, TXPRE, EQ1, ADDR1/EQ0, LV_DDC_SCL,  
LV_DDC_SDA, HPDOUT_SEL  
VCTL3  
3.6  
V
0.3  
VCTL5  
DC input voltage for HV_DDC_SCL, HV_DDC_SDA, HPD_IN pins  
Optional external AC-coupling capacitor on IN_Dx and IN_CLK.  
5.5  
V
0.3  
CACRX  
85  
253  
nF  
External AC-coupling capacitor on OUT_Dx and OUT_CLK when AC_EN =  
H.  
CACTX  
TA  
85  
0
253  
70  
nF  
°C  
TDP1204 Ambient temperature  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
5
Product Folder Links: TDP1204  
 
 
 
 
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
6.3 Recommended Operating Conditions (continued)  
over operating free-air temperature range (unless otherwise noted)  
MIN  
NOM  
MAX  
85  
UNIT  
TA  
TDP1204I Ambient temperature  
°C  
40  
6.4 Thermal Information  
TDP1204  
THERMAL METRIC(1)  
RNQ (WQFN)  
40 PINS  
30.9  
UNIT  
RθJA  
Junction-to-ambient thermal resistance  
Junction-to-case (top) thermal resistance  
Junction-to-board thermal resistance  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
RθJC(top)  
RθJB  
21.2  
11.7  
Junction-to-top characterization parameter  
Junction-to-board characterization parameter  
Junction-to-case (bottom) thermal resistance  
0.3  
ΨJT  
11.7  
ΨJB  
RθJC(bot)  
3.8  
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application  
report.  
6.5 Electrical Characteristics  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
190  
215  
840  
575  
220  
MAX  
265  
UNIT  
mW  
mW  
mW  
mW  
mW  
POWER  
Pin Strap mode; DR = 3.4 Gbps; HPD_IN  
PACTIVE-  
Power dissipation in HDMI 1.4 3.4 Gbps = H; No de-emphasis/pre-emphasis;  
active operation  
H14-LT-  
Limited redriver mode; DC-coupled TX;  
AC-coupled RX; 3 Gbps CTLE;  
ARX-DTX  
Pin Strap mode; DR = 6 Gbps; HPD_IN =  
H; No de-emphasis/pre-emphasis;  
Limited redriver mode; DC-coupled TX;  
AC-coupled RX; 6 Gbps CTLE;  
PACTIVE-  
Power dissipation in HDMI 2.0 6 Gbps  
active operation  
305  
H20-LT-  
ARX-DTX  
Pin Strap mode; DR = 12 Gbps; HPD_IN  
= H; TXFFE0; Limited redriver mode; AC-  
coupled TX; AC-coupled RX;12 Gbps  
CTLE;  
PACTIVE- Power dissipation in FRL 12 Gbps active  
operation when TX is AC-coupled  
(AC_EN = H)  
1220  
785  
FRL-LT-  
ARX-ATX  
Pin Strap mode; DR = 12 Gbps; HPD_IN  
= H; TXFFE0; Limited redriver mode; DC-  
coupled TX; AC-coupled RX; 12 Gbps  
CTLE;  
PACTIVE- Power dissipation in FRL 12 Gbps active  
operation when TX is DC-coupled  
(AC_EN = L)  
FRL-LT-  
ARX-DTX  
Pin Strap mode; DR = 12 Gbps; HPD_IN  
= H; Highest linearity setting; Linear  
redriver mode; DC-coupled TX; AC-  
coupled RX; 12 Gbps CTLE;  
PACTIVE- Power dissipation in FRL 12 Gbps active  
operation when TX is DC-coupled  
(AC_EN = L)  
310  
FRL-LR-  
ARX-DTX  
Pin Strap mode; DR = 12 Gbps; HPD_IN  
= H; Highest linearity setting; Linear  
redriver mode; AC-coupled TX; AC-  
coupled RX; 12 Gbps CTLE  
PACTIVE- Power dissipation in FRL 12 Gbps active  
operation when TX is AC-coupled  
660  
0.6  
1.0  
990  
2
mW  
mW  
mW  
FRL-LR-  
(AC_EN = H)  
ARX-ATX  
Pin Strap mode; HPD_IN = L; EN = L or  
H; High-speed outputs are disconnected;  
PPD  
Power in power-down (HPD_IN = L)  
Pin Strap mode; HPD_IN = H; No  
incoming signal; EN = H; DC-coupled TX;  
incoming signal with DDC Buffer disabled AC-coupled RX; Limited redriver mode;  
High-speed outputs are connected;  
Power in standby (HPD_IN = H) but no  
PSD  
1.85  
Copyright © 2022 Texas Instruments Incorporated  
6
Submit Document Feedback  
Product Folder Links: TDP1204  
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Pin Strap mode; HPD_IN = H; No  
Power in standby (HPD_IN = H) but no  
incoming signal with DDC buffer enabled. AC-coupled RX; Limited redriver mode;  
High-speed outputs are connected;  
incoming signal; EN = H; DC-coupled TX;  
PSD  
1.2  
2.05  
mW  
HPD_IN = H;VCC = VIO = 3.6 V;  
IVIOQ  
IVIOA  
VIO quiescent current  
LV_DDC_SDA/SCL = H;  
HV_DDC_SDA/SCL = H;  
16  
1
µA  
VIO active instantaneous current  
VCC = VIO = 3.6 V; HPD_IN = H;  
mA  
2-LEVEL CONTROL PINS (EN, SCL/CFG0, SDA/CFG1, AC_EN, HPDOUT_SEL)  
VIO_TRSH Threshold for selecting between 1.2-V  
1.5  
2.5  
V
V
V
V
V
V
V
V
V
V
LVCMOS / 1.8-V LVCMOS  
D
VIO_TRSH Threshold for selecting between 1.8-V  
LVCMOS / 3.3-V LVCMOS  
D
Low-level input voltage for SCL/CFG0,  
SDA/CFG1  
VIL_1p2V  
VIH_1p2V  
VIL_1p8V  
VIH_1p8V  
VIL_3p3V  
VIL_3p3V  
VIH_3p3V  
VIH_3p3V  
VIO = 1.26 V; VCC = 3.0 V;  
VIO = 1.14 V; VCC = 3.6 V;  
VIO = 1.9 V; VCC = 3.0 V;  
VIO = 1.7 V; VCC = 3.6 V;  
VIO = 3.6 V; VCC = 3.0 V;  
VIO = 3.6 V; VCC = 3.0 V;  
VIO = 3.0 V; VCC = 3.6 V;  
VIO = 3.0 V; VCC = 3.6 V;  
-0.3  
0.8  
0.378  
3.6  
High-level input voltage for SCL/CFG0,  
SDA/CFG1  
Low-level input voltage for SCL/CFG0,  
SDA/CFG1  
-0.3  
1.19  
-0.3  
-0.3  
2.2  
0.57  
3.6  
High-level input voltage for SCL/CFG0,  
SDA/CFG1  
Low-level input voltage for SCL/CFG0,  
SDA/CFG1  
0.8  
Low-level input voltage for AC_EN,  
HPDOUT_SEL  
0.8  
High-level input voltage for SCL/CFG0,  
SDA/CFG1  
3.6  
High-level input voltage for AC_EN,  
HPDOUT_SEL  
2.2  
3.6  
0.3  
VOL_1p2V Low-level output voltage SDA/CFG1  
IOL_1p2V Low-level output current SDA/CFG1  
VCC = 3.0 V; VIO = 1.2 V;  
-0.3  
2
V
mA  
V
VCC = 3.0 V; VIO = 1.2 V;  
VOL  
IOL  
Low-level output voltage SDA/CFG1  
Low-level output current SDA/CFG1  
VCC = 3.0 V; VIO = 1.8 V or 3.3 V;  
VCC = 3.0 V; VIO = 1.8 V or 3.3 V;  
-0.3  
4
0.4  
mA  
Low-level input current SCL/CFG0, SDA/  
CFG1  
IIL_I2C  
ILEAK  
VIN = 0 V; VIO = 1.8 V or 3.3 V;  
VIN = 3.6 V; VCC = 0 V;  
1
µA  
µA  
1  
Fail-safe input current for SCL/CFG0,  
SDA/CFG1  
25  
25  
VIL_EN  
VIH_EN  
Low-level input voltage for EN pin.  
High-level input voltage for EN pin.  
VIO = 1.14 V; VCC = 3.3 V;  
VIO = 3.6 V; VCC = 3.3 V;  
-0.3  
0.8  
0.4  
3.6  
V
V
VIN = 0 V; VIO = 1.8 V or 3.3 V; VCC =  
3.6 V  
IIL  
Low-level input current EN  
20  
1
µA  
µA  
20  
1  
Low-level input current AC_EN,  
HPDOUT_SEL  
IIL  
VIN = 0 V; VIO = 1.8 V or 3.3 V;  
IIH_EN  
High-level input current for EN  
VIN = 3.6 V; VIO = 1.8 V or 3.3 V;  
VIN = 3.6 V; VIO = 1.8 V or 3.3 V;  
1
µA  
µA  
1  
IIH_ACEN High-level input current for AC_EN  
IIH_HPDOU High-level input current for  
24  
24  
VIN = 3.6 V; VIO = 1.8 V or 3.3 V;  
30  
350  
350  
µA  
kΩ  
kΩ  
24  
125  
125  
HPDOUT_SEL  
TSEL  
RPU_EN  
Internal Pull-up resistance on EN.  
250  
250  
RPD_ACE  
Internal Pull-down resistance on AC_EN  
N
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
7
Product Folder Links: TDP1204  
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
RPD_HPD Internal Pull-down resistance on  
125  
250  
350  
5
kΩ  
HPDOUT_SEL  
OUTSEL  
Capacitance for SCL/CFG0 and SDA/  
CI2C-PINS  
CFG1  
f = 100 kHz;  
pF  
pF  
pF  
C(I2C_FM+  
I2C bus capacitance for FM+ (1 MHz)  
150  
150  
910  
2200  
_BUS)  
C(I2C_FM_  
I2C bus capacitance for FM (400 kHz)  
BUS)  
R(EXT_I2C External resistors on both SDA and SCL  
C(I2C_FM+_BUS) = 150 pF  
C(I2C_FM_BUS) = 150 pF  
620  
620  
820  
when operating at FM+ (1 MHz)  
_FM+)  
R(EXT_I2C External resistors on both SDA and SCL  
1500  
when operating at FM (400 kHz)  
_FM)  
LV_DDC_SDA and LV_DDC_SCL (DDC Buffer Disabled)  
VIL_1p2V Low-level input voltage  
VIH_1p2V High-level input voltage  
VIL_1p8V Low-level input voltage  
VIH_1p8V High-level input voltage  
VIL_3p3V Low-level input voltage  
VIH_3p3V High-level input voltage  
VCC = 3.0 V;  
-0.3  
0.8  
0.378  
3.6  
V
V
V
V
V
V
VCC = 3.6 V;  
VCC = 3.0 V;  
VCC = 3.6 V;  
VCC = 3.0 V;  
VCC = 3.6 V;  
-0.3  
1.19  
-0.3  
2.2  
0.57  
3.6  
0.8  
3.6  
DDC Buffer (LV_DDC_SCL, LV_DDC_SDA, HV_DDC_SCL, HV_DDC_SDA)  
High-level input voltage for  
HV_DDC_SCL and HV_DDC_SDA  
VHV_IH  
VHV_IL  
VLV_IH  
VLV_IH  
VLV_IH  
VLV_IL  
VLV_IL  
VLV_IL  
IHV_IL_FS  
IHV_IL  
VIO = 3.3 V; VCC = 3.0 V  
VIO = 3.3 V; VCC = 3.0 V  
VIO = 1.14 V; VCC = 3.3 V  
VIO = 1.7 V; VCC = 3.3 V  
VIO = 3.0 V; VCC = 3.3 V  
VIO = 1.26 V; VCC = 3.3 V  
VIO = 1.9 V; VCC = 3.3 V  
VIO = 3.6 V; VCC = 3.3 V  
3.3  
-0.3  
0.8  
5.3  
1.6  
3.6  
3.6  
3.6  
V
V
Low-level input voltage for HV_DDC_SCL  
and HV_DDC_SDA  
High-level input voltage for LV_DDC_SCL  
and LV_DDC_SDA for 1.2-V LVCMOS  
V
High-level input voltage for LV_DDC_SCL  
and LV_DDC_SDA for 1.8-V LVCMOS  
1.15  
2.1  
V
High-level input voltage for LV_DDC_SCL  
and LV_DDC_SDA for 3.3-V LVCMOS  
V
Low-level input voltage for LV_DDC_SCL  
and LV_DDC_SDA for 1.2-V LVCMOS  
0.082 *  
VIO  
-0.3  
-0.3  
-0.3  
-5  
V
Low-level input voltage for LV_DDC_SCL  
and LV_DDC_SDA for 1.8-V LVCMOS  
0.10 *  
VIO  
V
Low-level input voltage for LV_DDC_SCL  
and LV_DDC_SDA for 3.3-V LVCMOS  
0.10 *  
VIO  
V
Failsafe Input leakage for HV_DDC_SCL  
and HV_DDC_SDA  
VIN = 5.3 V through 1.5 k; VCC = 0 V;  
VIO = 0 V;  
5
5
µA  
µA  
µA  
mA  
V
Input leakage for HV_DDC_SCL and  
HV_DDC_SDA  
HV VIN = 5.3 V; LV VIN = VIO;  
HV VIN = 5.3 V; LV VIN = VIO;  
-5  
Input leakage for LV_DDC_SCL and  
LV_DDC_SDA  
ILV_IL  
-5.5  
3.5  
5.5  
VHV_OL = 0.4 V; HDMI5V= 5.3 V; Pullup  
with 1.4 k; VCC = 3.0 V;  
IHV_OL  
VHV_OL  
Low-level output current  
Low-level output voltage for  
HV_DDC_SCL and HV_DDC_SDA  
HDMI5V= 5.3 V; Pullup with 1.4 k; VCC  
= 3.0 V;  
0.4  
0.3  
Low-level output voltage for  
LV_DDC_SCL and LV_DDC_SDA for 1.2- VCC = 3.0 V; VIO = 1.26 V  
V LVCMOS  
VLV_OL  
0.2  
V
Copyright © 2022 Texas Instruments Incorporated  
8
Submit Document Feedback  
Product Folder Links: TDP1204  
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Low-level output voltage for  
VLV_OL  
LV_DDC_SCL and LV_DDC_SDA for 1.8- VCC = 3.0 V; VIO = 1.9 V  
V LVCMOS  
0.3  
0.4  
V
Low-level output voltage for  
VLV_OL  
LV_DDC_SCL and LV_DDC_SDA for 3.3- VCC = 3.0 V; VIO = 3.6 V  
V LVCMOS  
0.6  
0.75  
V
Δ
VLV_HYST Hysteresis on LV side for 3.3 V LVCMOS VIO = 3.3 V; VCC = 3.3 V  
50  
mV  
_3p3V  
RPULV  
RPUHV  
Internal pull-up resistor to VIO  
7450  
1500  
10000  
1800  
13000  
2000  
External pull-up resistor to HDMI 5 V  
Capacitance for HV_DDC_SCL and  
HV_DDC_SDA  
CIOHV  
CIOLV  
12  
pF  
Capacitance for LV_DDC_SCL and  
LV_DDC_SDA  
7
5.3  
pF  
V
VHDMI5V HDMI 5V  
4.8  
Bus capacitance for HV_DDC_SCL and  
HV_DDC_SDA  
CHV_BUS  
750  
pF  
Bus capacitance for LV_DDC_SCL and  
LV_DDC_SDA  
CLV_BUS  
50  
pF  
HPD_IN  
VIL-HPDIN Low-level input voltage for HPD_IN  
VIH-HPDIN High-level input voltage for HPD_IN  
VCC = 3.6 V;  
VCC = 3.6 V  
-0.3  
2.0  
0.8  
5.5  
V
V
Device powered; VIH = 5.5 V; Includes  
internal pull-down resistor  
IH-HPDIN High-level input current for HPD_IN  
-50  
-1  
50  
1
µA  
µA  
kΩ  
µA  
Device powered; VIL = 0 V; Includes  
internal pull-down resistor  
IL-HPDIN  
Low-level input current for HPD_IN  
RPD-  
Internal Pull-down resistance on HPD_IN VCC = 3.3 V; HPD_IN = 5.5 V  
110  
-50  
150  
210  
50  
HPDIN  
ILEAK-  
Fail-safe condition leakage current for  
VCC = 0 V; HPD_IN = 5.5 V;  
HPD_IN  
HPDIN  
HPD_OUT  
High level output voltage when configured  
VCC = 3.0 V;  
VOH_3p3V  
2.4  
1.3  
3.465  
1.95  
0.4  
V
V
for 3.3 V LVCMOS push/pull.  
High level output voltage when configured  
VCC = 3.0 V;  
VOH_1p8V  
for 1.8 V LVCMOS push/pull.  
Low level output voltage when configured  
VCC = 3.0 V;  
VOL_PP  
-0.3  
-0.3  
V
for push/pull.  
Low level output voltage when configured  
VCC = 3.0 V; 0.5 kto 3.6 V load;  
for open drain.  
VOL_OD  
IOH_3p3V  
IOL_3p3V  
IOH_1p8V  
IOL_1p8V  
0.4  
V
High level output current for 3.3-V  
LVCMOS  
HPD_IN = VIH-HPDIN  
HPD_IN = VIL-HPDIN; I2C mode;  
HPD_IN = VIH-HPDIN  
HPD_IN = VIL-HPDIN; I2C mode;  
;
-4  
mA  
mA  
mA  
mA  
Low level output current for 3.3-V  
LVCMOS  
4
High level output current for 1.8-V  
LVCMOS  
;
-1.1  
Low level output current for 1.8-V  
LVCMOS  
1.2  
4-LEVEL CONTROL (MODE, LINEAR_EN, EQ1, ADDR/EQ0, TXSLEW, TXPRE, TXSWG)  
VTH  
VTH  
Threshold "0" / "R"  
Threshold "R" / "F"  
VCC = 3.3 V  
VCC = 3.3 V  
0.55  
1.65  
V
V
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
9
Product Folder Links: TDP1204  
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
VTH  
IIH  
Threshold "F" / "1"  
VCC = 3.3 V  
2.7  
High-level input current  
Low-level input current  
Internal pullup resistance  
Internal pull-down resistance  
VIH = 3.6 V; VCC = 3.6 V;  
VIL = 0 V; VCC = 3.6 V;  
20  
60  
µA  
IIL  
-40  
µA  
100  
R4PU  
R4PD  
48  
98  
kΩ  
kΩ  
HDMI HIGH SPEED INPUTS  
DR_RX_DA  
Data lanes data rate  
0.25  
0.25  
12 Gbps  
12 Gbps  
TA  
DR_RX_CL  
Clock lane data rate  
K
VID(DC)  
DC differential input swing  
At pins; LINEAR_EN = L;  
At pins;  
400  
75  
1200 mVpp  
mVpp  
VID(EYE) Differential input swing eye opening  
VRX_ASSE  
Signal detect assert level.  
PRBS7 pattern; 12 Gbps;  
180  
mVpp  
mVpp  
RT  
VRX_DEAS  
Signal detect deassert level.  
PRBS7 pattern; 12 Gbps;  
At pins;  
110  
3.3  
SERT  
VICM-DC Input DC common mode voltage bias  
2.5  
VCC  
V
At 6 GHz; 12 Gbps CTLE; EQ15; DC  
Gain = 0 dB; Limited Mode; At output of  
RX;  
EEQ_12Gb  
Maximum Fixed EQ gain (AC - DC)  
12  
1.0  
dB  
s_MAX_LT  
EEQ_12Gb  
At 6 GHz; 12 Gbps CTLE; EQ0; DC Gain  
= 0 dB; Limited Mode; At output of RX;  
Minimum Fixed EQ gain (AC - DC)  
dB  
dB  
ps_MIN_LT  
EEQ_12Gb  
Maximum Fixed EQ Gain when EQ is  
bypassed. (AC - DC)  
At 6 GHz; 12 Gbps CTLE; DC Gain = 0  
dB; Limited Mode; At output of RX;  
-1.5  
ps_BYPASS  
_LT  
EEQ_6Gbs  
At 3 GHz; 6 Gbps CTLE; EQ15; DC Gain  
= 0 dB; Limited Mode; At output of RX;  
Maximum Fixed EQ gain (AC - DC)  
12.0  
0.6  
dB  
dB  
_MAX_LT  
EEQ_6Gbp  
At 3 GHz; 6 Gbps CTLE; EQ0; DC Gain =  
0 dB; Limited Mode; At output of RX;  
Minimum Fixed EQ gain (AC - DC)  
s_MIN_LT  
At 1.5 GHz; 3 Gbps CTLE; EQ15; DC  
Gain = 0 dB; Limited Mode; At output of  
RX;  
EEQ_3Gbs  
Maximum Fixed EQ gain (AC - DC)  
12  
dB  
_MAX_LT  
EEQ_3Gbp  
At 1.5 GHz; 3 Gbps CTLE; EQ0; DC Gain  
= 0 dB; Limited Mode; At output of RX;  
Minimum Fixed EQ gain (AC - DC)  
0.8  
100  
100  
dB  
Ω
Ω
s_MIN_LT  
Input differential impedance when  
termination is enabled  
RINT  
90  
85  
110  
115  
At TTP2; HPD_IN = H; 0TA 70℃  
Input differential impedance when  
termination is enabled  
At TTP2; HPD_IN = H; 20TA ≤  
85℃  
RINT  
HDMI HIGH SPEED OUTPUTS (Limited Mode)  
DR = 270 Mbps; HPD_IN = H; AC_EN =  
L (DC-coupled); TXSWG = "F" (1000  
mV); TXPRE = "F" (0dB); TX termination  
open; VCC_EXT = 3.3 V; 25TA ≤  
85;  
Single-ended low-level output voltage for  
VOL_open  
2.7  
2.6  
2.9  
2.9  
V
V
DR 1.65 Gbps data rate  
DR = 3.4 Gbps; HPD_IN = H; AC_EN = L  
(DC-coupled); TXSWG = "F" (1000 mV);  
TXPRE = "F" (0 dB); TX termination 300-  
ohms; VCC_EXT = 3.3 V; 25TA ≤  
85;  
Single-ended low-level output voltage  
VOL_300  
1.65 Gbps < DR 3.4 Gbps.  
Copyright © 2022 Texas Instruments Incorporated  
10  
Submit Document Feedback  
Product Folder Links: TDP1204  
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
DR = 5.94 Gbps; HPD_IN = H; AC_EN =  
L (DC-coupled); TXSWG = "F" (1000  
mV); TXPRE = "F" (0 dB); VCC_EXT =  
3.3 V; 25TA 85;  
Data lane single-ended low-level output  
voltage 3.4 Gbps < DR 6 Gbps.  
VOL_DAT2  
2.3  
2.9  
V
0
DR = 1.5 Gbps; HPD_IN = H; AC_EN = L  
(DC-coupled); TXSWG = "F" (1000 mV);  
TXPRE = "F" (0 dB); VCC_EXT = 3.3  
V; 25TA 85;  
VSWING_D Single-ended output voltage swing on  
400  
400  
400  
400  
300  
500  
500  
500  
500  
400  
600  
600  
600  
600  
600  
mV  
mV  
mV  
mV  
mV  
data lanes with TX term set to open.  
A_14  
DR = 3.4 Gbps;HPD_IN = H; AC_EN = L  
(DC-coupled); TXSWG = "F" (1000 mV);  
TXPRE = "F" (0 dB); VCC_EXT = 3.3  
V; 25TA 85;  
VSWING_D Single-ended output voltage swing on  
data lanes with TX term set to 300-ohms.  
A_14  
DR = 5.94 Gbps;HPD_IN = H; AC_EN = L  
(DC-coupled); TXSWG = "F" (1000 mV);  
TXPRE = "F" (0 dB); VCC_EXT = 3.3  
V; 25TA 85;  
VSWING_D Single-ended output voltage swing on  
data lanes for HDMI2.0 operation.  
A_20  
HPD_IN = H; AC_EN = L (DC-coupled);  
TXSWG = "F" (1000 mV); TXPRE = "F" (0  
dB); VCC_EXT = 3.3 V; 25TA ≤  
85; TERM set to open;  
VSWING_C  
Single-ended output voltage swing on  
clock lane for DR 3.4 Gbps datarate  
LK_14_OPE  
N
HPD_IN = H; AC_EN = L (DC-coupled);  
TXSWG = "F" (1000 mV); TXPRE = "F" (0  
dB); VCC_EXT = 3.3 V; 25TA ≤  
85;  
VSWING_C Single-ended output voltage swing on  
clock lane for HDMI 2.0  
LK_20  
At TTP4; AC_EN = L or H; LTP5, 6, 7 or  
8; TXFFE0; 25TA 85;  
VOCM-DC- FRL DC common mode voltage when  
2.335  
2.335  
3.495  
3.495  
V
V
actively transmitting  
ON  
At TTP4; FRL 3 lane mode; AC_EN = L  
or H; 25TA 85;  
VOCM-DC- FRL DC common mode voltage when  
lane 3 is disabled  
OFF  
At TTP4; 2.97 Gbps; HPD_IN = H;  
AC_EN = L or H; TXSWG = "F" (1000  
mV); TXPRE = "F" (0 dB); 25TA ≤  
85;  
VOD_3G  
Data lanes Differential output swing  
Data lanes Differential output swing  
400  
1560  
mV  
At TTP4_EQ; 5.94 Gbps; HPD_IN = H;  
AC_EN = L or H; TXSWG = "F" (1000  
mV); TXPRE = "F" (0 dB); 25TA ≤  
85;  
VOD_6G  
150  
100  
1560  
1560  
mV  
mV  
At TTP4_EQ; 12 Gbps; HPD_IN = H;  
AC_EN = L or H; TXSWG = "F" (1000  
mV); TXFFE0; 25TA 85;  
VOD_12G_ Data lanes Differential output swing at 12  
G FRL.  
FRL  
VCC = 0 V; DC-coupled; TMDS output  
pulled to 3.465 V with 50 resistors  
ILEAK  
IOS  
Failsafe condition leakage current  
Short circuit current limit  
35  
70  
µA  
OUT_CLK, OUT_D[2:0] outputs P or N  
shorted to GND  
mA  
TERM = 1h; AC_EN = L (DC-  
coupled);HPD_IN=H; Active state; 20℃  
TA 85;  
Internal termination for DR 3.4 Gbps  
when DC-coupled  
RTERM14  
RTERM14  
RTERM2+  
RTERM2+  
235  
235  
85  
295  
295  
100  
100  
375  
375  
115  
115  
Ω
Ω
Ω
Ω
TERM = 1h; AC_EN = H (AC-  
coupled); HPD_IN=H; Active state; –  
20TA 85;  
Internal termination for DR 3.4 Gbps  
when AC-coupled  
TERM = 3h; AC_EN = L (DC-coupled);  
HPD_IN=H; Active state; 20TA ≤  
85;  
Internal termination for DR > 3.4 Gbps  
when DC-coupled.  
TERM = 3h; AC_EN = H (AC-  
coupled); HPD_IN=H; Active state; –  
20TA 85;  
Internal termination for DR > 3.4 Gbps  
when AC-coupled.  
85  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
11  
Product Folder Links: TDP1204  
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
TERM = 3h; HPD_IN = H; TX_AC_EN =  
0; CLK_TXFFE = 0h; CLK_VOD = 3h;  
VTXPRE0- Transmitter FFE pre-emphasis ratio for 0 D0_TXFFE = 0h; D0_VOD = 3h;  
0
dB  
dB.  
D1_TXFFE = 0h; D1_VOD = 3h;  
RATIO  
D2_TXFFE = 0h; D2_VOD = 3h; 20 * log  
(Vp/Vn); 128 zeros followed by 128 ones;  
At 5.94 Gbps HDMI 2.0; TERM = 3h;  
HPD_IN = H; TX_AC_EN = 0;  
CLK_TXFFE = 0h; CLK_VOD = 3h;  
D0_TXFFE = 1h; D0_VOD = 3h;  
D1_TXFFE = 1h; D1_VOD = 3h;  
D2_TXFFE = 1h; D2_VOD = 3h; 20 * log  
(Vp/Vn); 128 zeros followed by 128 ones;  
VTXPRE1- Transmitter FFE pre-emphasis ratio for  
4.0  
6.5  
dB  
dB  
dB  
dB  
dB  
dB  
3.5 dB for data lanes  
RATIO  
At 5.94 Gbps HDMI 2.0; TERM = 3h;  
HPD_IN = H; TX_AC_EN = 0;  
CLK_TXFFE = 0h; CLK_VOD = 3h;  
D0_TXFFE = 2h; D0_VOD = 3h;  
D1_TXFFE = 2h; D1_VOD = 3h;  
D2_TXFFE = 2h; D2_VOD = 3h; 20 * log  
(Vp/Vn); 128 zeros followed by 128 ones;  
VTXPRE2- Transmitter FFE pre-emphasis ratio for 6  
dB for data lanes  
RATIO  
At 12 Gbps FRL; TERM = 3h; HPD_IN =  
H; TX_AC_EN = 0; CLK_TXFFE = 4h;  
CLK_VOD = 3h; D0_TXFFE = 4h;  
D0_VOD = 3h; D1_TXFFE = 4h; D1_VOD  
= 3h; D2_TXFFE = 4h; D2_VOD = 3h; 20  
* log (Vp/Vn); 128 zeros followed by 128  
ones;  
VTXFFE0- Transmitter FRL TXFFE0 de-emphasis  
-2.5  
-3.2  
-3.5  
-4.5  
ratio  
RATIO  
At 12 Gbps FRL; TERM = 3h; HPD_IN =  
H; TX_AC_EN = 0; CLK_TXFFE = 5h;  
CLK_VOD = 3h; D0_TXFFE = 5h;  
D0_VOD = 3h; D1_TXFFE = 5h; D1_VOD  
= 3h; D2_TXFFE = 5h; D2_VOD = 3h; 20  
* log (Vp/Vn); 128 zeros followed by 128  
ones;  
VTXFFE1- Transmitter FRL TXFFE1 de-emphasis  
ratio  
RATIO  
At 12 Gbps FRL; TERM = 3h; HPD_IN =  
H; TX_AC_EN = 0; CLK_TXFFE = 6h;  
CLK_VOD = 3h; D0_TXFFE = 6h;  
D0_VOD = 3h; D1_TXFFE = 6h; D1_VOD  
= 3h; D2_TXFFE = 6h; D2_VOD = 3h; 20  
* log (Vp/Vn); 128 zeros followed by 128  
ones;  
VTXFFE2- Transmitter FRL TXFFE2 de-emphasis  
ratio.  
RATIO  
At 12 Gbps FRL; TERM = 3h; HPD_IN =  
H; TX_AC_EN = 0; CLK_TXFFE = 7h;  
CLK_VOD = 3h; D0_TXFFE = 7h;  
D0_VOD = 3h; D1_TXFFE = 7h; D1_VOD  
= 3h; D2_TXFFE = 7h; D2_VOD = 3h; 20  
* log (Vp/Vn); 128 zeros followed by 128  
ones;  
VTXFFE3- Transmitter FRL TXFFE3 de-emphasis  
ratio  
RATIO  
HDMI HIGH SPEED OUTPUTS (Linear Mode)  
At 10 MHz; 200 mVpp < VID < 1200  
mVpp; EQ0; DCGAIN = 0 dB; 12Gbps  
CTLE; CTLEBYP_EN = 0; BERT TX 100  
MHz clock starting at 200 mV to 1200  
mV in 50 mV steps;TX DC coupled to  
VCC_EXT;  
CPLF-  
Low-frequency 1-dB compression point  
Dx_VOD = 0.  
900  
750  
mVpp  
mVpp  
TXSWG-0  
At 6 GHz; 200 mVpp < VID < 1200 mVpp;  
EQ0; DCGAIN = 0 dB; 12 Gbps CTLE;  
CTLEBYP_EN = 0; TX DC coupled to  
VCC_EXT;  
CPHF-  
High-frequency 1-dB compression point  
Dx_VOD = 0.  
TXSWG-0  
Copyright © 2022 Texas Instruments Incorporated  
12  
Submit Document Feedback  
Product Folder Links: TDP1204  
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
6.5 Electrical Characteristics (continued)  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
At 10 MHz; 200 mVpp < VID < 1200  
mVpp; EQ0; DCGAIN = 0 dB; 12 Gbps  
CTLE; CTLEBYP_EN = 0; BERT TX 100  
MHz clock starting at 200 mV to 1200  
mV in 50 mV steps; TX DC coupled to  
VCC_EXT;  
CPLF-  
Low-frequency 1-dB compression point  
Dx_VOD = 1.  
1000  
mVpp  
TXSWG-R  
At 6 GHz; 200 mVpp < VID < 1200 mVpp;  
EQ0; DCGAIN = 0 dB; 12Gbps CTLE;  
CTLEBYP_EN = 0;TX DC coupled to  
VCC_EXT;  
CPHF-  
High-frequency 1-dB compression point  
Dx_VOD = 1.  
800  
1100  
875  
mVpp  
mVpp  
mVpp  
mVpp  
mVpp  
TXSWG-R  
At 10 MHz; 200 mVpp < VID < 1200  
mVpp; EQ0; DCGAIN = 0 dB; 12 Gbps  
CTLE; CTLEBYP_EN = 0; BERT TX 100  
MHz clock starting at 200 mV to 1200  
mV in 50 mV steps; TX DC coupled to  
VCC_EXT;  
CPLF-  
Low-frequency 1-dB compression point  
Dx_VOD = 2.  
TXSWG-F  
At 6 GHz; 200 mVpp < VID < 1200 mVpp;  
EQ0; DCGAIN = 0 dB; 12 Gbps CTLE;  
CTLEBYP_EN = 0; TX DC coupled to  
VCC_EXT;  
CPHF-  
High-frequency 1-dB compression point  
Dx_VOD = 2.  
TXSWG-F  
At 10 MHz; 200 mVpp < VID < 1200  
mVpp; EQ0; DCGAIN = 0 dB; 12 Gbps  
CTLE; CTLEBYP_EN = 0; BERT TX 100  
MHz clock starting at 200 mV to 1200  
mV in 50 mV steps; TX DC coupled to  
VCC_EXT;  
CPLF-  
Low-frequency 1-dB compression point  
Dx_VOD = 3.  
1200  
950  
TXSWG-1  
At 6 GHz; 200 mVpp < VID < 1200 mVpp;  
EQ0; DCGAIN = 0 dB; 12 Gbps CTLE;  
CTLEBYP_EN = 0; TX DC coupled to  
VCC_EXT;  
CPHF-  
High-frequency 1-dB compression point  
Dx_VOD = 3.  
TXSWG-1  
6.6 Timing Requirements  
MIN  
NOM  
MAX  
UNIT  
Local I2C (SCL/CFG0, SDA/CFG1). Refer to 7-9.  
fSCL  
tBUF  
I2C clock frequency  
1
MHz  
µs  
Bus free time between START and STOP conditions  
0.5  
Hold time after repeated START condition. After this period, the first clock  
pulse is generated  
tHD_STA  
0.26  
µs  
tLOW  
Low period of the I2C clock  
High period of the I2C clock  
Setup time for a repeated START condition  
Data hold time  
0.5  
0.26  
0.26  
0
µs  
µs  
tHIGH  
tSU_STA  
tHD_DAT  
tSU_DAT  
tR  
µs  
μs  
ns  
Data setup time  
50  
Rise time of both SDA and SCL signals  
Fall time of both SDA and SCL signals  
Setup time for STOP condition  
120  
120  
ns  
tF  
4
ns  
tSU_STO  
0.26  
μs  
DDC Snoop I2C Timings. Refer to 7-9.  
fSCL  
tBUF  
I2C DDC clock frequency  
100  
kHz  
µs  
Bus free time between START and STOP conditions  
4.7  
4
Hold time after repeated START condition. After this period, the first clock  
pulse is generated  
tHD_STA  
tLOW  
µs  
µs  
Low period of the I2C clock  
4.7  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
13  
Product Folder Links: TDP1204  
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
6.6 Timing Requirements (continued)  
MIN  
4
NOM  
MAX  
UNIT  
µs  
tHIGH  
tSU_STA  
tHD_DAT  
tSUDAT  
tR  
High period of the I2C clock  
Setup time for a repeated START condition  
Data hold time  
4.7  
0
µs  
μs  
ns  
Data setup time  
250  
Rise time of both SDA and SCL signals. Measured from 30% to 70%.  
Fall time of both SDA and SCL signals Measured from 70% to 30%.  
Setup time for STOP condition  
1000  
300  
ns  
tF  
ns  
tSU_STO  
Cb_LV  
4
μs  
pF  
Capacitive load for each bus line on LV side  
50  
Power-On. Refer to 7-1.  
tVCC_RAMP VCC supply ramp. Measured from 10% to 90%.  
0.10  
50  
5
ms  
ms  
µs  
µs  
µs  
tD_PG  
Internal POR de-assertion delay  
tVIO_SU  
tCFG_SU  
tCFG_HD  
VIO supply stable before reset(2) high.  
Configuration pins(1) setup before reset(2) high.  
Configuration pins(1) hold after reset(2)high.  
100  
0
500  
(1) Follow comprise the configuration pins: MODE, ADDR/EQ0, EQ1, TXSWG, TXSLEW, TXPRE, AC_EN, HPDOUT_SEL, DCGAIN  
(2) Reset is the logical AND of internal POR and EN pin.  
6.7 Switching Characteristics  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Redriver  
Maximum HDMI 1.4 clock frequency at  
which TX termination is assured to be  
open  
HDMI1.4; 25 MHz IN_CLK 340  
MHz; TXTERM_AUTO_HDMI14 = 0h;  
TERM = 2h; TX is DC-coupled;  
fHDMI14_o  
165  
MHz  
pen  
Minimum HDMI 1.4 clock frequency at  
which TX termination is assured to be  
300-ohms  
HDMI1.4; 25 MHz IN_CLK 340  
MHz; TXTERM_AUTO_HDMI14 = 0h;  
TERM = 2h; TX is DC-coupled;  
fHDMI14_3  
250  
0.7  
MHz  
ms  
00  
tAEQ_DON Time from start of FRL link training to  
AEQ complete for 3 Gbps.  
E
Time from start of FRL link training to  
tAEQ_DON  
AEQ complete for 6 Gbps, 8 Gbps, 10  
0.5  
220  
ms  
ps  
UI  
E
Gbps, and 12 Gbps  
tPD  
Propagation delay time  
At TTP4;  
90  
At TTP4; With 0.15 UI skew at input; At  
12 Gbps; LTP5, 6, 7, or 8; TXFFE0; TX  
termination 100-; Linear mode;  
Data lane Intra-pair output skew with  
worse case skew at inputs  
tSK1(T)  
0.15  
At TTP4; No intra-pair skew at input; 6  
Gbps with 150 MHz clock; TX termination  
100-; Limited mode;  
Clock lane Intra-pair output skew with  
zero intra-pair skew at inputs  
tSK1(T)  
0.10  
0.15  
0.11  
UI  
UI  
At TTP4; No intra-pair skew at input; At  
12 Gbps; LTP5, 6, 7, or 8; TXFFE0; TX  
termination 100-; Limited mode;  
Data lane Intra-pair output skew with zero  
intra-pair skew at inputs  
tSK1(T)  
0.053  
At TTP4; At 12 Gbps; LTP5, 6, 7, or 8;  
TXFFE0;  
tSK2(T)  
Inter-pair output skew  
30  
600  
600  
ps  
ps  
ps  
Transition time (rise and fall time) for  
clock lane when operating at HDMI1.4  
At TTP4; 20% to 80%; Clock Frequency =  
300 MHz;  
tRF-CLK-14  
75  
75  
Transition time (rise and fall time) for  
clock lane when operating at HDMI 2.0  
At TTP4; 20% to 80%; Clock Frequency =  
150 MHz;  
tRF-CLK-20  
Copyright © 2022 Texas Instruments Incorporated  
14  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
6.7 Switching Characteristics (continued)  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
At TTP4; 20% to 80%; DR = 3 Gbps;  
SLEW_HDMI14 = default; PRBS7  
pattern; Clock Frequency = 300 MHz;  
Transition time (rise and fall time) for data  
lanes when operating at HDMI 1.4  
tRF_14  
75  
195  
ps  
At TTP4; 20% to 80%; DR = 6 Gbps;  
SLEW_HDMI20 = default; PRBS7  
pattern; Clock Frequency = 150 MHz;  
Transition time (rise and fall time) for data  
lanes when operating at HDMI 2.0  
tRFDAT_20  
42.5  
115  
ps  
At TTP4; Slope at 50% level; All FRL DR  
up to 12 Gbps; SLEW_HDMI21 = Default;  
clock pattern of 128 zeros and 128 ones;  
Single-ended TX slew rate for data lanes  
when operating at HDMI 2.1 FRL  
tSLEW_FRL  
16 mV/ps  
Transistion bit duration when de-  
emphasis/pre-emphasis is enabled  
At TTP4; DR = 3 Gbps; Clock pattern of  
128 zeros followed by 128 ones;  
tTRANS_3G  
tTRANS_6G  
tTRANS_8G  
0.4  
0.4  
0.4  
0.5  
0.6  
1
1
UI  
UI  
UI  
UI  
UI  
Transistion bit duration when de-  
emphasis/pre-emphasis is enabled  
At TTP4; DR = 6 Gbps; Clock pattern of  
128 zeros followed by 128 ones;  
Transistion bit duration when de-  
emphasis/pre-emphasis is enabled  
At TTP4; DR = 8 Gbps; Clock pattern of  
128 zeros followed by 128 ones;  
1
tTRANS_10 Transistion bit duration when de-  
At TTP4; DR = 10 Gbps; Clock pattern of  
128 zeros followed by 128 ones;  
1.1  
1.3  
emphasis/pre-emphasis is enabled  
G
tTRANS_12 Transistion bit duration when de-  
At TTP4; DR = 12 Gbps; Clock pattern of  
128 zeros followed by 128 ones;  
emphasis/pre-emphasis is enabled  
G
HPD  
tHPD_PD HPD_IN to HPD_OUT propagation delay  
100  
4
µs  
Refer to 7-7  
Refer to 7-7  
HPD_IN debounce time before declaring  
tHPD_PWR  
Powerdown. Enter Powerdown if  
HPD_IN is low after debounce time.  
2
2
ms  
DOWN  
HPD_IN debounce time required for  
tHPD_STAN exiting Powerdown to Standby. Exit  
4
ms  
Refer to 7-8  
Powerdown if HPD_IN is high after  
DBY  
debounce time.  
Standby  
tSTANDBY_ Detection of electrical idle to entry into  
HPD_IN = H;  
HPD_IN = H;  
300  
25  
µs  
µs  
Standby.  
ENTRY  
Maximum differential signal glitch time  
tSIGDET_D  
rejected during debounce before  
transitioning from standby to active  
B
Maximum differential signal glitch time  
tSIGDET_D  
rejected during debounce before  
HPD_IN = H;  
50  
ns  
µs  
B
transitioning from active to standby  
tSTANDBY_ Detection of differential signal to exit from HPD_IN = H; Does not include AEQ time  
200  
Standby to Active state  
if AEQ_TX_DELAY_EN = 1;  
EXIT  
DDC Buffer  
fSCL  
DDC buffer frequency  
100  
kHz  
ns  
Propagation delay time. Low-to-high-level LV to HV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 1.2 V LVCMOS levels. DDC_LV_DCC_EN = 1'b1;  
1400  
Propagation delay time. Low-to-high-level LV to HV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 1.8 V LVCMOS levels. DDC_LV_DCC_EN = 1'b1;  
tPLH1  
1400  
1400  
410  
ns  
ns  
ns  
ns  
ns  
Propagation delay time. Low-to-high-level LV to HV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 3.3 V LVCMOS levels. DDC_LV_DCC_EN = 1'b1;  
Propagation delay time. Low-to-high-level HV to LV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 1.2 V LVCMOS levels. DDC_LV_DCC_EN = 1'b1;  
Propagation delay time. Low-to-high-level HV to LV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 1.8 V LVCMOS levels. DDC_LV_DCC_EN = 1'b1;  
tPLH2  
410  
Propagation delay time. Low-to-high-level HV to LV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 3.3 V LVCMOS levels. DDC_LV_DCC_EN = 1'b1;  
410  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
15  
Product Folder Links: TDP1204  
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
6.7 Switching Characteristics (continued)  
over recommended voltage and operating free-air temperature range (unless otherwise noted)  
PARAMETER  
Propagation delay time. High to low-level LV to HV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 1.2 V LVCMOS. DDC_LV_DCC_EN = 1'b1;  
Propagation delay time. High to low-level LV to HV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 1.8 V LVCMOS. DDC_LV_DCC_EN = 1'b1;  
Propagation delay time. High to low-level LV to HV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 3.3 V LVCMOS. DDC_LV_DCC_EN = 1'b1;  
Propagation delay time. High to low-level HV to LV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 1.2 V LVCMOS. DDC_LV_DCC_EN = 1'b1;  
Propagation delay time. High to low-level HV to LV; CLV_BUS = CHV_BUS = 50 pF;  
output. VIO set to 1.8 V LVCMOS. DDC_LV_DCC_EN = 1'b1;  
Propagation delay time. High to low-level HV to LV; CLV_BUS = CHV_BUS = 50 pF;  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
1200  
1200  
1200  
535  
ns  
tPHL1  
ns  
ns  
ns  
ns  
ns  
tPHL2  
535  
535  
output. VIO set to 3.3 V LVCMOS.  
DDC_LV_DCC_EN = 1'b1;  
LV side fall time for 1.2-V LVCMOS  
70% to 30%; CLV_BUS = CHV_BUS = 50 pF;  
70% to 30%; CLV_BUS = CHV_BUS = 50 pF;  
70% to 30%; CLV_BUS = CHV_BUS = 50 pF;  
70% to 30%; CLV_BUS = CHV_BUS = 50 pF;  
30% to 70%; CLV_BUS = CHV_BUS = 50 pF;  
75  
75  
75  
75  
260  
260  
260  
260  
ns  
ns  
ns  
ns  
tLV_FALL LV side fall time for 1.8-V LVCMOS  
LV side fall time for 3.3-V LVCMOS  
tHV_FALL HV side fall time  
LV side rise time for 1.2-V LVCMOS  
tLV_RISE LV side rise time for 1.8-V LVCMOS  
LV side rise time for 3.3-V LVCMOS  
300  
300  
300  
670  
670  
670  
ns  
ns  
ns  
Pulled up to VIO using RPULV  
30% to 70%; CLV_BUS = CHV_BUS = 50 pF;  
Pulled up to VIO using RPULV  
30% to 70%; CLV_BUS = CHV_BUS = 50 pF;  
Pulled up to VIO using RPULV  
;
;
;
30% to 70%; CLV_BUS = CHV_BUS = 50 pF;  
VCC = 3.0 V; HDMI5V = 5.3V; Pulled up  
tHV_RISE_  
HV side rise time (50 pF load)  
225  
ns  
ns  
50pF  
to HDMI5V using RPUHV  
;
30% to 70%; CLV_BUS = 50 pF; CHV_BUS  
750 pF; VCC = 3.0 V; HDMI5V = 5.3 V;  
=
tHV_RISE_  
HV side rise time (750 pF load)  
1250  
750pF  
Pulled up to HDMI5V using RPUHV  
;
Copyright © 2022 Texas Instruments Incorporated  
16  
Submit Document Feedback  
Product Folder Links: TDP1204  
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
6.8 Typical Characteristics  
6-1. 3 Gbps CTLE EQ Curves with  
6-2. 6 Gbps CTLE EQ Curves with  
GLOBAL_DCG = 0x2 in Limited Mode  
GLOBAL_DCG = 0x2 in Limited Mode  
6-4. Input Differential Return Loss (SDD11)  
6-3. 12 Gbps CTLE EQ Curves with  
GLOBAL_DCG =0x2 in Limited Mode  
6-5. Output Differential Return Loss (SDD22)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
17  
Product Folder Links: TDP1204  
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
7 Parameter Measurement Information  
VIO(min)  
VIO  
tVIO_SU  
2.8 V  
tD_PG  
VCC  
Internal POR  
tCFG_SU  
Reset  
(POR && EN pin)  
VIH  
EN pin  
tCFG_HD  
CFG pins  
7-1. Power-On Timing Requirements  
VCC  
3.3 V  
50  
50  
50  
50  
0.5 pF  
D+  
D-  
Y
Z
Receiver  
Driver  
VID  
VD+  
VY  
VID = VD+ - VD-  
VOD = VY - VZ  
VD-  
VZ  
VICM = (VD+ + VD-)  
2
VOCM = (VY + VZ)  
2
7-2. TMDS Main Link Test Circuit  
Copyright © 2022 Texas Instruments Incorporated  
18  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
4.0 V  
2.6 V  
Vcc  
VID+  
VID  
VID(pp)  
0 V  
VID-  
tPHL  
tPLH  
80%  
80%  
VOD(pp)  
VOD  
0 V  
20%  
20%  
tr  
tf  
7-3. Input or Output Timing Measurements  
VOD(SS)  
PRE = L  
7-4. Output Differential Waveform  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
19  
Product Folder Links: TDP1204  
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
TXPRE = —F“  
TXPRE = 0“ or —1“  
VOD(PP)  
VOD(SS)  
7-5. Output Differential Waveform with De-Emphasis  
Avcc(4)  
RT  
(5)  
RT  
SMA  
SMA  
SMA  
REF  
Cable  
EQ  
Coax  
Coax  
Coax  
Coax  
Data +  
RX  
+EQ  
OUT  
SMA  
Data -  
Parallel (6)  
BERT  
Jitter Test  
Instrument (2,3)  
FR4 PCB trace(1)  
AC coupling Caps  
&
Device  
FR4 PCB trace  
AVcc  
RT  
[No Pre-  
emphasis]  
RT  
REF  
Cable  
EQ  
SMA  
SMA  
SMA  
SMA  
Coax  
Coax  
Coax  
Coax  
Clk+  
Clk-  
RX  
+EQ  
OUT  
Jitter Test  
Instrument (2,3)  
TTP4_EQ  
Copyright © 2016, Texas Instruments Incorporated  
TTP4  
TTP1  
TTP2  
TTP3  
TTP2_EQ  
(1) The FR4 trace between TTP1 and TTP2 is designed to emulate 1-12of FR4, AC-coupling cap, connector and another 2of FR4.  
Trace width 4 mils. 100 Ωdifferential impedance.  
(2) All Jitter is measured at a BER of 109. HDMI 2.1 jitter measured at BER 10-10  
.
(3) Residual jitter reflects the total jitter measured at TTP4 minus the jitter measured at TTP  
(4) AVCC = 3.3 V.  
(5) RT = 50 Ω.  
(6) For HDMI 1.4 or 2.0, the input signal from parallel Bert does not have any pre-emphasis or de-emphasis. For HDMI 2.1 FRL, the  
input signal from BERT will have 2.18 dB pre-shoot and -3.1 dB de-emphasis. Refer to Recommended Operating Conditions.  
7-6. HDMI Output Jitter Measurement  
Copyright © 2022 Texas Instruments Incorporated  
20  
Submit Document Feedback  
Product Folder Links: TDP1204  
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
HPD_IN  
VIL  
tHPD_PWRDOWN  
tHPD_PD  
HPD_OUT  
VOL  
Device Active or Standby  
Power Down  
7-7. HPD Logic Shutdown and Propagation Timing  
VIH  
HPD_IN  
tHPD_STANDBY  
tHPD_PD  
VOH  
HPD_OUT  
Standby  
Device In Power Down  
7-8. HPD Logic Standby and Propagation Timing  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
21  
Product Folder Links: TDP1204  
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
t
t
r
t
SU_DAT  
f
70 %  
70 %  
30 %  
SDA  
30 %  
cont.  
t
t
HD_DAT  
VD_DAT  
t
f
t
HIGH  
t
r
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
SCL  
cont.  
t
HD_STA  
t
LOW  
th  
9
clock  
1 / f  
S
SCL  
st  
1
clock cycle  
t
BUF  
SDA  
SCL  
t
VD_ACK  
t
t
t
t
SU_STO  
SU_STA  
HD_STA  
SP  
70 %  
30 %  
Sr  
P
S
th  
9
clock  
7-9. I2C SCL and SDA Timing  
LV_DDC_SCL/SDA  
INPUT  
0.7 VIO  
0.3 VIO  
tPLH1  
tPHL1  
HV_DDC_SCL/SDA  
OUTPUT  
0.7 HDMI5V  
0.3 HDMI5V  
tf  
tr  
7-10. DDC Propagation Delay Source to Sink  
Copyright © 2022 Texas Instruments Incorporated  
22  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
HV_DDC_SCL/SDA  
INPUT  
0.7 HDMI5V  
0.3 HDMI5V  
tPLH2  
tPHL2  
LV_DDC_SCL/SDA  
OUTPUT  
0.7 VIO  
0.3 VIO  
tf  
tr  
7-11. DDC Propagation Delay Sink to Source  
VID(DC)  
VID(EYE)  
7-12. VID(DC) and VID(EYE)  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
23  
Product Folder Links: TDP1204  
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8 Detailed Description  
8.1 Functional Block Diagram  
SigDet  
OUT_D2p  
OUT_D2n  
IN_D2p  
Driver  
Driver  
EQ  
IN_D2n  
OUT_D1p  
OUT_D1n  
IN_D1p  
EQ  
IN_D1n  
OUT_D0p  
IN_D0p  
Driver  
EQ  
OUT_D0n  
OUT_CLKp  
IN_D0n  
IN_CLKp  
Driver  
EQ  
OUT_CLKn  
IN_CLKn  
SigDet  
VIO  
SCL/CFG0  
SDA/CFG1  
ADDR/EQ0  
EN  
I2C  
Target  
CTLEMAP_SEL  
TXPRE  
TXSWG  
EQ1  
TEST1  
HPD_IN  
MODE  
AC_EN  
HPD_OUT  
DDC  
Snoop  
LINEAR_EN  
HPDOUT_SEL  
VIO  
RPULV  
DDC  
Buer  
HV_DDC_SDA  
HV_DDC_SCL  
LV_DDC_SDA  
LV_DDC_SCL  
Copyright © 2022 Texas Instruments Incorporated  
24  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8.2 Feature Description  
8.2.1 4-Level Inputs  
The TDP1204 has 4-level inputs pins that control the receiver equalization gain, transmitter voltage swing, and  
pre-emphasis, and place TDP1204 into different modes of operation. These 4-level inputs utilize a resistor  
divider to help set the 4 valid levels and provide a wider range of control settings. There are internal pull-up and  
a pull-down resistors. These resistors are combined with the external resistor connection to achieve the desired  
voltage level.  
8-1. 4-Level Control Pin Settings  
LEVEL  
SETTINGS  
0
R
F
1
Tie 1-k5% to GND.  
Tie 20-k5% to GND.  
Float (leave pin open)  
Tie 1-k5% to VCC  
.
备注  
7-1 shows how all 4-level inputs are latched after the rising edge of the EN pin. After these pins are  
sampled, the internal pull-up and pull-down resistors will be isolated to save power.  
8.2.2 I/O Voltage Level Selection  
The TDP1204 supports 1.2-V, 1.8-V, and 3.3-V LVCMOS levels. The VIO pin is used to select which voltage  
level is used for the following 2-level control pins: LV_DDC_SDA, LV_DDC_SCL, SCL/CFG0, and SDA/CFG1.  
The AC_EN pin threshold is fixed at 3.3-V LVCMOS levels. EN pin threshold is fixed at 1.2-V LVCMOS  
threshold.  
8-2. Selection of LVCMOS Signaling Level  
VIO pin  
LVCMOS Signaling Level  
VALUE < 1.5-V  
1.2-V  
1.8-V  
3.3-V  
1.5-V < VALUE < 2.5-V  
VALUE > 2.5-V  
8.2.3 HPD_OUT  
The TDP1204 will level shift 5-V signaling level present on HPD_IN pin to a lower voltage such as 1.8-V or 3.3-V  
levels on the HPD_OUT pin. The HPD_OUT supports both push-pull and open drain. The default operation is  
push-pull. Selection between push-pull and open drain is done through the HPDOUT_SEL register.  
8-2 lists how the VIO determines the output level of HPD_OUT when HPD_OUT is configured for push-pull  
operation. Please note push-pull operation is not supported for VIO less than 1.7-V.  
备注  
Open-drain operation is only supported when TDP1204 is configured for I2C mode.  
When EN pin is low, the HPD_OUT pin will be in a high impedance state. It is recommended to have a  
weak pull-down resistor (such as 220k) on HPD_OUT.  
8.2.4 Lane Control  
The TDP1204 has various lane control features. Pin strapping globally controls features like receiver  
equalization, VOD swing, slew rate, and pre-emphasis or de-emphasis. Through I2C receiver equalization,  
transmitter swing, and pre-emphasis for each lane can be independently controlled.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
25  
Product Folder Links: TDP1204  
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8.2.5 Swap  
8-1 shows how TDP1204 incorporates a swap function which can swap the lanes. The RX EQ, pre-emphasis,  
termination, and slew configurations will follow the new mapping. This function is supported in pin strap mode as  
well as when TDP1204 is configured for I2C mode. A register controls the swap function in I2C mode.  
8-3. Swap Functions  
Normal Operation  
CFG1 = H or LANE_SWAP Register is 1h  
CFG1 pin = L or LANE_SWAP Register is 0h  
IN_D2 OUT_D2  
IN_D1 OUT_D1  
IN_D0 OUT_D0  
IN_CLK OUT_CLK  
IN_CLK OUT_CLK  
IN_D0 OUT_D0  
IN_D1 OUT_D1  
IN_D2 OUT_D2  
IN_D2p  
IN_D2n  
IN_D2p  
OUT_D2p  
OUT_D2n  
OUT_D2p  
OUT_D2n  
DATA LANE2  
DATA LANE1  
DATA LANE0  
CLOCK LANE  
IN_D2n  
IN_D1p  
IN_D1n  
OUT_D1p  
OUT_D1n  
IN_D1p  
IN_D1n  
OUT_D1p  
OUT_D1n  
DATA LANE0  
DATA LANE1  
IN_D0p  
IN_D0n  
IN_D0p  
IN_D0n  
OUT_D0p  
OUT_D0n  
OUT_D0p  
OUT_D0n  
IN_CLKp  
IN_CLKn  
OUT_CLKp  
OUT_CLKn  
IN_CLKp  
IN_CLKn  
OUT_CLKp  
OUT_CLKn  
DATA LANE2  
CLOCK LANE  
In Normal Working  
Lane Swap  
Copyright © 2018, Texas Instruments Incorporated  
8-1. TDP1204 Swap Function  
8.2.6 Linear and Limited Redriver  
The TDP1204 supports both linear and limited redriver. Selection between linear and limited can be done from  
the LINEAR_EN pin in pin-strap mode or through GLOBAL_LINR_EN register in I2C mode.  
The limited redriver mode will decouple TDP1204 transmitter's voltage swing, pre-emphasis or de-emphasis,  
and slew rate from the GPUs transmitter. This allows the GPU to use a lower power TX setting and depends on  
the TDP1204 transmitter to meet TX compliance requirements. For source applications, it is recommended to  
configure TDP1204 as a limited redriver. It is not recommended to use limited redriver mode in sink applications.  
Unlike limited redriver mode, in linear redriver mode the TDP1204 transmitter's output is not decoupled from the  
GPU's transmitter. In linear redriver mode, the TDP1204 transmitter's output is a linear function of its input. The  
linear redriver mode offers transparency to link training which makes it perfect for HDMI 2.1 applications. For  
HDMI sink applications, it is recommended to configure TDP1204 as a linear redriver.  
8-4 lists the requirements that the GPU transmitter must meet if linear redriver mode is used in an HDMI 2.1  
source application. Linear redriver mode should only be used for HDMI 2.1 data rates. For HDMI 1.4 and 2.0, the  
TDP1204 should be configured for limited mode (LINEAR_EN = "0" or "1").  
Copyright © 2022 Texas Instruments Incorporated  
26  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8-4. Linear Redriver Mode: GPU TX Requirements for HDMI Source Applications  
GPU TX Parameter  
Min  
Max  
Units  
Single-ended TX swing for HDMI  
2.1  
400  
500  
mV  
TX rise/fall time for 3, 6, 8, 10,  
and 12-Gbps FRL  
16  
mV/ps  
The TDP1204 in pin-strap mode provides the option to dynamically switch between limited and linear based on  
the HDMI mode of operation. The feature is enabled by setting LINEAR_EN pin = "1".  
8-5. Pin-Strap Mode LINEAR_EN Pin Function  
LINEAR_EN Pin Level  
HDMI 1.4, 2.0, or DP  
HDMI 2.1 FRL  
1
F
Limited Enabled  
Linear Enabled  
Linear Enabled  
Recommended for DP and HDMI sink  
application.  
Linear Enabled  
Recommended for DP and HDMI sink  
application.  
R
0
Reserved  
Reserved  
Limited Enabled.  
Limited Enabled  
Recommended for HDMI source application Recommended for HDMI source application  
8.2.7 Main Link Inputs  
Each main link input (IN_D[2:0] and IN_CLK) is internally biased to 3.3-V through approximately 100-(50-Ω  
single-ended). When using TDP1204 in DisplayPort++ applications, external AC-coupling capacitances should  
be used. When using TDP1204 in an HDMI application such as in an HDMI monitor, the main link inputs can be  
DC-coupled to a compliant HDMI transmitter. Each input data channel contains an equalizer to compensate for  
cable or board losses.  
8.2.8 Receiver Equalizer  
The equalizer is used to clean up inter-symbol interference (ISI) jitter or loss from the bandwidth-limited board  
traces or cables. TDP1204 supports fixed receiver equalizer by setting the EQ0 and EQ1 pins or through I2C  
register. 8-6 lists the pin strap settings and EQ values.  
The TDP1204 has three sets of CTLE curves (3-Gbps CTLE, 6-Gbps CTLE, and 12-Gbps CTLE) with each  
curve having 16 AC gain settings and 3 DC gain settings. 8-6 provides details about the 16 AC gain settings  
with GLOBAL_DCG = 0x2.  
The TDP1204 in pin-strap mode has three CTLE HDMI Datarate Maps: Map A, Map B, and Map C. 8-7  
provides details about these maps. The expectation is Map A and C should be used if TDP1204 is used in a  
source application and Map B for a sink application.  
8-8 lists how the sampled state of the CTLEMAP_SEL pin determines the default CTLE HDMI Datarate map  
when the TDP1204 is configured for pin-strap mode.  
In I2C mode, the default CTLE (3-Gbps, 6-Gbps, or 12-Gbps) used for each HDMI mode can be controlled from  
a register.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
27  
Product Folder Links: TDP1204  
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
EQ0 PIN  
8-6. Receiver EQ Settings When GLOBAL_DCG = 0x2  
RX EQ Level for 3-  
Gbps CTLE  
(Gain at 1.5-GHz –  
Gain at 10-MHz)  
RX EQ Level for 6-  
Gbps CTLE  
(Gain at 3-GHz Gain (Gain at 6-GHz Gain  
RX EQ Level for 12-  
Gbps CTLE  
EQ Setting(1)  
EQ1 PIN  
at 10-MHz)  
at 10-MHz)  
0(2)  
1
1.0  
2.0  
0.5  
0
0
0
0
R
F
1
1.0  
0.8  
2
3.2  
2.4  
1.8  
0
3
4.2  
3.3  
2.7  
0
4
5.3  
4.4  
3.7  
F
F
F
F
R
R
R
R
1
0
5
6.0  
5.2  
4.4  
R
F
1
6
7.0  
6.0  
5.0  
7
7.7  
6.8  
5.8  
8
9.0  
7.5  
6.5  
0
9
9.5  
8.2  
7.5  
R
F
1
10  
11  
12  
13  
14  
15  
10.0  
10.5  
11.0  
11.5  
12.0  
12.3  
8.8  
8.3  
9.3  
9.1  
10.0  
10.5  
11.0  
11.8  
9.8  
0
10.3  
11.0  
11.6  
1
R
F
1
1
1
(1) CLK_EQ, D0_EQ, D1_EQ, and D2_EQ registers determine the receiver EQ setting in I2C mode.  
(2) When CTLEBYP_EN = 1 and DCGAIN = 0-dB, EQ settings 0 will be 0-dB due to the CTLE is bypassed.  
8-7. CTLE HDMI Datarate Map A, B, and C  
HDMI Mode  
1.4  
Map A  
Map B  
Map C  
12 Gbps CTLE  
12 Gbps CTLE  
12 Gbps CTLE  
12 Gbps CTLE  
12 Gbps CTLE  
12 Gbps CTLE  
12 Gbps CTLE  
3 Gbps CTLE  
6 Gbps CTLE  
3 Gbps CTLE  
6 Gbps CTLE  
12 Gbps CTLE  
12 Gbps CTLE  
12 Gbps CTLE  
6 Gbps CTLE  
6 Gbps CTLE  
6 Gbps CTLE  
6 Gbps CTLE  
12 Gbps CTLE  
12 Gbps CTLE  
12 Gbps CTLE  
2.0  
3 Gbps FRL  
6 Gbps FRL  
8 Gbps FRL  
10 Gbps FRL  
12 Gbps FRL  
8-8. Pin-strap Mode CTLE HDMI Datarate Mapping  
Sampled State of CTLEMAP_SEL pin  
"0"  
"R"  
"F"  
"1"  
CTLE HDMI Datarate Map  
Map A  
Map C  
Map A  
Map B  
备注  
The clock lane EQ when operating in HDMI 1.4 or 2.0 will use the 3-Gbps CTLE and will be set to the  
zero EQ setting.  
8.2.9 CTLE Bypass  
The TDP1204 will operate as a buffer when CTLE bypass is enabled. In pin-strap mode, this feature is disabled.  
In I2C mode, this feature is enabled when CTLEBYP_EN = 1h and GLOBAL_DCG = 2h. Any lane that has EQ  
setting of 0h will operate in CTLE bypass.  
Copyright © 2022 Texas Instruments Incorporated  
28  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
 
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8.2.10 Adaptive Equalization in HDMI 2.1 FRL  
The TDP1204 supports adaptive equalization (AEQ) for HDMI 2.1 FRL. It does not support AEQ for HDMI 1.4 or  
2.0. In HDMI 1.4 and HDMI 2.0 modes, TDP1204 will use sampled state of EQ[1:0] pins or value programmed  
into register. The AEQ is supported in some pin-strap modes as well as in I2C mode. In I2C mode, AEQ can be  
enabled by setting the AEQ_EN register. The TDP1204 adaptation algorithm scans through available  
equalization settings searching for a setting for which the incoming high-speed signal is not over equalized.  
The TDP1204 will perform adaptive equalization when FRL link training begins. It will also readapt each time the  
data rate changes. The adaption will only occur during the TXFFE0 portion of FRL link training when LTP5,  
LTP6, LTP7, or LTP8 is being received. The TDP1204 adaption will complete within tAEQ_DONE from the time FRL  
link training begins. If the sink requests additional TXFFE levels (TXFFE1, 2, or 3), then the TDP1204 will keep  
its equalizer settings fixed at the value adapted during TXFFE0. If for some reason the FRL link training fails and  
transitions to legacy mode (HDMI 1.4 or HDMI 2.0), then the EQ [1:0] pins sample the EQ settings that the  
TDP1204 switches to if in pin-strap mode or programmed into the register (if in I2C mode).  
The TDP1204 will keep OUT_D[2:0] and OUT_CLK disabled until after adaptation completes. After adaptation  
completes, the appropriate lanes will be enabled. In I2C mode, this behavior can be overridden by clearing the  
AEQ_TX_DELAY_EN field.  
8-9. Adaptive Equalization Enable and Disable  
CTLEMAP_SEL pin level  
MODE pin level  
0
R
F
1
0
R
F
1
AEQ disabled  
AEQ disabled  
I2C register  
AEQ disabled  
AEQ disable  
AEQ disabled  
I2C register  
AEQ disabled  
AEQ disabled  
AEQ enabled  
I2C register  
AEQ enabled  
AEQ disabled  
AEQ enabled  
I2C register  
AEQ enabled  
备注  
The AEQ operates only on IN_D1 pins (pins 12 and 13). The EQ value determined by AEQ will be  
applied to the other FRL data lanes.  
8.2.10.1 HDMI 2.1 TX Compliance Testing with AEQ Enabled  
Care must be taken when performing HDMI 2.1 TX compliance testing with AEQ enabled. Because the  
TDP1204 will only adapt to LTP5 through 8 during the TXFFE0 part of link training, it is important the test  
equipment initiate a FRL link training before performing any TX measurements, especially TX eye and jitter  
measurement. After completion of FRL link training, the test equipment can then switch the current pattern  
(LTP5, LTP6, LTP7, or LTP8) to the desired test pattern (LTP1, LTP2, LTP3, or LTP4). If the test equipment  
request LTP1, LTP2, LTP3, or LTP4 before initiating link training, the TDP1204 will use the sampled state of  
EQ[1:0] pins.  
The following HDMI 2.1 TX tests use LTP5, LTP6, LTP7, and LTP8 as the required pattern for the measurement:  
HFR1-1, HFR1-2, HFR1-4, HFR1-7, and HFR1-8. If the TDP1204 AEQ adaption has not completed and instead  
uses sampled state of EQ[1:0] pins, then it is possible these tests may fail or inaccurately represent system  
performance.  
8.2.11 HDMI 2.1 Link Training Compatible Rx EQ  
This mode is recommended in source applications in which the GPU is unaware of the TDP1204 presence and  
will adjust its transmitter levels (VOD, de-emphasis, and pre-shoot) during HDMI 2.1 FRL link training. This mode  
is only supported if the TDP1204 is enabled for limited redriver. 8-10 lists the TXFFE levels that this mode  
assumes the GPU is using.  
This feature is supported in I2C mode and all pin-strap modes with the exception of MODE = "0".  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
29  
Product Folder Links: TDP1204  
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
In HDMI 2.1 with AEQ disabled, the TDP1204 will initially set the RX EQ based on the EQ0 and EQ1 pins. The  
pins determines what value will be used when the TXFFE0 is snooped during FRL link training. 8-11 lists how  
TDP1204 uses the EQ setting for each increase in TXFFE level (TXFFE1, 2, or 3) from the sampled state of the  
EQ [1:0] pins.  
When HDMI 2.1 with AEQ is enabed, the TDP1204 will adapt during the TXFFE0 portion of FRL link training. 表  
8-11 lists how TDP1204 uses the EQ setting for each increase in TXFFE level (TXFFE1, 2, or 3) from the  
adapted EQ value.  
8-10. Recommended GPU FRL TXFFE Levels  
GPU FRL TXFFE Levels  
TXFFE0  
Pre-Shoot (dB)  
De-Emphasis (dB)  
3.10  
2.18  
2.50  
2.92  
3.52  
TXFFE1  
4.43  
TXFFE2  
6.02  
TXFFE3  
7.96  
8-11. Link Training Compatible RX EQ Adjustments  
Initial EQ Setting from sampled  
state of EQ[1:0] pins or  
adapted EQ value  
EQ Setting Used for TXFFE1  
EQ Setting Used for TXFFE2  
EQ Setting Used for TXFFE3  
0
1
0
0
0
0
0
0
1
1
1
1
2
3
4
5
6
7
8
9
0
0
0
0
0
0
0
0
1
1
1
1
2
3
4
5
2
1
3
1
4
2
5
2
6
3
7
3
8
4
9
5
10  
11  
12  
13  
14  
15  
6
7
8
9
10  
11  
8.2.12 Input Signal Detect  
When standby is enabled and swap is disabled, the TDP1204 looks for a signal on either IN_CLK (if HDMI 1.4 or  
2.0) or IN_D2 (if HDMI 2.1). When standby is enabled and swap is enabled, the TDP1204 looks for a signal on  
either IN_CLK (if HDMI 2.1) or IN_D2 (if HDMI 1.4 or 2.0). The TDP1204 is fully functional when a signal is  
detected. If no signal is detected, then the device reenters standby mode waiting for a signal again. In the  
standby state, all of the TMDS outputs are in high-Z status. In both pin-strap mode and I2C mode, standby is  
enabled by default. In I2C mode, standby can be disabled by setting the STANDBY_DISABLE register.  
Copyright © 2022 Texas Instruments Incorporated  
30  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8.2.13 Main Link Outputs  
8.2.13.1 Transmitter Bias  
The TDP1204 transmitter supports both external (DC-coupled) and internal bias (AC-coupled) to a receiver.  
Selection between DC and AC-coupled is done through use of the AC_EN pin in pin-strap mode and TX_AC_EN  
register in I2C mode. The AC_EN pin informs the TDP1204 whether or not an external AC-coupling capacitor is  
present. When AC_EN is greater than VIH, then TDP1204 transmitters are internally biased to approximately  
VCC. For DisplayPort, HDMI 2.1 FRL AC-coupled, or any other AC-coupled application, the AC_EN pin should  
be connected to greater than VIH and an external AC-coupling capacitor should be placed on each of the  
OUT_D[2:0] pins and the OUT_CLK pin. If the AC_EN pin is connected to less than VIL, then the AC_EN pin will  
inform TDP1204 that AC_EN pin is DC-coupled (externally biased) to the far-end HDMI compliant receiver.  
备注  
8-3 shows that if using AC-coupled TX mode (AC_EN = high) in an HDMI source application, then  
an external 499 Ω pull-down to GND must be placed on each OUT pin (OUT_D2:0p/n and  
OUT_CLKp/n) between the AC-coupling capacitor and the HDMI receptacle. The purpose of the 499  
Ωresistor is to set the common mode voltage to HDMI compliant levels.  
OUT_D2p  
OUT_D2n  
OUT_D1p  
OUT_D1n  
OUT_D0p  
OUT_D0n  
OUT_CLKp  
OUT_CLKn  
8-2. DC-Coupled TX in HDMI Source Application (AC_EN = Low). External ESD is Not Shown.  
499  
CACTX  
OUT_D2p  
OUT_D2n  
OUT_D1p  
OUT_D1n  
OUT_D0p  
OUT_D0n  
OUT_CLKp  
OUT_CLKn  
System 3.3 V  
8-3. AC-Coupled TX in HDMI Source Application (AC_EN = High). External ESD is Not Shown.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
31  
Product Folder Links: TDP1204  
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8.2.13.2 Transmitter Impedance Control  
HDMI 2.0 standards require a source termination impedance approximately 100-for data rates > 3.4-Gbps.  
HDMI 1.4b requires no source termination but has a provision for termination for higher data rates greater than  
1.65-Gbps. Enabling this termination is optional. 8-13 lists how the TDP1204 terminations are controlled  
automatically when in pin strap mode. Depending on the MODE pin, the CFG0 pin can be used to select the  
HDMI 1.4 termination between open and 300-Ω.  
The TDP1204 supports automatic selection between open and 300-Ω termination when operating in HDMI 1.4.  
In pin-strap mode with CTL0 low, the TDP1204 will enable open termination when HDMI clock frequency is less  
than fHDMI14_open and will enable 300-Ω termination when HDMI clock frequency is greater than fHDMI14_300  
.
TXTERM_AUTO_HDMI14 register controls this feature in I2C mode.  
In I2C mode, termination is controlled through registers as described by 8-12.  
8-12. Source Termination Control in I2C mode  
TXTERM_AUTO_HDMI14  
Register  
TX_AC_EN Register  
TERM Register  
Source Termination  
0
0
00  
01  
X
X
None  
Parallel 300-Ωacross P and N  
Automatic. HDMI 2.0 or HDM 2.1. parallel 100-Ω  
0
0
0
10  
10  
10  
X
1
0
across P and N  
Automatic. HDMI 1.4. parallel 300-Ωacross P and N  
Automatic. HDMI 1.4. No termination if HDMI clock  
frequency is fHDMI14_open  
.
Automatic. HDMI 1.4. Parallel 300-Ωacross P and N  
0
10  
0
termination if HDMI clock frequency is fHDMI14_300  
Parallel 100-Ωacross P and N  
.
0
1
1
11  
00  
01  
X
X
X
150-Ωto supply (VCC) on both P and N  
150-Ωto supply (VCC) on both P and N  
Automatic. 150-Ωto supply (VCC) on both P and N  
for HDMI 1.4. Otherwise 50-Ωto supply (VCC) on  
both P and N.  
1
1
10  
11  
X
X
50-Ωto supply (VCC) on both P and N  
8-13. Automatic Source Termination Control in Pin-Strap Mode  
HDMI Mode  
AC_EN pin  
Source Termination  
None or parallel 300-Ωacross P and N  
depending on state of SCL/CFG0 pin  
HDMI 1.4  
0
HDMI 2.0  
HDMI 1.4  
HDMI 2.0  
0
1
1
Parallel 100-Ωacross P and N  
150-Ωto supply (VCC) on both P and N  
50-Ωto supply (VCC) on both P and N  
Copyright © 2022 Texas Instruments Incorporated  
32  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8.2.13.3 TX Slew Rate Control  
The TDP1204 has the ability to slow down the TMDS output edge rates. In pin-strap mode, the TX slew rate can  
not be controlled. In I2C mode, both clock and data lanes slew rate can be controlled from a register. 8-14 lists  
the supported settings for each slew rate register based on HDMI data rate. The TDP1204 must be configured in  
limited redriver mode to control the TX slew rate.  
8-14. I2C Mode TX Slew Register Supported Settings  
SLEW_8G10G12G  
HDMI Datarate  
SLEW_CLK Register  
SLEW_3G Register  
SLEW_6G Register  
Register  
HDMI 1.4  
3'b000 through 3'b011  
3'b010 through 3'b101  
N/A  
N/A  
HDMI 2.0  
3'b000 through 3'b011  
N/A  
3'b011 through 3'b110  
N/A  
HDMI 2.1 3 Gbps FRL  
HDMI 2.1 6 Gbps FRL  
HDMI 2.1 8Gbps FRL  
HDMI 2.1 10 Gbps FRL  
HDMI 2.1 12 Gbps FRL  
N/A  
N/A  
N/A  
N/A  
N/A  
3'b010 through 3'b101  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
N/A  
3'b011 through 3'b110  
N/A  
N/A  
N/A  
3'b100 through 3'b111  
3'b110 through 3'b111  
3'b111  
8.2.13.4 TX Pre-Emphasis and De-Emphasis Control  
The TDP1204 provides pre-emphasis and de-emphasis on the data lanes allowing the output signal pre-  
conditioning to offset interconnect losses between the TDP1204 outputs and a TMDS receiver. Pre-emphasis  
and de-emphasis is not implemented on the clock lane unless the TDP1204 is in HDMI 2.1 FRL mode and at  
which time the clock lane becomes a data lane. There are two methods to implement pre-emphasis, pin  
strapping or through I2C programming. TX pre-emphasis and de-emphasis control is only supported in limited  
mode.  
When using pin strap mode, the TXPRE pin controls four different global pre-emphasis and de-emphasis values  
for all data lanes when TDP1204 is operating in HDMI 1.4 or HDMI 2.0. 8-15 lists these pre-emphasis and de-  
emphasis values. In HDMI 2.1 FRL mode, the de-emphasis value used is based on the DDC TXFFE snooped  
value. 8-16 lists how the TDP1204 uses the de-emphasis level for each TX FFE level.  
8-15. Pin-Strap TXPRE Pin Function  
LINEAR_EN pin = "F"  
LINEAR_EN pin = "0"  
LINEAR_EN pin = "R"  
AEQ ADJUSTMENT  
or "1"  
HDMI 2.1 FRL  
TXFF0 Level  
TXPRE pin  
HDMI 1.4 or HDMI 2.0  
AEQ ADJUSTMENT  
AEQ ADJUSTMENT  
0
3.5 dB pre-emphasis  
-2.5 dB de-emphasis  
0
0
0
0
+1  
+4  
0
0
0
0
0
Refer to 8-16.  
Refer to 8-16.  
Refer to 8-16.  
Refer to 8-16  
R
F
1
0 dB  
6.0 dB pre-emphasis  
+2  
8-16. HDMI 2.1 FRL TX FFE Levels  
De-Emphasis  
(dB)  
FRL TX FFE Snooped Level  
TXFFE0  
TXFFE1  
TXFFE2  
TXFFE3  
-2.5  
-3.5  
-3.7  
-4.6  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
33  
Product Folder Links: TDP1204  
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8.2.13.5 TX Swing Control  
The TDP1204 transmitter swing level can be adjusted in both pin strap and I2C mode. In I2C mode, TX swing  
settings are controlled independently for each lane (both clock and data) through registers.  
In I2C mode, the TX swing used when operating in HDMI 1.4 and HDMI 2.0 can be indepedently controlled  
through HDMI14_VOD and HDMI20_VOD registers.  
8-17 lists how the TXSWG pin adjusts the default 1000 mV swing in pin strap mode with limited redeliver  
mode enabled. In HDMI 1.4 the TXSWG controls the swing for both the data and clock lanes. In HDMI 2.0, the  
TXSWG pin controls the data lanes while the clock lane will remain at the default value. In HDMI 2.1, the  
TXSWG pin controls data and clock lanes.  
In pin-strap mode with linear enabled, the linearity range is fixed at the highest level (1200 mVpp) and therefore  
TXSWG pin is not used. In I2C mode, the linearity range can be adjusted from a register.  
8-17. Pin Strap TXSWG Control  
TXSWG pin  
Limited Mode for HDMI 1.4  
Default (1000 mVpp)  
Default 5%  
Limited Mode for HDMI 2.0  
Default (1000 mVpp)  
Default 5%  
Limited Mode for HDMI 2.1  
Default + 10%  
Linear Mode  
1200 mVpp  
1200 mVpp  
1200 mVpp  
1200 mVpp  
0
R
F
1
Default 5%  
Default (1000 mVpp)  
Default (1000 mVpp)  
Default (1000 mVpp)  
Default + 5%  
Default (1000 mVpp)  
Default + 5%  
8.2.14 DDC Buffer  
The TDP1204 has a DDC buffer for capacitance isolation and for shifting 5-V levels present on the HDMI  
connector to as low as 1.2-V levels on the GPU source side. The HV_DDC_SDA and HV_DDC_SCL pins  
support 5-V levels while the LV_DDC_SDA and LV_DDC_SCL pins support 1.2-V, 1.8-V, and 3.3-V levels. When  
the DDC buffer is used in source application, the HV side must be pulled up using 1.5-kΩto 2-kΩresistors. It is  
recommended to use 1.8-kΩ ±5% resistor. HV_DDC_SDA and HV_DDC_SCL pins will typically be pulled up to  
HDMI 5-V. The LV_DDC_SDA and LV_DDC_SCL are internally pulled up to VIO.  
The TDP1204 enables DDC translation from low voltage (system side) voltage levels to 5-V (HDMI cable side)  
voltage levels without degradation of system performance. The TDP1204 contains 2 bidirectional, open-drain  
buffers specifically designed to support up and down-translation between the low voltage (LV) side DDC-bus and  
the high voltage (HV) 5-V DDC-bus. The HV I/Os (HV_DDC_SCL and HV_DDC_SDA) are overvoltage tolerant  
to 5.5-V. After HPD_IN high, a LOW level on LV side (below VILC = 0.08 × VIO) turns the corresponding HV  
driver (either SDA or SCL) on and drives HV side down to VHVOL. When LV side rises above approximately 0.10  
× VIO, the HV pulldown driver is turned off and the internal pullup resistor pulls the pin HIGH. When HV side falls  
first and goes below 1.6-V, a CMOS hysteresis input buffer detects the falling edge, turns on the LV driver, and  
pulls LV down to approximately VLVOL = 0.16 × VIO. The LV side pulldown is not enabled unless the LV voltage  
goes below VILC. If the LV side low voltage goes below VILC, the HV side pulldown driver is enabled until LV  
side rises above (VILC + ΔVT-HYST), then HV side, if not externally driven LOW, continues to rise being pulled  
up by the external pullup resistor.  
VIO  
RPULV  
HDMI 5V  
RPUHV  
LV_DDC_SDA  
LV_DDC_SCL  
VIC  
+
-
HV_DDC_SDA  
HV_DDC_SCL  
CHV_BUS  
CLV_BUS  
VLV_OL  
8-4. DDC Buffer Block Diagram  
Copyright © 2022 Texas Instruments Incorporated  
34  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8-5 shows the connection of the LV and HV DDC pins when using the DDC buffer. This connection is  
supported in pin-strap mode when MODE pin is "0" or "1". In I2C mode, the DDCBUF_EN register must be set to  
enable the DDC Buffer.  
备注  
The TDP1204 has integrated pullups to VIO on the DDC LV pins. Therefore, no external pull-ups shall  
be present between the TDP1204's DDC LV pins and DDC host when using TDP1204's DDC buffer.  
HDMI_5V  
VIO (1.14 V to 3.6 V)  
1.8-k  
Redriver  
LV_DDC_SDA  
LV_DDC_SCL  
HV_DDC_SDA  
HV_DDC_SCL  
DP++  
Or HDMI  
Source  
8-5. Source Application: DDC Buffer Enabled  
8-6 shows an example source application of snooping from the HV DDC pins. In this example, the DDC buffer  
must be enabled and the LV DDC pins must be floating. This connection is supported in pin-strap mode when  
MODE pin is "0" or "1". In I2C mode, the DDCBUF_EN register must be set to enable the DDC Buffer.  
HDMI_5V  
VIO (1.14 V to 3.6 V)  
1.8-k  
1.8-k  
Redriver  
HV_DDC_SDA  
LV_DDC_SDA  
LV_DDC_SCL  
HV_DDC_SCL  
I2C Voltage  
DP++  
Or HDMI  
Source  
Discrete  
DDC  
Level shi er  
8-6. Source Application: DDC Buffer Enabled and Snoop from HV DDC pins  
8-7 shows an example source application of snooping from the LV DDC pins. In this example, the DDC buffer  
must be disabled and the HV DDC pins must be floating. This connection is supported in pin-strap mode when  
MODE pin is "R". In I2C mode, the DDCBUF_EN register must be cleared to disable the DDC Buffer.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
35  
Product Folder Links: TDP1204  
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
VIO (1.14 V to 3.6 V)  
Redriver  
HV_DDC_SDA  
LV_DDC_SDA  
LV_DDC_SCL  
DP++  
Or HDMI  
Source  
HV_DDC_SCL  
HDMI_5V  
1.8-k  
Discrete  
DDC  
Level shi er  
8-7. Source Application: DDC Buffer Disabled and Snoop from LV DDC pins  
8-8 shows the connection of the LV and HV DDC pins when using the DDC buffer in a sink application. This  
connection is supported in pin-strap mode when MODE pin is "0" or "1". In I2C mode, the DDCBUF_EN register  
must be set to enable the DDC Buffer.  
HDMI_5V  
VIO (1.14 V to 3.6 V)  
47-k  
Redriver  
LV_DDC_SDA  
LV_DDC_SCL  
HV_DDC_SDA  
HV_DDC_SCL  
HDMI SINK  
(scaler)  
8-8. Sink Application: DDC Buffer Enabled  
8-9 shows an example sink application of snooping from the LV DDC pins. In this example, the DDC buffer  
must be disabled and the HV DDC pins must be floating. This connection is supported in pin-strap mode when  
MODE pin is "R". In I2C mode, the DDCBUF_EN register must be cleared to disable the DDC Buffer.  
VIO (1.14 V to 3.6 V)  
Redriver  
HV_DDC_SDA  
HV_DDC_SCL  
LV_DDC_SDA  
LV_DDC_SCL  
HDMI_5V  
47-k  
HDMI SINK  
(scaler)  
Discrete  
DDC  
Level shier  
8-9. Sink Application: DDC Buffer Disabled and Snoop from LV DDC pins  
8-10 shows an example sink application of snooping from the HV DDC pins. In this example, the DDC buffer  
must be enabled and the LV DDC pins must be floating. This connection is supported in pin-strap mode when  
MODE pin is "0" or "1". In I2C mode, the DDCBUF_EN register must be set to enable the DDC Buffer.  
Copyright © 2022 Texas Instruments Incorporated  
36  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
HDMI_5V  
47-k  
VIO (1.14 V to 3.6 V)  
Redriver  
HV_DDC_SDA  
HV_DDC_SCL  
LV_DDC_SDA  
LV_DDC_SCL  
I2C Voltage  
Discrete  
DDC  
Level shi er  
HDMI SINK  
(scaler)  
8-10. Sink Application: DDC Buffer Enable and Snoop from HV DDC pins  
8.2.15 HDMI DDC Capacitance  
The HDMI specification limits the DDC bus capacitance to 50-pF for both an HDMI source and sink.  
Therefore, care must be taken to make sure the total capacitance of all components (TDP1204, FR4 trace, ESD,  
source, and sink) is less than 50-pF.  
The TDP1204s DDC Buffer offers capacitance isolation between the LV DDC pins and the HV DDC pin. The  
total capacitance of components, including the FR4 trace, between the TDP1204 HV_DDC_SDA/SCL pins and  
the HDMI receptacle must be (50-pF CIOHV).  
If implementing a DDC level shifter using pass gates, then the total capacitance will include all components  
between source or sink and the HDMI receptacle. These components include and are not limited to Source or  
Sink, the FR4 trace, ESD components, and TDP1204.  
备注  
Trace capacitance can be in the range of 2 to 5-pF per inch. A general rule is a 50-FR4 trace will be  
around 3.3-pF per inch.  
8.3 Device Functional Modes  
8.3.1 MODE Control  
The MODE pin provides four modes of operation. There are three pin-strap modes and one I2C mode. In all  
three pin strap modes, DDC snooping feature is enabled. In I2C mode, DDC snoop feature is enabled by default  
but can be disabled by a register.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
37  
Product Folder Links: TDP1204  
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8.3.1.1 I2C Mode (MODE = "F")  
In I2C mode, all settings of the TDP1204 can be controlled through the registers. The TDP1204 7-bit I2C  
address is determined by the ADDR/EQ0 pin. All other 4-level and 2-level pins are not used in I2C mode since  
the functions exist in a register. The SCL/CFG0 pin will function as the I2C clock and the SDA/CFG1 pin will  
function as the I2C data.  
The TDP1204 defaults to power down in I2C mode. Upon completion of initialization of the TDP1204, software  
must clear the PD_EN field to exit the power down state. The HPD_OUT pin will be asserted low while the  
PD_EN register is set.  
The TDP1204 supports 1.2-V, 1.8-V, and 3.3-V I2C signaling levels. Selection of 1.2-V, 1.8-V, or 3.3-V is  
determined by the VIO pin as described in 8-2.  
8.3.1.2 Pin Strap Modes  
8-18 and 8-19 lists how the SCL/CFG0 and the SDA/CFG1 pins will be used to control the HDMI 1.4  
termination, lane SWAP function, and the DisplayPort mode in pin-strap mode.  
8-18. SCL/CFG0 Pin in Pin-Strap Mode  
SCL/CFG0 Pin  
AC_EN Pin  
TDP1204 Function  
0
0
HDMI 1.4 termination is open if HDMI clock  
frequency fHDMI14_open  
0
0
HDMI 1.4 termination is 300-if HDMI  
clock frequency fHDMI14_300  
1
0
0
1
HDMI 1.4 termination is 300-Ω  
Normal HDMI. Function determined by  
MODE pin.  
DisplayPort mode. DDC snoop disabled. All  
four lanes enabled when HPD_IN is high. 12  
Gbps CTLE used.  
1
1
8-19. SDA/CFG1 Pin in Pin-Strap Mode  
SDA/CFG1 Pin  
TDP1204 Function  
0
1
Normal Lane ordering  
Lane Swap enabled  
备注  
The SCL/CFG0 is the only two-level pin that is continuously sampled in pin-strap mode. AC_EN,  
HPDOUT_SEL, and SDA/CFG1 will not be continuously sampled in pin-strap mode unless indicated  
otherwise.  
The TDP1204 must be configured as a linear redriver when operating in DisplayPort mode.  
8.3.1.2.1 Pin-Strap: HDMI 1.4 and HDMI 2.0 Functional Description  
The TDP1204 will always use the sampled state of EQ[1:0] pins when operating in either HDMI 1.4 and HDMI  
2.0. The amount of EQ applied is determined by the CTLE Map used (refer to Receiver EQ section).  
If TDP1204 is configured for limited redriver mode, then the OUT_D[2:0] and OUT_CLKP/N levels will be fixed  
based on the sampled state of TXSWG pin (refer to 8-17) and TXPRE pin (refer to 8-15).  
If TDP1204 is configured for linear redriver mode, then OUT_D[2:0] and OUT_CLK will be a linear function of the  
input signals.  
Copyright © 2022 Texas Instruments Incorporated  
38  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
备注  
In source application, it is recommended to use limited redriver mode for both HDMI 1.4 and HDMI  
2.0.  
8.3.1.2.2 Pin-Strap HDMI 2.1 Function (MODE = "0"): Fixed Rx EQ and DDC Buffer Enabled  
This mode is recommended in a source applications in which the GPU is aware of the TDP1204 presence and  
keeps its transmitter levels (VOD, de-emphasis and pre-shoot) fixed during HDMI 2.1 FRL link training. In this  
mode, the TDP1204 will provide an HDMI compliant signal at the HDMI receptacle.  
In this mode, the TDP1204 will operate with a fixed RX EQ based on the value set by EQ0 and EQ1 pins.  
In HDMI 2.1 FRL with limited redriver enabled, OUT_D[2:0] and OUT_CLK outputs will change based on the  
snooped value of TXFFE levels. 8-16 lists the TXFFE level used for each snooped value.  
In HDMI 2.1 FRL with linear redriver enabled, OUT_D[2:0] and OUT_CLK outputs will function as described in 节  
8.2.6.  
备注  
Adaptive EQ is not supported in this mode. Link Training Compatible Rx EQ is not supported in this  
mode.  
8.3.1.2.3 Pin-Strap HDMI 2.1 Function (MODE = "1"): Flexible RX EQ and DDC Buffer Enabled  
This mode is recommended in a source applications in which the GPU is unaware of the TDP1204 presence and  
will adjust its transmitter levels (VOD, de-emphasis, and pre-shoot) during HDMI 2.1 FRL link training.  
In this mode, the TDP1204 supports both 8.2.10 and 8.2.11.  
If TDP1204 is configured for limited redriver mode, then the OUT_D[2:0] and OUT_CLKP/N VOD level will be  
fixed based on the sampled state of TXSWG (refer to 8-17). In HDMI 2.1 FRL, these outputs will change  
based on the snooped value of TXFFE levels. 8-11 lists the TXFFE level used for each snooped value.  
In this mode with limited redriver enabled, it is highly that the recommended GPU use TXFFE levels listed in 表  
8-10.  
8.3.1.2.4 Pin-Strap HDMI 2.1 Function (MODE = "R"): Flexible Rx EQ and DDC Buffer Disabled  
This pin strap mode is the same as MODE ="1" with the exception the DDC buffer is disabled.  
备注  
This mode is intended to be used when external discrete DDC buffer or level shifter is used.  
HV_DDC_SDA and HV_DDC_SCL pins can be left floating in this mode.  
8.3.2 DDC Snoop Feature  
As part of discovery the source reads the sink E-EDID information to understand the sinks capabilities. Part of  
this read is HDMI Forum Vendor Specific Data Block (HF-VSDB) located at target address 0xA8. From the  
LV_DDC_SDA and LV_DDC_SCL pins, the TDP1204 DDC snoop function will monitor both reads and writes to  
specific offsets of the Status and Control Data Channel Structure (SCDCS) located within the HF-VSDB. The  
following SCDCS offsets are monitored: Update Flags at offset 10h, TMDS Configuration at offset 20h, Sink  
Configuration at offset 31h, Source Test Configuration at offset 35h, and Status Flags located at offsets 41h and  
42h. The DDC snoop function resides on the LV_DDC_SDA and LV_DDC_SCL pins.  
The TDP1204 has similar SCDCS registers within its register space. Through TDP1204 local I2C interface,  
external microprocessor can control TDP1204 to perform all the necessary functions required for each HDMI  
type.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
39  
Product Folder Links: TDP1204  
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8.3.2.1 HDMI Type  
8-20 lists the TDP1204 monitors offsets 20h and 31h to determine HDMI type as either HDMI 1.4, HDMI 2.0,  
or HDMI 2.1 FRL.  
8-20. HDMI Type Selection  
TMDS_CLK_RATIO  
SCDCS Offset 20h[1]  
FRL_RATE  
SCDCS Offset 31h[3:0]  
HDMI Type  
HDMI 1.4 (TMDS x10)  
HDMI 2.0 (TMDS x40)  
HDMI 2.1 FRL  
0
1
0h  
0h  
X
Not 0h  
备注  
TDP1204 will default to HDMI 1.4 following a power-on reset or whenever it enters the powerdown  
state. Upon exiting standby, the TDP1204 will hold data rate value (HDMI 1.4, 2.0, or 2.1) prior to  
entering the standby.  
8.3.2.2 HDMI 2.1 FRL Snoop  
In HDMI 2.1 FRL mode, the TDP1204 monitors offset 31h, 35h, 41h, and 42h. Each offset contains information  
that the TDP1204 uses during FRL link training or during TX compliance testing.  
Offset 31h contains FRL lane count (3 or 4 lanes), data rate (3, 6, 8, 10, or 12 Gbps), and maximum TXFFE  
levels supported. TDP1204 enables the appropriate number of lanes based on the lane count. The TDP1204  
uses the data rate information to determine the duration of the TXFFE de-emphasis. The maximum number of  
supported TXFFE levels sets the number of TXFFE levels TDP1204 uses during FRL link training. 8-16 lists  
the TDP1204 does support all four possible TXFFE levels (TXFFE0 through TXFFE3).  
Values snooped from offset 35h is used by TDP1204 during TX FFE compliance testing.  
8.3.3 Low Power Modes  
The TDP1204 has two low power modes: Power Down and Standby. 8-21 lists both lower power modes.  
Power down is entered when HPD_IN is low for tHPD_PWRDOWN or in I2C if PD_EN bit is set. Power down is also  
entered when the EN pin is low. The TDP1204 will exit power down to the standby state when HPD_IN is high  
for tHPD_STANDBY  
.
The TDP1204 implements a two stage standby power process when HPD_IN is high.  
Stage 1: If there is no signal (electrical idle) on the IN_CLK lane if HDMI 1.4/2.0 or IN_D2 if HDMI 2.1, then the  
TDP1204 will enter standby mode within tSTANDBY_ENTRY  
Stage 2: If a signal is detected which last longer than tSIGDET_DB, then TDP1204 will declare a valid signal and  
exit standby within tSTANDY_EXIT  
.
.
If a signal is detected, then the TDP1204 will go into normal active operation and signals present at IN_CLK  
and IN_D[2:0] inputs will be passed through to the OUT_CLK and OUT_D[2:0] outputs.  
If it is determined that no signal is present, then the TDP1204 will reenter stage 1.  
The TDP1204 will exit standby state and immediately enter active state if LTP1, LTP2, LTP3, or LTP4 is snooped  
while monitoring status flags at SCDCS offset 41h or 42h.  
The TDP1204 will exit normal operation and return to the standby state within tSTANDBY_ENTRY anytime electrical  
idle is detected.  
Copyright © 2022 Texas Instruments Incorporated  
40  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8-21. Power Modes  
INPUTS  
STATUS  
HDMI  
STANDBY_ HPD_PWRDW  
1.4/2.0:  
HPD_IN  
pin  
PD_EN  
register  
OUT_Dx  
OUT_CLK  
EN pin  
DISABLE  
register  
N_DISABLE  
register  
IN_CLK pin HPD_OUT pin IN_Dx pins SDA/SCL  
HDMI 2.1:  
DDC  
Mode  
IN_D2 pins  
Power  
Down Mode  
L
X
L
X
X
X
1
X
0
X
0
1
0
0
X
X
X
X
X
High-Z  
High-Z  
High-Z  
High-Z  
Disabled  
Active  
Active  
Active  
Active  
High-Z  
High-Z  
Disabled  
Disabled  
Disabled  
Active  
Power  
Down Mode  
H
H
H
H
L
Power  
Down Mode  
X
H
X
X
X
1
L
HPD_IN  
H
High-Z  
All RX  
Active  
Normal  
operation  
TX Active  
TX Active  
All RX  
Active  
Normal  
operation  
1
Active  
HDMI  
1.4/2.0:  
IN_CLK  
Active  
HDMI 2.1:  
IN_D2  
Standby  
Mode  
(Squelch  
waiting)  
H
H
H
H
H
H
X
X
0
0
0
0
X
X
1
1
0
0
0
0
No signal  
HPD_IN  
Active  
Active  
Active  
Active  
High-Z  
TX Active  
High-Z  
Active  
Active  
Active  
Active  
Active  
Valid signal  
detected  
All RX  
Active  
Normal  
operation  
HPD_IN  
HDMI  
1.4/2.0:  
IN_CLK  
Active  
HDMI 2.1:  
IN_D2  
Standby  
Mode  
(Squelch  
waiting)  
No signal  
H
H
Active  
Valid signal  
detected  
All RX  
Active  
Normal  
operation  
TX Active  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
41  
Product Folder Links: TDP1204  
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8.4 Programming  
8.4.1 Pseudocode Examples  
These are examples of configuring TDP1204 when it is configured for I2C mode.  
8.4.1.1 HDMI 2.1 Source Example with DDC Snoop and DDC Buffer Enabled  
When using TDP1204's DDC buffer with snooping enabled, this example can be used. In this example, adaptive  
EQ for HDMI 2.1 is disabled.  
This example will initialize the following:  
Limited redriver mode with DC-coupled output  
TX slew rate for each data rate  
CTLE used for each data rate  
Receiver EQ setting for each lane (clock, D0, D1, and D2)  
TX voltage swing for each lane (clock, D0, D1, and D2)  
TX pre-emphasis or de-emphasis for HDMI 1.4 and 2.0  
// (address, data)  
// Initial power-on configuration.  
(0x0A, 0x00), // Rate snoop and TXFFE snoop enabled.  
(0x0B, 0x23), // 3G and 6G slew rate control  
(0x0C, 0x70), // HDMI clock and 8G10G12G tx slew rate control  
(0x0D, 0x22), // Limited mode, DC-coupled TX, 0 dB DCG, Auto Term, disable CTLE bypass  
(0x0E, 0x97), // HDMI14, 2.0 and 2.1 CTLE selection  
(0x10, 0x03), // Enabled DDC DCC correction and DDC buffer  
(0x12, 0x03), // Clock lane VOD and TXFFE  
(0x13, 0x00), // Clock lane EQ.  
(0x14, 0x03), // D0 lane VOD and TXFFE.  
(0x15, 0x0Y), // D0 lane EQ. Set "Y" to desired value.  
(0x16, 0x03), // D1 lane VOD and TXFFE.  
(0x17, 0x0Y), // D1 lane EQ. Set "Y" to desired value.  
(0x18, 0x03), // D2 lane VOD and TXFFE.  
(0x19, 0x0Y), // D2 lane EQ. Set "Y" to desired value.  
(0x09, 0x00), // Take out of PD state. Should be done after initialization is complete.  
8.4.1.2 HDMI 2.1 Source Example with DDC Snoop Disabled and DDC Buffer Disabled  
When using an external discrete DDC buffer with snooping disabled, this example can be used. In this example,  
adaptive EQ for HDMI 2.1 is disabled. Also, this example assumes the source only wants to support TXFFE0  
level when operating in HDMI 2.1 FRL mode.  
This example will initialize the following:  
Limited redriver mode with DC-coupled output  
TX slew rate for each data rate  
CTLE used for each data rate  
// (address, data)  
// Initial power-on configuration.  
(0x0A, 0x05), // Rate snoop disabled and TXFFE controlled by 35h, 41h, and 42h  
(0x0B, 0x23), // 3G and 6G tx slew rate control  
(0x0C, 0x70), // HDMI clock and 8G10G12G TX slew rate control  
(0x0E, 0x97), // HDMI 1.4, 2.0 and 2.1 CTLE selection  
(0x11, 0x00), // Disable all four lanes.  
(0x09, 0x00), // Take out of PD state. Should be done after initialization is complete.  
// Selection between HDMI modes (1.4, 2.0, and 2.1)  
switch (HDMI_MODE) {  
case 'HDMI14_165' : // HDMI 1.4 configuration for less than 1.65 Gbps  
(0x11, 0x00), // Disable all four lanes.  
(0x0D, 0x20), // Limited mode, DC-coupled TX, 0dB DCG, Term open, disable CTLE bypass  
(0x12, 0x03), // Clock lane VOD and TXFFE  
(0x13, 0x00), // Clock lane EQ.  
(0x14, 0x03), // D0 lane VOD and TXFFE.  
(0x15, 0x0Y), // D0 lane EQ. Set "Y" to desired value.  
Copyright © 2022 Texas Instruments Incorporated  
42  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
(0x16, 0x03), // D1 lane VOD and TXFFE.  
(0x17, 0x0Y), // D1 lane EQ. Set "Y" to desired value.  
(0x18, 0x03), // D2 lane VOD and TXFFE.  
(0x19, 0x0Y), // D2 lane EQ. Set "Y" to desired value.  
(0x20, 0x00), // Clear TMDS_CLK_RATIO  
(0x31, 0x00), // Disable FRL  
(0x11, 0x0F), // Enable all four lanes.  
break;  
case 'HDMI14_340' : // HDMI 1.4 configuration for greater than 1.65 Gbps  
(0x11, 0x00), // Disable all four lanes.  
(0x0D, 0x21), // Limited mode, DC-coupled TX, 0dB DCG, Term 300, disable CTLE bypass  
(0x12, 0x03), // Clock lane VOD and TXFFE  
(0x13, 0x00), // Clock lane EQ.  
(0x14, 0x03), // D0 lane VOD and TXFFE.  
(0x15, 0x0Y), // D0 lane EQ. Set "Y" to desired value.  
(0x16, 0x03), // D1 lane VOD and TXFFE.  
(0x17, 0x0Y), // D1 lane EQ. Set "Y" to desired value.  
(0x18, 0x03), // D2 lane VOD and TXFFE.  
(0x19, 0x0Y), // D2 lane EQ. Set "Y" to desired value.  
(0x20, 0x00), // Clear TMDS_CLK_RATIO  
(0x31, 0x00), // Disable FRL  
(0x11, 0x0F), // Enable all four lanes.  
break;  
case 'HDMI20' : // HDMI 2.0 configuration  
(0x11, 0x00), // Disable all four lanes.  
(0x0D, 0x23), // Limited mode, DC-coupled TX, 0dB DCG, Term 100, disable CTLE bypass  
(0x12, 0x03), // Clock lane VOD and TXFFE  
(0x13, 0x00), // Clock lane EQ.  
(0x14, 0x03), // D0 lane VOD and TXFFE.  
(0x15, 0x0Y), // D0 lane EQ. Set "Y" to desired value.  
(0x16, 0x03), // D1 lane VOD and TXFFE.  
(0x17, 0x0Y), // D1 lane EQ. Set "Y" to desired value.  
(0x18, 0x03), // D2 lane VOD and TXFFE.  
(0x19, 0x0Y), // D2 lane EQ. Set "Y" to desired value.  
(0x20, 0x02), // Set TMDS_CLK_RATIO  
(0x31, 0x00), // Disable FRL  
(0x11, 0x0F), // Enable all four lanes.  
break;  
case 'HDMI21_3G' : // HDMI 2.1 3 Gbps FRL  
(0x11, 0x00), // Disable all four lanes.  
(0x0D, 0x23), // Limited mode, DC-coupled TX, 0 dB DCG, Term 100, disable CTLE bypass  
(0x12, 0x03), // Clock lane VOD and TXFFE  
(0x13, 0x00), // Clock lane EQ.  
(0x14, 0x03), // D0 lane VOD and TXFFE.  
(0x15, 0x0Y), // D0 lane EQ. Set "Y" to desired value.  
(0x16, 0x03), // D1 lane VOD and TXFFE.  
(0x17, 0x0Y), // D1 lane EQ. Set "Y" to desired value.  
(0x18, 0x03), // D2 lane VOD and TXFFE.  
(0x19, 0x0Y), // D2 lane EQ. Set "Y" to desired value.  
(0x20, 0x00), // Clear TMDS_CLK_RATIO  
(0x31, 0x01), // Set to 3G FRL. Only TXFFE0 supported.  
(0x11, 0x0F), // Enable all four lanes.  
break;  
case 'HDMI21_6G_3lane' : // HDMI 2.1 6 Gbps FRL 3 lanes  
(0x11, 0x00), // Disable all four lanes.  
(0x0D, 0x23), // Limited mode, DC-coupled TX, 0 dB DCG, Term 100, disable CTLE bypass  
(0x12, 0x03), // Clock lane VOD and TXFFE  
(0x13, 0x00), // Clock lane EQ.  
(0x14, 0x03), // D0 lane VOD and TXFFE.  
(0x15, 0x0Y), // D0 lane EQ. Set "Y" to desired value.  
(0x16, 0x03), // D1 lane VOD and TXFFE.  
(0x17, 0x0Y), // D1 lane EQ. Set "Y" to desired value.  
(0x18, 0x03), // D2 lane VOD and TXFFE.  
(0x19, 0x0Y), // D2 lane EQ. Set "Y" to desired value.  
(0x20, 0x00), // Clear TMDS_CLK_RATIO  
(0x31, 0x02), // Set to 6G FRL and 3 lanes. Only TXFFE0 supported.  
(0x11, 0x0F), // Enable all four lanes.  
break;  
case 'HDMI21_6G_4lane' : // HDMI 2.1 6 Gbps FRL 4 lanes  
(0x11, 0x00), // Disable all four lanes.  
(0x0D, 0x23), // Limited mode, DC-coupled TX, 0 dB DCG, Term 100, disable CTLE bypass  
(0x12, 0x03), // Clock lane VOD and TXFFE  
(0x13, 0x0Y), // Clock lane EQ. Set to "Y" to desired value.  
(0x14, 0x03), // D0 lane VOD and TXFFE.  
(0x15, 0x0Y), // D0 lane EQ. Set "Y" to desired value.  
(0x16, 0x03), // D1 lane VOD and TXFFE.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
43  
Product Folder Links: TDP1204  
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
(0x17, 0x0Y), // D1 lane EQ. Set "Y" to desired value.  
(0x18, 0x03), // D2 lane VOD and TXFFE.  
(0x19, 0x0Y), // D2 lane EQ. Set "Y" to desired value.  
(0x20, 0x00), // Clear TMDS_CLK_RATIO  
(0x31, 0x03), // Set to 6G FRL and 4 lanes. Only TXFFE0 supported.  
(0x11, 0x0F), // Enable all four lanes.  
break;  
case 'HDMI21_8G' : //HDMI 2.1 8 Gbps FRL  
(0x11, 0x00), // Disable all four lanes.  
(0x0D, 0x23), // Limited mode, DC-coupled TX, 0 dB DCG, Term 100, disable CTLE bypass  
(0x12, 0x03), // Clock lane VOD and TXFFE  
(0x13, 0x0Y), // Clock lane EQ. Set "Y" to desired value.  
(0x14, 0x03), // D0 lane VOD and TXFFE.  
(0x15, 0x0Y), // D0 lane EQ. Set "Y" to desired value.  
(0x16, 0x03), // D1 lane VOD and TXFFE.  
(0x17, 0x0Y), // D1 lane EQ. Set "Y" to desired value.  
(0x18, 0x03), // D2 lane VOD and TXFFE.  
(0x19, 0x0Y), // D2 lane EQ. Set "Y" to desired value.  
(0x20, 0x00), // Clear TMDS_CLK_RATIO  
(0x31, 0x04), // Set to 8G FRL and 4 lanes. Only TXFFE0 supported.  
(0x11, 0x0F), // Enable all four lanes.  
break;  
case 'HDMI21_10G' : //HDMI 2.1 10 Gbps FRL  
(0x11, 0x00), // Disable all four lanes.  
(0x0D, 0x23), // Limited mode, DC-coupled TX, 0 dB DCG, Term 100, disable CTLE bypass  
(0x12, 0x03), // Clock lane VOD and TXFFE  
(0x13, 0x0Y), // Clock lane EQ. Set "Y" to desired value.  
(0x14, 0x03), // D0 lane VOD and TXFFE.  
(0x15, 0x0Y), // D0 lane EQ. Set "Y" to desired value.  
(0x16, 0x03), // D1 lane VOD and TXFFE.  
(0x17, 0x0Y), // D1 lane EQ. Set "Y" to desired value.  
(0x18, 0x03), // D2 lane VOD and TXFFE.  
(0x19, 0x0Y), // D2 lane EQ. Set "Y" to desired value.  
(0x20, 0x00), // Clear TMDS_CLK_RATIO  
(0x31, 0x05), // Set to 10G FRL and 4 lanes. Only TXFFE0 supported.  
(0x11, 0x0F), // Enable all four lanes.  
break;  
case 'HDMI21_12G' : //HDMI 2.1 12 Gbps FRL  
(0x11, 0x00), // Disable all four lanes.  
(0x0D, 0x23), // Limited mode, DC-coupled TX, 0 dB DCG, Term 100, disable CTLE bypass  
(0x12, 0x03), // Clock lane VOD and TXFFE  
(0x13, 0x0Y), // Clock lane EQ. Set "Y" to desired value.  
(0x14, 0x03), // D0 lane VOD and TXFFE.  
(0x15, 0x0Y), // D0 lane EQ. Set "Y" to desired value.  
(0x16, 0x03), // D1 lane VOD and TXFFE.  
(0x17, 0x0Y), // D1 lane EQ. Set "Y" to desired value.  
(0x18, 0x03), // D2 lane VOD and TXFFE.  
(0x19, 0x0Y), // D2 lane EQ. Set "Y" to desired value.  
(0x20, 0x00), // Clear TMDS_CLK_RATIO  
(0x31, 0x06), // Set to 12G FRL and 4 lanes. Only TXFFE0 supported.  
(0x11, 0x0F), // Enable all four lanes.  
break;  
}
8.4.2 TDP1204 I2C Address Options  
For further programmability, the TDP1204 can be controlled using I2C. The SCL/CFG0 and SDA/CFG1 terminals  
are used for I2C clock and I2C data respectively.  
8-22. TDP1204 I2C Device Address Description  
ADDR/EQ0 pin  
Bit 7 (MSB)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0 (W/R)  
HEX  
BC/BD  
BA/BB  
B8/B9  
B6/B7  
0
R
F
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
1
0
0
1
0
1
0
1
0/1  
0/1  
0/1  
0/1  
Copyright © 2022 Texas Instruments Incorporated  
44  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8.4.3 I2C Target Behavior  
Register O set  
Target Address  
Data wri en  
P
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0
A
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
Start  
Stop  
Ack  
Write  
8-11. I2C Write with Data  
The following procedure should be followed to write data to TDP1204 I2C registers (refer to 8-11):  
1. The host initiates a write operation by generating a start condition (S), followed by the TDP1204 7-bit  
address and a zero-value W/Rbit to indicate a write cycle.  
2. The TDP1204 acknowledges the address cycle.  
3. The host presents the register offset within TDP1204 to be written, consisting of one byte of data, MSB-first.  
4. The TDP1204 acknowledges the sub-address cycle.  
5. The host presents the first byte of data to be written to the I2C register.  
6. The TDP1204 acknowledges the byte transfer.  
7. The host may continue presenting additional bytes of data to be written, with each byte transfer completing  
with an acknowledge from the TDP1204.  
8. The host terminates the write operation by generating a stop condition (P).  
Data from o set 0x00  
or  
Target Address  
last read address + 1  
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
1
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
P
Start  
Stop  
Ack  
Read  
8-12. I2C Read Without Repeated Start  
The following procedure should be followed to read the TDP1204 I2C registers without a repeated Start (refer to  
8-12).  
1. The host initiates a read operation by generating a start condition (S), followed by the TDP1204 7-bit  
address and a zero-value W/Rbit to indicate a read cycle.  
2. The TDP1204 acknowledges the 7-bit address cycle.  
3. Following the acknowledge the host continues sending clock.  
4. The TDP1204 transmit the contents of the memory registers MSB-first starting at register 00h or last read  
register offset+1. If a write to the I2C register occurred prior to the read, then the TDP1204 shall start at the  
register offset specified in the write.  
5. The TDP1204 waits for either an acknowledge (ACK) or a not-acknowledge (NACK) from the host after each  
byte transfer; the I2C host acknowledges reception of each data byte transfer.  
6. If an ACK is received, then the TDP1204 transmits the next byte of data as long as host provides the clock. If  
a NAK is received, then the TDP1204 stops providing data and waits for a stop condition (P).  
7. The host terminates the write operation by generating a stop condition (P).  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
45  
Product Folder Links: TDP1204  
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
Register O set Xh  
Target Address  
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0
A
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
A
Sr  
Start  
Ack  
Write  
Repeated Start  
Data from Register Xh  
Target Address  
Data from Register Xh + 1  
P
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
1
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
A
Stop  
Read  
8-13. I2C Read with Repeated Start  
The following procedure should be followed to read the TDP1204 I2C registers with a repeated Start (refer to 图  
8-13).  
1. The host initiates a read operation by generating a start condition (S), followed by the TDP1204 7-bit  
address and a zero-value W/Rbit to indicate a write cycle.  
2. The TDP1204 acknowledges the 7-bit address cycle.  
3. The host presents the register offset within TDP1204 to be written, consisting of one byte of data, MSB-first.  
4. The TDP1204 acknowledges the register offset cycle.  
5. The host presents a repeated start condition (Sr).  
6. The host initiates a read operation by generating a start condition (S), followed by the TDP1204 7-bit  
address and a one-value W/Rbit to indicate a read cycle.  
7. The TDP1204 acknowledges the 7-bit address cycle.  
8. The TDP1204 transmit the contents of the memory registers MSB-first starting at the register offset.  
9. The TDP1204 shall wait for either an acknowledge (ACK) or a not-acknowledge (NACK) from the host after  
each byte transfer; the I2C host acknowledges reception of each data byte transfer.  
10. If an ACK is received, then the TDP1204 transmits the next byte of data as long as host provides the clock. If  
a NAK is received, then the TDP1204 stops providing data and waits for a stop condition (P).  
11. The host terminates the read operation by generating a stop condition (P).  
Register O set  
Target Address  
S
A6  
A5  
A4  
A3  
A2  
A1  
A0  
0
A
C7  
C6  
C5  
C4  
C3  
C2  
C1  
C0  
A
P
Start  
Ack  
Write  
Stop  
8-14. I2C Write Without Data  
The following procedure should be followed for setting a starting sub-address for I2C reads (refer to 8-14).  
1. The host initiates a write operation by generating a start condition (S), followed by the TDP1204 7-bit  
address and a zero-value W/Rbit to indicate a write cycle.  
2. The TDP1204 acknowledges the address cycle.  
3. The host presents the register offset within TDP1204 to be written, consisting of one byte of data, MSB-first.  
4. The TDP1204 acknowledges the register offset cycle.  
5. The host terminates the write operation by generating a stop condition (P).  
备注  
8-12 that if no register offset is included for the read procedure after initial power-up, then reads  
start at register offset 00h and continue byte by byte through the registers until the I2C host terminates  
the read operation. During a read operation, the TDP1204 auto-increments the I2C internal register  
address of the last byte transferred independent of whether or not an ACK was received from the I2C  
host.  
Copyright © 2022 Texas Instruments Incorporated  
46  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8.5 Register Maps  
8.5.1 TDP1204 Registers  
8-23 lists the memory-mapped registers for the TDP1204 registers. All register offset addresses not listed in  
8-23 should be considered as reserved locations and the register contents should not be modified.  
8-23. TDP1204 Registers  
Offset Acronym  
Register Name  
Section  
8.5.1.1  
8.5.1.2  
8.5.1.3  
8.5.1.4  
8h  
9h  
Ah  
Bh  
REV_ID  
Revision ID  
PD_RST  
Power Down and Reset control  
Misc Control  
MISC_CONTROL  
GBL_SLEW_CTRL  
Global TX Slew control for data lanes in  
HDMI1.4 and 2.0  
Ch  
Dh  
GBL_SLEW_CTRL2  
GBL_CTRL1  
Global TX Slew control for data and clock  
Global control  
8.5.1.5  
8.5.1.6  
Eh  
GBL_CTLE_CTRL  
DDC_CFG  
Global CTLE control  
8.5.1.7  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
19h  
1Ah  
1Ch  
1Dh  
1Eh  
20h  
31h  
35h  
41h  
42h  
50h  
51h  
DDC Buffer controls  
8.5.1.8  
LANE_ENABLE  
CLK_CONFIG1  
CLK_CONFIG2  
D0_CONFIG1  
Lane enables  
8.5.1.9  
CLK lane TX swing and FFE control  
CLK lane RX EQ control  
D0 lane TX swing and FFE control  
D0 lane RX EQ control  
8.5.1.10  
8.5.1.11  
8.5.1.12  
8.5.1.13  
8.5.1.14  
8.5.1.15  
8.5.1.16  
8.5.1.17  
8.5.1.18  
8.5.1.19  
8.5.1.20  
8.5.1.21  
8.5.1.22  
8.5.1.23  
8.5.1.24  
8.5.1.25  
8.5.1.26  
8.5.1.27  
8.5.1.28  
D0_CONFIG2  
D1_CONFIG1  
D1 lane TX swing and FFE control  
D1 lane RX EQ control  
D1_CONFIG2  
D2_CONFIG1  
D2 lane TX swing and FFE control  
D2 lane RX EQ control  
D2_CONFIG2  
SIGDET_TH_CFG  
GBL_STATUS  
SIGDET voltage threshold control  
Global Powerdown and Standby Status  
Adaptive EQ control1  
AEQ_CONTROL1  
AEQ_CONTROL2  
SCDC_TMDS_CONFIG  
SCDC_SINK_CONFIG  
SCDC_SRC_TEST  
SCDC_STATUS10  
SCDC_STATUS32  
AEQ_STATUS  
Adaptive EQ control2  
SCDC TMDS Clock Ratio  
SCDC SNK FRL FFE and Rate  
SCDC Test  
Lanes 0 and 1 FRL Training Status  
Lanes 2 and 3 FRL Training Status  
Adaptive EQ Status  
AEQ_STATUS2  
Adaptive EQ Status  
Complex bit access types are encoded to fit into small table cells. 8-24 shows the codes that are used for  
access types in this section.  
8-24. TDP1204 Access Type Codes  
Access Type  
Code  
Description  
Read Type  
H
H
R
Set or cleared by hardware  
Read  
R
RH  
R
H
Read  
Set or cleared by hardware  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
47  
Product Folder Links: TDP1204  
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8-24. TDP1204 Access Type Codes (continued)  
Access Type  
Write Type  
W
Code  
Description  
W
Write  
W1S  
W
Write  
1S  
1 to set  
WtoP  
W
Write  
Reset or Default Value  
-n  
Value after reset or the default  
value  
8.5.1.1 REV_ID Register (Offset = 8h) [Reset = 03h]  
REV_ID is shown in 8-25.  
Return to the 8-23.  
8-25. REV_ID Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-0  
REV_ID  
RH  
3h  
Device revision.  
8.5.1.2 PD_RST Register (Offset = 9h) [Reset = 01h]  
PD_RST is shown in 8-26.  
Return to the 8-23.  
8-26. PD_RST Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
SOFT_RST  
SCDC_SOFT_RST  
HWtoP  
HWtoP  
0h  
Writing a 1 to this field resets all fields  
6
0h  
Writing a 1 to this field resets the fields in the SCDC registers 20h,  
31h, 35h, 41h and 42h.  
5
4
3
2
RESERVED  
RESERVED  
RESERVED  
R
0h  
0h  
0h  
0h  
Reserved  
Reserved  
Reserved  
R/W  
R
HPD_PWRDWN_DISABL R/W  
E
Mode to ignore HPD pin and always enter active state unless  
PD_EN is high  
0h = Automatically enter power down based on HPD_IN  
1h = Always remain in active state or Standby  
1
0
STANDBY_DISABLE  
R/W  
R/W  
0h  
1h  
When high, standby mode is disabled and the device will  
immediately enter active mode with all lanes enabled when not in  
power down. When low, the device will enter standby mode when  
exiting power down and wait for incoming data before entering active  
mode.  
0h = Standby mode enabled  
1h = Standby mode disabled  
PD_EN  
I2C power down. Software should clear this field after it has  
completed initialization. HPD_OUT will be asserted low when this  
field is set.  
0h = Normal operation  
1h = Forced power down by I2C  
8.5.1.3 MISC_CONTROL Register (Offset = Ah) [Reset = 08h]  
MISC_CONTROL is shown in 8-27.  
Copyright © 2022 Texas Instruments Incorporated  
48  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
 
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
Return to the 8-23.  
8-27. MISC_CONTROL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
LANE_SWAP  
R/W  
0h  
This field swaps the input and output lanes.  
0h = No lanes swapped  
1h = Both input and output lanes swapped  
6
5
RESERVED  
R/W  
R/W  
0h  
0h  
Reserved  
RX_TERM_DISABLE  
When set will disable Rx termination.  
0h = Enabled when HPD_IN high.  
1h = Disable  
4
3
HPD_OUT_SEL  
R/W  
R/W  
0h  
1h  
Selects whether HPD_OUT is push/pull or open-drain.  
0h = Push Pull  
1h = Open Drain  
EQ_SNOOP_CTRL  
Control whether Rx EQ is adjusted in response to snooped TXFFE  
when TXFFE snooping is enabled through registers 41h and 42h.  
0h = Rx EQ automatically adjusted for TXFFE  
1h = Rx EQ is fixed  
2
RATE_SNOOP_CTRL  
TXFFE_SNOOP_CTRL  
R/W  
R/W  
0h  
0h  
Control snooping of HDMI rates. When snooping is disabled, correct  
HDMI rate must be written through I2C to registers 20h and 31h.  
0h = Snooping enabled  
1h = Snooping disabled  
1-0  
Control snooping of TXFFE  
0h = DDC snooping through registers 35h, 41h and 42h  
1h = DDC snooping disabled. TXFFE controlled through I2C writes to  
35h, 41h and 42h  
2h = DDC snooping disabled. TXFFE controlled through writes to  
CLK_TXFFE, D0_TXFFE, D1_TXFFE, and D2_TXFFE  
3h = DDC snooping disabled. TXFFE controlled through writes to  
CLK_TXFFE, D0_TXFFE, D1_TXFFE, and D2_TXFFE  
8.5.1.4 GBL_SLEW_CTRL Register (Offset = Bh) [Reset = 34h]  
GBL_SLEW_CTRL is shown in 8-28.  
Return to the 8-23.  
8-28. GBL_SLEW_CTRL Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
SLEW_3G  
R
0h  
Reserved  
6-4  
R/W  
3h  
Field controls slew rate for HDMI 1.4 data lane and HDMI 2.1 3 Gbps  
FRL data lanes.  
0h = slowest edge rate  
7h = fastest edge rate  
3
RESERVED  
SLEW_6G  
R
0h  
4h  
Reserved  
2-0  
R/W  
Field controls slew rate for HDMI 2.0 data lanes and HDMI 2.1 6  
Gbps FRL data lanes.  
0h = slowest edge rate  
7h = fastest edge rate  
8.5.1.5 GBL_SLEW_CTRL2 Register (Offset = Ch) [Reset = 71h]  
GBL_SLEW_CTRL2 is shown in 8-29.  
Return to the 8-23.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
49  
Product Folder Links: TDP1204  
 
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8-29. GBL_SLEW_CTRL2 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
SLEW_8G10G12G  
R
0h  
Reserved  
6-4  
R/W  
7h  
Field controls slew rate for data lanes for 8 Gbps, 10 Gbps and 12  
Gbps FRL datarates  
0h = slowest edge rate  
7h = fastest edge rate  
3
RESERVED  
SLEW_CLK  
R
0h  
1h  
Reserved  
2-0  
R/W  
Field control slew rate of clock lane in HDMI 1.4b and HDMI 2.0  
modes.  
0h = slowest edge rate  
7h = fastest edge rate  
8.5.1.6 GBL_CTRL1 Register (Offset = Dh) [Reset = 22h]  
GBL_CTRL1 is shown in 8-30.  
Return to the 8-23.  
8-30. GBL_CTRL1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
GLOBAL_LINR_EN  
R/W  
0h  
Global control for selecting between linear redriver or limited redriver.  
0h = Limited  
1h = Linear  
6
5-4  
3
TX_AC_EN  
R/W  
R/W  
0h  
2h  
0h  
Controls selection of ac-coupled or dc-coupled TX termination. When  
AC-coupled is enabled, 50 Ωtermination on both P and N to VCC  
will be enabled.  
0h = dc-coupled  
1h = ac-coupled  
GLOBAL_DCG  
CTLE DCGain for all lane.  
0h = 3 dB  
1h = 3 dB  
2h = 0 dB  
3h = +1 dB  
TXTERM_AUTO_HDMI14 R/W  
Selects between no termination and 300 Ωs when TERM = 2h and  
operating in HDMI1.4.  
0h = No termination for clock less than or equal to 165 MHz and 300  
Ωfor clock greater than 225 MHz  
1h = 300 Ω  
2
CTLEBYP_EN  
TERM  
R/W  
R/W  
0h  
2h  
Selects whether or not CTLE bypass is enabled or not when  
GLOBAL_DCG is set to 2h and EQ set to 0h.  
0h = CTLE bypass disabled  
1h = CTLE bypass enabled  
1-0  
TX terminaion control  
0h = No termination  
1h = 300 Ω  
2h = Automatic based HDMI mode  
3h = 100 Ω  
8.5.1.7 GBL_CTLE_CTRL Register (Offset = Eh) [Reset = 3Fh]  
GBL_CTLE_CTRL is shown in 8-31.  
Return to the 8-23.  
8-31. GBL_CTLE_CTRL Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
GLOBAL_CTLEBW  
R/W  
0h  
CTLE bandwidth control. 0 is lowest and 3h is highest.  
Copyright © 2022 Texas Instruments Incorporated  
50  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
 
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8-31. GBL_CTLE_CTRL Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
5-4  
HDMI14_CTLE_SEL  
HDMI20_CTLE_SEL  
HDMI21_CTLE_SEL  
R/W  
3h  
Selects the CTLE used when datarate is HDMI 1.4. Value  
programmed into this field will apply to data lanes only. Clock lane  
will always use 3 Gbps CTLE.  
0h = 3 Gbps CTLE  
1h = 6 Gbps CTLE  
2h = Auto select based on snoop datarate  
3h = 12 Gbps CTLE  
3-2  
1-0  
R/W  
R/W  
3h  
3h  
Selects the CTLE used when datarate is HDMI 2.0. Value  
programmed into this field will apply to data lanes only. Clock lane  
will always use 3 Gbps CTLE.  
0h = 3 Gbps CTLE  
1h = 6 Gbps CTLE  
2h = Auto select based on snoop datarate  
3h = 12 Gbps CTLE  
Selects the CTLE used when datarate is HDMI 2.1. Value  
programmed into this field will apply to all four lanes.  
0h = 3 Gbps CTLE  
1h = 6 Gbps CTLE  
2h = Auto select based on snoop datarate  
3h = 12 Gbps CTLE  
8.5.1.8 DDC_CFG Register (Offset = 10h) [Reset = 02h]  
DDC_CFG is shown in 8-32.  
Return to the 8-23.  
8-32. DDC_CFG Register Field Descriptions  
Bit  
7-2  
1
Field  
Type  
Reset  
Description  
RESERVED  
DDC_LV_DCC_EN  
R
0h  
Reserved  
R/W  
1h  
Controls whether duty cycle correction is enabled for DDC LV side.  
0h = DCC disabled  
1h = DCC enabled  
0
DDCBUF_EN  
R/W  
0h  
Controls whether or not DDC buffer is enabled. Regardless of the  
state of this field, the device will always disable the DDC buffer  
anytime HPD_IN is low or when PD_EN field is 1.  
0h = DDC Buffer Disabled  
1h = DDC Buffer Enabled  
8.5.1.9 LANE_ENABLE Register (Offset = 11h) [Reset = 5Fh]  
LANE_ENABLE is shown in 8-33.  
Return to the 8-23.  
8-33. LANE_ENABLE Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-6  
HDMI20_VOD  
R/W  
1h  
VOD control for limited redriver in HDMI 2.0  
0h = Use values in CLK_VOD, D0_VOD, D1_VOD and D2_VOD  
1h = Default (1000 mV)  
2h = Default 5%  
3h = Default + 5%  
5-4  
HDMI14_VOD  
R/W  
1h  
VOD control for limited redriver in HDMI 1.4  
0h = Use values in CLK_VOD, D0_VOD, D1_VOD and D2_VOD  
1h = Default (1000 mV)  
2h = Default 5%  
3h = Default 10%  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
51  
Product Folder Links: TDP1204  
 
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8-33. LANE_ENABLE Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3
CLK_LANE_EN  
R/W  
1h  
Enable for CLK lane  
0h = Disabled  
1h = Enabled  
2
1
0
D0_LANE_EN  
D1_LANE_EN  
D2_LANE_EN  
R/W  
R/W  
R/W  
1h  
1h  
1h  
Enable for D0 lane  
0h = Disabled  
1h = Enabled  
Enable for D0 lane  
0h = Disabled  
1h = Enabled  
Enable for D0 lane  
0h = Disabled  
1h = Enabled  
8.5.1.10 CLK_CONFIG1 Register (Offset = 12h) [Reset = 03h]  
CLK_CONFIG1 is shown in 8-34.  
Return to the 8-23.  
8-34. CLK_CONFIG1 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
CLK_TXFFE  
R
0h  
Reserved  
6-4  
R/W  
0h  
TXFFE control for CLK lane. This field is only honored in HDMI 2.1.  
0h = 0.0 dB  
1h = 3.5 dB  
2h = 6.0 dB  
3h = Reserved  
4h = 1.5 dB  
5h = 2.5 dB  
6h = 3.5 dB  
7h = 4.8 dB  
3
RESERVED  
CLK_VOD  
R
0h  
3h  
Reserved  
2-0  
R/W  
Differential Swing control for CLK lane.  
0h = Limited 15% Linear 800 mV  
1h = Limited 10% Linear 900 mV  
2h = Limited 5% Linear 1000 mV  
3h = Limited 800 mV Linear 1200 mV  
4h = Limited +5% Linear Reserved  
5h = Limited +10% Linear Reserved  
6h = Limited +15% Linear Reserved  
7h = Limited +20% Linear Reserved  
8.5.1.11 CLK_CONFIG2 Register (Offset = 13h) [Reset = 00h]  
CLK_CONFIG2 is shown in 8-35.  
Return to the 8-23.  
8-35. CLK_CONFIG2 Register Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
Reset  
Description  
RESERVED  
CLK_EQ  
R
0h  
Reserved  
R/W  
0h  
EQ control for CLK lane. This field is only honored in HDMI 2.1.  
0h = Min EQ  
Fh = Max EQ  
Copyright © 2022 Texas Instruments Incorporated  
52  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8.5.1.12 D0_CONFIG1 Register (Offset = 14h) [Reset = 03h]  
D0_CONFIG1 is shown in 8-36.  
Return to the 8-23.  
8-36. D0_CONFIG1 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
D0_TXFFE  
R
0h  
Reserved  
6-4  
R/W  
0h  
TXFFE control for D0 lane.  
0h = 0.0 dB  
1h = 3.5 dB  
2h = 6.0 dB  
3h = Reserved  
4h = 1.5 dB  
5h = 2.5 dB  
6h = 3.5 dB  
7h = 4.8 dB  
3
RESERVED  
D0_VOD  
R
0h  
3h  
Reserved  
2-0  
R/W  
Differential Swing control for D0 lane.  
0h = Limited 15% Linear 800 mV  
1h = Limited 10% Linear 900 mV  
2h = Limited - 5% Linear 1000 mV  
3h = Limited 1000 mV Linear 1200 mV  
4h = Limited +5% Linear Reserved  
5h = Limited +10% Linear Reserved  
6h = Limited +15% Linear Reserved  
7h = Limited +20% Linear Reserved  
8.5.1.13 D0_CONFIG2 Register (Offset = 15h) [Reset = 00h]  
D0_CONFIG2 is shown in 8-37.  
Return to the 8-23.  
8-37. D0_CONFIG2 Register Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
Reset  
Description  
RESERVED  
D0_EQ  
R
0h  
Reserved  
R/W  
0h  
EQ control for D0 lane.  
0h = Min EQ  
Fh = Max EQ  
8.5.1.14 D1_CONFIG1 Register (Offset = 16h) [Reset = 03h]  
D1_CONFIG1 is shown in 8-38.  
Return to the 8-23.  
8-38. D1_CONFIG1 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
RESERVED  
R
0h  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
53  
Product Folder Links: TDP1204  
 
 
 
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8-38. D1_CONFIG1 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
6-4  
D1_TXFFE  
R/W  
0h  
TXFFE control for D1 lane.  
0h = 0.0 dB  
1h = 3.5 dB  
2h = 6.0 dB  
3h = Reserved  
4h = 1.5 dB  
5h = 2.5 dB  
6h = 3.5 dB  
7h = 4.8 dB  
3
RESERVED  
D1_VOD  
R
0h  
3h  
Reserved  
2-0  
R/W  
Differential Swing control for D1 lane.  
0h = Limited 15% Linear 800 mV  
1h = Limited 10% Linear 900 mV  
2h = Limited 5% Linear 1000 mV  
3h = Limited 1000 mV Linear 1200 mV  
4h = Limited +5% Linear Reserved  
5h = Limited +10% Linear Reserved  
6h = Limited +15% Linear Reserved  
7h = Limited +20% Linear Reserved  
8.5.1.15 D1_CONFIG2 Register (Offset = 17h) [Reset = 00h]  
D1_CONFIG2 is shown in 8-39.  
Return to the 8-23.  
8-39. D1_CONFIG2 Register Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
Reset  
Description  
RESERVED  
D1_EQ  
R
0h  
Reserved  
R/W  
0h  
EQ control for D1 lane  
0h = Min EQ  
Fh = Max EQ  
8.5.1.16 D2_CONFIG1 Register (Offset = 18h) [Reset = 03h]  
D2_CONFIG1 is shown in 8-40.  
Return to the 8-23.  
8-40. D2_CONFIG1 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
D2_TXFFE  
R
0h  
Reserved  
6-4  
R/W  
0h  
TXFFE control for D2 lane  
0h = 0.0 dB  
1h = 3.5 dB  
2h = 6.0 dB  
3h = Reserved  
4h = 1.5 dB  
5h = 2.5 dB  
6h = 3.5 dB  
7h = 4.8 dB  
3
RESERVED  
R
0h  
Reserved  
Copyright © 2022 Texas Instruments Incorporated  
54  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8-40. D2_CONFIG1 Register Field Descriptions (continued)  
Bit  
Field  
D2_VOD  
Type  
Reset  
Description  
2-0  
R/W  
3h  
Differential Swing control for D2 lane.  
0h = Limited 15% Linear 800 mV  
1h = Limited -10% Linear 900 mV  
2h = Limited - 5% Linear 1000 mV  
3h = Limited 1000 mV Linear 1200 mV  
4h = Limited +5% Linear Reserved  
5h = Limited +10% Linear Reserved  
6h = Limited +15% Linear Reserved  
7h = Limited +20% Linear Reserved  
8.5.1.17 D2_CONFIG2 Register (Offset = 19h) [Reset = 00h]  
D2_CONFIG2 is shown in 8-41.  
Return to the 8-23.  
8-41. D2_CONFIG2 Register Field Descriptions  
Bit  
7-4  
3-0  
Field  
Type  
Reset  
Description  
RESERVED  
D2_EQ  
R
0h  
Reserved  
R/W  
0h  
EQ control for D2 lane.  
0h = Min EQ  
Fh = Max EQ  
8.5.1.18 SIGDET_TH_CFG Register (Offset = 1Ah) [Reset = 44h]  
SIGDET_TH_CFG is shown in 8-42.  
Return to the 8-23.  
8-42. SIGDET_TH_CFG Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
CFG_SIGDET_HYST  
R
0h  
Reserved  
6-4  
R/W  
4h  
Controls the SIGDET hysteresis. Value programmed into this field  
plus value programmed into CFG_SIGDET_VTH field defines the  
SIGDET assert threshold.  
0h = 0 mV  
1h = 12 mV  
2h = 25 mV  
3h = 37 mV  
4h = 55 mV  
5h = 63 mV  
6h = 75 mV  
7h = 90 mV  
3
RESERVED  
R
0h  
4h  
Reserved  
2-0  
CFG_SIGDET_VTH  
R/W  
Controls the SIGDET de-assert voltage threshold.  
0h = 58 mV  
1h = 60 mV  
2h = 72 mV  
3h = 84 mV  
4h = 95 mV  
5h = 108 mV  
6h = 120 mV  
7h = 135 mV  
8.5.1.19 GBL_STATUS Register (Offset = 1Ch) [Reset = 00h]  
GBL_STATUS is shown in 8-43.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
55  
Product Folder Links: TDP1204  
 
 
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
Return to the 8-23.  
8-43. GBL_STATUS Register Field Descriptions  
Bit  
7
Field  
Type  
RH  
RH  
R
Reset  
Description  
PD_STATUS  
STANDBY_STATUS  
RESERVED  
0h  
Power Down status  
Standby Status  
Reserved  
6
0h  
5-0  
0h  
8.5.1.20 AEQ_CONTROL1 Register (Offset = 1Dh) [Reset = F3h]  
AEQ_CONTROL1 is shown in 8-44.  
Return to the 8-23.  
8-44. AEQ_CONTROL1 Register Field Descriptions  
Bit  
7-4  
3-2  
Field  
Type  
Reset  
Description  
FULLAEQ_UPPER_EQ  
AEQ_PATTERN_CTRL  
R/W  
Fh  
Maximum EQ value to check for full AEQ mode  
R/W  
0h  
Control how link training pattern snooping for EQ adaptation  
0h = Require a read of pattern register 41h/42h after a rate change.  
Allow eq adaptation for patterns 0, 5, 6, 7, and 8.  
1h = Require a read of pattern register 41h/42h after a rate change.  
Allow eq adaptation for patterns 5, 6, 7, and 8.  
2h = Allow eq adaptation for patterns 0, 5, 6, 7, and 8. No need for  
read after rate change  
3h = Allow eq adaptation for patterns 5, 6, 7, and 8. No need for read  
after rate change.  
1
0
AEQ_START_CTRL  
AEQ_TX_DELAY_EN  
R/W  
R/W  
1h  
1h  
Control whether starts based on signal detect or both signal detect  
and FLT_UPDATE cleared  
0h = Only require signal detect  
1h = Require signal detect and clearing of FLT_UPDATE  
Control whether TX remains disabled during EQ adaptation  
0h = TX active during adaptation  
1h = TX disabled during adaptation  
8.5.1.21 AEQ_CONTROL2 Register (Offset = 1Eh) [Reset = 00h]  
AEQ_CONTROL2 is shown in 8-45.  
Return to the 8-23.  
8-45. AEQ_CONTROL2 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
AEQ_MODE  
R/W  
0h  
Selects between two Adaption modes  
0h = AEQ with hits counted at mideye for every EQ.  
1h = AEQ with hits counted at mideye only for EQ equal 0.  
6
AEQ_EN  
R/W  
0h  
Controls whether or not adaptive EQ is enabled.  
0h = AEQ disabled  
1h = AEQ enabled  
5-4  
3
RESERVED  
R/W  
R/W  
0h  
0h  
Reserved  
OVER_EQ_SIGN  
Selects the sign for OVER_EQ_CTRL field.  
0h = positive  
1h = negative  
Copyright © 2022 Texas Instruments Incorporated  
56  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
 
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8-45. AEQ_CONTROL2 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
2-0  
OVER_EQ_CTRL  
R/W  
0h  
This field will increase or decrease the AEQ by value programmed  
into this field. For example, full AEQ value is 6 and this field is  
programmed to 2 and OVER_EQ_SIGN = 0, then EQ value used will  
be 8. This field is only used in Full AEQ mode.  
0h = 0 or 8  
1h = 1 or 7  
2h = 2 or 6  
3h = 3 or 5  
4h = 4 or 4  
5h = 5 or 3  
6h = 6 or 2  
7h = 7 or 1  
8.5.1.22 SCDC_TMDS_CONFIG Register (Offset = 20h) [Reset = 00h]  
SCDC_TMDS_CONFIG is shown in 8-46.  
Return to the 8-23.  
8-46. SCDC_TMDS_CONFIG Register Field Descriptions  
Bit  
7-2  
1
Field  
Type  
Reset  
Description  
RESERVED  
TMDS_CLK_RATIO  
R
0h  
Reserved  
RH/W  
0h  
TMDS Bit Period to TMDS Clock Period Ratio. Reads last value  
snooped through DDC read/write or I2C write.  
0h = 1/10 (HDMI 1.4b)  
1h = 1/40 (HDMI 2.0)  
0
RESERVED  
R
0h  
Reserved  
8.5.1.23 SCDC_SINK_CONFIG Register (Offset = 31h) [Reset = 00h]  
SCDC_SINK_CONFIG is shown in 8-47.  
Return to the 8-23.  
8-47. SCDC_SINK_CONFIG Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
FFE_LEVELS  
RH/W  
0h  
Indicates the maximum TXFFE level supported for the current FRL  
rate. Read last value snooped through DDC read/write or I2C write.  
0h = Only TXFFE0 supported  
1h = TXFFE0-1 supported  
2h = TXFFE0-2 supported  
3h = TXFFE0-3 supported  
3-0  
FRL_RATE  
RH/W  
0h  
Selects FRL rate and lane count. Read last value snooped through  
DDC read/write or I2C write.  
0h = Disable FRL  
1h = 3 Gbps on 3 lanes  
2h = 6 Gbps on 3 lanes  
3h = 6 Gbps on 4 lanes  
4h = 8 Gbps on 4 lanes  
5h = 10 Gbps on 4 lanes  
6h = 12 Gbps on 4 lanes  
8.5.1.24 SCDC_SRC_TEST Register (Offset = 35h) [Reset = 00h]  
SCDC_SRC_TEST is shown in 8-48.  
Return to the 8-23.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
57  
Product Folder Links: TDP1204  
 
 
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8-48. SCDC_SRC_TEST Register Field Descriptions  
Bit  
7-6  
5
Field  
Type  
Reset  
Description  
RESERVED  
FLT_NO_TIMEOUT  
R
0h  
Reserved  
RH/W  
0h  
Set by sink test equipment to have source not time out during FRL  
link training  
0h = Normal operation  
1h = Source does not timeout  
4
3
RESERVED  
TX_NO_FFE  
R
0h  
0h  
Reserved  
RH/W  
Test mode to disable FFE. Read last value snooped through DDC  
read/write or I2C write.  
0h = Normal TXFFE  
1h = TX sent with no FFE  
2
1
0
TX_DEEMPH_ONLY  
TX_PRESHOOT_ONLY  
RESERVED  
RH/W  
RH/W  
R
0h  
0h  
0h  
Test mode to enable de-emphasis only. Read last value snooped  
through DDC read/write or I2C write.  
0h = Normal TXFFE  
1h = TX sent de-emphasis only  
Test mode to enable pre-shoot only. Read last value snooped  
through DDC read/write or I2C write.  
0h = Normal TXFFE  
1h = TX sent with pre-shoot only  
Reserved  
8.5.1.25 SCDC_STATUS10 Register (Offset = 41h) [Reset = 00h]  
SCDC_STATUS10 is shown in 8-49.  
Return to the 8-23.  
8-49. SCDC_STATUS10 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LN1_LTP_REQ  
RH/W  
0h  
Link training pattern request for lane 1. Reads last value read  
through DDC or written through I2C. A DDC read/I2C write of Eh  
advances the current FFE level for this lane saturating at the value of  
FFE_LEVELS. A DDC read/I2C write of Fh clears for FFE level for all  
lanes to TXFFE0.  
3-0  
LN0_LTP_REQ  
RH/W  
0h  
Link training pattern request for lane 0. Reads last value read  
through DDC or written through I2C. A DDC read/I2C write of Eh  
advances the current FFE level for this lane saturating at the value of  
FFE_LEVELS. A DDC read/I2C write of Fh clears for FFE level for all  
lanes to TXFFE0.  
8.5.1.26 SCDC_STATUS32 Register (Offset = 42h) [Reset = 00h]  
SCDC_STATUS32 is shown in 8-50.  
Return to the 8-23.  
8-50. SCDC_STATUS32 Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7-4  
LN3_LTP_REQ  
RH/W  
0h  
Link training pattern request for lane 3. Reads last value read  
through DDC or written through I2C. A DDC read/I2C write of Eh  
advances the current FFE level for this lane saturating at the value of  
FFE_LEVELS. A DDC read/I2C write of Fh clears for FFE level for all  
lanes to TXFFE0.  
Copyright © 2022 Texas Instruments Incorporated  
58  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
 
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
8-50. SCDC_STATUS32 Register Field Descriptions (continued)  
Bit  
Field  
Type  
Reset  
Description  
3-0  
LN2_LTP_REQ  
RH/W  
0h  
Link training pattern request for lane 2. Reads last value read  
through DDC or written through I2C. A DDC read/I2C write of Eh  
advances the current FFE level for this lane saturating at the value of  
FFE_LEVELS. A DDC read/I2C write of Fh clears for FFE level for all  
lanes to TXFFE0.  
8.5.1.27 AEQ_STATUS Register (Offset = 50h) [Reset = 80h]  
AEQ_STATUS is shown in 8-51.  
Return to the 8-23.  
8-51. AEQ_STATUS Register Field Descriptions  
Bit  
Field  
Type  
Reset  
Description  
7
AEQDONE_STAT  
RH  
1h  
This field is low while AEQ is active and high when it is done. It is  
valid when FRL training and AEQ_EN = 1 or when  
FORCE_AEQ_EN = 1 and HW has reset FORCE_AEQ back to 0.  
0h = AEQ is running  
1h = AEQ is done  
6
5
AEQ_HC_OVERFLOW  
RESERVED  
RH  
R
0h  
0h  
0h  
0h  
13-bit AEQ hit counter overflow status  
Reserved  
4
RXD1_DONE_STAT  
RXD1_AEQ_STAT  
RH  
RH  
This flag is set after DAC wait timer expires.  
3-0  
Optimal EQ determined by FSM after the completion of Full AEQ.  
This field will include the value programmed into OVER_EQ_CTRL  
field.  
8.5.1.28 AEQ_STATUS2 Register (Offset = 51h) [Reset = 00h]  
AEQ_STATUS2 is shown in 8-52.  
Return to the 8-23.  
8-52. AEQ_STATUS2 Register Field Descriptions  
Bit  
7
Field  
Type  
Reset  
Description  
RESERVED  
R
0h  
Reserved  
6-4  
3-0  
VOD_RANGE_STAT  
AEQ_EYE_STAT  
RH  
RH  
0h  
0h  
VOD range selected by the last AEQ run  
EYE status from the last AEQ run. Relative to the maximum limit of  
15.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
59  
Product Folder Links: TDP1204  
 
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
9 Application and Implementation  
备注  
以下应用部分中的信息不属TI 器件规格的范围TI 不担保其准确性和完整性。TI 的客 户应负责确定  
器件是否适用于其应用。客户应验证并测试其设计以确保系统功能。  
TDP1204 is designed to accept AC or DC-coupled HDMI input signals. The device provides signal conditioning  
and level shifting functions to drive a compliant HDMI source connector. The device can be used in an HDMI  
sink application such as monitor or TV. The TDP1204 can also be used as an DP/HDMI redriver in an embedded  
application. In many major PC or gaming systems APU/GPU will provide AC-coupled HDMI signals. TDP1204 is  
suitable for such platforms.  
9.1 Application Information  
The TDP1204 is designed to work in source applications such as Blu-rayDVD player, gaming system,  
desktops, notebooks, or audio video receivers (AVR) and in sink applications such as TV or monitors. The  
following sections provide design considerations for various types of applications.  
9.2 Typical Source-Side Application  
9-1 provides a schematic representation of what is considered a standard source implementation.  
B
D
C
A
LCD  
LAB  
Op onal  
CAC-RX  
Op onal  
Op onal  
CAC-TX  
RESD  
IN_D2p  
IN_D2n  
OUT_D2p  
OUT_D2n  
OUT_D1p  
OUT_D1n  
IN_D1p  
IN_D1n  
OUT_D0p  
OUT_D0n  
Redriver  
IN_D0p  
IN_D0n  
GPU  
OUT_CLKp  
OUT_CLKn  
IN_CLKp  
IN_CLKn  
LCAP-RX  
LCAP-TX  
LR_ESD  
LESD  
9-1. TDP1204 in Source Side Application  
Copyright © 2022 Texas Instruments Incorporated  
60  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
9.2.1 Design Requirements  
The TDP1204 can be designed into many different applications. In all the applications there are certain  
requirements for the system to work properly. The EN pin must have a 0.1-µF capacitor to ground. The  
processor can drive the EN pin, but the EN pin needs to change states (low to high) after the voltage rails have  
stabilized. Using I2C is the best way to configure the device, but pin strapping is also provided as I2C and is not  
available in all cases. As sources may have many different naming conventions, it is necessary to confirm that  
the link between the source and the TDP1204 are correctly mapped. A Swap function is provided for the input  
pins in case signaling is reversed between the source and receptacle. 9-1 lists information on expected  
values to perform properly.  
For this design example, the TDP1204 is assumed to be configured for pin-strap mode. If I2C mode is desired,  
MODE pin should be set to "F" and software must configure TDP1204. For how to configure TDP1204, refer to  
8.4.1.  
9-1. Design Parameters  
Design Parameter  
VCC  
Value  
3.3-V  
VIO (1.2-V, 1.8-V, or 3.3-V LVCMOS levels)  
Maximum HDMI 2.1 FRL Datarate (3, 6, 8, 10, or 12-Gbps)  
Pin-strap or I2C mode (if I2C, then MODE = "F").  
Pin Strap Mode.(MODE = "0", "R" or "1").  
1.8-V  
12-Gbps  
Pin-strap  
Mode = "0" (Fixed EQ with DDC Buffer support)  
DDC Snoop Feature. (Y/N). Required when in pin strap. Optional in  
I2C mode.  
Yes  
SWAP function (Y / N). In pin strap mode controlled by SDA/CFG1  
pin.  
No. SDA/CFG1 pin = L.  
DDC Level Shifter Support (Y / N)  
HPD_IN to HPD_OUT Level Shifter Support (Y / N)  
Pre-Channel Length (Refer to 9-2 on length restrictions)  
Post-Channel Length (Refer to 9-2 on length restrictions)  
Limited or linear redriver mode?  
Yes  
Yes, HPD_OUT is used. If no, then HPD_OUT can be left floating.  
Length = 8 inches (7.2-dB at 6-GHz insertion loss)  
Length = 2 inches (1.8-dB at 6-GHz insertion loss)  
Limited redriver (LINEAR_EN pin = "0").  
TX is DC or AC-coupled to HDMI receptacle?  
DC-coupled. AC_EN pin = Low.  
GPU Launch Voltage (500 mV to 1200 mV) if using limited redriver  
mode. If using linear redriver mode, refer to 8-4 for GPU  
requirements.  
500-mV  
If MODE = "0" or "R", GPU's TX FFE pre-shoot and de-emphasis  
levels shall be set to 0-dB for all four TXFFE levels  
If MODE = "1", then GPU TXFFE pre-shoot and de-emphasis levels  
shall meet 8-4 requirements.  
GPU HDMI 2.1 pre-shoot and de-emphasis levels used if using  
redriver in limited mode  
CTLE HDMI Datarate Map (Map A, Map B, or Map C)  
Map C  
EQ1 pin: "R"  
ADDR/EQ0 pin: "R"  
(7.5-dB)  
RX EQ (16 possible values. Value chosen based on pre-channel  
length).  
TX Pre-emphasis. In pre-strap mode controlled by TXPRE pin.  
TX Swing. In pre-strap mode controlled by TXSWG pin.  
Default 0-dB of pre-emphasis. Float TXPRE pin.  
Default TX swing level. Float TXSWG pin.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
61  
Product Folder Links: TDP1204  
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
9-2. Source Layout and Component Placement Constraints  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
External series resistor between ESD component and  
TDP1204  
RESD  
0
2.5  
(1) (2)  
LAB  
PCB trace length from GPU to TDP1204  
At 12-Gbps  
At 12-Gbps  
1
10  
5
inches  
mil  
LINTRA-AB Intra-pair skew from GPU to TDP1204  
(1)  
LCD  
PCB trace length from TDP1204 to receptacle  
0.75  
2
inches  
mil  
LINTRA-CD Intra-pair skew from TDP1204 to receptacle  
5
PCB trace length from TDP1204 to optional external  
CAC-RX capacitor  
LCAP-RX  
0.3  
0.3  
inches  
inches  
PCB trace length from TDP1204 to optional external  
CAC-TX capacitor  
LCAP-TX  
LESD  
PCB trace length from ESD component to receptacle  
PCB trace length from RESD to ESD component  
0.5  
0.25  
1
inches  
inches  
inches  
LR_ESD  
LINTER-PAIR Inter-pair skew between all four channels (D0, D1, D2,  
(3)  
and CLK)  
dB / inch /  
GHz  
ILPCB  
PCB trace insertion loss  
0.1  
0.17  
ZPCB_AB  
ZPCB_CD  
VIAAB  
Differential impedance of LAB  
75  
90  
110  
110  
2
Differential impedance of LCD  
Number of vias between GPU and TDP1204  
VIA  
VIACD  
Number of vias between HDMI connector and  
TDP1204  
1
VIA  
Differential crosstalk between adjacent differential  
pairs on PCB.  
XTALK  
dB  
3 GHz  
24  
(1) Maximum distance assumes PCB trace insertion loss meets ILPCB requirement. If PCB trace insertion loss exceeds the maximum limit,  
then distance needs be reduced.  
(2) Minimum distance assumes PCB trace insertion loss meets ILPCB requirement. If PCB trace insertion loss is less than the minimum  
limit, then distance needs to be increased.  
(3) Calculation of channel length is the sum of LAB and LCD  
.
Copyright © 2022 Texas Instruments Incorporated  
62  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
9.2.2 Detailed Design Procedure  
VCC (3.3 V)  
VIO  
10 µF  
100 nF  
100 nF  
100 nF  
100 nF  
VCC (3.3 V)  
Common mode  
choke op onal  
100 nF  
GPU  
CAC-RX  
RESD  
OUT_D2p  
OUT_D2n  
OUT_D1p  
OUT_D1n  
OUT_D0p  
OUT_D0n  
OUT_CLKp  
OUT_CLKn  
HPD_IN  
D2+  
IN_D2p  
D2p  
D2n  
D2-  
IN_D2n  
D1+  
D1-  
IN_D1p  
D1p  
IN_D1n  
D1n  
D0+  
D0-  
IN_D0p  
D0p  
IN_D0n  
D0n  
CLK+  
CLK-  
HPD  
SCL  
IN_CLKp  
IN_CLKn  
HPD_OUT  
LV_DDC_SCL  
LV_DDC_SDA  
CLKp  
CLKn  
HPD_OUT  
HPD  
HV_DDC_SCL  
HV_DDC_SDA  
DDC_SCL  
DDC_SDA  
SCL/GPIO  
SDA/GPIO  
GPIO  
SDA  
1.8-k  
MODE  
1.8-k  
MODE  
+5 V  
TXPRE  
TXPRE  
+5 V  
TXSWG  
CTLEMAP_SEL  
EQ1  
TXSWG  
CTLEMAP_SEL  
EQ1  
VCC (3.3 V)  
DNI  
VIO  
AC_EN  
AC_EN  
LINEAR_EN  
ADDR/EQ0  
SCL/CFG0  
SDA/CFG1  
EN  
DNI  
SCL/CFG0  
ADDR/EQ0  
SCL/CFG0  
SDA/CFG1  
EN  
LINEAR_EN  
MODE  
HPDOUT_SEL  
HPDOUT_SEL  
1-k  
10-k  
VCC (3.3 V)  
DNI  
VIO  
100 nF  
DNI  
SDA/CFG1  
redriver  
HPD_OUT  
220-k  
TXPRE  
DNI  
10-k  
VCC (3.3 V)  
VCC (3.3 V)  
DNI  
VCC (3.3 V)  
VCC (3.3 V)  
DNI  
VCC (3.3 V)  
R1  
VCC (3.3 V)  
R3  
VCC (3.3 V)  
DNI  
DNI  
DNI  
AC_EN  
CTLEMAP_SEL  
TXSWG  
EQ1  
ADDR/EQ0  
HPDOUT_SEL  
LINEAR_EN  
DNI  
1-k  
DNI  
R2  
R4  
DNI (Do Not Install)  
9-2. TDP1204 in Source Application Schematics  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
63  
Product Folder Links: TDP1204  
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
9.2.2.1 Pre-Channel (LAB  
)
The TDP1204 can support up to 12-dB at 6-GHz of insertion loss. The loss profile between the GPU and the  
TDP1204 input (referred to the pre-channel as depicted in 9-1) should be less than the TDP1204 maximum  
receiver equalization. 9-3 shows the loss profile of FR4 trace at different lengths. The TDP1204 EQ0 and EQ1  
pins should be configured to match the pre-channel insertion loss. 8-6 lists the EQ0 and EQ1 configuration  
options.  
The GPU transmitter differential output voltage swing must be large enough so that the TDP1204's VID(DC) and  
VID(EYE) requirements are met. The VID(EYE) is the eye height after the contribution of ISI jitter only. Because a  
redriver can only compensate for ISI jitter, all non-ISI sources of jitter (random, sinusoidal, and so forth) will be  
passed through TDP1204. If the system designer requires the worse case channel length of 10 inches, then the  
GPU transmitter differential voltage swing without de-emphasis should be at least 1000 mVpp to meet the  
VID(DC) and VID(EYE) requirements of the TDP1204. A GPU transmitter, which incorporates de-emphasis, can  
meet the requirement with less than 1000 mVpp.  
9.2.2.2 Post-Channel (LCD  
)
9-1 shows the post-channel, which should be 2 inches or less. If ESD devices are used, then it may be  
necessary to overcome the insertion loss of the ESD device by increasing the TDP1204 transmitter voltage  
swing. 8-17 lists how this is done by configuring the TXSWG pin to the appropriate value.  
If post-channel is greater than 2 inches, then transmitter pre-emphasis may need to be employed. 8-15 lists  
how this is done by configuring the TDP1204 TXPRE pin to the appropriate setting. Adjusting the TDP1204  
transmitter voltage swing may also be necessary.  
9.2.2.3 Common Mode Choke  
It may be necessary to incorporate a common mode choke (CMC) to reduce EMI. The purpose of a CMC is to  
have a minimal impact to the differential signal while attentuating common mode noise thereby reducing radiated  
emissions. The CMC should be placed between the TDP1204 and the ESD device.  
9-3. Recommended Common Mode Chokes  
Manufacturer  
Part Number  
Murata  
DLM0QSB120HY2  
DLM0NSB120HY2  
NFG0QHB542HS2  
Murata  
Murata  
9.2.2.4 ESD Protection  
It may be necessary to incorporate an ESD component to protect the TDP1204 from electrostatic discharge  
(ESD). It is recommended that the ESD protection component has a breakdown voltage of 4.5 V and a clamp  
voltage of 4.3 V. A clamp voltage greater than 4.3 V will require a RESD on each high-speed differential pin.  
The ESD component should be placed near the HDMI connector.  
9-4. Recommended ESD Protection Component  
Manufacturer  
Part Number  
NXP  
PUSB3FR4  
Copyright © 2022 Texas Instruments Incorporated  
64  
Submit Document Feedback  
Product Folder Links: TDP1204  
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
9.2.3 Application Curves  
9-3. FR4 Trace Insertion Loss at 6 GHz  
9-4. Pre-Channel Insertion Loss at TTP2  
9-5. Post-Channel Insertion Loss at TTP4  
9-6. 12 Gbps Input Eye at TTP2 After Pre-  
channel  
9-8. 12 Gbps Output Eye at TTP4_EQ After Pre  
and Post Channels  
9-7. 12 Gbps Output Eye at TTP4 After Pre and  
Post Channels  
9.3 Typical Sink-Side Application  
9-9 provides a schematic representation of what is considered a standard sink implementation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
65  
Product Folder Links: TDP1204  
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
A
B
C
D
LCD  
LAB  
RESD  
Optional  
CAC-TX  
IN_CLKn  
IN_CLKp  
OUT_CLKn  
OUT_CLKp  
OUT_D0n  
IN_D0n  
IN_D0p  
OUT_D0p  
OUT_D1n  
OUT_D1p  
SINK  
(Scaler)  
IN_D1n  
IN_D1p  
Redriver  
OUT_D2n  
OUT_D2p  
IN_D2n  
IN_D2p  
LR_ESD  
LESD  
LCAP-TX  
9-9. TDP1204 in Sink Side Application  
9.3.1 Design Requirements  
9-5. Design Parameters  
Design Parameter  
Value  
3.3-V (±5%)  
1.8-V  
VCC  
VIO (1.2-V, 1.8-V, or 3.3-V LVCMOS levels)  
Maximum HDMI 2.1 FRL Datarate (6, 8, 10, or 12-Gbps)  
Pin-strap or I2C mode (if I2C, then MODE = "F").  
Pin Strap Mode.(MODE = "0", "R" or "1").  
12-Gbps  
Pin-strap  
Mode = "1" (Adaptive EQ with DDC Buffer support)  
Yes  
DDC Snoop Feature. (Y/N). Required when in pin strap. Optional in  
I2C mode.  
SWAP function (Y / N). In pin strap mode controlled by SDA/CFG1  
pin.  
Yes. SDA/CFG1 pin = H.  
DDC Level Shifter Support (Y / N)  
Yes  
HPD_IN to HPD_OUT Level Shifter Support (Y / N)  
Pre-Channel Length (Refer to 9-6 on length restrictions)  
Post-Channel Length (Refer to 9-6 on length restrictions)  
No, then HPD_OUT can be left floating.  
Length = 1 inches; Width = 4 mil. (1-dB at 6-GHz insertion loss)  
Length = 6 inches; Width = 4 mil (6-dB at 6-GHz insertion loss)  
Linear redriver (LINEAR_EN pin = "F") recommended in sink  
application  
Limited or linear redriver mode?  
TX is DC or AC-coupled to HDMI receptacle?  
AC-coupled. AC_EN pin = High.  
EQ1 pin: "0"  
ADDR/EQ0 pin: "1"  
(2.7-dB)  
RX EQ (16 possible values. Value chosen based on pre-channel  
length).  
CTLE Map (Map A, Map B or Map C). In pre-strap controlled by  
CTLEMAP_SEL pin.  
For Sink application recommend Map B or C.  
TX pre-emphasis. In pre-strap mode controlled by TXPRE pin. TX  
pre-emphasis control not supported in linear redriver mode.  
Float TXPRE pin.  
TX Swing. In pre-strap mode controlled by TXSWG pin.  
Default TX swing level. Float TXSWG pin.  
Copyright © 2022 Texas Instruments Incorporated  
66  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
9-6. Sink Layout and Component Placement Constraints  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Units  
External series resistor between ESD  
component and TDP1204  
RESD  
0
2.5  
PCB trace length from receptacle to  
TDP1204  
(1) (2)  
LAB  
0.75  
1
2
inches  
LINTRA-AB  
Intra-pair skew from receptacle to TDP1204  
PCB trace length from TDP1204 to sink  
Intra-pair skew from TDP1204 to sink  
2
6
2
mil  
inches  
mil  
(1)  
LCD  
LINTRA-CD  
LCAP-TX  
PCB trace length from TDP1204 to external  
CAC-TX capacitor  
0.3  
inches  
inches  
PCB trace length from ESD component to  
receptacle  
LESD  
0.5  
PCB trace length from RESD to ESD  
component  
LR_ESD  
0.25  
0.10  
inches  
inches  
(3)  
LINTER-PAIR  
Inter-pair skew between all four channels  
(D0, D1, D2, and CLK)  
dB / inch /  
GHz  
ILPCB  
PCB trace insertion loss  
0.1  
0.17  
ZPCB_AB  
ZPCB_CD  
VIAAB  
Differential impedance of LAB  
Differential impedance of LCD  
90  
90  
110  
110  
1
Number of vias between receptacle and  
TDP1204  
VIA  
VIACD  
Number of vias between sink and TDP1204  
2
VIA  
dB  
Differential crosstalk between adjacent  
differential pairs on PCB.  
XTALK  
3-GHz  
24  
(1) Maximum distance assumes PCB trace insertion loss meets ILPCB requirement. If PCB trace insertion loss exceeds the maximum limit,  
then distance needs to be reduced.  
(2) Minimum distance assumes PCB trace insertion loss meets ILPCB requirement. If PCB trace insertion loss is less than the minimum  
limit, then distance needs to be increased.  
(3) Calculation of channel length is the sum of LAB and LCD  
.
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
67  
Product Folder Links: TDP1204  
 
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
9.3.2 Detailed Design Procedures  
VCC (3.3 V)  
VIO  
VCC (3.3 V)  
Op onal  
100 nF  
10 µF  
100 nF  
100 nF  
100 nF  
100 nF  
HDMI SINK  
(Scaler)  
CAC-TX  
RESD  
D2+/FRL_D2p  
D2-/FRL_D2n  
D1+/FRL_D1p  
D1-/FRL_D1n  
D0+/FRL_D0p  
D0-/FRL_D0n  
CLK+/FRL_D3p  
CLK-/FRL_D3p  
DDC_SCL  
OUT_D2p  
OUT_D2n  
OUT_D1p  
OUT_D1n  
OUT_D0p  
OUT_D0n  
OUT_CLKp  
OUT_CLKn  
D2+  
D2-  
IN_D2p  
IN_D2n  
ESD  
D1+  
D1-  
IN_D1p  
IN_D1n  
D0+  
D0-  
IN_D0p  
IN_D0n  
ESD  
CLK+  
CLK-  
SCL  
IN_CLKp  
IN_CLKn  
HV_DDC_SCL  
HV_DDC_SDA  
HPD_IN  
MODE  
LV_DDC_SCL  
LV_DDC_SDA  
HPD_OUT  
DDC_SDA  
SDA  
ESD  
47-k  
HPDOUT  
GPIO  
HPD  
+5 V  
1-k  
SRC_PRNT  
MODE  
TXPRE  
TXPRE  
SRC_PRNT  
TXSWG  
TXSWG  
CTLEMAP_SEL  
EQ1  
CTLEMAP_SEL  
EQ1  
VCC (3.3 V)  
1-k  
VIO  
AC_EN  
AC_EN  
LINEAR_EN  
ADDR/EQ0  
SCL/CFG0  
SDA/CFG1  
EN  
ADDR/EQ0  
SCL/CFG0  
SDA/CFG1  
EN  
DNI  
SCL/CFG0  
LINEAR_EN  
HPDOUT_SEL  
MODE  
HPDOUT_SEL  
DNI  
10-k  
VCC (3.3 V)  
DNI  
VIO  
10-k  
100 nF  
TDP1204  
TXPRE  
SDA/CFG1  
1-k  
DNI  
VCC (3.3 V)  
VCC (3.3 V)  
DNI  
VCC (3.3 V)  
VCC (3.3 V)  
DNI  
VCC (3.3 V)  
R1  
VCC (3.3 V)  
VCC (3.3 V)  
DNI  
HPDOUT_SEL  
10-k  
AC_EN  
DNI  
R3  
CTLEMAP_SEL  
LINEAR_EN  
TXSWG  
EQ1  
ADDR/EQ0  
DNI  
DNI  
DNI  
R2  
R4  
DNI (Do Not Install)  
9-10. TDP1204 in Sink Application Schematics  
Copyright © 2022 Texas Instruments Incorporated  
68  
Submit Document Feedback  
Product Folder Links: TDP1204  
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
10 Power Supply Recommendations  
10.1 Supply Decoupling  
Texas Instruments recommends a single bulk capacitor of 10-µF on the VCC supply. Along with the bulk  
capacitor, Texas Instruments recommends a 0.1-µF decoupling capacitor on each TDP1204 VCC pin that is  
placed as close to the VCC pin as possible. 9-2 shows an example.  
11 Layout  
11.1 Layout Guidelines  
For the TDP1204 on a high-K board, it is required to solder the PowerPADonto the thermal land to ground. A  
thermal land is the area of solder-tinned-copper underneath the PowerPAD package. On a high-K board, the  
TDP1204 can operate over the full temperature range by soldering the PowerPAD onto the thermal land. For the  
device to operate across the temperature range on a low-K board, a 1-oz Cu trace connecting the GND pins to  
the thermal land must be used. A simulation shows RθJA = 30.9°C/W allowing 950-mW power dissipation at  
70°C ambient temperature. A general PCB design guide for PowerPAD packages is provided in the PowerPAD  
Thermally Enhanced Package application report. TI recommends using a four layer stack up at a minimum to  
accomplish a low-EMI PCB design. TI recommends four layers as the TDP1204 is a single voltage rail device.  
Routing the high-speed TMDS traces on the top layer avoids the use of vias (and the introduction of their  
inductances) and allows for clean interconnects from the HDMI connectors to the Redriver inputs and  
outputs. It is important to match the electrical length of these high speed traces to minimize both inter-pair  
and intra-pair skew.  
Placing a solid ground plane next to the high-speed single layer establishes controlled impedance for  
transmission link interconnects and provides an excellent low-inductance path for the return current flow.  
Placing a power plane next to the ground plane creates an additional high-frequency bypass capacitance.  
Routing slower seed control signals on the bottom layer allows for greater flexibility as these signal links  
usually have margin to tolerate discontinuities such as vias.  
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to  
the stack to keep symmetry. This makes the stack mechanically stable and prevents it from warping. Also the  
power and ground plane of each power system can be placed closer together, thus increasing the high  
frequency bypass capacitance significantly.  
To minimize crosstalk between adjacent differential pairs, the distance between the differential pairs should  
be at least five times longer than the trace width (5W rule). For the clock differential pair, the distance should  
be increased to 8W or 10W.  
Layer 1: TMDS signal layer  
Layer 1: TMDS signal layer  
5 to 10  
mils  
Layer 2: Ground Plane  
Layer 2: Ground Plane  
Layer 3: VCC Power Plane  
20 to 40  
mils  
Layer 4: VDD Power Plane  
Layer 5: Ground Plane  
Layer 3: Power Plane  
5 to 10  
mils  
Layer 4: Control signal layer  
Layer 6: Control signal layer  
11-1. Recommended 4 or 6-Layer PCB Stack  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
69  
Product Folder Links: TDP1204  
 
 
 
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
11.2 Layout Example  
GND  
1
9
40  
IN_D2p/n  
OUT_D2p/n  
HPD_OUT  
TXSWG  
IN_D1p/n  
OUT_D1p/n  
OUT_D0p/n  
OUT_CLKp/n  
VIO  
ADDR/EQ0  
HPD_IN  
GND  
IN_D0p/n  
IN_CLKp/n  
MODE  
GND  
TXPRE  
20  
29  
VCC  
GND  
HV_DDC_SCL  
HV_DDC_SDA  
LV_DDC_SCL  
LV_DDC_SDA  
11-2. Source Example Layout  
Copyright © 2022 Texas Instruments Incorporated  
70  
Submit Document Feedback  
Product Folder Links: TDP1204  
 
TDP1204  
ZHCSQR9 JULY 2022  
www.ti.com.cn  
12 Device and Documentation Support  
12.1 Documentation Support  
12.1.1 Related Documentation  
For related documentation, see the following:  
Texas Instruments, PowerPAD Thermally Enhanced Package application report  
12.2 接收文档更新通知  
要接收文档更新通知请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册即可每周接收产品信息更  
改摘要。有关更改的详细信息请查看任何已修订文档中包含的修订历史记录。  
12.3 支持资源  
TI E2E支持论坛是工程师的重要参考资料可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解  
答或提出自己的问题可获得所需的快速设计帮助。  
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范并且不一定反映 TI 的观点请参阅  
TI 《使用条款》。  
12.4 Trademarks  
HDMIis a trademark of HDMI Licensing Administrator, Inc..  
Blu-rayis a trademark of Blu-ray Disc Association (BDA).  
PowerPADand TI E2Eare trademarks of Texas Instruments.  
所有商标均为其各自所有者的财产。  
12.5 Electrostatic Discharge Caution  
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled  
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.  
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may  
be more susceptible to damage because very small parametric changes could cause the device not to meet its published  
specifications.  
12.6 术语表  
TI 术语表  
本术语表列出并解释了术语、首字母缩略词和定义。  
13 Mechanical, Packaging, and Orderable Information  
The following pages include mechanical, packaging, and orderable information. This information is the most  
current data available for the designated devices. This data is subject to change without notice and revision of  
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.  
Copyright © 2022 Texas Instruments Incorporated  
Submit Document Feedback  
71  
Product Folder Links: TDP1204  
 
 
 
 
 
 
 
 
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Apr-2023  
PACKAGING INFORMATION  
Orderable Device  
Status Package Type Package Pins Package  
Eco Plan  
Lead finish/  
Ball material  
MSL Peak Temp  
Op Temp (°C)  
Device Marking  
Samples  
Drawing  
Qty  
(1)  
(2)  
(3)  
(4/5)  
(6)  
TDP1204IRNQR  
TDP1204IRNQT  
TDP1204RNQR  
TDP1204RNQT  
ACTIVE  
ACTIVE  
ACTIVE  
ACTIVE  
WQFN  
WQFN  
WQFN  
WQFN  
RNQ  
RNQ  
RNQ  
RNQ  
40  
40  
40  
40  
3000 RoHS & Green  
250 RoHS & Green  
3000 RoHS & Green  
250 RoHS & Green  
NIPDAU  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
Level-1-260C-UNLIM  
-40 to 85  
-40 to 85  
0 to 85  
TDP04  
Samples  
Samples  
Samples  
Samples  
NIPDAU  
NIPDAU  
NIPDAU  
TDP04  
TDP04  
TDP04  
0 to 85  
(1) The marketing status values are defined as follows:  
ACTIVE: Product device recommended for new designs.  
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.  
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.  
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.  
OBSOLETE: TI has discontinued the production of the device.  
(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance  
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may  
reference these types of products as "Pb-Free".  
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.  
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based  
flame retardants must also meet the <=1000ppm threshold requirement.  
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.  
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.  
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation  
of the previous line and the two combined represent the entire Device Marking for that device.  
(6)  
Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two  
lines if the finish value exceeds the maximum column width.  
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information  
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and  
Addendum-Page 1  
PACKAGE OPTION ADDENDUM  
www.ti.com  
10-Apr-2023  
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.  
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.  
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.  
Addendum-Page 2  
PACKAGE OUTLINE  
RNQ0040A  
WQFN - 0.8 mm max height  
S
C
A
L
E
2
.
5
0
0
PLASTIC QUAD FLATPACK - NO LEAD  
6.1  
5.9  
B
A
PIN 1 INDEX AREA  
4.1  
3.9  
C
0.8 MAX  
SEATING PLANE  
0.08  
0.05  
0.00  
4.7±0.1  
2X 4.4  
(0.2) TYP  
9
20  
EXPOSED  
THERMAL PAD  
36X 0.4  
8
21  
2X  
2.8  
2.7±0.1  
1
28  
0.25  
40X  
0.15  
29  
40  
PIN 1 ID  
0.1  
C A  
B
0.5  
0.3  
(OPTIONAL)  
40X  
0.05  
4222125/B 01/2016  
NOTES:  
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing  
per ASME Y14.5M.  
2. This drawing is subject to change without notice.  
3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.  
www.ti.com  
EXAMPLE BOARD LAYOUT  
RNQ0040A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
(4.7)  
2X (2.1)  
6X (0.75)  
40  
29  
40X (0.6)  
1
28  
40X (0.2)  
SYMM  
4X  
(1.1)  
(3.8)  
(2.7)  
36X (0.4)  
8
21  
(R0.05) TYP  
9
20  
SYMM  
(5.8)  
(
0.2) TYP  
VIA  
LAND PATTERN EXAMPLE  
SCALE:15X  
0.05 MAX  
ALL AROUND  
0.05 MIN  
ALL AROUND  
SOLDER MASK  
OPENING  
METAL  
SOLDER MASK  
OPENING  
METAL UNDER  
SOLDER MASK  
NON SOLDER MASK  
DEFINED  
SOLDER MASK  
DEFINED  
(PREFERRED)  
SOLDER MASK DETAILS  
4222125/B 01/2016  
NOTES: (continued)  
4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature  
number SLUA271 (www.ti.com/lit/slua271).  
www.ti.com  
EXAMPLE STENCIL DESIGN  
RNQ0040A  
WQFN - 0.8 mm max height  
PLASTIC QUAD FLATPACK - NO LEAD  
SYMM  
4X (1.5)  
40  
29  
40X (0.6)  
1
28  
40X (0.2)  
SYMM  
6X  
(0.695)  
(3.8)  
6X  
(1.19)  
36X (0.4)  
8
21  
(R0.05) TYP  
METAL  
TYP  
9
20  
6X (1.3)  
(5.8)  
SOLDER PASTE EXAMPLE  
BASED ON 0.1 mm THICK STENCIL  
EXPOSED PAD  
73% PRINTED SOLDER COVERAGE BY AREA  
SCALE:18X  
4222125/B 01/2016  
NOTES: (continued)  
5. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate  
design recommendations.  
www.ti.com  
重要声明和免责声明  
TI“按原样提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,  
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担  
保。  
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验  
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。  
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的应用。严禁对这些资源进行其他复制或展示。  
您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索赔、损害、成  
本、损失和债务,TI 对此概不负责。  
TI 提供的产品受 TI 的销售条款ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改  
TI 针对 TI 产品发布的适用的担保或担保免责声明。  
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE  
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265  
Copyright © 2023,德州仪器 (TI) 公司  

相关型号:

TDP1204IRNQR

12-Gbps DP++ 1.1 to HDMI 2.1 source redriver | RNQ | 40 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TDP1204IRNQT

12-Gbps DP++ 1.1 to HDMI 2.1 source redriver | RNQ | 40 | -40 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TDP1204RNQR

12-Gbps DP++ 1.1 to HDMI 2.1 source redriver | RNQ | 40 | 0 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TDP1204RNQT

12-Gbps DP++ 1.1 to HDMI 2.1 source redriver | RNQ | 40 | 0 to 85

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
TI

TDP14011001AUF

Molded, Dual-In-Line Resistor Networks

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TDP14011001BUF

Molded, Dual-In-Line Resistor Networks

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TDP14011001CUF

Molded, Dual-In-Line Resistor Networks

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TDP14011001DUF

Molded, Dual-In-Line Resistor Networks

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TDP14011001EUF

Molded, Dual-In-Line Resistor Networks

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TDP14011001FUF

Molded, Dual-In-Line Resistor Networks

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TDP14011002AUF

Molded, Dual-In-Line Resistor Networks

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

TDP14011002BUF

Molded, Dual-In-Line Resistor Networks

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY